SAND2024-11708

National
Laboratories

SAND2024-11708
Printed September 2024

SANDIA REPORT @ Sandia

BeyondFingerprinting: Al-guided
discovery of robust materials &
processes

Brad L. Boyce, Rémi Dingreville, David P. Adams, Carianne Martinez, J. Elliott Fowler,
Jamin R. Pillars, Ryan Wixom

Harry K. Moffat, Warren L. Davis, Sarah Ackerman, Ann Speed, Anthony Garland, Scott
A. Roberts, Jon J. Coleman, Frank W. DelRio, Dale Cillessen, Jay D Carroll, Habib N.
Najm, John F. Curry, Kyle L. Johnson, Sarah K. Dudley , Sadhvikas J. Addamane, Amelia
Henriksen, Joyce O. Custer, Jacqueline M. Wentz, Saaketh Desai, Kimberly Bassett, Troy
P. Shilt, Elise Walker, Matias Kalaswad, Ankit Shrivastava, Tomas F. Babuska, Matthew
Kottwitz, Kaitlynn M. Fitzgerald, M. Jain, Carlos Mejia, Jonas Actor, Niladri Das, Nate
Bianco, Tylan Watkins, Kyle Dorman, Reese E. Jones, Moe Khalil, Nat Trask

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550




Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology
& Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessatrily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports(@osti.gov

Online ordering:  http://www.osti.gov/scitech

Available to the public frompu
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: https://classic.ntis.gov/help/order-methods



mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/

ABSTRACT

BeyondFingerprinting was a 2021-2024 Sandia Grand Challenge LDRD exploring the potential to
develop new resilient materials and manufacturing processes by taking an artificial-intelligence (Al)-
guided approach that integrates human-subject-matter expertise with algorithms enriched with
physics-based constraints to unearth process-structure-property correlations. Such algorithms, trained
on high-throughput experiments and simulations, are shown to serve as surrogate models that
efficiently detect key “fingerprints” in materials data, prognose material performance, and guide
effective process improvements. To accelerate broader adoption across mission areas, this Al-guided
approach was demonstrated with three complex process-centric exemplars: electroplating, physical
vapor deposition, and laser powder bed fusion. Together, these exemplars impact nearly every
hardware component relevant to DOE and NNSA national security missions.
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EXECUTIVE SUMMARY

BeyondFingerprinting was a 3-year Grand Challenge project funded by Sandia National L.abs’ LDRD
(Laboratory Directed Research and Development) program. The BeyondFingerprinting project
explored the discovery of new, resilient materials and manufacturing processes by taking an artificial-
intelligence(Al)-guided approach that integrates human-subject-matter expertise with algorithms
enriched with physics-based constraints to unearth process-structure-property correlations. Such
algorithms, trained on high-throughput experiments and simulations, can serve as surrogate models
that efficiently detect key “fingerprints” in materials data, prognose material performance, and guide
effective adaptations. To accelerate broader adoption across mission areas, this Al-guided approach
was demonstrated with three complex process-centric exemplars: electroplating, physical vapor
deposition, and laser powder bed fusion.

Mission. Vision. Product. The mission of BeyondFingerprinting was to accelerate the discovery of
process-structure-property correlations and their underlying mechanistic causation, thereby enabling
new resilient materials and manufacturing processes for all national security hardware. In a
BeyondFingerprinting future, component design, manufacturing methods, and materials will be
simultaneously optimized by semi-autonomous systems, where the engineer does not have to envision
possible solutions and then painstakingly (and expensively) test each solution with build-and-check
methods; instead, they will simply select appropriate algorithms, embed known physical
laws/constraints, and assign design objectives. The ‘product’ of BeyondFingerprinting was more than
just demonstrating novel high-throughput methods, customized materials-centric hybrid-informed
algorithms, and related Al-guided workflows. It was about advancing the understanding and trust in
how such an approach can complement traditional expert-guided wisdom and conventional high-
fidelity mod/sim to efficiently reveal new, robust material processes while also facilitating basic
discoveries of the mechanistic causation underlying correlations.

Project Architecture Overview. Beyondlingerprinting has shown how complex, multi-modal, high-
throughput process data streams can be interpreted through hybrid-informed machine learning
architectures to realize substantially improved process outcomes. The project was arranged into three
exemplar process thrusts and two main cross-cutting themes:

e Exemplar 1 - Electroplating (aka Electrodeposition). Sandia currently designs over 700
patts/components that involve electroplating to build devices ranging from thermoelectric
generators to stronglinks. Electroplated metals enable transmission of electrical signals,
enhance adhesion for soldering/wire-bonding, offer protection from corrosion or weat,
improve lubricity, and impede diffusion. However, the development of new plating solutions
is time-consuming and labor-intensive. The electroplating process has a highly nonlinear
sensitivity to the bath chemistry, in addition to several other parameters (e.g. current density
conditions, electrode configuration, bath temperature/agitation, complexing agent
concentrations, etc.). Process optimization is largely trial-and-error, guided by experienced
practitioners, and difficult to translate from lab-scale to production-scale.

e Exemplar 2 - Physical Vapor Deposition (PVD). PVD is used for numerous Sandia
applications, including microelectronics, power sources, neutron generators, surety
mechanisms, and Z-machine hardware. While the PVD process offers many challenges, we
focus on the specific task of improving the mechanical properties (e.g. adhesion between the
deposited film and the substrate). Delamination, often a root-cause of subsequent hardware
failures, is difficult to anticipate because it involves complex chemo-physical processes
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governed by numerous factors (substrate roughness/defects/cleanliness, impurities from the
vapor phase, residual stresses that build up during deposition, etc.).

Exemplar 3 - Laser Powder Bed Fusion (LPBF). NNSA has been advocating for the
adoption of additive manufacturing as an agile pathway to technology insertion in our low-
volume applications. Yet, rapid qualification continues to be a bottleneck. To address this
challenge, there are numerous examples of high-fidelity simulations under development.
However, due to computational constraints and gaps in understanding, those simulations
consider only specific aspects of the overall process (a subset of the requisite physics) rather
than the entire complex process: powder packing, laser-matter interactions, melted-
fluid/particle dynamics, non-equilibrium solidification, and solid-state phase transformations.
An AI/ML approach provides an efficient surrogate representation that can incorporate
experimental observations as well as focused high-fidelity simulations into a comprehensive
process prediction.

Cross-cut: Multi-Modal High-Throughput Data Streams. One of the core scientific
questions examined in BeyondFingerprinting pertained to efficient and effective methods for
fusing data across multiple data streams. Available process data is complex. It involves a
combination of pre-process, in-process, and post-process information from disparate sources
in multiple forms: scalar parameters, time-series data, spatially resolved image data, as well as
2D and 3D datasets, each with concomitant uncertainties.

Cross-cut: Hybrid-Informed Multi-Layered Algorithms (Himulya). The fabrication
processes under consideration provide extremely heterogeneous data streams with varying
degrees of knowledge of the underlying physics. In BeyondFingerprinting, we explored the full
gamut of machine-learning (ML) algorithms: (1) purely regressive (“black box”) methods
where there is no embedded underlying physics, (2) physics-informed methods where physical
laws are weakly enforced through a penalty function, or (3) structure-preserving methods
where physical constraints (e.g. conservation laws, process limits) are rigidly enforced. Each
of these approaches can have value in certain aspects of an overall system-level process model.

BeyondFingerprinting’s generalizable approach followed three systematic steps that are common
across each exemplar. These steps are:

Detect: streamline data streams; initiate hybrid-informed algorithm; establish credibility

Prognose: integrate heterogeneous data; reveal process-structure-property correlations;
evaluate trust

Adapt: incorporate closed-loop systems; Himulaya-guided adaptation; promote use/adoption

While technical details vary from one exemplar to the other, the general workflow is common and can
be transferred beyond the current exemplars.

Outcomes: Greater than the sum of its parts, BeyondFingerprinting demonstrated the generalizability
of the detect-prognose-adapt sequence for accelerated process improvement.

BeyondFingerprinting was about TRANSFORMING the process-structure-property manufacturing
paradigm to achieve innovative and precisely controlled manufacturing processes of reliable
components. As listed in the summary of our work in Section 1, the BeyondFingerprinting team has
been developing and employing new types of hybrid-informed ML algorithms that can detect key
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signatures in materials data, prognose material performance, and guide effective manufacturing
process adaptations. This paradigm shift aligns with Laboratories Strategic Priority 5: “Invest and
demonstrate pathfinder systems to address threats” and Priority 6: “Deploy outstanding engineering,
science, and technology to our missions”. By fusing experiments, modeling, and physics-informed
algorithms, we have demonstrated (1) the technical basis for confidence in small-batch, high-reliability
systems with limited test hardware required in our national security mission, and (2) the technologies,
tools, and approaches to modernize how components are made and enable the realization of products
not yet imagined. In line with the Laboratories Strategic Priority 2: “Maintain an agile and effective
nuclear deterrence”, moving forward, we assert that our Detect-Prognose-Adapt approach can add
agility by offering a pathway to rapidly adapt to changing requirements and providing alternative
methods to sustain, modernize, design, produce, secure, and employ a flexible and responsive
stockpile.

BeyondFingerprinting was about DISCOIERING the fundamental mechanistic causes underpinning
process-structure-property correlations. As illustrated in the many examples shown in Section 1, our
three exemplars served as specific use cases to demonstrate generality and build trust in Al-guided
concepts that bridge foundational process science to applied component engineering to solve materials
reliability challenges relevant to both Sandia’s Nuclear Deterrence(ND) Enterprise and other
hardware-dependent missions. Our work lays out the foundation for an Al/ML-guided fusion of
multimodal data to accelerate the process-structure-property optimization paradigm by revealing
elusive correlations and distilling the data avalanche into essential actionable information.

BeyondFingerprinting was about EMPOWERING our workforce with emerging capabilities and
cultural change to enable greater productivity, creativity and competitiveness as defined in the
Laboratories Strategic Priority 7: “Unleash the power of Sandia”. By delivering customized materials-
centric algorithms, constrained by physical laws, guided by expert knowledge, and trained with
automated high-throughput closed-loop experimental data, BeyondFingerprinting capabilities have
removed some of the subject-matter expert (SME) barriers in cognition, data integration,
interpretation, and experience/intuition changing the way the SME is petforming his/her job,
focusing more on decision-making and less on build-and-check.
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ACRONYMS AND TERMS

Acronym/Term Definition
2D Two-dimensional
3D Three-dimensional
AFM Atomic Force Microscopy
Al Artificial Intelligence
AM Additive Manufacturing
CLIP Contrastive Language-Image Pre-training
COTS Commercially Off-The-Shelf
CTE Coefficient of Thermal Expansion
DAQ Data Acquisition
DeepONet Deep Operator Network
DFT Density Functional Theory
DNS Direct Numerical Simulation
EBSD Electron Back Scattered Diffraction
EDS Energy Dispersive X-ray Spectroscopy
FAIR Findable, Accessible, Interoperable, Reusable
FWHM Full Width Half Max
GB Grain boundary
Grad-CAM Gradient-weighted Class Activation Mapping
GRU Gated Recurrent Unit
GP Gaussian Process
GUI Graphical User Interface
Himulya Hybrid-Informed Multi-Layered Algorithms
HT High Throughput
HTT High Throughput Tensile
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
LPBF Laser Power Bed Fusion
LSTM Long-Short Term Memory
LSV Linear Sweep Voltammetry
MEMS Micros-Electro-Mechanical System
ML Machine Learning
ND Nuclear Deterrence
PBE Perdew-Burke-Ernzerhof
PCA Principal Component Analysis
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Acronym/Term Definition
PIMA Physics-Informed Multimodal Autoencoder
PL Photoluminescence
PVD Physical Vapor Deposition
RGB Red, Blue, Green
RMS Root Mean Square
RNN Recurrent Neural Network
SEM Scanning Electron Microscope
SIMTRA Simulation of Metal TRAnsport
SLM Spatial Light Modulator
SME Subject Matter Expert
UV-Vis Ultraviolet-Visible
VAE Variational Autoencoder
VDoS Vibrational Density of State
XRD X-ray Diffraction
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1. SUMMARY OF PUBLISHED / SUBMITTED MANUSCRIPTS

1.1. A digital twin for materials

Digital twins are emerging as powerful tools for supporting innovation as well as optimizing the in-
service performance of a broad range of complex physical machines, devices, and components. A
digital twin is generally designed to provide accurate in-silico representation of the form (i.e.,
appearance) and the functional response of a specified (unique) physical twin. This paper offers a new
perspective on how the emerging concept of digital twins could be applied to accelerate materials
innovation efforts. Specifically, it is argued that the material itself can be considered as a highly
complex multiscale physical system whose form (i.e., details of the material structure over a hierarchy
of material length) and function (i.e., response to external stimuli typically characterized through
suitably defined material properties) can be captured suitably in a digital twin. Accordingly, the digital
twin can represent the evolution of structure, process, and performance of the material over time,
with regard to both process history and in-service environment. This paper establishes the
foundational concepts and frameworks needed to formulate and continuously update both the form
and function of the digital twin of a selected material physical twin. The form of the proposed material
digital twin can be captured effectively using the broadly applicable framework of n-point spatial
correlations, while its function at the different length scales can be captured using homogenization
and localization process-structure-property surrogate models calibrated to collections of available
experimental and physics-based simulation.
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Figure 1. To manifest a digital twin of a material, it is necessary to represent the complex hierarchy of
features at the nano, micro, and macro-scale that contribute to the material performance.

Reference: [1] Kalidindi, S. R., Buzzy, M., Boyce, B. L., & Dingtreville, R. (2022). Digital twins for
materials. Frontiers in Materials, 9, 818535.
DOI: https://doi.org/10.3389 /fmats.2022.818535
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1.2. Topological homogenization of metamaterial variability

With the proliferation of additive manufacturing and 3D printing technologies, a broader palette of
material properties can be elicited from cellular solids, also known as metamaterials, architected foams,
programmable materials, or lattice structures. Metamaterials are designed and optimized under the
assumption of perfect geometry and a homogeneous underlying base material. Yet in practice real
lattices contain thousands or even millions of complex features, each with imperfections in shape and
material constituency. While the role of these defects on the mean properties of metamaterials has
been well studied, little attention has been paid to the stochastic properties of metamaterials, a crucial
next step for high reliability acrospace or biomedical applications. In this work we show that it is
precisely the large quantity of features that serves to homogenize the heterogeneities of the individual
features, thereby reducing the variability of the collective structure and achieving effective properties
that can be even more consistent than the monolithic base material. In this first statistical study of
additive lattice variability, a total of 239 strut-based lattices were mechanically tested for two
pedagogical lattice topologies (body centered cubic and face centered cubic) at three different relative
densities. The variability in yield strength and modulus was observed to exponentially decrease with
feature count (to the power —0.5), a scaling trend that we show can be predicted using an analytic
model or a finite element beam model. The latter provides an efficient pathway to extend the current
concepts to arbitrary/complex geometries and loading scenatios. These results not only illustrate the
homogenizing benefit of lattices, but also provide governing design principles that can be used to
mitigate manufacturing inconsistencies via topological design.

serrneennass SUOIJELIEA 9UNIESH 0] DAIUSUDSU| sserrrnnenns

s Sapsitive to Feature Variations__-

256 lattice struts 16,384 lattice struts ~2M lattice siruts ~10B foam walls

Figure 2. High-throughput testing allows rapid assessment of stochastic material variability. Here, applied
to additively manufactured lattices, high-throughput testing reveals that the effective variability in material
stiffness decreases as the number of unit cells increase due to a homogenization effect.

Reference: [2] White, B. C., Garland, A., & Boyce, B. L. (2022). Topological homogenization of
metamaterial variability. Materials Today, 53, 16-20.
DOT: https://doi.org/10.1016/j.mattod.2022.01.021
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1.3. Accelerating phase-field predictions via recurrent neural networks
learning the microstructural evolution in latent space

The phase-field method is a popular modeling technique used to describe the dynamics of
microstructures and their physical properties at the mesoscale. However, because in these simulations
the microstructure is described by a system of continuous variables evolving both in space and time,
phase-field models are computationally expensive. They require refined spatio-temporal discretization
and a parallel computing approach to achieve a useful degree of accuracy. As an alternative, we present
and discuss an accelerated phase-field approach which uses a recurrent neural network (RNN) to learn
the microstructure evolution in latent space. We perform a comprehensive analysis of different
dimensionality-reduction methods and types of recurrent units in RNNs. Specifically, we compare
statistical functions combined with linear and nonlinear embedding techniques to represent the
microstructure evolution in latent space. We also evaluate several RNN models that implement a
gating mechanism, including the long short-term memory (LSTM) unit and the gated recurrent unit
(GRU) as the microstructure-learning engine. We analyze the different combinations of these methods
on the spinodal decomposition of a two-phase system. Our comparison reveals that describing the
microstructure evolution in latent space using an autocorrelation-based principal component analysis
(PCA) method is the most efficient. We find that the LSTM and GRU RNN implementations provide
comparable accuracy with respect to the high-fidelity phase-field predictions, but with a considerable
computational speedup relative to the full simulation. This study not only enhances our understanding
of the performance of dimensionality reduction on the microstructure evolution, but it also provides
insights on strategies for accelerating phase-field modeling via machine learning techniques.

