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ABSTRACT 
BeyondFingerprinting was a 2021-2024 Sandia Grand Challenge LDRD exploring the potential to 
develop new resilient materials and manufacturing processes by taking an artificial-intelligence (AI)-
guided approach that integrates human-subject-matter expertise with algorithms enriched with 
physics-based constraints to unearth process-structure-property correlations.  Such algorithms, trained 
on high-throughput experiments and simulations, are shown to serve as surrogate models that 
efficiently detect key “fingerprints” in materials data, prognose material performance, and guide 
effective process improvements.  To accelerate broader adoption across mission areas, this AI-guided 
approach was demonstrated with three complex process-centric exemplars: electroplating, physical 
vapor deposition, and laser powder bed fusion.  Together, these exemplars impact nearly every 
hardware component relevant to DOE and NNSA national security missions. 
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EXECUTIVE SUMMARY 

BeyondFingerprinting was a 3-year Grand Challenge project funded by Sandia National Labs’ LDRD 
(Laboratory Directed Research and Development) program.  The BeyondFingerprinting project 
explored the discovery of new, resilient materials and manufacturing processes by taking an artificial-
intelligence(AI)-guided approach that integrates human-subject-matter expertise with algorithms 
enriched with physics-based constraints to unearth process-structure-property correlations.  Such 
algorithms, trained on high-throughput experiments and simulations, can serve as surrogate models 
that efficiently detect key “fingerprints” in materials data, prognose material performance, and guide 
effective adaptations.  To accelerate broader adoption across mission areas, this AI-guided approach 
was demonstrated with three complex process-centric exemplars: electroplating, physical vapor 
deposition, and laser powder bed fusion. 

Mission. Vision. Product. The mission of BeyondFingerprinting was to accelerate the discovery of 
process-structure-property correlations and their underlying mechanistic causation, thereby enabling 
new resilient materials and manufacturing processes for all national security hardware.  In a 
BeyondFingerprinting future, component design, manufacturing methods, and materials will be 
simultaneously optimized by semi-autonomous systems, where the engineer does not have to envision 
possible solutions and then painstakingly (and expensively) test each solution with build-and-check 
methods; instead, they will simply select appropriate algorithms, embed known physical 
laws/constraints, and assign design objectives.  The ‘product’ of BeyondFingerprinting was more than 
just demonstrating novel high-throughput methods, customized materials-centric hybrid-informed 
algorithms, and related AI-guided workflows.  It was about advancing the understanding and trust in 
how such an approach can complement traditional expert-guided wisdom and conventional high-
fidelity mod/sim to efficiently reveal new, robust material processes while also facilitating basic 
discoveries of the mechanistic causation underlying correlations. 

Project Architecture Overview. BeyondFingerprinting has shown how complex, multi-modal, high-
throughput process data streams can be interpreted through hybrid-informed machine learning 
architectures to realize substantially improved process outcomes.  The project was arranged into three 
exemplar process thrusts and two main cross-cutting themes: 

• Exemplar 1 - Electroplating (aka Electrodeposition). Sandia currently designs over 700 
parts/components that involve electroplating to build devices ranging from thermoelectric 
generators to stronglinks.  Electroplated metals enable transmission of electrical signals, 
enhance adhesion for soldering/wire-bonding, offer protection from corrosion or wear, 
improve lubricity, and impede diffusion.  However, the development of new plating solutions 
is time-consuming and labor-intensive. The electroplating process has a highly nonlinear 
sensitivity to the bath chemistry, in addition to several other parameters (e.g. current density 
conditions, electrode configuration, bath temperature/agitation, complexing agent 
concentrations, etc.).  Process optimization is largely trial-and-error, guided by experienced 
practitioners, and difficult to translate from lab-scale to production-scale. 