[ High-fidelity phase-field modeling
of microstructure evolution
100 frames
. ..... ’.
Recurrent neural network Low-dimensional
prediction representation
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Figure 3. Schematic of a latent dynamic model workflow to accelerate materials simulations. This workflow
consists of getting a low-dimensional presentation of the materials and then use this representation to learn
and predict future sequence using a recurrent neural network.

Reference: [3] Hu, C., Martin, S., & Dingreville, R. (2022). Accelerating phase-field predictions via
recurrent neural networks learning the microstructure evolution in latent space. Computer Methods in
Applied Mechanics and Engineering, 397, 115128.

DOI: https://doi.org/10.1016/j.cma.2022.115128
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1.4. Learning time-dependent deposition protocols to design thin films via
genetic algorithms

Designing next generation thin films tailor-made for specific applications relies on the availability of
robust process-structure-property relationships. Traditional structure zone diagrams that relate one or
two deposition conditions to microstructures are limited to simple mappings, with machine-learning
methods only recently attempting to relate multiple processing parameters to the final microstructure.
Despite this progress, process-structure relationships are unknown for deposition conditions that vary
during thin-film deposition, limiting the range of achievable microstructures and properties. We
combine phase-field simulations with a genetic algorithm to identify and design time-dependent
deposition protocols that achieve tailor-made microstructures. We simulate the physical vapor
deposition of a binary-alloy thin film by employing a phase-field model, where deposition rates and
diffusivities of the deposited species vary in time and are controlled via the genetic algorithm. Our
genetic-algorithm-guided protocols achieve targeted microstructures with lateral and vertical
concentration modulations, as well as more complex, hierarchical microstructures previously not
described in classical structure zone diagrams. By elucidating the process-structure mechanisms during
physical vapor deposition and using this knowledge to achieve precise thin-film microstructures, our
algorithm provides insights to the thin film, physical vapor deposition, and film functionality
communities looking for additional avenues to design novel thin-film microstructures.
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Figure 4. Workflow to discover novel (time-dependent) deposition protocols to achieve targeted
microstructures. Deposition protocols are parameterized to describe any (time-dependent) protocol in terms
of deposition rate. Those parameters are sampled and chose via a genetic algorithm which generate new
deposition protocols. These protocols are used as input into deposition models yield associated
microstructures. These microstructures are analyzed and compared to targeted microstructure for selection
of new protocols by the genetic algorithm.

Reference: [4] Desai, S., & Dingreville, R. (2022). Learning time-dependent deposition protocols to
design thin films via genetic algorithms. Materials & Design, 219, 110815.
DOI: https://doi.org/10.1016/j.matdes.2022.110815
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1.5. Microstructural black swans

Black swans are a metaphor for rare events with extreme consequences. In the domain of structural
materials, black swans represent features in the microstructure that lead to catastrophic failure; as a
result of their rarity, they are difficult to observe and often overlooked. These unusual weakest-link
features are described variously as incipient, emergent, or anomalous. They give rise to localization,
percolation, or avalanche events such as fracture, ductile rupture, dielectric breakdown, corrosion pit
nucleation, and fatigue-crack initiation; as such, they are limiting cases in the concept of a
representative volume. In this perspective, three examples are given of rare microstructural features
and how they limit the mechanical reliability of structural metals. After taking stock of these examples,
a future outlook considers the need for high-throughput testing and non-destructive characterization
as well as detection algorithms and materials modelling strategies, including accelerated machine
learning methods, that can capture anomalous events.
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Figure 5. Some material properties like fatigue crack initiation and corrosion pit nucleation are difficult to
predict because they appear to be highly stochastic, triggered at rare “weakest-links” in the microstructure.

Reference: [5] Boyce, B. L. (2022, July). Microstructural black swans. In IOP conference series: materials
science and engineering (Vol. 1249, No. 1, p. 012004). IOP Publishing.
DOIT: https://doi.org/10.1088/1757-899X/1249/1/012004
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1.6. Learning two-phase microstructure evolution using DeepONet and
autoencoder architectures

Phase-field modeling is an effective but computationally expensive method for capturing the
mesoscale morphological and microstructure evolution in materials. Hence, fast and generalizable
surrogate models are needed to alleviate the cost of computationally taxing processes such as in
optimization and design of materials. The intrinsic discontinuous nature of the physical phenomena
incurred by the presence of sharp phase boundaries makes the training of the surrogate model
cumbersome. We develop a framework that integrates a convolutional autoencoder architecture with
a deep neural operator (DeepONet) to learn the dynamic evolution of a two-phase mixture and
accelerate time-to-solution in predicting the microstructure evolution. We utilize the convolutional
autoencoder to provide a compact representation of the microstructure data in a low-dimensional
latent space. After DeepONet is trained in the latent space, it can be used to replace the high-fidelity
phase-field numerical solver in interpolation tasks or to accelerate the numerical solver in extrapolation
tasks.
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Figure 6. Accelerating materials simulation using physics-informed neural network. A convolutional
autoencoder is trained to embed the description of the microstructure. The latent description of the
microstructure obtained from the autoencoder is then use in a DeepONet to accelerate and predict future
time sequences.

Reference: [6] Oommen, V., Shukla, K., Goswami, S., Dingreville, R., & Karniadakis, G. E. (2022).
Learning two-phase microstructure evolution using neural operators and autoencoder architectures.
npy Computational Materials, (1), 190.

DOI: https://doi.org/10.1038 /s41524-022-00876-7
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1.7. Inferring topological phase transitions in pattern-forming processes with
self-learning

The identification of transitions in pattern-forming processes are critical to understand and fabricate
microstructurally precise materials in many application domains. While supervised methods can be
useful to identify transition regimes, they need labels, which require prior knowledge of order
parameters or relevant microstructures describing these transitions. Instead, we develop a self-
supervised, neural-network-based approach that does not require predefined labels about
microstructure classes to predict process parameters from observed microstructures. We show that
assessing the difficulty of solving this inverse problem can be used to uncover microstructural
transitions. We demonstrate our approach by automatically discovering microstructural transitions in
two distinct pattern-forming processes: the spinodal decomposition of a two-phase mixture and the
formation of binary-alloy microstructures during physical vapor deposition of thin films. This
approach opens a path forward for discovering unseen or hard-to-discern transitions and ultimately
controlling complex pattern-forming processes.
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Figure 7. Workflow to identify transition regimes in pattern-forming processes via self-supervised learning.
a We simulate the dynamical evolution of the physical system for a broad range of process parameters.
Next, we project the final state of the microstructural pattern into a latent space (using a pre-trained ResNet-
50 v235). We regress on these latent dimensions to estimate the original process parameters. b To detect
specific classes of microstructural patterns, we evaluate the model error by predicting the corresponding
initial process parameters. By measuring the change in sensitivity of forming specific patterns for various
input process parameters, we learn where the transition regime(s) might occur.

Reference: [7] Abram, M., Burghardt, K., Ver Steeg, G., Galstyan, A., & Dingreville, R. (2022).
Inferring topological transitions in pattern-forming processes with self-supervised learning. py
Computational Materials, 8(1), 205.

DOT: https://doi.org/10.1038/s41524-022-00889-2

27


https://doi.org/10.1038/s41524-022-00889-2

1.8. Optimization of Stochastic Feature Properties in Laser Powder Bed
Fusion

Process parameter selection in laser powder bed fusion (LPBF) controls the as-printed dimensional
tolerances, pore formation, surface quality and microstructure of printed metallic structures.
Measuring the stochastic mechanical performance for a wide range of process parameters is
cumbersome both in time and cost. In this study, we overcome these hurdles by using high-throughput
tensile (HT'T) testing of over 250 dogbone samples to examine process-driven performance of strut-
like small features, ~1 mm?2 in austenitic stainless steel (316 L). The output mechanical properties,
porosity, surface roughness and dimensional accuracy were mapped across the printable range of laser
powers and scan speeds using a continuous wave laser LPBF machine. Tradeoffs between ductility
and strength are shown across the process space and their implications are discussed. While volumetric
energy density deposited onto a substrate to create a melt-pool can be a useful metric for determining
bulk properties, it was not found to directly correlate with output small feature performance.
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Figure 8. High-throughput tensile testing contributes to rapid optimization of process parameters in additive
manufacturing. Other researchers typically lack this mechanical performance data during optimization, and
instead optimize for density or printability.

Reference: [8] Jensen, S. C., Koepke, J. R., Saiz, D. J., Heiden, M. J., Carroll, J. D., Boyce, B. L., &
Jared, B. H. (2022). Optimization of stochastic feature properties in laser powder bed fusion. .Additive
Manufacturing, 56, 102943,

DOT: https://doi.org/10.1016/j.addma.2022.102943
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1.9. Part-scale Process Modeling for Metal Additive Manufacturing, submitted
ASM Handbook, 2022.

This article provides an overview of different modeling approaches used to capture the phenomena
present in the additive manufacturing (AM) process. Inherent to the thermomechanical processing
that occurs in AM for metals is the development of residual stresses and distortions. The article then
provides an overview of thermal modeling. It presents a discussion on solid mechanics simulation and
microstructure simulation.
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Figure 9. Explicit High-Fidelity simulation of additive manufacturing processes requires enormous
computational resources, rendering extensive parametric studies infeasible. Future surrogate models
trained on limited simulation data will allow speed-up of such predictions, albeit with reduced fidelity.

Reference: [9] Johnson, K. L., Moser, D., Rodgers, T. M., & Stender, M. E. (2023). Part-Scale Process
Modeling for Metal Additive Manufacturing. In Additive Manufacturing Design and Applications (pp. 67-
73). ASM International.

DOI: https://doi.org/10.31399 /asm.hb.v24A.20006976
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1.10. Long-term process stability in additive manufacturing

Laser powder bed fusion (LPBF), also known as selective laser sintering or direct laser melting, is an
additive manufacturing process in which part geometries are formed simultaneously with the
underlying material. The microstructure, defect content, and surface quality are all synthesized
conjointly with the part shape. While the geometric design freedom allowed by this process enables
new complex features and parts with small (~1 mm) features, challenges associated with process
qualification can deter wider adoption. Furthermore, a lack of historical performance data for
statistical process control of witness coupons, for either bulk material or for small features, makes the
barrier to entry more difficult. Here, we demonstrate long-term, property-based process monitoring
and variability assessment using both small-featured (1 mm) and larger, bulk-representative material
witness coupons. Over a one-year period, more than 550 tensile bars and 80 Charpy impact bars were
printed alongside 316 L stainless steel parts built using LPBF and tested to detect shifts in the process
over time. Miniature tensile bars with a 1 mm2 gage area were tested using a high throughput
mechanical testing system. In parallel, a larger test coupon was used to monitor density, hardness, and
Charpy impact toughness. This collection of measurements was used to determine detectable property
shifts correlated to LPBF process changes including powder feedstock, machine hardware, software
versioning, and machine parameter settings. The benefits of using small featured, high-throughput
samples are discussed based on process sensitivity and the number of repeat tests possible for each
build. This study not only reveals the utility of property-based process monitoring but illustrates the
sensitivity of these measurements to detect process changes and provides further evidence for
property stability in modern LPBF.
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Figure 10. High-throughput tension testing enables a new level of insight into the long-term repeatability
of additive manufacturing processes. Rarely if ever do other organizations have access to such extensive
mechanical property data, collected consistently over years of process usage.

Reference: [10] Jensen, S. C., Carroll, J. D., Pathare, P. R., Saiz, D. J., Pegues, J. W., Boyce, B. L., ...
& Heiden, M. J. (2023). Long-term process stability in additive manufacturing. Additive Manufacturing,
61,103284.
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1.11. Process-microstructure relationships of physical vapor deposited
polycrystalline thin films via a multi-phase-field formulation.

We present a generalized multi-phase-field model to predict the growth of polycrystalline thin
tilms fabricated by physical vapor deposition. The model accounts for the explicit transport of atomic
species to the substrate and the competing diffusion processes on the surface and in the bulk of the
film leading to the formation of films with specific microstructures. We used magnetron
sputtering conditions (pressure, voltage, working distance, substrate orientation) to calculate the
energy and direction of the arriving atoms at the substrate using Monte Carlo simulations with the
SIMTRA code. Our simulation results capture the dependence of the microstructure on deposition
conditions, and delineate the relationship between process parameters and the formation of columnar
microstructures and surface roughness characteristic of thin films. These simulation predictions are in
agreement with transmission electron microscopy characterization of sputtered films. Through our
systematic investigation of competing growth mechanisms, we provide insights into the complex
relationships between deposition conditions and bulk and surface morphologies.
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Figure 11. Phase-field simulations of physical vapor deposition of thin film. Left panel illustrates the various
components of the model and features captured by the model. Right panel shows a comparison with TEM
cross section of the same microstructure. Model is able to accurately predict the evolution of the morphology
of the microstructure as a function of deposition conditions and thickness of the film.
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Reference: [11] Monti, J. M., Stewart, J. A., Custer, J. O., Adams, D. P., Depla, D., & Dingreville, R.
(2023). Linking simulated polycrystalline thin film microstructures to physical vapor deposition
conditions. Acta Materialia, 245, 118581.
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1.12. Learning incoherent light emission steering from metasurfaces using
generative models

Spatiotemporal control over incoherent light sources is critically important for applications such as
displays, remote sensing, clean energy, and illumination. Incoherent light emission made up of
randomized wavefronts is incompatible with known beam steering techniques that rely on coherent
electromagnetic wave interference. The emerging field of tunable dielectric metasurfaces consisting of
sub- wavelength arrays of optical nanoresonators has recently enabled active re-direction of incoherent
light (photoluminescence, PL) emission. This was achieved by illuminating (pumping) the metasurface
with a pump laser reflecting off a programmable spatial light modulator (SLM) with sawtooth grating
patterns as input. Achieving efficient beam steering requires the generation of optimal pump patterns
programmed into the SLM to maximize the PL emitted towards a given direction. Given the
innumerable possibilities and the lack of a theoretical physical framework to guide the exploration of
pump patterns, we use an active learning algorithm running a closed loop optical experiment with a
generative model to explore and optimize novel pump patterns. We achieve up to an order of
magnitude enhancement in the steering efficiency by using pump patterns that are generated by a
variational auto-encoder, with minimal number of experiments. The results presented in this paper
highlight the unique ability of generative models and active learning to dramatically improve steering
efficiency by finding novel optical pump patterns that are beyond human intuition. Our combination
of advanced machine learning techniques driving closed loop nanophotonic experiments might pave
the way to derive the underlying physics of emergent light-matter phenomena.
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Figure 12. Generative models combined with equation learner can learn how to steer light from fast and
high-throughput experiments.

Reference: [12] Iyer, P. P., Desai, S., Addamane, S., Dingreville, R., & Brener, 1. (2023). Learning

incoherent light emission steering from metasurfaces using generative models. In Proceedings of the
IEEE/CV'F Winter Conference on Applications of Computer VVision (pp. 3770-3777).
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1.13. Connecting vibrational spectroscopy to atomic structure via supervised
manifold learning: beyond peak analysis

Vibrational spectroscopy is a nondestructive technique commonly used in chemical and physical
analyses to determine atomic structures and associated properties. However, the evaluation and
interpretation of spectroscopic profiles based on human-identifiable peaks can be difficult and
convoluted. To address this challenge, we present a reliable protocol based on supervised manifold
learning techniques meant to connect vibrational spectra to a variety of complex and diverse atomic
structure configurations. As an illustration, we examined a large database of virtual vibrational
spectroscopy profiles generated from atomistic simulations for silicon structures subjected to different
stress, amorphization, and disordering states. We evaluated representative features in those spectra via
various linear and nonlinear dimensionality reduction techniques and used the reduced representation
of those features with decision trees to correlate them with structural information unavailable through
classical human-identifiable peak analysis. We show that our trained model accurately (over 97%
accuracy) and robustly (insensitive to noise) disentangles the contribution from the different material
states, hence demonstrating a comprehensive decoding of spectroscopic profiles beyond classical
(human-identifiable) peak analysis.
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Figure 13. We extracted materials state descriptors beyond classical peak-width analysis through a
machine-learned approach which takes as input an observed vibrational spectroscopy spectrum and
outputs a vector describing stress and strain full tensors, fraction of disorder, internal length scale
associated with disorder. The workflow consists of first reducing the dimensionality of the vibrational
spectrum via an autoencoder, then use the latent representation of the spectrum into a regression model
(in the present case a decision tree) to regress the state of the materials.

Reference: [13] Vizoso, D., Subhash, G., Rajan, K., & Dingreville, R. (2023). Connecting vibrational
spectroscopy to atomic structure via supervised manifold learning: Beyond peak analysis. Chemistry of
Materials, 35(3), 1186-1200.
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1.14. Machine Learning for Materials Science: Barriers to Broader Adoption

Machine learning is on a bit of a tear right now, with advances that are infiltrating nearly every aspect
of our lives. In the domain of materials science, this wave seems to be growing into a tsunami. Yet,
there are still real hurdles that we face to maximize its benefit. This Matter of Opinion, crafted as a
result of a workshop hosted by researchers at Sandia National Laboratories and attended by a cadre
of luminaries, briefly summarizes our perspective on these barriers. By recognizing these problems in
a community forum, we can share the burden of their resolution together with a common purpose
and coordinated effort.
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Figure 14. There are four basic categories that create barriers to the efficient usage of machine learning
algorithms in materials science: (1) psychological trust, (2) intellectual awareness of available algorithms
and their proper usage, (3) availability of infrastructural capabilities for both data collection and data analysis
at a large scale, and (4) in some cases, existing algorithms must be modified to accommodate the data
sources and embed physics knowledge.

Reference: [14] Boyce, B., Dingreville, R., Desai, S., Walker, E., Shilt, T, Bassett, K. L., ... & Warren,
J. A. (2023). Machine learning for materials science: Barriers to broader adoption. Matter, 6(5), 1320-
1323.
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1.15. Sputtered-deposited Mo thin films: Multimodal characterization of
structure, surface morphology, density, residual stress, electrical
resistivity and mechanical response

Multimodal datasets of materials are rich sources of information which can be leveraged for expedited
discovery of process—structure—property relationships and for designing materials with targeted
structures and/or properties. For this data descriptor article, we provide a multimodal dataset of
magnetron sputter-deposited molybdenum (Mo) thin films, which are used in a variety of industries
including high temperature coatings, photovoltaics, and microelectronics. In this dataset we explored
a process space consisting of 27 unique combinations of sputter power and Ar deposition pressure.
The phase, structure, surface morphology, and composition of the Mo thin films were characterized
by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and Rutherford
backscattering spectrometry. Physical properties—namely, thickness, film stress and sheet
resistance—were also measured to provide additional film characteristics and behaviors. Additionally,
nanoindentation was utilized to obtain mechanical load-displacement data. The entire dataset consists
of 2072 measurements including scalar values (e.g., film stress values), 2D linescans (e.g., x-ray
diffractograms), and 3D imagery (e.g., atomic force microscopy images). An additional 1889 quantities,
including film hardness, modulus, electrical resistivity, density, and surface roughness, were derived
from the experimental datasets using traditional methods. Minimal analysis and discussion of the
results are provided in this data descriptor article to limit the authors’ preconceived interpretations of
the data. Overall, the data modalities are consistent with previous reports of refractory metal thin
films, ensuring that a high-quality dataset was generated. The entirety of this data is committed to a
public repository in the Materials Data Facility.
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Figure 15. A summary of the 2,072 measurements performed on a combinatorial library of pure Mo films
deposited under a range of conditions and characterized via several complementary modalities.

Reference: [15] Kalaswad, M., Custer, J. O., Addamane, S., Khan, R. M., Jauregui, L., Babuska, T. F.,
... & Adams, D. P. (2023). Sputter-deposited Mo Thin films: multimodal characterization of structure,
surface morphology, density, residual stress, electrical resistivity, and mechanical response. Integrating
Materials and Manufacturing Innovation, 12(2), 118-129.
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1.16. Revealing the structure-property relationships of amorphous carbon
tribofilms on platinum-gold surfaces

Nanocrystalline metal alloys have shown great promise as electrical contact materials, given their
mechanical and tribological properties. In particular, platinum-gold (Pt—Au) nanocrystalline alloys
have demonstrated coefficients of friction as low as 0.01 and specific wear rates on the order of 10—9
mm3 N—1 m—1, largely due to the formation of carbon-based tribofilms at the sliding interfaces. In
this study, we advance our understanding of the Pt—Au tribofilm structure-property relations and
growth mechanisms via high-throughput and high-resolution measurements as a function of Pt—Au
composition. As the solute content increased from 0 at. % to 10 at. % Au, cross-sectional and plan-
view transmission electron microscopy demonstrated a decrease in average grain size d and an
accompanied increase in grain boundary (GB) segregation. The decrease in d and increase in GB solute
segregation translated to a decrease in modulus Er and an increase in hardness H as determined via
nanoindentation; the Er trend was mainly described using a rule-of-mixtures approximation, whereas
the H trend was ascribed to solid solution strengthening and GB stabilization. The steady state-friction
u and wear rate decreased with the addition of Au; low Au-content films showed substrate wear, while
high Au-content films showed stable tribofilm growth in both macroscale and nanoscale friction tests.
The carbon bonding configuration of the tribofilms was investigated by near-edge X-ray absorption
fine structure spectroscopic analyses and found to be similar to that of hydrogenated amorphous
carbon films. Altogether, the study provided insight into the mechanistic origins of the tribofilms, thus
opening the door to tunable properties ranging from mitigation for electrical contacts to the creation
of self-healing films for solid lubricants.

Figure 16. (top row) Cross-sectional images of as-deposited films, (middle row) plan view images, and
(bottom row) corresponding STEM-EDS composition maps, revealing gold segregation at grain boundaries.

Reference: [16] DelRio, F. W., Mangolini, F., Edwards, C. E., Babuska, T. F., Adams, D. P., Lu, P,
& Curry, J. F. (2023). Revealing the structure-property relationships of amorphous carbon tribofilms
on platinum-gold surfaces. Wear, 522, 204690.
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1.17. Automated high-throughput fatigue testing of freestanding thin films

Mechanical testing at small length scales has traditionally been resource-intensive due to difficulties
with meticulous sample preparation, exacting load alighments, and precision measurements.
Microscale fatigue testing can be particularly challenging due to the time-intensive, tedious repetition
of single fatigue experiments. To mitigate these challenges, this work presents a new methodology for
the high-throughput fatigue testing of thin films at the microscale. This methodology features a
microelectromechanical systems-based Si carrier that can support the simultaneous and independent
fatigue testing of an array of samples. To demonstrate this new technique, the microscale fatigue
behavior of nanocrystalline Al is efficiently characterized via this Si carrier and automated fatigue
testing with in situ scanning electron microscopy. This methodology reduces the total testing time by
an order of magnitude, and the high-throughput fatigue results highlight the stochastic nature of the
microscale fatigue response. This manuscript also discusses how this initial capability can be adapted
to accommodate more samples, different materials, new geometries, and other loading modes.
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Figure 17. A Si Micro-Electro-Mechanical system (MEMS)-based platform enables the simultaneous
fatigue testing of up to 12 thin-film tensile bars, with concurrent automated imaging of fatigue damage
progression in the Scanning Electron Microscope (SEM).

Reference: [17] Barrios, A., Kunka, C., Nogan, J., Hattar, K., & Boyce, B. L. (2023). Automated High-
Throughput Fatigue Testing of Freestanding Thin Films. Swall Methods, 7(7), 2201591.
DOI: https://doi.org/10.1002/smtd.202201591
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1.18. A Workflow for Accelerating Multimodal Data Collection for
Electrodeposited Films

Future machine learning strategies for materials process optimization will likely replace human capital-
intensive artisan research with autonomous and/or accelerated approaches. Such automation enables
accelerated multimodal characterization that simultaneously minimizes human errors, lowers costs,
enhances statistical sampling, and allows scientists to allocate their time to critical thinking instead of
repetitive manual tasks. Previous acceleration efforts to synthesize and evaluate materials have often
employed elaborate robotic self-driving laboratories or used specialized strategies that are difficult to
generalize. Herein we describe an implemented workflow for accelerating the multimodal
characterization of a combinatorial set of 915 electroplated Ni and Ni—Fe thin films resulting in a data
cube with over 160,000 individual data files. Our acceleration strategies do not require manufacturing-
scale resources and are thus amenable to typical materials research facilities in academic, government,
or commercial laboratories. The workflow demonstrated the acceleration of six characterization
modalities: optical microscopy, laser profilometry, X-ray diffraction, X-ray fluorescence,
nanoindentation, and tribological (friction and wear) testing, each with speedup factors ranging from
13—-46x. In addition, automated data upload to a repository using FAIR (Findable, Accessible,
Interoperable, Reusable) data principles was accelerated by 64x.
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Figure 18. An accelerated electroplating workflow uses custom parallel combinatorial synthesis and a
multi-sample holder, loaded into 6 automated instruments ranging from X-ray Flourescence to
Nanoindentation.

Reference: [18] Bassett, K. L., Watkins, T., Coleman, J., Bianco, N., Bailey, L. S., Pillars, J., ... &
Boyce, B. L. (2023). A Workflow for Accelerating Multimodal Data Collection for Electrodeposited
Films. Integrating Materials and Manufacturing Innovation, 12(4), 430-440.
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1.19. Latent representation of microstructure evolution: a survey

Characterizing and quantifying microstructure evolution is critical to forming quantitative
relationships between material processing conditions, resulting microstructure, and observed
properties. Machine-learning methods are increasingly accelerating the development of these
relationships by treating microstructure evolution as a pattern recognition problem, discovering
relationships explicitly or implicitly. These methods often rely on identifying low-dimensional
microstructural fingerprints as latent variables. However, using inappropriate latent variables can lead
to challenges in learning meaningful relationships. In this work, we survey and discuss the ability of
various linear and nonlinear dimensionality reduction methods including principal component
analysis, autoencoders, and diffusion maps to quantify and characterize the learned latent space
microstructural representations and their time evolution. We characterize latent spaces by their ability
to represent high-dimensional microstructural data in terms of compression achieved as a function of
the number of latent dimensions required to represent the data accurately, their accuracy based on
their reconstruction performance, and the smoothness of the microstructural trajectories in latent
dimension. We quantify these metrics for common microstructure evolution problems in material
science including spinodal decomposition of a binary metallic alloy, thin film deposition of a binary
metallic alloy, dendritic growth, and grain growth in a polycrystal. This study provides considerations
and guidelines for choosing dimensionality reduction methods when considering materials problems
that involve high dimensional data and a variety of features over a range of lengths and time scales.
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Figure 19. Latent representation of microstructure via various machine-learning algorithms (e.g.
autoencoders, principal component analysis, diffusion maps) are evaluated in terms of the ability of the
machine-learning strategy to (i) reconstruct the microstructure from its latent representation, both in terms
of local and global features; and (ii) the ability to describe smooth microstructure evolution trajectory in the
latent space. Smoothness of the latent representation of the microstructure as a function of time is important
for adaption and control of those microstructure when linked with process conditions.

Reference: [19] Desai, S., Shrivastava, A., D’Elia, M., Najm, H. N., & Dingtreville, R. (2024). Trade-

offs in the latent representation of microstructure evolution. Acta Materialia, 263, 119514.

DOI: https://doi.org/10.1016/j.actamat.2023.119514

40


https://doi.org/10.1016/j.actamat.2023.119514

1.20. Beyond Combinatorial Materials Science — The 100 Prisoners Problem

Advancements in high-throughput data generation and physics-informed artificial intelligence and
machine-learning algorithms are rapidly challenging the status quo for how materials data is collected,
analyzed, and communicated with the world. Machine-learning algorithms can be executed in just a
few lines of code by researchers with minimal data science expertise. This perspective addresses the
reality that the ecosystems which have been constructed to nurture new materials discovery and
development are not yet well equipped to take advantage of the radically more powerful and accessible
computational and algorithmic tools which have the immediate potential to enhance the pace of
scientific advancement in this field. A novel architecture for managing materials data is proposed and
discussed from the standpoint of how historical and emerging subfields of materials science could
have been or might still significantly improve the impact of materials discoveries to the many human
societal needs for new materials.
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Figure 20. (a) a typical workflow where measurements, interpretation, and even publication can be
disconnected from data sharing and advanced analytics, (b) a future workflow where data sharing via a
FAIR repository and advanced analysis can occur automatically in conjunction with data collection.

Reference: [20] Fowler, J. E., Kottwitz, M. A., Trask, N., & Dingreville, R. (2024). Beyond
Combinatorial Materials Science: The 100 Prisoners Problem. Integrating Materials and Manufacturing
Innovation, 13(1), 83-91.
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1.21. Reconstruction of high-resolution atomic force microscopy
measurements from fast-scan data using a Noise2Noise algorithm

The acquisition of large atomic-force-microscopy (AFM) scans at nanoscale resolutions can take hours
and produce datasets with millions of pixels, which is time consuming and computationally expensive
to analyze. In this paper, we present an approach to speed up this process by using a computer-vision
algorithm, namely the NoiseZNoise algorithm, to reconstruct high-resolution, low scan speed AFM
data from high-speed, noisy, sparsely sampled AFM data. This algorithm is trained on various noise
types to reproduce different sources of experimental noises encountered during the acquisition of
AFM data. Our results demonstrate that a sparse, uniform AFM scan of 20X 20 u m at 128X 128 pixel
resolution can be processed within seconds, and the output image is comparable to a higher quality
raw data scan which required 30 min or more to collect, reducing not only the acquisition and analysis
time, but also the size of the data being collected.
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Figure 21. We used a Noise2Noise (N2N) algorithms to reconstruct high-resolution atomic force
microscopy (AFM) images from noisy AFM images. (a) One target AFM image corresponds to a high-
resolution ‘clean’ image and the other corresponds to a ‘noisy’ sparsely sampled image. We used different
types of noise to train the network. (b) Once trained, we employed this algorithm to take scans at fast scan
speeds and lower sampling density to reconstruct the corresponding slow-scan AFM image, significantly
reducing scan time and decreasing processing complexity. The results demonstrate that it is possible to
reconstruct high-resolution scans from sparse or noisy AFM images with minimal time and computational
requirements.

Reference: [21] Natinsky, E., Khan, R. M., Cullinan, M., & Dingreville, R. (2024). Reconstruction of
high-resolution atomic force microscopy measurements from fast-scan data using a Noise2Noise
algorithm. Measurement, 227, 114263.
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1.22. Al for Technoscientific Discovery: A Human-Inspired Architecture

We present a high-level architecture for how artificial intelligences might advance and accumulate
scientific and technological knowledge, inspired by emerging perspectives on how human intelligences
advance and accumulate such knowledge. Agents advance knowledge by exercising a technoscientific
method—an interacting combination of scientific and engineering methods. The technoscientific
method maximizes a quantity we call “useful learning” via more-creative implausible utility (including
the “ahal” moments of discovery), as well as via less-creative plausible utility. Society accumulates the
knowledge advanced by agents so that other agents can incorporate and build on to make further
advances. The proposed architecture is challenging but potentially complete: its execution might in
principle enable artificial intelligences to advance and accumulate an equivalent of the full range of
human scientific and technological knowledge.
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Figure 22. An Al agent, here shown in the bottom center, can complement human agent’s ability to unearth
scientific facts and replicate engineering functions.

Reference: [22] Tsao, J. Y., Abbott, R. G., Crowder, D. C,, Desai, S., Dingreville, R. P. M., Fowler, J.
E., ... & Stracuzzi, D. J. (2024). Al for Technoscientific Discovery: A Human-Inspired Architecture.
Journal of Creativity, 34(2), 100077.
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1.23. Bayesian optimization for stable properties amid processing fluctuations
in sputter deposition

We introduce a Bayesian optimization approach to guide the sputter deposition of molybdenum thin
films, aiming to achieve desired residual stress and sheet resistance while minimizing susceptibility to
stochastic fluctuations during deposition. Thin films are pivotal in numerous technologies, including
semiconductors and optical devices, where their properties are critical. Sputter deposition parameters,
such as deposition power, vacuum chamber pressure, and working distance, influence physical
properties like residual stress and resistance. Excessive stress and high resistance can impair device
performance, necessitating the selection of optimal process parameters. Furthermore, these
parameters should ensure the consistency and reliability of thin film properties, assisting in the
reproducibility of the devices. However, exploring the multidimensional design space for process
optimization is expensive. Bayesian optimization is ideal for optimizing inputs/parameters of general
black-box functions without reliance on gradient information. We utilize Bayesian optimization to
optimize deposition power and pressure using a custom-built objective function incorporating
observed stress and resistance data. Additionally, we integrate prior knowledge of stress variation with
pressure into the objective function to prioritize films least affected by stochastic variations. Our
findings demonstrate that Bayesian optimization effectively explores the design space and identifies
optimal parameter combinations meeting desired stress and resistance specifications.
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Figure 23. Bayesian-guided determination of the “next” most valuable data point to acquire, at (left) the
first iteration of Bayesian selection, and (right) the seventh iteration of Bayesian selection. The exploitation
term is captured by expected value based on a Gaussian process model in (a), and exploration term is
captured by the uncertainty of the model's expected value expressed as a standard deviation multiplied by
a scaling term (b). A weighted sum of these two terms results in the acquisition function shown in (c).