• Exemplar 2 - Physical Vapor Deposition (PVD). PVD is used for numerous Sandia 
applications, including microelectronics, power sources, neutron generators, surety 
mechanisms, and Z-machine hardware.  While the PVD process offers many challenges, we 
focus on the specific task of improving the mechanical properties (e.g. adhesion between the 
deposited film and the substrate).  Delamination, often a root-cause of subsequent hardware 
failures, is difficult to anticipate because it involves complex chemo-physical processes 
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governed by numerous factors (substrate roughness/defects/cleanliness, impurities from the 
vapor phase, residual stresses that build up during deposition, etc.). 

• Exemplar 3 - Laser Powder Bed Fusion (LPBF). NNSA has been advocating for the 
adoption of additive manufacturing as an agile pathway to technology insertion in our low-
volume applications.  Yet, rapid qualification continues to be a bottleneck.  To address this 
challenge, there are numerous examples of high-fidelity simulations under development.  
However, due to computational constraints and gaps in understanding, those simulations 
consider only specific aspects of the overall process (a subset of the requisite physics) rather 
than the entire complex process: powder packing, laser-matter interactions, melted-
fluid/particle dynamics, non-equilibrium solidification, and solid-state phase transformations.  
An AI/ML approach provides an efficient surrogate representation that can incorporate 
experimental observations as well as focused high-fidelity simulations into a comprehensive 
process prediction. 

• Cross-cut: Multi-Modal High-Throughput Data Streams. One of the core scientific 
questions examined in BeyondFingerprinting pertained to efficient and effective methods for 
fusing data across multiple data streams.  Available process data is complex.  It involves a 
combination of pre-process, in-process, and post-process information from disparate sources 
in multiple forms: scalar parameters, time-series data, spatially resolved image data, as well as 
2D and 3D datasets, each with concomitant uncertainties. 

• Cross-cut: Hybrid-Informed Multi-Layered Algorithms (Himulya). The fabrication 
processes under consideration provide extremely heterogeneous data streams with varying 
degrees of knowledge of the underlying physics. In BeyondFingerprinting, we explored the full 
gamut of machine-learning (ML) algorithms: (1) purely regressive (“black box”) methods 
where there is no embedded underlying physics, (2) physics-informed methods where physical 
laws are weakly enforced through a penalty function, or (3) structure-preserving methods 
where physical constraints (e.g. conservation laws, process limits) are rigidly enforced. Each 
of these approaches can have value in certain aspects of an overall system-level process model. 

 

BeyondFingerprinting’s generalizable approach followed three systematic steps that are common 
across each exemplar.  These steps are: 

• Detect:  streamline data streams; initiate hybrid-informed algorithm; establish credibility 

• Prognose: integrate heterogeneous data; reveal process-structure-property correlations; 
evaluate trust 

• Adapt: incorporate closed-loop systems; Himulaya-guided adaptation; promote use/adoption 

While technical details vary from one exemplar to the other, the general workflow is common and can 
be transferred beyond the current exemplars. 
Outcomes: Greater than the sum of its parts, BeyondFingerprinting demonstrated the generalizability 
of the detect-prognose-adapt sequence for accelerated process improvement. 

BeyondFingerprinting was about TRANSFORMING the process-structure-property manufacturing 
paradigm to achieve innovative and precisely controlled manufacturing processes of reliable 
components. As listed in the summary of our work in Section 1, the BeyondFingerprinting team has 
been developing and employing new types of hybrid-informed ML algorithms that can detect key 
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signatures in materials data, prognose material performance, and guide effective manufacturing 
process adaptations. This paradigm shift aligns with Laboratories Strategic Priority 5: “Invest and 
demonstrate pathfinder systems to address threats” and Priority 6: “Deploy outstanding engineering, 
science, and technology to our missions”. By fusing experiments, modeling, and physics-informed 
algorithms, we have demonstrated (1) the technical basis for confidence in small-batch, high-reliability 
systems with limited test hardware required in our national security mission, and (2) the technologies, 
tools, and approaches to modernize how components are made and enable the realization of products 
not yet imagined. In line with the Laboratories Strategic Priority 2: “Maintain an agile and effective 
nuclear deterrence”, moving forward, we assert that our Detect-Prognose-Adapt approach can add 
agility by offering a pathway to rapidly adapt to changing requirements and providing alternative 
methods to sustain, modernize, design, produce, secure, and employ a flexible and responsive 
stockpile. 

BeyondFingerprinting was about DISCOVERING the fundamental mechanistic causes underpinning 
process-structure-property correlations.  As illustrated in the many examples shown in Section 1, our 
three exemplars served as specific use cases to demonstrate generality and build trust in AI-guided 
concepts that bridge foundational process science to applied component engineering to solve materials 
reliability challenges relevant to both Sandia’s Nuclear Deterrence(ND) Enterprise and other 
hardware-dependent missions. Our work lays out the foundation for an AI/ML-guided fusion of 
multimodal data to accelerate the process-structure-property optimization paradigm by revealing 
elusive correlations and distilling the data avalanche into essential actionable information. 

BeyondFingerprinting was about EMPOWERING our workforce with emerging capabilities and 
cultural change to enable greater productivity, creativity and competitiveness as defined in the 
Laboratories Strategic Priority 7: “Unleash the power of Sandia”. By delivering customized materials-
centric algorithms, constrained by physical laws, guided by expert knowledge, and trained with 
automated high-throughput closed-loop experimental data, BeyondFingerprinting capabilities have 
removed some of the subject-matter expert (SME) barriers in cognition, data integration, 
interpretation, and experience/intuition changing the way the SME is performing his/her job, 
focusing more on decision-making and less on build-and-check. 
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ACRONYMS AND TERMS 
 

Acronym/Term Definition 

2D Two-dimensional 

3D Three-dimensional 

AFM Atomic Force Microscopy 

AI Artificial Intelligence 

AM Additive Manufacturing 

CLIP Contrastive Language-Image Pre-training 

COTS Commercially Off-The-Shelf 

CTE Coefficient of Thermal Expansion 

DAQ Data Acquisition 

DeepONet Deep Operator Network 

DFT Density Functional Theory 

DNS Direct Numerical Simulation 

EBSD Electron Back Scattered Diffraction 

EDS Energy Dispersive X-ray Spectroscopy 

FAIR Findable, Accessible, Interoperable, Reusable 

FWHM Full Width Half Max 

GB Grain boundary 

Grad-CAM Gradient-weighted Class Activation Mapping 

GRU Gated Recurrent Unit 

GP Gaussian Process 

GUI Graphical User Interface 

Himulya Hybrid-Informed Multi-Layered Algorithms 

HT High Throughput 

HTT High Throughput Tensile 

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator 

LPBF Laser Power Bed Fusion 

LSTM Long-Short Term Memory 

LSV Linear Sweep Voltammetry 

MEMS Micros-Electro-Mechanical System 

ML Machine Learning 

ND Nuclear Deterrence 

PBE Perdew-Burke-Ernzerhof 

PCA Principal Component Analysis 
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Acronym/Term Definition 
PIMA Physics-Informed Multimodal Autoencoder 

PL Photoluminescence 

PVD Physical Vapor Deposition 

RGB Red, Blue, Green 

RMS Root Mean Square 

RNN Recurrent Neural Network 

SEM Scanning Electron Microscope 

SiMTRA Simulation of Metal TRAnsport 

SLM Spatial Light Modulator 

SME Subject Matter Expert 

UV-Vis Ultraviolet-Visible 

VAE Variational Autoencoder 

VDoS Vibrational Density of State 

XRD X-ray Diffraction 
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1. SUMMARY OF PUBLISHED / SUBMITTED MANUSCRIPTS 