Reference: [23] Shrivastava, A., Kalaswad, M., Custer, J. O., Adams, D. P., & Najm, H. N. (2024).
Bayesian optimization for stable properties amid processing fluctuations in sputter deposition. Journal
of Vacuum Science & Technology A, 42(3).
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1.24. Unsupervised physics-informed disentanglement of multimodal data

We introduce physics-informed multimodal autoencoders (PIMA) - a variational inference framework
for discovering shared information in multimodal datasets. Individual modalities are embedded into a
shared latent space and fused through a product-of-experts formulation, enabling a Gaussian mixture
prior to identify shared features. Sampling from clusters allows cross-modal generative modeling, with
a mixture-of-experts decoder that imposes inductive biases from prior scientific knowledge and
thereby imparts structured disentanglement of the latent space. This approach enables cross-modal
inference and the discovery of features in high-dimensional heterogeneous datasets. Consequently,
this approach provides a means to discover fingerprints in multimodal scientific datasets and to avoid
traditional bottlenecks related to high-fidelity measurement and characterization of scientific datasets.
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Multimodal Data Prediction

Figure 24. A physics-informed multimodal autoencoder fuses data from images of handwritten numbers
0-9 alongside toy empirical data with corresponding slopes 0-9. The expert physics model in the decoder
allows embedding of an expected physical rule.

Reference: [24] Walker, E., Trask, N., Martinez, C., Lee, K., Actor, J. A., Saha, S., ... & Boyce, B. L.
(2024). Unsupervised physics-informed disentanglement of multimodal data. Foundations of Data S cience,
0-0.
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1.25. Rethinking materials simulations: Blending direct numerical simulations
with neural operators.

Direct numerical simulations (DNS) are accurate but computationally expensive for predicting
materials evolution across timescales, due to the complexity of the underlying evolution equations, the
nature of multiscale spatio-temporal interactions, and the need to reach long-time integration. We
develop a new method that blends numerical solvers with neural operators to accelerate such
simulations. This methodology is based on the integration of a community numerical solver with a U-
Net neural operator, enhanced by a temporal-conditioning mechanism that enables accurate
extrapolation and efficient time-to-solution predictions of the dynamics. We demonstrate the
effectiveness of this framework on simulations of microstructure evolution during physical vapor
deposition modeled via the phase-field method. Such simulations exhibit high spatial gradients due to
the co-evolution of different material phases with simultaneous slow and fast materials dynamics. We
establish accurate extrapolation of the coupled solver with up to 16.5 speed-up compared to DNS.
This methodology is generalizable to a broad range of evolutionary models, from solid mechanics, to
fluid dynamics, geophysics, climate, and more.

0

- U—.th con&itioned on time (pre-trained)
- MEMPHIS

1.4 min

True Hybrid Abs. Error

10
13

20
23

30
33

0.5

0.0

[y]

40
43

50

Figure 25. Direct numerical simulation using a phase field model (True) compared to an accelerated hybrid
simulation approach that integrates a faster U-Net solver with periodic, slower phase field solutions.

Reference: [25] Oommen, V., Shukla, K., Desai, S., Dingreville, R., & Karniadakis, G. E. (2024).
Rethinking materials simulations: Blending direct numerical simulations with neural operators. np/
Computational Materials, 10(1), 145.
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1.26. Unlocking alternative solutions for critical materials via materials
informatics

Critical materials are materials that are essential for a broad range of modern technologies but subject
to supply risks, and for which there are no easy substitutes. The list of materials that are considered
critical depends on who, where, and when you ask. This ambiguity is due to several factors, including
geopolitical instability, resource depletion, and environmental concerns. In the US, lithium (Li) has
become the poster child for criticality, owing to the rapid rise in electric vehicles and the vanishingly
small domestic production. Other examples include beryllium (Be), an important material for solar
photovoltaics and electric-vehicle batteries, or neodymium (Nd) and dysprosium (Dy), because of
their use in magnets. A 2023 assessment by the US Department of Energy identified “the electric
eighteen” critical materials, which even include materials that are viewed as common, such as copper
(Cu) and silicon (Si). While their supply risk is modest, their ubiquity in the energy sector renders any
disruption potentially devastating.

The quest for the discovery and manufacturing of new and innovative materials to replace critical
materials remains as vital as ever. Future critical materials disruptions will likely need to be solved in a
matter of years or even months, rather than the decade or more often quoted as the requisite
timeframe to mature from materials discovery to commercialization. In addition to this need for agility,
a broadly coordinated federal strategy across all industrial sectors must address economic viability,
ease of production, domestic availability, and lifecycle environmental impact. Resistance to change
within the materials industry, along with a lack of awareness about environmental impacts, can slow
down this transition. Regulatory frameworks may not be conducive to promoting sustainability, and
technical challenges in fabricating materials with comparable performance to their traditional
counterparts can be daunting. Additionally, limited data availability, existing infrastructure geared
towards conventional materials, and market uncertainties can all pose substantial roadblocks.
Therefore, to meet economic, industrial, and technological needs, it is imperative to accelerate the
discovery of alternatives to critical materials by developing new and disruptive methods to identify
materials with the desired properties in a timely and responsive manner.

Researchers and engineers have traditionally used their expertise and intuition, in concert with ab initio
and heuristic models, to guide the discovery of new materials. However, machine learning (ML) and
artificial intelligence (Al) systems are now surpassing human intuition limits for complex tasks such
as image recognition, materials design and discovery, or autonomous experiments. These data-driven
approaches can also compensate for predictive shortcomings in traditional models arising from
assumptions, simplifications, and imperfect calibrations. As artificial intelligence algorithms become
more powerful and accessible, many materials scientists are increasingly embracing this emerging
scientific domain to accelerate the discovery and development of new materials. Materials
informatics—the amalgam of materials science, Al and ML, and advanced data analytics—holds one
of the keys to addressing roadblocks to discovering alternative solutions to critical materials. The
promise of materials informatics is that the discovery and manufacturing of materials solutions that
will replace critical materials can be simultaneously and rapidly optimized by semi-autonomous
systems, where the engineers do not have to envision all possible materials replacement solutions and
then painstakingly (and expensively) test each solution with build-and-check methods. Instead,
engineers can select appropriate algorithms, embed known physical laws and constraints, and assign
design and materials objectives. Materials informatic approaches have already proven quite useful for
certain materials problems such as broad and rapid searches across the periodic table (or more often,
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a rational subset) to achieve particular alloying effects, albeit such approaches may not be as obviously

applicable for difficult-to-predict behaviors such as fatigue life, for instance.

Discovery of alternative solutions

Critical material
to critical materials via materials informatics

to be replaced

2. Detection of fingerprints
in materials

Altemat“fel SUSta_'"able 3. Proposed alternative materials solutions or
material solution \ improving manufacturing process

Figure 26. Notionally, Al algorithms offer the ability to detect complex or hidden “fingerprints” in large
datasets obtained via high-throughput simulation and multimodal characterization, guiding the identification
of alternative material solutions to replace at-risk materials.

Reference: [260] Dingreville, R., Trask, N.A., Boyce, B.L. Karniadakis, G.E. (2024). Unlocking

alternative solutions to critical materials via materials informatics. The Bridge. Issue on Critical
Materials, 54(2).
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1.27. Bayesian blacksmithing: discovering thermomechanical properties and
deformation mechanisms in high-entropy refractory alloys

Finding alloys with specific design properties is challenging due to the large number of possible
compositions and the complex interactions between elements. This study introduces a multi-
objective Bayesian optimization approach guiding molecular dynamics simulations for
discovering high-performance refractory alloys with both targeted intrinsic static
thermomechanical properties and also deformation mechanisms occurring during dynamic
loading. The objective functions are aiming for excellent thermomechanical stability via a high
bulk modulus, a low thermal expansion, a high heat capacity, and for a resilient deformation
mechanism maximizing the retention of the BCC phase after shock loading. Contrasting two
optimization procedures, we show that the Pareto-optimal solutions are confined to a small
performance space when the property objectives display a cooperative relationship. Conversely,
the Pareto front is much broader in the performance space when these properties have antagonistic
relationships. Density functional theory simulations validate these findings and unveil underlying
atomic-bond changes driving property improvements.

a Optimization A b  Optimization B

Retained BCC [%]

Bulk Modulus [GPy]

- 8.8 8.0 7.2 6.4 265 230 195 160
a, [1/K] Cp [Ji(kg K)]

Figure 27. The multi-objective function consists of optimizing both (static) thermomechanical properties
(bulk modulus, coefficient of thermal expansion, heat capacity) and target a specific deformation
mechanism (retained BCC phase upon shock) in a model alloy: MoNbTaTi. Three-dimensional projections
of the calculated property performance spaces of optimizations A (panel a) and B (panel b). Pareto optimal
points are colored purple, while points from the initial database are colored turquoise. Points evaluated
during optimization but which do not lie on either Pareto front are colored grey. To aid in visualization, two-
dimensional projections are drawn onto the visible faces, and shadows are projected onto the points within
the three-dimensional volume.

Reference: [27] Startt, J., McCarthy, M. J., Wood, M. A., Donegan, S., & Dingreville, R. (2024).
Bayesian blacksmithing: discovering thermomechanical properties and deformation mechanisms in

high-entropy refractory alloys. npj Computational Materials, 10(1), 164.
DOIT: https://doi.org/10.1038/541524-024-01353-2
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1.28. Tunable amorphous carbon films formed on ultralow wear, Pt-Au alloys

The mechanocatalytic formation of carbonaceous films at the interface between sliding metallic
contacts is simultaneously advantageous for reducing friction and adhesion in several tribological
applications and detrimental for electrical contacts as they can induce device failure by increasing the
contact resistance. Yet, remarkably little is still known about the chemistry, structural and mechanical
properties, and tunability of these interfacial layers. In this study, we performed contact pressure-
dependent tribological experiments in dry nitrogen containing trace organics on four, nanocrystalline
Pt-Au alloys (JAu] from 0 at.% to 10 at.%), a promising class of alloys for ultralow wear and electrical
contact applications. The ex-situ, multi-technique characterization results did not only provide insights
into the chemical nature and mechanical behavior of the mechanocatalytic, carbon-rich films formed
on Pt-Au surfaces, but also revealed the interplay between catalytic and mechanochemical tribofilm
formation controlled by the composition-dependent electronic structure of the Pt-Au substrate and
the applied contact pressure. The results of this work provide guidelines for tailoring nanocrystalline
alloys to control their mechano-catalytic activity on the basis of variations of the alloy mechanical

properties and element’s electronic structure with the alloy stoichiometry.

0.8
Pty 00AU,
Pto.97AUg.03 it M i
T 06 A ‘ ® =
Y]
|~ O
N
_‘% 0.4
S Applied
S Pto.90AUg.10 Load
S 021 Friction
e A D Force " ta-C:H
_g Tribofilms
S | (this work) Polymer-like
s 0.0 @) carbon
A
-0.2 : ) spl H
-0.25 -0.20

Au Binding Energy Shift (eV)

Figure 28. (left) Tribologically-induced mechano-catalytic yield (omitting non-contact region) as a function
of the Au 4f7z binding energy shift. (upper right) AM-FM nanomechanical mapping reveal that
tribochemically-induced particles are mechanically distinct from the substrate. (lower right). A ternary
phase diagram based on spectroscopic analysis showing tetrahedral amorphous C:H tribofilms (ta-C:H,
green region) that formed during sliding contact in Pt-Au.

Reference: [28] Edwards, C. E., Babuska, T. F., Curry, J. F., DelRio, F. W, Killgore, J. P., Boyce, B.
L., ... & Mangolini, F. (2024). Tunable amorphous carbon films formed on ultralow wear, Pt—Au
alloys. Carbon, 226, 119220.

DOI: https://doi.org/10.1016/j.carbon.2024.119220
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1.29. High-Throughput Microstructural Characterization and Process
Correlation using Automated Electron Backscatter Diffraction

The need to optimize the processing conditions of additively manufactured (AM) metals and alloys
has driven advances in throughput capabilities for material property measurements such as tensile
strength or hardness. High-throughput (HT) characterization of AM metal microstructure has fallen
significantly behind the pace of property measurements due to intrinsic bottlenecks associated with
the artisan and labor-intensive preparation methods required to produce highly polished surfaces. This
inequality in data throughput has led to a reliance on heuristics to connect process to structure or
structure to properties for AM structural materials. In this study, we show a transformative approach
to achieve laser powder bed fusion (LPBF) printing, HT preparation using dry electropolishing and
HT electron backscatter diffraction (EBSD). This approach was used to construct a library of > 600
experimental EBSD sample sets spanning a diverse range of LPBF process conditions for AM Kovar.
This vast library is far more expansive in parameter space than most state-of-the-art studies, yet it
required only approximately 10 labor hours to acquire. Build geometries, surface preparation methods,
and microscopy details, as well as the entire library of >600 EBSD data sets over the two sample
design versions, have been shared with intent for the materials community to leverage the data and
further advance the approach. Using this library, we investigated process—structure relationships and
uncovered an unexpected, strong dependence of microstructure on location within the build, when
varied, using otherwise identical laser parameters.
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Figure 29. A streamlined high-throughput workflow enabled the collection of electron backscatter
diffraction maps from hundreds of uniquely processed additively manufactured metals.

Reference: [29] Fowler, J. E., Ruggles, T. J., Cillessen, D. E., Johnson, K. L., Jauregui, L. J., Craig, R.
L., .. & Boyce, B. L. (2024). High-Throughput Microstructural Characterization and Process
Correlation Using Automated Electron Backscatter Diffraction. Integrating Materials and Manufacturing

Innovation, 1-15.
DOIT: https://doi.org/10.1007/s40192-024-00366-2
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1.30. Dataset of simulated vibrational density of states and x-ray diffraction
profiles of mechanically deformed and disordered atomic structures in
gold, iron, magnesium, and silicon

This dataset is comprised of a library of atomistic structure files and corresponding X-ray diffraction
(XRD) profiles and vibrational density of states (VDoS) profiles for bulk single crystal silicon (Si),
gold (Au), magnesium (Mg), and iron (Fe) with and without disorder introduced into the atomic
structure and with and without mechanical loading. Included with the atomistic structure files are
descriptor files that measure the stress state, phase fractions, and dislocation content of the
microstructures. All data was generated via molecular dynamics or molecular statics simulations using
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. This dataset can
inform the understanding of how local or global changes to a materials microstructure can alter their
spectroscopic and diffraction behavior across a variety of initial structure types (cubic diamond, face-
centered cubic (FCC), hexagonal close-packed (HCP), and body-centered cubic (BCC) for Si, Au, Mg,
and Fe, respectively) and overlapping changes to the microstructure (i.e., both disorder insertion and
mechanical loading).
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Figure 30. (a) Render of a bulk Fe microstructure at 0.15 dpa and 0.05 hydrostatic tensile strain. Atoms
are coloured according to their phase: blue is BCC, white is disordered. Dislocation lines are coloured

according to their type: green are %2 (111) and magenta are (100) . Corresponding (b) VDoS profile,
truncated at 500 cm' and (c) XRD profile for the microstructure rendered in (a).

Reference: [30] Vizoso, D., & Dingreville, R. (2024). Dataset of simulated vibrational density of states
and X-ray diffraction profiles of mechanically deformed and disordered atomic structures in Gold,
Iron, Magnesium, and Silicon. Data in Brief, 55, 110689.

DOI: https://doi.org/10.1016/j.dib.2024.110689
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1.31. Benchmarking machine learning strategies for phase-field problems

We present a comprehensive benchmarking framework for evaluating machine-learning approaches
applied to phase-field problems. This framework focuses on four key analysis areas crucial for
assessing the performance of such approaches in a systematic and structured way. Firstly, interpolation
tasks are examined to identify trends in prediction accuracy and accumulation of error over simulation
time. Secondly, extrapolation tasks are also evaluated according to the same metrics. Thirdly, the
relationship between model performance and data requirements is investigated to understand the
impact on predictions and robustness of these approaches. Finally, systematic errors are analyzed to
identify specific events or inadvertent rare events triggering high errors. Quantitative metrics
evaluating the local and global description of the microstructure evolution, along with other scalar
metrics representative of phase-field problems, are used across these four analysis areas. This
benchmarking framework provides a path to evaluate the effectiveness and limitations of machine-
learning strategies applied to phase-field problems, ultimately facilitating their practical application.