1.1. A digital twin for materials 
Digital twins are emerging as powerful tools for supporting innovation as well as optimizing the in-
service performance of a broad range of complex physical machines, devices, and components. A 
digital twin is generally designed to provide accurate in-silico representation of the form (i.e., 
appearance) and the functional response of a specified (unique) physical twin. This paper offers a new 
perspective on how the emerging concept of digital twins could be applied to accelerate materials 
innovation efforts. Specifically, it is argued that the material itself can be considered as a highly 
complex multiscale physical system whose form (i.e., details of the material structure over a hierarchy 
of material length) and function (i.e., response to external stimuli typically characterized through 
suitably defined material properties) can be captured suitably in a digital twin. Accordingly, the digital 
twin can represent the evolution of structure, process, and performance of the material over time, 
with regard to both process history and in-service environment. This paper establishes the 
foundational concepts and frameworks needed to formulate and continuously update both the form 
and function of the digital twin of a selected material physical twin. The form of the proposed material 
digital twin can be captured effectively using the broadly applicable framework of n-point spatial 
correlations, while its function at the different length scales can be captured using homogenization 
and localization process-structure-property surrogate models calibrated to collections of available 
experimental and physics-based simulation. 

 
Figure 1.  To manifest a digital twin of a material, it is necessary to represent the complex hierarchy of 
features at the nano, micro, and macro-scale that contribute to the material performance. 
 
Reference: [1] Kalidindi, S. R., Buzzy, M., Boyce, B. L., & Dingreville, R. (2022). Digital twins for 
materials. Frontiers in Materials, 9, 818535. 
DOI: https://doi.org/10.3389/fmats.2022.818535  

https://doi.org/10.3389/fmats.2022.818535


 

22 

1.2. Topological homogenization of metamaterial variability 
With the proliferation of additive manufacturing and 3D printing technologies, a broader palette of 
material properties can be elicited from cellular solids, also known as metamaterials, architected foams, 
programmable materials, or lattice structures. Metamaterials are designed and optimized under the 
assumption of perfect geometry and a homogeneous underlying base material. Yet in practice real 
lattices contain thousands or even millions of complex features, each with imperfections in shape and 
material constituency. While the role of these defects on the mean properties of metamaterials has 
been well studied, little attention has been paid to the stochastic properties of metamaterials, a crucial 
next step for high reliability aerospace or biomedical applications. In this work we show that it is 
precisely the large quantity of features that serves to homogenize the heterogeneities of the individual 
features, thereby reducing the variability of the collective structure and achieving effective properties 
that can be even more consistent than the monolithic base material. In this first statistical study of 
additive lattice variability, a total of 239 strut-based lattices were mechanically tested for two 
pedagogical lattice topologies (body centered cubic and face centered cubic) at three different relative 
densities. The variability in yield strength and modulus was observed to exponentially decrease with 
feature count (to the power −0.5), a scaling trend that we show can be predicted using an analytic 
model or a finite element beam model. The latter provides an efficient pathway to extend the current 
concepts to arbitrary/complex geometries and loading scenarios. These results not only illustrate the 
homogenizing benefit of lattices, but also provide governing design principles that can be used to 
mitigate manufacturing inconsistencies via topological design. 

 
Figure 2.  High-throughput testing allows rapid assessment of stochastic material variability.  Here, applied 
to additively manufactured lattices, high-throughput testing reveals that the effective variability in material 
stiffness decreases as the number of unit cells increase due to a homogenization effect. 
 
Reference: [2] White, B. C., Garland, A., & Boyce, B. L. (2022). Topological homogenization of 
metamaterial variability. Materials Today, 53, 16-26. 
DOI: https://doi.org/10.1016/j.mattod.2022.01.021 

https://doi.org/10.1016/j.mattod.2022.01.021
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1.3. Accelerating phase-field predictions via recurrent neural networks 
learning the microstructural evolution in latent space 

The phase-field method is a popular modeling technique used to describe the dynamics of 
microstructures and their physical properties at the mesoscale. However, because in these simulations 
the microstructure is described by a system of continuous variables evolving both in space and time, 
phase-field models are computationally expensive. They require refined spatio-temporal discretization 
and a parallel computing approach to achieve a useful degree of accuracy. As an alternative, we present 
and discuss an accelerated phase-field approach which uses a recurrent neural network (RNN) to learn 
the microstructure evolution in latent space. We perform a comprehensive analysis of different 
dimensionality-reduction methods and types of recurrent units in RNNs. Specifically, we compare 
statistical functions combined with linear and nonlinear embedding techniques to represent the 
microstructure evolution in latent space. We also evaluate several RNN models that implement a 
gating mechanism, including the long short-term memory (LSTM) unit and the gated recurrent unit 
(GRU) as the microstructure-learning engine. We analyze the different combinations of these methods 
on the spinodal decomposition of a two-phase system. Our comparison reveals that describing the 
microstructure evolution in latent space using an autocorrelation-based principal component analysis 
(PCA) method is the most efficient. We find that the LSTM and GRU RNN implementations provide 
comparable accuracy with respect to the high-fidelity phase-field predictions, but with a considerable 
computational speedup relative to the full simulation. This study not only enhances our understanding 
of the performance of dimensionality reduction on the microstructure evolution, but it also provides 
insights on strategies for accelerating phase-field modeling via machine learning techniques. 

 
Figure 3.  Schematic of a latent dynamic model workflow to accelerate materials simulations. This workflow 
consists of getting a low-dimensional presentation of the materials and then use this representation to learn 
and predict future sequence using a recurrent neural network. 
 
Reference: [3] Hu, C., Martin, S., & Dingreville, R. (2022). Accelerating phase-field predictions via 
recurrent neural networks learning the microstructure evolution in latent space. Computer Methods in 
Applied Mechanics and Engineering, 397, 115128. 
DOI: https://doi.org/10.1016/j.cma.2022.115128 
  

https://doi.org/10.1016/j.cma.2022.115128
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1.4. Learning time-dependent deposition protocols to design thin films via 
genetic algorithms 

Designing next generation thin films tailor-made for specific applications relies on the availability of 
robust process-structure-property relationships. Traditional structure zone diagrams that relate one or 
two deposition conditions to microstructures are limited to simple mappings, with machine-learning 
methods only recently attempting to relate multiple processing parameters to the final microstructure. 
Despite this progress, process-structure relationships are unknown for deposition conditions that vary 
during thin-film deposition, limiting the range of achievable microstructures and properties. We 
combine phase-field simulations with a genetic algorithm to identify and design time-dependent 
deposition protocols that achieve tailor-made microstructures. We simulate the physical vapor 
deposition of a binary-alloy thin film by employing a phase-field model, where deposition rates and 
diffusivities of the deposited species vary in time and are controlled via the genetic algorithm. Our 
genetic-algorithm-guided protocols achieve targeted microstructures with lateral and vertical 
concentration modulations, as well as more complex, hierarchical microstructures previously not 
described in classical structure zone diagrams. By elucidating the process-structure mechanisms during 
physical vapor deposition and using this knowledge to achieve precise thin-film microstructures, our 
algorithm provides insights to the thin film, physical vapor deposition, and film functionality 
communities looking for additional avenues to design novel thin-film microstructures. 

 

 
Figure 4.  Workflow to discover novel (time-dependent) deposition protocols to achieve targeted 
microstructures. Deposition protocols are parameterized to describe any (time-dependent) protocol in terms 
of deposition rate. Those parameters are sampled and chose via a genetic algorithm which generate new 
deposition protocols. These protocols are used as input into deposition models yield associated 
microstructures. These microstructures are analyzed and compared to targeted microstructure for selection 
of new protocols by the genetic algorithm. 
 