At=G

Figure 31. Visual comparison of the simulation trajectories between the direct numerical solver (top row,
ground truth), and predictions from the validation set from our three machine-learning solvers: the U-Net
(second row), the LDM (third row), and LMKS (fourth row). Results for the three machine-learning solvers
are displayed in terms of the relative absolute error (RAE) with respect to the ground truth predictions.
Additionally, panels (a)—(d) provide quantitative comparisons between the three machine-learning solvers
and the direct numerical simulations as a function of simulation time in terms of the relative mean-squared
error (Rel. MSE) of the concentration field, the Rel. L2 metric for the 2-point statistics (Rel. Lz in 2-PS), the

RAE for the energy (RAE Energy), and the RAE for the phase volume fraction (RAE V;).

Reference: [31] Dingreville, R., Roberston, A. E.,; Attari, V., Greenwood, M., Ofori-Opoku, N.,
Ramesh, M., & Zhang, Q. (2024). Benchmarking machine learning strategies for phase-field
problems. Modelling and Simulation in Materials Science and Engineering, 32(6), 065019.

DOI: 10.1088/1361-651X/ad5f4a
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1.32. Guided combinatorial synthesis and automated characterization
expedites the discovery of hard, electrically conductive PtxAu1-x films

Sputter-deposited Pt-Au  thin films have been reported to develop a hard, thermally
stable,nanocrystalline structure, yet little is known about how these characteristics vary with PtxAul-
xcomposition and process conditions. Toward this end, this document describes an extensive,
combinatorial Pt-Au thin film library including characterized film compositions, structure and
properties. Complemented by kinematic Monte Carlo simulations of co-deposition, a broadrange of

PtxAul-x compositions (from X ~ 0.02 to 0.93) was first established by sputtering withvaried

magnetron powers and gun tilt angles. The produced films were subsequently interrogated using
automated nano-indentation, X-ray reflectivity, X-ray diffraction, Atomic Force Microscopy, surface
profilometry, four-point probe sheet resistance techniques, and Wavelength Dispersive Spectroscopy
in order to determine how hardness, modulus, density, surface roughness, structure and resistivity vary
with film stoichiometry and process parameters. Combinatorial films displayed an assortment of
properties with the hardness of some films exceeding values reported previously for this material
system. High hardness, high modulus, and low resistivity were generally attained when using increased
deposition energy and reduced angle-of-incidence processes. Overall, the research identified
promising, new PtxAul-x compositions for future study and pinpointed strategies for improved
deposition.

Resistivity Hardness Modulus

Avg. H (GPa)
Avg. E, (GPa)

2

V:— i§ |‘1
0

Au,100'W, 20°  Pt, 100 W, 20°

2
|1
@ 0

P (uQ-m)
Avg. H (GPa)

£ (u2-m)
Avg. H (GPa)
Avg. E, (GPa)

Au,150 W, 20°  Pt, 50 w, 0°

Avg. E, (GPa)

P (uQ-m)
Avg. H (GPa)

£ (uQ-m)
Avg. H (GPa)

Tis
Avg. E, (GPa)

Au,100 W, ‘0“ Pt,Lﬂ.O/O W, 20°
Figure 32. Wafer maps of key properties measured across 5 combinatorial wafers each consisting of 112
unique deposition conditions (cm square patches).

Reference: [32] Adams, D.P., Kothari, R., Addamane, S., Jain, M., Dorman, K., Desai, S., Sobczak,
C., Kalaswad, M., Bianco, N., DelRio, F.W., Custer, J.O., Rodriguez, M.A., Boro, J., Dingreville, R.,
Boyce, B.L. (2024). Guided combinatorial synthesis and automated characterization expedites the
discovery of hard, electrically conductive PtxAul-x films, J. Vae Sc. Techn. A. Accepted for
publication.
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1.33. Toughness from Imagery: extracting more from failure analysis using
deep convolutional neural networks

Understanding the origins of mechanical failures is critical to the prevention of future failures. In this
study, additively manufactured Charpy bars, commonly used to measure the impact toughness of
materials, were produced over a wide range of process conditions. The Charpy V-Notch toughness
was measured on over 200 samples alongside corresponding optical images of both sides of the
fracture surface. Convolutional neural network models were trained to correlate the fractographic
images with quantitative toughness values. Several different neural network architectures were
compared, along with other strategies for data cleaning and downsampling. The best models predicted
Charpy toughness values from imagery with a mean absolute percent error of 8.5%. The neural
network results were interpreted through a Gradient-weighted Class Activation Mapping (Grad-CAM)
saliency map; toughness values were correlated with expected physical characteristics such as porosity,
shear lips, fracture surface edges, etc. A model trained on data from a Kovar alloy was found to
maintain predictivity when applied to other similar alloy systems (300-series stainless steels) without
any additional training. The primary optical images used in this study were macrofractography images
spanning the entire fracture surface; a follow-on study using microfractographic images was less
predictive, but retained some utility. This work illustrates opportunities for developing data-driven
approaches to provide quantitative assessment and qualitative interpretations of fracture surfaces.
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Figure 33. Parity plot of a neural network model for Charpy toughness (CVN) predicted based on inset
imagery versus ground truth measurements. Training utilized holdout data from only the Kovar dataset.
The model not only predicts Kovar toughness from fracture images (insets) but can also have similar
predictive power for similar austenitic stainless steel alloys, 304L and 316L.

Reference: [33] Bianco, N., Fitzgerald, K., Cillessen, D., Brown, N., Carroll, J., Garland, A., Bassett,
K.L., Schroder, J.B., Boyce, B.L. (2024). Toughness from Imagery: extracting more from failure
analysis using deep convolutional neural networks, submitted to Journal of Failure Analysis and Prevention,
Accepted for publication.
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1.34. Sputter-deposited Mo thin films: characterization of grain structure and
Monte Carlo simulations of sputtered atom energies and incidence angles

Multimodal datasets for materials provide the large amount of information needed for expediting the
discovery of process-structure-property relationships important to materials performance. In this
Data Descriptor article, we describe a dataset for magnetron sputtered molybdenum thin films. The
dataset is taken from 27 unique depositions that vary sputter power and argon sputter pressure. High
angle annular dark field and bright field cross-section transmission electron micrographs were
obtained from films produced in each of the depositions. Automated crystal orientation mapping was
used to derive inverse pole figures from the imaged areas covering hundreds of grains, and MTEX, a
Matlab toolbox for analyzing crystallographic textures, extracted statistics of the grain sizes and tilt.
Additionally, the binary-collision Monte Carlo computer program SiMTra was used to simulate aspects
of film deposition. SiMTra monitors the gas-phase transport effects on the energy and angular
distributions of the arriving metal species as a function of the process parameters. The SiMTra
simulations accounted for sample rotation in a true planetary configuration wherein substrates passed
repeatedly under a 200 mm-diameter cathode in a sputter-down, co-planar geometry. For the
predicted angle of incidence and energy, probability density functions, uniformity maps, and average
quantities are reported for different sputter powers, Ar pressures, and working distances. Overall, the
described data set provides opportunities for examining process-structure relationships. The entirety
of this data is committed to a public repository in the Materials Data Facility.
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Figure 34. Paired High Angle Annular Darkfield and Brightfield transmission electron micrographs obtained
from three different Mo films sputter deposited using a power of 100 W. Films are shown in cross-section,
and the argon pressure used for the deposition is listed to the left of the HAADF images. Increased surface
roughness and branching are evident at higher process pressures.

Reference: [34] Custer, ].O., Kalaswad, K., Kothari, R.S., Kotula, P.G., Ruggles, T., Dingreville, R.,
Henriksen, A., Adams, D.P. (2024). Sputter-deposited Mo thin films: characterization of grain
structure and Monte Carlo simulations of sputtered atom energies and incidence angles. To be
submitted to Integrating Materials and Manufacturing Innovations.
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1.35. Cu-Ag Nanocrystalline Thin Films: Materials Library for the Study of
Process-Property-Microstructure Relationships

A compositional and deposition-parameter space investigation of nanocrystalline Cu-Ag thin films
was performed to construct a materials library for both traditional and machine learning analysis.
Facilitated by combinatorial methods, 672 co-sputtered films of Cu-Ag have been deposited via pulsed
DC magnetron methods utilizing single element targets. Varying the gun-tilt angle, power at each
cathode, and Ar pressure enabled swift examination of nearly the full range of alloy compositions and
a relevant portion of deposition atomistics. Wavelength dispersive spectroscopy, atomic force
microscopy, x-ray diffraction, x-ray reflectivity, sheet resistance, optical profilometry and
nanoindentation were employed for automated mapping analysis of the resulting films. The resultant
hardness, modulus, film density, crystal texture and resistivity of films having different composition
were analyzed in terms of key characteristics of deposition (incident atom kinetic energy and incidence
angle) predicted by the binary-collision, kinematic Monte Carlo program SiMTra. The survey revealed
compositional and energetic dependencies of film tarnishing, gains in mechanical performance against
literature values, and resistivity dependence on composition described by Nordheim’s rule. Much of
the results are discussed in the context of microstructural variations and differences in film density.
Additionally, TEM demonstrates several forms of compositional variation including Ag segregation
to Cu grain boundaries as well as 5-nm period, intragranular compositional modulations. Annealing
of a Cu-rich alloy reveals that despite room-temperature grain boundary segregation of the Ag solute
in such composition of Cu-Ag, this as-deposited structure is not thermally stable above 100 "C.
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Figure 35. Visualization of a subset of depositions, measurements, and correlative analyses performed,
focused on the relationship between resistivity and sputtered atom energy retained on arrival at the
substrate. The full set includes 8 wafers (6 co-sputtered, 2 single element) with differing deposition
conditions, 896 resulting films, and 7 main modalities of measurement supplemented by TEM.

Reference: [35] Dorman, K. R., Bianco, N., Kothari, R., Kalaswad, M., Sobczak, C., Desai, S.,
Custer, J., Addamane, S., Jain, M., Hinojos, A., Rodriguez, M., DelRio, F., Boyce, B. L., Dingreville,
R., & Adams, D. P. (2024). Cu-Ag Nanocrystalline Thin Films: Materials Library Development for
the Study of Process-Property-Microstructure Relationships. To be submitted to Thin Solid Films.
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1.36. Unsupervised Multimodal Fusion of In-process Sensor Data for Advanced
Manufacturing Process Monitoring

Effective monitoring of manufacturing processes is crucial for maintaining product quality and
operational efficiency. Modern manufacturing environments often generate vast amounts of
multimodal data, including visual imagery from various perspectives and resolutions, hyperspectral
data, and machine health monitoring information such as actuator positions, accelerometer readings,
and temperature measurements. However, interpreting this complex, high-dimensional data presents
significant challenges, particularly when labeled datasets are unavailable or impractical to obtain. This
paper presents a novel approach to multimodal sensor data fusion in manufacturing processes,
inspired by the Contrastive Language-Image Pre-training (CLIP) model. We leverage contrastive
learning techniques to correlate different data modalities without the need for labeled data,
overcoming limitations of traditional supervised machine learning methods in manufacturing contexts.
Our proposed method demonstrates the ability to handle and learn encoders for five distinct
modalities: visual imagery, audio signals, laser position (x and y coordinates), and laser power
measurements. By compressing these high-dimensional datasets into low-dimensional
representational spaces, our approach facilitates downstream tasks such as process control, anomaly
detection, and quality assurance. The unsupervised nature of our method makes it broadly applicable
across various manufacturing domains, where large volumes of unlabeled sensor data are common.
We evaluate the effectiveness of our approach through a series of experiments, demonstrating its
potential to enhance process monitoring capabilities in advanced manufacturing systems. This
research contributes to the field of smart manufacturing by providing a flexible, scalable framework
for multimodal data fusion that can adapt to diverse manufacturing environments and sensor
configurations. The proposed method paves the way for more robust, data-driven decision-making in
complex manufacturing processes.
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Figure 36. (left) We use contrastive loss to train encoders for each modality. Contrastive loss pushes
corresponding vectors closer together in latent space. (right) We use the encoders for inference over the
data to identify clusters and anomalies. The red and blue dots on the 2D scatter plot are data tuples from
a nominal print (in red) and a purposefully off-nominal print (blue). Each dot represents an individual part
for a unique layer, and each group of red and blue circles represents a distinct part on the build plates.
The red and blue dots are not directly on top of each other which shows we are able to discriminate
between the nominal and off-nominal builds.

Reference: [36] M. McKinney, A. Garland, D. Cillessen, J. Adamczyk, D. Bolintineanu, M. Heiden,
E. Fowler, B.L. Boyce, (2024). Unsupervised multimodal fusion of in-process sensor data for
advanced manufacturing process monitoring. To be submitted to Journal of Manufacturing Systems.
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1.37. Understanding PtxAu1ix films through unsupervised disentanglement of
multimodal data

Recent literature has explored a broad range of Pt;Aui compositions and has shown under certain
conditions these films display hardness values exceeding that of their constituents (Pt, Au). Although
studies have correlated film hardness with various conditions, challenges with making sense of the
complex combinatorial space have ultimately left explainability as inconclusive. In effort to further
our understanding of these high-hardness Pt,Aui films, an unsupervised clustering algorithm based
on variational inference is implemented which encodes disparate modalities (scalars, spectra, ..) into a
shared latent representation. Through clustering of this latent representation, the algorithm identifies
distinct mechanistic regimes with correlations across modalities. The underpinnings of this approach
enables training on data with missing information (e.g., corrupted measurements) and enables cross-
modal estimation. This approach is demonstrated with a Pt,Aui dataset, which showcases its
capability as a tool for improving explainability of complex multimodal datasets. With this algorithm

we explore the complex combinatorial space and offer new insights into our understanding of the
high-hardness Pt.Aui films.
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Figure 37 (Top left) the trained model’s two-dimensional latent space identifying three clusters with (bottom
left) each cluster representing a unique range of compositions with different hardness values. (Right) the
latent space sampled and colored by the trained model’'s generated hardness, unveiling three regions of
high hardness. The middle circle is dense with datapoints and converges to a local maximum, which
suggests robustness in the process conditions for producing these high-hardness films. This is in opposition
to the bottom right circle where there is sparsity in the data and suggestions wiggle room in the process
conditions to produce even higher hardness films in subsequent experiments.

Reference: [37] Shilt, T., Adams, D. P., Martinez, C., Dingreville, R. (2024). “Understanding Pt.Aui.

« films through unsupervised disentanglement of multimodal data”. To be submitted to #p/
Computational Materials.

59



2. LIST OF PUBLISHED DATASETS

In addition to peer-reviewed manuscript, we also published four, publicly available datasets:

1. D.P. Adams, S. Addamane, J.O. Custer, F. DelRio, M. Kalaswad, L. Jauregui, R. Khan, A.
Henriksen (2022). “Sputter deposited Mo thin films: multimodal characterization of residual stress,

resistivity, crystallinity and surface morphology”, Materials Data
Facility. https://doi.org/10.18126/i099-1dj2

2. S. Desai, R. Dingreville, A. Shrivastava (2023) Microstructure evolution dataset from phase-
field simulations (spinodal decomposition, physical vapor deposition, grain growth, dendrite
growth), Materials Data Facility. https://doi.org/10.18126/ivdc-1571

3. Fowler, J. Elliott; Ruggles, Tim J.; Cillessen, Dale E.; Johnson, Kyle L.; Jauregui, Luis J.;
Henriksen, Amelia A.; Bianco, Nathan R.; Boyce, Brad L. (2023). High Throughput EBSD
Characterization of Additive Kovar.” Materials Data Facility. https://doi.org/10.18126/7d9u-edev

4. D. Visozo, R. Dingreville, (2023). Simulated vibrational density of states and x-ray diffraction
profiles of mechanically deformed and disordered atomic structures in gold, iron, magnesium, and
silicon, Materials Data Facility, https://doi.org/10.18126/tacz-v14v

5. R. Kothari, A. Henriksen, R. Dingreville, D.P. Adams, (2024). Analysis of SimTra Outputs
for Sputter Deposition involving Planetary Substrate Travel. To be submitted to Materials Data
Faciliy.
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https://doi.org/10.18126/io99-ldj2
https://doi.org/10.18126/ivdc-l57i
https://doi.org/10.18126/7d9u-edev
https://doi.org/10.18126/tacz-v14v

3. LIST OF REPORTS

1. H.H. Lim, J.F. Curry, M.T. Dugger, “Improved Throughput and Analysis of Scratch Test
Results via Automation and Machine Learning”, SAND2022-1836

2. N. Trask, “Al-enabled high-throughput science: multimodality and computational
challenges” AI@DOE Roadmapping Workshop (2021).

3. M. D’Elia, A. Howard, R M. Kirby, N. Kutz, A. Tartakovsky, H. Viswanathan, “Discovering
new governing equations using ML”, in: Machine Iearning in Heterogeneous Porous Materials, a report for

the National Academies, 2022. [note: unclear if this report is final or not|

4. Sanchez, D. “Breaking the Mold: Individual and Situational Moderators of Cognitive
Flexibility in Material Deposition and Machine Learning Personnel.” SAND2022-13767 O.
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4, SUMMARY OF UNPUBLISHED WORK

4.1. Combining variational autoencoders with latent Bayesian optimization to
find optimal physical vapor deposition parameters

4.1.1. Motivation

To identify a set of optimal deposition parameters, we propose a method that integrates the
dimensionality reduction capabilities of a variational autoencoder (VAE) [38] with a Gaussian process
(GP) surrogate model [39-41]. This approach is motivated by several factors. Firstly, the VAE enables
dimensionality reduction, allowing us to apply the Gaussian process in a lower-dimensional parameter
space. Secondly, the VAE helps to uncover a decorrelated latent space, simplifying the process of
optimal design within that space. Additionally, the architecture allows for the integration of
multimodal information through the inclusion of additional encoders [24]. However, this approach
presents challenges, such as issues with extrapolation when selecting optimal design points and the
potential for poorly structured latent spaces that hinder surrogate modeling. Previous studies that have
combined VAEs with GP regression across various applications have explored strategies to overcome
these challenges.

4.1.2. Method

In this section, we introduce the complete PVD-based optimal design algorithm for quickly identifying
deposition parameters that yield the desired film characteristics. Figure 38 provides a schematic
overview of our approach. It is important to note that the VAE/GP algorithm (center block of Figure
38) is versatile and can be applied to other contexts as well.
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Figure 38. Schematic of the full algorithmic approach.
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4.1.3.  Results (PVD dataset for model training)

The VAE/GP model was trained using data from three combinatorial copper/silver wafer
depositions. Each wafer contains 112 films, providing a total of 336 data points for model training,
validation, and testing. To assess the model's performance, 235 points (approximately 70%) were
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allocated for training (100 for the first training set and 135 for the second), 67 points (about 20%)
were used for validation to select the best model, and 34 points (roughly 10%) were reserved for
testing. The VAE/GP training was repeated ten times with different training, validation, and testing
data sets to evaluate the robustness of the results. For the final atomistic parameter recommendations,
269 points were used for model training (100 for the first training set and 169 for the second), while
67 points were used for validation. We then tested the model using results from the recommended set
of depositions. The process parameter input to the VAE/GP algorithm, is a vector comprising the 9
atomistic parameters obtained by simulating each of the three depositions in SIMTRA. Additionally,
we included XRD data as a secondary modality. During model training, we initially trained the
VAE/GP algorithm using only the process patameters. In a subsequent training phase, we
incorporated the XRD data. Throughout this section, we will compare the results from these two
phases of training, i.e., with and without the inclusion of the XRD data.
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Figure 39. Approximately 40 replications of SIMTRA are required to get convergence of the atomistic
parameter estimates. Showing the maximum value of Equation (31) across 336 films (112 films for each of
the three wafers describe in Table 1). We see that with approximately 40 replications the maximum relative
change in the mean prediction is less than 5%.
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Figure 40. Proposed sample point in latent space (orange square) falls within the domain of the training
and validation data (gray dots). Additionally, this visualization of the latent space shows that the six latent
variables follow a roughly Gaussian distribution (see diagonal density estimations) and are uncorrelated

(see scatter plots).

Table 1. Recommended atomistic parameter values from the three approaches.

Parameter | VAE/GP (without XRD) | VAE/GP (with XRD) | GP Only
avg(Ecy) | 0.296 0.124 0.239
std(Ecy, 2.216 1.566 4.468
avg(fca) | 42.3 42.7 42.1
std(0cy,) 18.8 19.2 18.7
avg(Eaq) | 0.724 0.113 0.506
std(Eag) | 3.679 0.743 4.110
avg(0ag) | 40.6 41.9 42.5
std(0.4,) | 184 19.0 18.9
%Cu 0.128 0.602 0.022
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4.1.4. Discussion

Overall, these results underscotre the robustness of the VAE/GP algorithm in modeling material
properties, particularly when enhanced with supplementary structural data such as XRD. The findings
also highlight the algorithm's capability to generalize across different datasets without sacrificing
accuracy, making it a promising tool for material science applications where predictive accuracy and
model generalization are crucial.
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4.2. Manipulating Coefficient of Thermal Expansion via Laser Powder Bed
Fusion Energy Setting

4.2.1.  Motivation

A highly desirable characteristic of Kovar® steel (Fe-balance, Co-17%, Ni-29%) from Carpenter
Technology Corporation is its low coefficient of thermal expansion. Initial studies, such as Batch 603
shown in Figure 2, demonstrate the impact of changes in process conditions on the coefficient of
thermal expansion. The primary motivation for this research is to identify key process settings and
correlate these conditions with the coefficient of thermal expansion.

4.2.2. Method

Kovar® steel with a patticle size distribution of 15-45 pm was used in a Renishaw AM400 Laser
Powder Bed Fusion (LPBF) machine to investigate the effects of various process parameters. Machine
limits for power, velocity (point distance and exposure time), hatch spacing, and scan pattern were
provided as the basis for the experiment. A combinatorial set of process parameters was generated
and a subset of 90 combinations was selected to manage the number of samples on the build platform.
Each parameter setting produced three types of test samples: a density cube, a tensile specimen, and
a coefficient of thermal expansion (CTE) specimen. The density cubes were measured using
Archimedes testing, tensile specimens were tested using an Instron load cell, and CTE specimens were
analyzed using a heat plate with digital image correlation.

Tensile

Density

Figure 41. This figure illustrates the manufacturing process of 90 Kovar steel samples using the Renishaw
AM400 Laser Powder Bed Fusion (LPBF) machine. The samples were produced under various process
parameter settings to investigate their effects on material properties.

4.2.3. Results

The study investigated the effects of various process parameters on Kovar® steel samples produced
using a Renishaw AM400 Laser Powder Bed Fusion (LPBF) machine. Coefficient of thermal
expansion (CTE) measurements using digital image correlation revealed that the process parameters
resulted in CTE values both lower and higher than the nominal Kovar CTE. This investigation was
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part of a broader series of studies characterizing Kovar steel. The selected group of samples exhibited
a significant disparity in CTE results, prompting further analysis. Despite extensive testing, no direct
correlation was found between the measured CTE values and the process parameters. Overall, the
data suggest that while optimizing certain process parameters can influence the material properties of
Kovar® steel produced using LPBF, the relationship between process settings and CTE remains
complex and warrants further investigation.
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Figure 42. Subset of coefficient of thermal measurements from Batch 603 as a function of change to
process settings.

4.2.4. Discussion

This study investigated the effects of various process parameters on the of Kovar® steel samples
produced using a Renishaw AM400 LPBF machine. Identifying process parameters that impact CTE
has shown success in downstream applications, particularly in matching Kovar CTE to Sandia
National Laboratories (SNL) ceramic materials, which has resulted in successful brazed joints and the
development of internal components. However, a key lesson learned is the complexity and vastness
of the parameter space. A more effective approach may involve first developing a robust
understanding of additive Kovar material properties before attempting to explore the extensive
parameter space. This foundational knowledge can guide more targeted experiments, ultimately
optimizing process parameters to enhance the material properties of Kovar® steel produced using
LPBF.
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43. High Throughput Electrodeposition Process Development

4.3.1. Motivation

The electrodeposition of alloys enabled the development of materials with unprecedented material
and performance properties. Controlling the composition and mechanical properties of alloys is
challenging due to chemical and electrochemical incompatibilities of different metal salt sources. We
have developed an accelerated process built around exploring and mapping the chemical and
electrochemical mechanisms of different metal depositions through automation and parallelization.
With this method we characterize electrolytes and deposition conditions in a broad scope that allows
us to optimize the electrochemical synthesis of alloys with controllable properties.

Several major revisions of how we do electrodeposition research have been developed through this
project. Firstly, we have taken advantage of automated tools for solution synthesis. This process allows
us to screen qualifying electrolyte solutions for parameters such as solubility while being a surrogate
for Ultraviolet-visible (UV-Vis) spectroscopy with batch optical microscopy. Once potentially viable
electrolytes have been down selected, we use custom designed, 3D printed electrodeposition cell
hardware to ensure that each deposition undergoes consistent set up and conditions while the process
is underway while also maintaining large batch numbers. To power and control our cell hardware we
have also built a custom tool that manages the deposition currents and voltages, establishes the correct
operating parameters for the designated amount of time, and logs dynamic in-situ measurements.

4.3.2. Method

The results section will outline the development of a high throughput plating system and the processes
developed to enable high throughput experimentation. These include solubility studies, titration, auto
pipettor operation, and hardware development to enable specific deposition parameters.

4.3.3. Results

The first requirement of a suitable electrolyte is the solubility of the metal precursors. This is heavily
dependent on the speciation of the metal as it manifests in the electrolyte system, less so on the
solubility of the metal salt source which may be completely different. The speciation is an artifact of
a few different interacting parameters. The addition of chelating agents will change the speciation of
the metal precursor which has a substantial influence on both the solubility and deposition
mechanisms. The pH of the solution influences the configuration of the complexing agent, particularly
if they are weak acids and can protonate/deprotonate as well as directly influencing the metal
precursor. Typically, pH tuning manifests as oxide or hydroxide formation of the metal species at
higher pH, which often leads to precipitation.

Temperature also influences solubility but is not generally a stepwise function and trends are typically
an increase of solubility at increasing temperatures. We define viable solubility to be determined at
room temperature, even if the expectation is that the depositions will occur at elevated temperature.
Not only does this ensure that the solutions are always liquid, but it also ensures axillary problems
such as precipitation are kept to a minimum and allows solution handling to be significantly simplified.
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Figure 43. Schematic overview of electrodeposition process and variability.

Auto-pipettor solution making: We used a commercially available auto-pipettor for rapidly
generating large numbers of unique solutions. The Opentrons OT-2 was purchased for a previous
project and was an ideal fit for the grand challenge effort. Automated pipetting addresses multiple
issues facing experimental chemists. The automated process provides precise and reproducible
preparation of solutions. This process removes the time intensive labor as well as alleviates many
safety concerns when working with acids, bases or other potentially toxic compounds. We embedded
a calibration check process involving using 15 vials of known mass and dispensed various volumes of
water in each to ensure the volume measurement was accurate prior to making electrolytes.

Our methodology involved the preparation of a series of electrolyte solutions, each distinguished by
specific metal salt precursors, complexing agents, and pH levels. Alkaline hydroxides, namely NaOH
and KOH, were utilized for the precise adjustment of solution pH, with deionized water serving as
the solvent across all preparations. The selection of reagents was guided by their relevance to the
desired electrolyte properties, with high-purity metal salts and a range of complexing agents
constituting the primary components.

We ran into significant challenges working with a strictly liquid handling system and aiming to generate
solutions of uniform volume in which the constituents and products may not be soluble. These
challenges stemmed from the need to combine the metal salts with their electrolytes and be in either
the high or low pH regime. We found the precursors were not always soluble along the full range of
pH values causing precipitation. Additionally, if concentrated base was used the high local pH caused
formation of metal hydroxides that were not soluble. The innovation we developed involved starting
with two stock solutions. These stock solutions are made with acid sources of complexing agents and
additional acid to ensure they could reach the low end of the pH range we were exploring, and then
the second stock solution had the same source, with added Na or KOH to reach the high side of the
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pH range. The solution handler natively accepts 96 well plates. These plates are critical in the
electrolyte screening process because it is able to canvas a large array of electrolyte conditions. For
instance, we can sweep from a pure acid stock solution to a pure base stock solution and also have
ten pH’s along the way. Not only does this process give solubility information but also serves as a
rudimentary titration curve giving us an accurate starting point for how to generate a solution of a
given composition at any pH we are interested in making. However, due to the solubility of the metal
salts in these stock solutions often not representing the solubility across the pH range, we had to be
creative in the pre-processing steps for these screenings. To solve this problem, we dissolved our
metal salts in water and distributed the solution in all of the needed cells throughout the well plate
prior to adding any other material. We then dried these solutions out of well plates, removing all the
water and leaving a predetermined quantity of metal salt that generally has low or no vapor pressure.
Solutions were then mixed in graded proportions using the auto-pipettor, generating a pH gradient
that is the equivalent of adding NaOH or KOH in isolation in a consistent set of other constituents.
Using this method, we were able to obtain a wide range of operable pHs with eight different
complexing agents at a time.

Once the solutions were made in the well plates they were sealed and mixed and allowed to come to
equilibrium for a minimum of 24 hours. The wells were then imaged with a Keyence VHX-7000
microscope with transmitted lighting from the backside. This enables us to log the conformation of
the electrolytes, their color changes and if there are any solids in the well due to insolubility.
Transmitted light images are show in Figure 44 for different metal precursors, complexing and a pH
gradient.
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Figure 44. Optical microscope images of Ni Pt Co and Cu solutions with a variety of complexing agents
and pH values demonstrating the operating conditions of the respective electrochemical baths.

Once the images were collected, we could easily verify which solutions were to be down selected based
on presence of solids. Each of the solutions also had their pH’s measured to determine the boundaries
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of a particular metal-complex electrolyte. This is only a pass/fail test and allows us to screen and
reduce the sample size to only deposit from promising electrolytes. It is obvious to tell which solutions
are viable to move forward with a visual inspection, which is where we started with the qualification.
However, color analysis is easy to do and provides a more quantitative analysis of the electrolyte. The
distribution of the color palate is indicative of the presence of solids, as a fully soluble solution has a
completely uniform coloration. A comparison of a solution with precipitate and a fully dissolved salt
is shown in Figure 45.

Interestingly, the use of the well plates and the colors of the solution vary as a function of pH.
Typically, UV-Vis spectroscopy would be used to provide insight into complexation of the metal and
the complexing agents. However, this technique is time consuming if access to an instrument that
accepts the 96 well plates is not available or expensive if that instrument needs to be purchased. We
made the most of the tools available to us and used the fundamental links between the color and
spectroscopy we explored, showing promise of the microscopy as a faster, cheaper surrogate for the
spectroscopy technique. A custom python script was used to determine the Red Blue Green (RGB)
value of each pixel in the microscopy image. A distribution of those RGB values were then plotted to
visualize distribution. This distribution is a direct correlation to the absorbance measured in the UV-
Vis instrument and using a machine learning approach we should be able to approximate the spectrum
without having to add additional processing steps to the workflow. Figure 45 B and D demonstrate
the distribution of RGB values. One key observation we made from these measurements is the more
homogenous the solution color is the sharper the distribution of the RGB values. This observation
could also be used to automate screening of the solutions that precipitate at the same time we predict
the UV-Vis spectrum.
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Figure 45. Optical microscope images of Ni based electrolytes with various states of solubility as well as
the RGB color distribution of those electrolytes.

Once we have the viability determined by solubility analysis and the pH measured out for each series,
we have enough information to scope out the range of solutions that can be continued for further
testing as well as the constituent concentrations needed to make each solution at a target pH. This can
be quite complicated to predict due to interactions of multiple buffers in the solutions and varies
drastically between different metals and complexing agents in use. A plot of the pH vs sodium
hydroxide concentration is shown in Figure 46, showing the significant shift in pH due to the addition
of the nickel salt precursor.
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y Acetic Acid pH Study
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Figure 46. pH curve for acetic acid with and without Ni demonstrating the effect of adding the Ni.
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This process was extrapolated across many different complexing agents and a figure of the full
operating regime for each of the complexes can be found in Figure 47. The low pH region seems to

72



be the most common applicable regime for the 200 mM Ni. Select solutions from this down selection
were moved forward to electrochemical testing, described below.

Deposition Hardware: The development of 3D printed templates for electrodeposition cells
represents a significant advancement in the field of electrochemistry. By incorporating counter,
reference, and working electrodes, along with reusable working electrode substrate holders and built-
in electrical connections, these templates offer a streamlined and efficient approach to accelerated
electrodeposition experiments. The iterative design of these modular cartridges allowed us to optimize
and ultimately simplify the design resulting in a robust system that requires little maintenance.
Additionally, the reusability and integrated design of the templates not only enhance experimental
reproducibility but also contribute to a more sustainable research practice by reducing the need for
disposable components. This effort underscores the potential of 3D printing in advancing high
throughput methodologies in electrochemical research, which is a field that has grown accustomed to
throughput and scope limitations. These limitations often stem from the long preparation and cleaning
stages. By having a modular system, we can prepare several sets of samples at a time parallelizing the
entire electroplating process. We decided that 16 parallel depositions at volumes that are 10 mL or
less fit our application well; however, the modularity of this system allows it to be rapidly modified to
other applications. We attempted to minimize the sample volumes and reduce waste, while
maintaining sample sizes and deposition thicknesses that were large enough to suit the post deposition
analysis. Limitations with x ray diffraction (XRD) and tribology narrowed the acceptable geometry to
1 cm diameter circle samples and a target thickness of 1 micron. Large samples would likely require
larger volumes and you could reduce volumes if you had smaller samples size requirements. We also
ran 16 in parallel due to the power supply hardware and data acquisition software accepting 16 inputs.
An image of the final product can be found in Figure 48.