Reference: [4] Desai, S., & Dingreville, R. (2022). Learning time-dependent deposition protocols to 
design thin films via genetic algorithms. Materials & Design, 219, 110815. 
DOI: https://doi.org/10.1016/j.matdes.2022.110815 
 
 
 
 
 

https://doi.org/10.1016/j.matdes.2022.110815
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1.5. Microstructural black swans 
Black swans are a metaphor for rare events with extreme consequences. In the domain of structural 
materials, black swans represent features in the microstructure that lead to catastrophic failure; as a 
result of their rarity, they are difficult to observe and often overlooked. These unusual weakest-link 
features are described variously as incipient, emergent, or anomalous. They give rise to localization, 
percolation, or avalanche events such as fracture, ductile rupture, dielectric breakdown, corrosion pit 
nucleation, and fatigue-crack initiation; as such, they are limiting cases in the concept of a 
representative volume. In this perspective, three examples are given of rare microstructural features 
and how they limit the mechanical reliability of structural metals. After taking stock of these examples, 
a future outlook considers the need for high-throughput testing and non-destructive characterization 
as well as detection algorithms and materials modelling strategies, including accelerated machine 
learning methods, that can capture anomalous events. 

 
Figure 5.  Some material properties like fatigue crack initiation and corrosion pit nucleation are difficult to 
predict because they appear to be highly stochastic, triggered at rare “weakest-links” in the microstructure. 
 

Reference: [5] Boyce, B. L. (2022, July). Microstructural black swans. In IOP conference series: materials 
science and engineering (Vol. 1249, No. 1, p. 012004). IOP Publishing. 
DOI: https://doi.org/10.1088/1757-899X/1249/1/012004 
 

  

https://doi.org/10.1088/1757-899X/1249/1/012004


 

26 

1.6. Learning two-phase microstructure evolution using DeepONet and 
autoencoder architectures 

Phase-field modeling is an effective but computationally expensive method for capturing the 
mesoscale morphological and microstructure evolution in materials. Hence, fast and generalizable 
surrogate models are needed to alleviate the cost of computationally taxing processes such as in 
optimization and design of materials. The intrinsic discontinuous nature of the physical phenomena 
incurred by the presence of sharp phase boundaries makes the training of the surrogate model 
cumbersome. We develop a framework that integrates a convolutional autoencoder architecture with 
a deep neural operator (DeepONet) to learn the dynamic evolution of a two-phase mixture and 
accelerate time-to-solution in predicting the microstructure evolution. We utilize the convolutional 
autoencoder to provide a compact representation of the microstructure data in a low-dimensional 
latent space. After DeepONet is trained in the latent space, it can be used to replace the high-fidelity 
phase-field numerical solver in interpolation tasks or to accelerate the numerical solver in extrapolation 
tasks. 

 
Figure 6.  Accelerating materials simulation using physics-informed neural network. A convolutional 
autoencoder is trained to embed the description of the microstructure. The latent description of the 
microstructure obtained from the autoencoder is then use in a DeepONet to accelerate and predict future 
time sequences. 
 

Reference: [6] Oommen, V., Shukla, K., Goswami, S., Dingreville, R., & Karniadakis, G. E. (2022). 
Learning two-phase microstructure evolution using neural operators and autoencoder architectures. 
npj Computational Materials, 8(1), 190. 
DOI: https://doi.org/10.1038/s41524-022-00876-7 
 

https://doi.org/10.1038/s41524-022-00876-7
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1.7. Inferring topological phase transitions in pattern-forming processes with 
self-learning 

The identification of transitions in pattern-forming processes are critical to understand and fabricate 
microstructurally precise materials in many application domains. While supervised methods can be 
useful to identify transition regimes, they need labels, which require prior knowledge of order 
parameters or relevant microstructures describing these transitions. Instead, we develop a self-
supervised, neural-network-based approach that does not require predefined labels about 
microstructure classes to predict process parameters from observed microstructures. We show that 
assessing the difficulty of solving this inverse problem can be used to uncover microstructural 
transitions. We demonstrate our approach by automatically discovering microstructural transitions in 
two distinct pattern-forming processes: the spinodal decomposition of a two-phase mixture and the 
formation of binary-alloy microstructures during physical vapor deposition of thin films. This 
approach opens a path forward for discovering unseen or hard-to-discern transitions and ultimately 
controlling complex pattern-forming processes. 
 

 
Figure 7.  Workflow to identify transition regimes in pattern-forming processes via self-supervised learning. 
a We simulate the dynamical evolution of the physical system for a broad range of process parameters. 
Next, we project the final state of the microstructural pattern into a latent space (using a pre-trained ResNet-
50 v235). We regress on these latent dimensions to estimate the original process parameters. b To detect 
specific classes of microstructural patterns, we evaluate the model error by predicting the corresponding 
initial process parameters. By measuring the change in sensitivity of forming specific patterns for various 
input process parameters, we learn where the transition regime(s) might occur. 
 
Reference: [7] Abram, M., Burghardt, K., Ver Steeg, G., Galstyan, A., & Dingreville, R. (2022). 
Inferring topological transitions in pattern-forming processes with self-supervised learning. npj 
Computational Materials, 8(1), 205. 
DOI: https://doi.org/10.1038/s41524-022-00889-2 
 

https://doi.org/10.1038/s41524-022-00889-2
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1.8. Optimization of Stochastic Feature Properties in Laser Powder Bed 
Fusion 

Process parameter selection in laser powder bed fusion (LPBF) controls the as-printed dimensional 
tolerances, pore formation, surface quality and microstructure of printed metallic structures. 
Measuring the stochastic mechanical performance for a wide range of process parameters is 
cumbersome both in time and cost. In this study, we overcome these hurdles by using high-throughput 
tensile (HTT) testing of over 250 dogbone samples to examine process-driven performance of strut-
like small features, ~1 mm2 in austenitic stainless steel (316 L). The output mechanical properties, 
porosity, surface roughness and dimensional accuracy were mapped across the printable range of laser 
powers and scan speeds using a continuous wave laser LPBF machine. Tradeoffs between ductility 
and strength are shown across the process space and their implications are discussed. While volumetric 
energy density deposited onto a substrate to create a melt-pool can be a useful metric for determining 
bulk properties, it was not found to directly correlate with output small feature performance. 

 
Figure 8.  High-throughput tensile testing contributes to rapid optimization of process parameters in additive 
manufacturing.  Other researchers typically lack this mechanical performance data during optimization, and 
instead optimize for density or printability. 
 
Reference: [8] Jensen, S. C., Koepke, J. R., Saiz, D. J., Heiden, M. J., Carroll, J. D., Boyce, B. L., & 
Jared, B. H. (2022). Optimization of stochastic feature properties in laser powder bed fusion. Additive 
Manufacturing, 56, 102943. 
DOI: https://doi.org/10.1016/j.addma.2022.102943 
  

https://doi.org/10.1016/j.addma.2022.102943
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1.9. Part-scale Process Modeling for Metal Additive Manufacturing, submitted 
ASM Handbook, 2022. 

This article provides an overview of different modeling approaches used to capture the phenomena 
present in the additive manufacturing (AM) process. Inherent to the thermomechanical processing 
that occurs in AM for metals is the development of residual stresses and distortions. The article then 
provides an overview of thermal modeling. It presents a discussion on solid mechanics simulation and 
microstructure simulation. 

 
Figure 9.  Explicit High-Fidelity simulation of additive manufacturing processes requires enormous 
computational resources, rendering extensive parametric studies infeasible.  Future surrogate models 
trained on limited simulation data will allow speed-up of such predictions, albeit with reduced fidelity. 
 