Figure 48. 3D printed well plates and cartridges for the electrochemical deposition system.
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The final design was achieved after dozens of iterations and takes advantage of platinized titanium
mesh counter electrodes and silver/silver chloride reference electrodes which are generally agnostic
to aqueous electrochemical applications. These electrode choices enable us to re-use the same
electrodes for different metal sets, which was determined to be the preferrable solution vs attempting
to use more specific soluble electrodes, which would not only require different sets of counter
electrodes to be purchased and swapped out for each system but would also potentially convolute the
results as the influence would be less consistent.

Managing electronic connections was challenging when running this many depositions in parallel. For
each cell we have the power circuit which requires two connections as well as a measurement circuit
necessitating another two connections. For all channels there are a grand total of 64 connections, so
it was imperative we make these connections as effortless and reliable as possible. We integrated pin
and socket wire harness electrical connections that could easily be connected and disconnected when
needed, this enabled us to make iterations on the hardware without necessitating fully rebuilding the
wiring for each. Additionally, the cartridge has a connection to the wells. This is facilitated through
IO pin connections. These allow the fast swapping of the cartridges while also making instant
connections. Reference and counter electrode connections are integrated into the wells as well. The
counter electrode is permanent and thus requires no set up before experimentation; however, the
reference electrodes simply need plugged in. The reference electrodes need to spend most of their
time in a saturated NaCl electrolyte to prevent voltage shifts. The optimization of the wiring allowed
us to easily run diagnostics on the connections as well as significantly reduce the time to set up an
experiment.

We have discussed at length the challenges with time and high throughput approaches for
electrochemical studies. One aspect that take a substantial amount of time is sample preparation. Our
work requires well defined areas of deposition to both facilitate the follow-on material analysis as well
as have defined controls of the electrodeposition system so proper sample masking is critical. We
opted to use re-usable electrode holders with viton o-rings to seal against the substrate face and define
a circular area that was 1 cm in diameter. These 3d printed and spring-loaded cartridges allowed us to
easily insert and remove the working electrode substrates. These cartridges also had built in wiring for
the electrical connections and building them in banks of 8 enabled bulk connection to a wiring harness
which reduced the effort that is normally needed to individually connect each electrode. An image of
the well plate and pair working electrode banks is shown in Figure 49, with wiring for all the electrodes
in place.
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Figure 49. Schematic of the cell stack that included the magnetic stirring as a feature.

We approached control of the electrolyte mixing in 3 different ways. The first of which was to have
no solution agitation. The main benefits of this approach are ease of use and consistency between
experiments. The main drawback is poor relevance to electrodeposition conditions which generally
require some amount of solution agitation to function properly. We implemented magnetic stirrers in
each well by addition of a baseplate with an electric motor driving a corrugated bolt attached to gear
with magnets under each well. A sample of this version of the system is found in Figure 7. This solved
many issues; each well was mixed, and the rotation rates were consistent due to the belt driving all of
the gears at the same rate. A large drawback of this process was that each well required the additional
step of adding a miniature stir bar, and each stir bar required cleaning steps between uses. Thus, a
simplified the mixing process was established by adding vibrating functionality to the well plates. Proof
of concept was established using a silicone coated vibrating device that was chemically resistant in case
of splashing and was attached to the wells through a 3d printed fixture. This process was easy to
implement and reliably consistent over the entire set of experiments; however, the representation of
the mixing was also convoluted and unique. Recently we have added an additional well stage that
consists of two platforms with isolation springs between. The upper platform housed the agitation
while the springs allowed for the energy to remain in the upper stage and also provided smoothing of
the agitation for a more uniform mixing across all samples.

There are many options for controlling temperature of the wells, we opted to run the entire deposition
set up in an over to ensure that the temperatures were consistent and uniform. Some general issues to
be aware of are the dwell time needed to achieve uniform temperature between all the components
after they have been placed in the oven and evaporation losses in the wells from sitting at elevated
temperature. We measured the temperatures of the electrolyte to ensure it had come up to temperature
and kept a water bath in the oven to increase the humidity and mitigate evaporation losses. Additional
measures were developed to prevent evaporation such as adding a lid and covering with parafilm.
These steps greatly reduced the evaporation of the electrolyte during electroplating.

Opentrons has come out with new hardware since we initially purchased the auto pipettor used for
this project. We developed our well plate layout and dimensions with to integrate with auto pipettor
capabilities; however, the process still necessitates manually moving well plates to a new area for
electrodeposition due to heat and mixing functions. The newer commercially of-the-shelf (COTS)
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hardware is capability of moving well plates in the tool and heating and mixing for programmable
durations. Integrating electronic connections into this hardware could enable the entire process to be
more automatic, drastically increasing the throughput even more than its current status.

Overall, the tools developed for electroplating have overcome many challenges typically associated
with high throughput electroplating experimental setups. Figure 50 depicts the advances we have made
on the time it takes to generate our samples. We have effectively designed hardware that allows us to
minimize the time and effort required to generate these samples. The next major improvement in this
workflow is utilizing solution handlers to aid in electrolyte preparation. There are currently two facets
of our workflow that require the most time. Solution preparation and sample masking. Solution prep
takes so long because we are often interested in very specific conditions, if we were able to use the
opentrons to make the larger volumes of solutions we can reduce the amount of time we take to
correct the pH to the values we are interested in. Furthermore, the use of gold on wafers eliminates
the need to activate the substrate; however, it requires us to make front side connection in a system
designed to make backside connection. We do this through the addition of a copper foil. Adding this
to the samples is time intensive and also requires us to test electrical connection to of the cell. This
may be the price to pay to ensure that we are plating on an active surface every time.
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Figure 50. Time investment vs major iteration of the high throughput experimental system.
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Deposition power control: Our team designed and acquired state-of-the-art NI power supply
system. This system was supported by the concurrent development of a custom LabVIEW software
program, specifically designed to meet the demands of electrodeposition research, including precise
control and measurement of electronics with respect to current, voltage and time. A standout feature
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of this new power supply is its capability to run 16 channels in parallel, significantly increasing the
throughput of experiments and enabling simultaneous processing under individualized conditions.
The hardware’s level of precision ensures that the experimental conditions are consistent across all
channels, thereby improvin%the reproducibility of results. The Hardware can be found in Figure 51.

PXie-1092

lj l?"f ) 1‘. A

Fiure' 51. 16 channel setup for the electrochemical depositions.

This power supply system utilizes custom LabVIEW software, designed from the ground up to offer
the necessary control and monitoring capabilities. The software facilitates precise control of current
and voltage across each of the 16 channels. Furthermore, the software includes real-time monitoring
and data logging features, enabling researchers to track the progress of experiments and make
informed adjustments as needed, as well as convenient data handling post processing which is
imperative for the follow up analysis and machine learning goals. The custom operating graphic user
interface (GUI) is shown in Figure 52.

123 e

A [ c o E P s H
Experiment 1Batchl 614

Batch 2 623 ey
R Automated Electrodeposition

6738 PXIISION2/0  0.0431969 26.6039793
6739 PXIISIoN2/1  0.0431969 26.6035753 . ion! LabVIEW Suppart Files\d supplies - Copy.crv
6740 PXINSIOt]/]  0.0431969 266039793
6741 PXIISION/3  0.0431969 26.6039793

e

Losd Config I Execute Test Abort Test

6819 PXIISION/0  0.0431969 26.6039793 | Qutpat Chans
6620 PXIISIONI/1  0.0431969 26.6035753 7 PXI1Slot210
6821 PXIESION}/2  0.0431969 26.6018793 I PXI1Skatd/)

6822 PXIISIONIf1  0.0411963 26.6039791 e LI
PAITSiot2/3

PRSI0t
6254 PXIISION/0  0.0131969 26.6039793 ATt

6255 PXIISIoN/1  0.0431969 26.6039793 | PShotZ
6256 PXIISIoN/?  0.0431969 26.6039793 2 PRITSIoEL/3
6257 PXIISlotd/3  0.0431969 26.6039793 2 PRSI
19 255 PITSiobd/1
20 z e
5 251 | PHiSIot3

P

B
Bw e

32

Figure 52. User interface and example of the cell initialization file for the data acquisition software.

The integration of the new power supply system into our laboratory workflow has been challenging,
but thanks to the intuitive design of the LabVIEW software and the robust performance of the
hardware we have seen rapid gains in our process flow. We have adapted to the new system, leveraging
its capabilities to expand the scope and scale of electrodeposition experiments. The system's user-
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friendly interface and automated features have reduced the manual workload associated with setting
up and running experiments, allowing our lab to focus more on defining new experiments, analysis,
and innovation. An example of the voltage time series data for different nickel deposition experiments
running at variable current densities is shown in Figure 53.
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Figure 53. Voltage vs time trace for Ni deposition experiments as an output from the Data Acquisition
(DAQ) system.

The ability to conduct 16 electrodeposition experiments in parallel represents a significant leap
forward in experimental throughput. This multi-channel approach not only accelerates the research
process but also opens new avenues for systematic studies of electrodeposition parameters, which is
core to this grand challenge effort. By running experiments in parallel, we can efficiently explore a
wide range of conditions, such as varying current densities or electrolyte compositions, within a
fraction of the time required for sequential experiments. This high-throughput capability is particularly
beneficial for optimization studies and the development of new materials, where a large dataset is
crucial for identifying viable or optimal conditions.

The culmination of these process improvements has enabled us to deposit individualized unique
samples at an unprecedented rate in our lab. Figure 54 is an image of 200 samples plated in an
afternoon with 3 people’s efforts (1 staff, 1 postdoc and 1 undergrad intern). 200 unique depositions
is often more than are produced during a project’s entire run.
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Figure 54. 200 Ni plated samples plated using the high throughput tooling over the course of one afternoon.

4.3.4. Discussion

We have explored the deposition of nickel and platinum with additions of 16 different complexing
agents, some common and some less conventional to discover satisfactory deposition options for alloy
synthesis. This process is novel not only because of our high throughput methodology but the focus
on generating the best alloy deposition electrolyte instead of taking common nickel or platinum
systems that may be better performing for deposition of pure films and adding a second metal source.
The increased screening and processing system we have built is enabling for this methodology shift,
where we are less limited by the vast number of electrolytes and depositions needed to screen
electrolytes from scratch.
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4.4. Use of High Throughput and Machine Learning Integration for the
Exploration and Optimization of Electroplated Ni, Pt, and NiPt Alloys

4.4.1. Motivation

Nickel and platinum are heavily utilized metals across various industries and are often used coating
layers. Both Ni and Pt offer corrosion resistance in harsh chemical environments. Ni is also
ferromagnetic, making it useful in electromagnetic applications. Pt is widely known for its exceptional
catalytic properties, electronic conductivity, and high-temperature stability. Together, NiPt alloys have
shown enhanced catalytic activity and selectivity—as they combine the properties of both metals. NiPt
alloys also show improved mechanical and corrosion properties over the pure elements.

Given its utility (efficient use of materials, precise control over coating properties, and versatility across
a wide range of substrates), electroplating is an often used, and desirable, synthetic method for creating
coating layers and has been used to produce Ni and Pt films for a long time (e,g. the first practical
recipe for Ni was discovered/developed in 1843). While NiPt alloys have also been electroplated
before, little exists in the way of broad systematic study aimed at mapping wide chemical and
processing spaces. Below is a description of work in which high-throughput testing and
characterization methods were applied in an attempt to accelerate the workflow necessary for
exploring vast empirical domains.

4.4.2. Method

A series of Ni and Pt electrolytes were prepared by dissolving NiSO, or H,PtBr¢ in aqueous solutions
containing one of a series of 15 different chemicals/ligand-types, shown in Table 1. Ligand chemistries
were chosen to explore both chemistries with established precedent and expand into new chemical
territory—namely with the use of combined carboxylate and amine functionalities in amino acids as
well as the use of less traditional functionalities in this space in sulfolane and thiourea.

Acidic stock solutions of each chemistry were prepared by dissolving 1 M of the respective ligand in
water, except for citrate and borate which were prepared at concentrations of 0.5 M and 0.4 M,
respectively. 0.5 M (NH4).SO4 was made to produce 1 M NH4". For SO, CI", and Bt~ chemistries,
0.9 M of the corresponding sodium salt was combined with 0.1 M of the associated acid (H.SO4, HCI,
HBr). 0.1 M H,SO4 was also common to all solutions. Each acidic stock solution was titrated with 15
M NaOH to measure the exact concentrations of H,SO, and acid form of the ligand of interest. Basic
stock solutions were made by adding enough NaOH to the acid stock solutions to get the pH to about
13. The accurate acid concentrations, from titrations, were used to determine the volumes of acid and
base stocks to combine to create targeted pHs for plating electrolytes. Electroplating electrolytes were
prepared with appropriate ratios of acid and base stock solutions, dissolving NiSOy at 0.2 M (for Ni
depositions) or 0.025 M HuPtBr;s (for Pt depositions).

Current efficiencies were estimated from XRF peak intensities of the respective metal peaks. XRF
intensities were calibrated to corresponding thicknesses by creating a calibration curve for XRF
intensity vs. known metal thickness.
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Table 2. Ligand chemistries explored for Ni, Pt, and NiPt electroplating.

Most Acidic -H1 -H2 -H3
Ligand Formula |pkal Formula pka2 |Formula pka3 Formula
Thiourea SC(NH)2 13.87
sulfolane C4H8S02 13
Ammonia [NH4]+ 9.25|NH3
Borate BO3H3 9.15([BO3H2]-
Acetate H3C202H 4.76|[H3C202]-
Citrate C6H507H3 3.128|[C6H507H2]-| 4.761|[C6H507H]2- 6.396|[C6H507]3-
Phosphate PO4H3 2.15|[PO4H2]- 7.2|[PO4H]2- 12.35([PO4]3-
Malonate H2CO4H2 2.83|[H2CO4H]- 5.69|[H2C04]2-
Alinate H3CNH202 2.34|[H3CNH202]{ 9.69|[H3CNHO2]2-
Glycate H2NCH202 2.34|[H2NCH202] 9.6|[HNCH202]2-
Prolate H7C5NHO2 1.99|[H7C5NHO2] 10.6|[H7C5NO2]2-
Sulfamate H2NSO3H 1/[H2NSO3]-
Methane Sulfonatg H3CSO3H -1.9([H3CS03]-
Sulfate H2S04 -3([HSO4]- 1.92([S04]2-
Chloride HCI -6.3|Cl-
Bromide HBr -8.7|(Br-
4.4.3. Results

Role of the Substrate: Bronze vs. Au(111)/Si(100)

Focusing on Ni electrodeposition, the ligands in Table 2 were investigated. The first series of
depositions was conducted on bronze substrates. These were primarily chosen to improve electrical
contact and leak proofing of the deposition wells; the bronze substrates were purely metallic allowing
backside contact. However, the surface finish of the bronze substrates was not ideal as received
(several prominent scratch marks) and even polishing with a computer numerical control (CNC) mill
did not create the ideal mirror-like, smooth surface desirable for a study trying to isolate variables like
initial substrate sutface morphology. So, thereafter we chose to return to Au/Si substrates.

While switching to the Au substrates provided a condition removing initial surface finish as a variable
it had the unfortunate consequence of causing our electrodeposits to grow in an epitaxial-like fashion,
following the crystalline orientation of the Au(111) substrate. X-ray diffractograms showed only
<111> peaks for Ni deposits. To address this issue, we began targeting thicker films in our plating
protocol, as it is known—and we discovered—that thicker deposits will eventually relax from the
strain associated with matching the substrate’s orientation, leading to whatever crystalline orientations
(texture) the processing parameters (namely chemistry and current density) create when free from
substrate-directed growth. As of this writing XRD has not yet been acquired for thicker deposits on
Au(111) substrates.

Ni, Pt, and NiPt Electrodepositions in Various Chemistries and Across a Range of Current
Densities

The general procedure for conducting our electrodeposition experiments was to perform depositions
at 5, 25, and 75 mA/cm’® within different chemical environments. Given the vastness of possible
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inputs to explore a first-pass experimental matrix was assembled with the intention of minimizing
experimentation while still maximizing representation of chemical and energy/current space. Figure
54a shows first-pass heat maps for Ni and Pt plated on Au at 5 and 25 mA/cm®. With these maps the
researcher can quickly identify where Pt and Ni ovetlap, in terms of plating ability/behavior. The
researcher can also quickly identify gaps that ought to be further explored. Figure 54b shows a second
series of Ni depositions performed based on identified gaps in the first pass. These experiments
identified acetate in the pH 4-7 range as a promising chemistry for Ni and Pt co-deposition at 5 and
25 mA/cm’. Bromide chemistry at pH 6-7 was also a promising chemistry.
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Figure 55. Heat maps of normalized current efficiency for a) First-pass Ni and Pt depositions and b)
Second-pass Ni and Pt depositions. Ni depositions are on the left, Pt on the right. 5 mA/cm2 was used for
the top maps while 25 mA/cm2 was used for the bottom maps. Chemistry/ligands are displayed in the row
headers while pH ranges are displayed in the column headers. Each cell represents the average normalized
current efficiency measured for the given experimental conditions.
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Attempts to electroplate NiPt alloys were made at 25 and 50 mA/cm’ varying both the ligand
chemistry and the concentration of Ni and Pt salts. Results are shown below in Figure 55.
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Figure 56. Heat maps of normalized current efficiency for a) First-pass Ni and Pt depositions and b)
Second-pass Ni and Pt depositions. Ni depositions are on the left, Pt on the right. 5 mA/cm2 was used for
the top maps while 25 mA/cm2 was used for the bottom maps. Chemistry/ligands are displayed in the row
headers while pH ranges are displayed in the column headers. Each cell represents the average normalized
current efficiency measured for the given experimental conditions.
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Figure 57. Attempt to electroplate NiPt.
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4.5. Kinetics and Deposition Performance of the Nickel-Glycine Electroplating
System

4.5.1. Motivation

Glycine has long been used as an additive in electroplating chemistries. However, its exact working
mechanisms are not known. The current work sought to study this system more deeply using kinetic
analysis. In the nickel-plating system, it was found that the kinetics of deposition, quantified using
exchange current i,, for glycine outperformed that of saccharine, boric acid, and L-proline. i, had a 3"
order dependence on the concentration of glycine, directly corresponding to the maximum number
of ligands around Ni**. Under concentrated conditions (1.2M) and elevated temperature (40C), baths
comprised of the Ni(Gly)s coordination complex yielded faradaic efficiencies of 78.7, 82.3, and 64.5%
at 20, 40, and 80 mA cm™. It was found that the grain size and texture were invariant with current
density, giving a grain size of 10.16 nm and a texture coefficient of 2.1 for the (111) crystal plane.

4.5.2. Method

Electrochemical experiments were cartied out in 60ml solutions with a constant amount of 0.3M Ni**
in the form of NiSO,. All molecular additives for screening studies were used at a concentration of
0.05M. The pH for glycine, proline, saccharine, and boric acid were 4.8, 5.05, 4.77, and 6.21. To
synthesize Ni(Gly).(H2O)a, a metal to ligand ratio of 1:2 was used and tested at a pH of 8. For Ni(Gly)s,
a ratio of 1:3 was used and tested at a pH of 10. pH was adjusted with either 98% Sulfuric Acid or
KOH pellets. A stir rate of 300 rpm was used during measurements. All experiments conducted in 3-
electrode beaker cells with Ag/AgCl reference, a titanium mesh anode, and a 1.2 to 1.8 cm” area
coupon, either a (111) Au substrate on silicon. All chemicals were purchased through Sigma Aldrich.
Exchange current was calculated from LSV curves ran from 0 to -1200mV at 2.5 mV/s. Because each
additive alters the concentration of protons in solution, a correction was applied to account for this.
Corrected exchange currents were found by calculating the expected i,at the measured pH after adding
the catalyst based on the exponential fit equation of figure 1(a), y = 1740.6x ", This value was then
subtracted from the measured value to get the ‘true’ rate enhancement due to the catalyst alone. LSV
curves and chronopotentiometry measurements were generated using a Voltalab PGZ402 universal
pulse dynamic-EIS voltametery instrument. SEM images were acquired using a FLEXSEM Hitachi
SU 100011I at an accelerating voltage of 18KkEV at a working distance of 10mm. XRD was gathered
using a Bruker D2 Phaser using a Cu Ko X-Ray source.

Overpotential was measured by 1 = Ve — Eo, where Ey is the standard reduction potential of Ni** +
2 € — Ni’. This value was -0.454 V (v.s. Ag/AgCl) for un-complexed species. For Ni-glycine
complexes, the reference potential used was Ni(NH3)s + 2e” — Ni’ + 6 NH; as no reference potentials
for the Ni(Gly)s complex were found. This value was -0.686 V (v.s. Ag/AgCl). Texture Coefficient

was calculated using:
1(hkl)
Irep(hkD)
.= om- O
=1, r(hKI)
Where I is the reference intensity of polycrystalline Ni metal gathered from the NIST database.
Grain size was calculated using the Scherrer Equation:
KA 5
- LcosO ( )
where K is Scherrer’s Constant (0.94), 8 is the breadth of the peak at full-width-half-max (FWHM),
cos() is the cosine of the angle where the peak of interest occurs (measured for the (111) Ni peak in
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this study), A is the incident wavelength (1.54 angstrom for Cu Ko, and D is the crystallite size (in

nanometers).
4.5.3. Results
(a) (b)
0.4

~
Q ¥ = 1740.6x77992
E 035 R2 = 0.9891 ?E
S 0.3 E
) g
b o0.25 W E
z =
'E 0.2 5
= 3y
C oas5 =
o
& <
£ oa &
= El
% 0.05 [ ] s
: :

o - =

2.9 3.4 3.9 4.4 4.9 5.4 5.9 6.4 6.9
pH

0.025

0.02

0.015'

0.01

0.005

-0.005

1
+ o)
H 3N o
Glycine d o Saccharin
Ol w
SN
O’/ (0] [ ) Boric Acid.
L-Proline HQ
(6]
H 8——OH
i OH l Correction
NH . for pH HO

Figure 58 (a) Exchange current (io) v.s. pH for nickel reduction, (b) io for each additive with pH corrections

Figure 58(a) shows how i, varies with pH in a pure Ni*" solution. It was found that i, decayed
exponentially with pH in pure Ni** solutions. Figure 58(b) shows the effect of different catalysts on
the exchange current. Orange dots are the original values while dark blue dots are the pH corrected
values. It was found that glycine gave the largest exchange cutrent (0.0229 mA cm™), followed by
saccharin (0.015), boric acid (0.0079), and L-proline (0.0020). Figure S1 shows Tafel plots and LSV

data used to extract i.
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Figure 59. (a) Linear sweep voltammetry (LSV) of chemistries as a function of concentration of glycine
(b) io as a function of glycine concentration

Figure 58(a) shows LSV scans as a function of glycine concentration. It is seen that as the
concentration of glycine increases, a plateau region starts to form and shift towards lower potentials.
For complexes Ni(Gly)2(H2O). and Ni(Gly)s;, no peaks can be seen. The large increase in current
starting around -0.4 V (v.s. Ag/AgCl) shifts for complexes towards more negative potentials. Figure
58(b) shows 1, as a function of glycine concentration. It is seen that a low concentration ( < 0.25M),
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1, increases linearly. After this point, i, falls after Ni-glycine complexes form. Overall, the current was
fitted to a 3" order polynomial. This suggests that 3 glycine molecules are involved in the deposition
of Ni, which corresponds to the maximum coordination of nickel by glycine, Ni(Gly)s.
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Figure 60. (a) Chronopotentiometry as a function of time, (b) Faradaic efficiency as a function of current
density, (c) SEM images at -17 mA cm2, -40 mA cm2, and -67 mA cm2, from left to right.

Figure 60(a) shows chronopotentiometry for a 1.2M Ni(Gly); chemistry operated at 40C°. A current
of -17 mA cm”was applied for 20 minutes, a current of -40 mA cm™was applied for 10 minutes, and
a current of -67 mA cm™ was applied for 5 minutes. It was found that the required overpotential to
maintain a given rate increased with applied current. Some instability was seen at a current density of
-17 mA cm?, while -40 and -67 stable over time. Figure 60(b) shows the calculated faradaic efficiency
as a function of applied current. A faradaic efficiency of 78.7, 82.3, and 64.5 % were attained at a
current of -17, 40, and 67 mA cm?, respectively. Figure 60(c) shows SEM cross-sections acquired at
each current. Each film was uniform and compact, with -40 mA cm™ giving the thickest film.
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Figure 61. (a) XRD as a function of current density (b) Texture coefficient for the (111) and (220) crystal
plane as a function of current density.

Figure 61a shows XRD of the deposited Ni(Gly)s; film as a function of current density. It was found
that all films show similar structure with a grain size of around 10.16 nm. Texture analysis found films
deposited at -67 mA cm”had a strong (111) texture.

4.5.4. Discussion

The work describes the investigation of glycine in nickel plating, where kinetic analysis and
performance testing showed the chemistry to have promise for future study.
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4.6. Electrodeposition of Cobalt films from the Cobalt Tri(L-Prolinato) Complex

To date, all literature reports of electrodeposited cobalt have shown films that are rough and grown
with low-to-moderate current efficiency. Here, we describe the deposition of cobalt from tris(L-
prolinato) complexes. At a constant current density of 10 mA cm™, a 3.32 pum thick film was deposited
at 64.5% Faradaic efficiency. At 40 mA cm?, a 5.91um thick film was deposited at 28.72% efficiency.
At 10 mA cm?, the film had a purity of 95.4% (weight % Co), as measured using Energy Dispersive
X-ray Spectroscopy (EDS). From XRD measurements, the films show strong (220) texture with a
grain size of 14 nm. UV-VIS spectroscopy found that the electronic structure of Co(Pro); greatly
differs from the “standard” aqueous Co(H.O)s complex. Density Functional Theory (DFT)
calculations show that L-Proline forms a weak, water-like solvation shell around Co**. We believe this
metal complex to hold great promise for electrodeposition of cobalt.

4.6.1. Methods

The formation of tris-Prolinato was based off a report by Kato ef al. [42] Co(Pro)s was synthesized
using 0.3M Co*" in the form of CoSO.. L-Proline was used in a 3:1 ratio to Co”". The complex was
formed by mixing ligand and metal in solution and slowly increasing pH to a working value of 11. The
solution was mixed overnight at room temperature. The pkA values of L-Proline are 2.0 for the
carboxylic acid group and 10.6 for the pyrrolidine group [43]. pH was adjusted using KOH pellets. All
chemicals were purchased from Sigma Aldrich. A stir rate of 300 rpm was used during measurements.
All experiments were conducted in 3-electrode beaker cells with Ag/AgCl reference, a Ti mesh anode,
and a 1.2cm” electron beam evaporated (111) textured Au film on a Si coupon. Chronopotentiometry
and linear sweep voltammetry was generated using a Voltalab PGZ402 universal pulse dynamic-EIS
voltametery instrument. SEM/EDS was acquited using a FLEXSEM Hitachi SU 1000111 at an
accelerating voltage of 18kEV at a working distance of 10mm. UV-VIS was captured using a
Thermoscientific Genesys150 from 190nm to 1100nm in plastic cuvettes. XRD was gathered using a
Bruker D2 Phaser using a Cu Ka X-Ray source.

Overpotential was measured by 1 = Eep,— Eo, where E, is the standard reduction potential of Co®" +
2¢ — Co’ (-0.474V v.s. Ag/AgCl). Texture Coefficient (T.C.) was calculated using:
I(hkl)
Ire f (RKD)

T.C.= 1o O

n 1o (kD)
where I is the reference intensity of polycrystalline Co metal gathered from the NIST database.

Grain size was calculated using the Scherrer Equation:
KA

= )
Lcos6
where K is Scherrer’s Constant (0.94), 8 is the breadth of the peak at full-width-half-max (FWHM),
cos(b) is the cosine of the angle where the peak of interest occurs (measured for the (111) Ni peak
and the (220) peak for Co in this study), A is the incident wavelength (1.54 angstrom for Cu Ko), and
D is the crystallite size (in nanometers).

All electronic structure calculations are done using the QUANTUM ESPRESSO package [44]. We
use norm-conserving pseudopotentials from the PseudoDojo repository [45] and the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [46]. We use kinetic energy cutoffs of 50 Ry and
400 Ry for the plane wave basis sets used to describe the Kohn-Sham orbitals and charge density,
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respectively. We use a 2x2x2 Monkhorst-Pack grid [47] to sample the Brillouin zone in our
calculations.

We place each molecule inside a 15 A® box and allow geometry optimization until the interatomic
forces are lower than 50 meV/A. To simulate the solvation environment of the molecule, we use the
self-consistent continuum solvation method as implemented Environ package for Quantum Espresso

[48]. For charged molecules, we use the Martyna-Tuckerman correction to avoid issues around
periodic boundary conditions [49].

4.6.2. Results and Discussion
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Figure 62. (a) FTIR, (b) UV-VIS, and (c) solution colors of Co(H20)s and Co(Pro)s.

Figure 62(a) FTIR shows C-O and C-N bonds for L-Proline at 1202 cm™ and 1465 cm™ with mixed
vibrations in between [49]. A prominent peak for Co(H»O)s and Co(Pro); are shown around 1100 cm®
"and 1098 cm’, respectively. When coordinated with Co*, the C-O and C-N vibrations modes vanish.
Figure 62(b) shows UV-VIS of solutions, where a prominent peak with a doublet between 430 and
580 nm is seen, attributed to the *Ai, —*T}, electron transition and spin-orbit couple splitting [51].
When coordinated with L-Proline, a new peak appears at 380 nm, amidst a broad absorption
continuum between 580 nm and 280 nm. L.-Proline alone shows a strong peak at 260 nm, likely from
the same absorption band shifted to 270 nm when coordinated with Co**. Figure 62(c) shows optical
images of the solutions, with Co(H>O)s appearing light red and Co(Pro); appearing dark red.
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Figure 63. (a) (111) XRD peak of deposited Co as a function of thickness, (b) (220) XRD peak as a
function of thickness, (c) texture coefficients as a function of thickness, (d) grain size as a function of

applied current density.

Figure 63(a,b) shows XRD peaks for the (111) and (220) plane, respectively. These peaks were the
only ones seen that could be identified for cobalt. Figure 63(c) shows the calculated texture coefficient
as a function of thickness. It was found that as the thickness of the film increased, the texture evolved
from being exclusively oriented as (111) at 431nm, the texture of the substrate, to (220) at 5.91 um.
Figure 63(d) shows the calculated grain size as a function of applied current, where it was found that
a smaller grain size was attained at higher current, from 14.6 nm at 10 mA cm™ to 13.9 nm at 20 and

40 mA cm™.
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Figure 64. (a) Chronopotentiometry measurements as a function of current density, (b) Faradaic Efficiency
as a function of current density, (c) SEM cross-sections as a function of current density (10, 20, and 40 mA
cm-2) going left to right.

Figure 64(a) shows chronopotentiometry measurements as a function of current density, where a
linear scaling of potential is seen. Figure 64(b) shows the Faradaic efficiency as a function of applied
current, where efficiencies of 64.5, 40.1, and 28.7% are seen for 10, 20, and 40 mA cm?, respectively.
Figure 64(c) shows SEM cross sections of each film as a function of current density. EDS found the
films had a purity of 84.8 atomic % cobalt, or 95.4 weight %, with the balance being oxygen. Optical

profilometry found root mean square (RMS) roughness of the 10, 20, and 40 mA cm™ samples to be
614, 519, and 413nm, respectively.
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Figure 65. Linear sweep voltammetry (left) and Tafel plot (right) for Co(Pro)s and Co(H20)s complexes

Figure 65 shows a cathodic linear sweep and Tafel plot for Co(H20)s and Co(Pro); complexes. It is
seen that Co(Pro); shows a reduction peak around -0.95 V (v.s. Ag/AgCl) while Co(H20)s shows only
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a large increase in slope around -0.72 V. Tafel analysis was performed, where an exchange current of
0.109 and 0.501 mA cm™ were found for Co(H>O)s and Co(Pro)s, respectively. In literature, a value
of 0.0072 mA ecm™ was found for Co*" for a CoCly/NiCl; chemistry containing 0.05 M Co*", 0.5M
Ni*, and 0.5 M boric acid at a pH of 3.0 [52]. The reason for a larger exchange current (15x for
Co(H:0); and 70x for Co(Pro)s) could be due to several factors, such as the presence of Ni*" and
boric acid in the literature chemistry, and the large degree of dilution (Co®" concentration in the current
work is 6X that of the paper). As for the influence of L-Proline, a previous report used L-Proline in a
Watt’s nickel chemistry, where it was found that I-Proline increased the exchange current of Ni**
from 0.00028 mA cm™ to 0.0049 mA ¢cm™ at a concentration of 0.02M L-Proline and a pH of 3.4 [53].
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— '
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Figure 66. Calculated DFT energetics for the Co(Pro)2 complex.

Figure 66 shows DFT calculations for the Co(Pro). complex. It was found that the desolvation energy
was low, indicative of hydrogen bonding to the metal center. This is favorable for the electrodeposition
process as ligands should be shed at the double layer (desolvated) before Co*" is reduced and deposited
to metal [54].

4.6.3. Discussion

The work described electrodeposition from the Co(Pro); complex chemistry, where promising results
are found.
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