Reference: [9] Johnson, K. L., Moser, D., Rodgers, T. M., & Stender, M. E. (2023). Part-Scale Process 
Modeling for Metal Additive Manufacturing. In Additive Manufacturing Design and Applications (pp. 67-
73). ASM International. 

DOI: https://doi.org/10.31399/asm.hb.v24A.a0006976 

 

  

https://doi.org/10.31399/asm.hb.v24A.a0006976
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1.10. Long-term process stability in additive manufacturing 
Laser powder bed fusion (LPBF), also known as selective laser sintering or direct laser melting, is an 
additive manufacturing process in which part geometries are formed simultaneously with the 
underlying material. The microstructure, defect content, and surface quality are all synthesized 
conjointly with the part shape. While the geometric design freedom allowed by this process enables 
new complex features and parts with small (∼1 mm) features, challenges associated with process 
qualification can deter wider adoption. Furthermore, a lack of historical performance data for 
statistical process control of witness coupons, for either bulk material or for small features, makes the 
barrier to entry more difficult. Here, we demonstrate long-term, property-based process monitoring 
and variability assessment using both small-featured (1 mm) and larger, bulk-representative material 
witness coupons. Over a one-year period, more than 550 tensile bars and 80 Charpy impact bars were 
printed alongside 316 L stainless steel parts built using LPBF and tested to detect shifts in the process 
over time. Miniature tensile bars with a 1 mm2 gage area were tested using a high throughput 
mechanical testing system. In parallel, a larger test coupon was used to monitor density, hardness, and 
Charpy impact toughness. This collection of measurements was used to determine detectable property 
shifts correlated to LPBF process changes including powder feedstock, machine hardware, software 
versioning, and machine parameter settings. The benefits of using small featured, high-throughput 
samples are discussed based on process sensitivity and the number of repeat tests possible for each 
build. This study not only reveals the utility of property-based process monitoring but illustrates the 
sensitivity of these measurements to detect process changes and provides further evidence for 
property stability in modern LPBF. 

 
Figure 10.  High-throughput tension testing enables a new level of insight into the long-term repeatability 
of additive manufacturing processes.  Rarely if ever do other organizations have access to such extensive 
mechanical property data, collected consistently over years of process usage. 

 

Reference: [10] Jensen, S. C., Carroll, J. D., Pathare, P. R., Saiz, D. J., Pegues, J. W., Boyce, B. L., ... 
& Heiden, M. J. (2023). Long-term process stability in additive manufacturing. Additive Manufacturing, 
61, 103284. 

DOI: https://doi.org/10.1016/j.addma.2022.103284 

  

https://doi.org/10.1016/j.addma.2022.103284
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1.11. Process-microstructure relationships of physical vapor deposited 
polycrystalline thin films via a multi-phase-field formulation. 

We present a generalized multi-phase-field model to predict the growth of polycrystalline thin 
films fabricated by physical vapor deposition. The model accounts for the explicit transport of atomic 
species to the substrate and the competing diffusion processes on the surface and in the bulk of the 
film leading to the formation of films with specific microstructures. We used magnetron 
sputtering conditions (pressure, voltage, working distance, substrate orientation) to calculate the 
energy and direction of the arriving atoms at the substrate using Monte Carlo simulations with the 
SiMTRA code. Our simulation results capture the dependence of the microstructure on deposition 
conditions, and delineate the relationship between process parameters and the formation of columnar 
microstructures and surface roughness characteristic of thin films. These simulation predictions are in 
agreement with transmission electron microscopy characterization of sputtered films. Through our 
systematic investigation of competing growth mechanisms, we provide insights into the complex 
relationships between deposition conditions and bulk and surface morphologies. 

 
Figure 11.  Phase-field simulations of physical vapor deposition of thin film. Left panel illustrates the various 
components of the model and features captured by the model. Right panel shows a comparison with TEM 
cross section of the same microstructure. Model is able to accurately predict the evolution of the morphology 
of the microstructure as a function of deposition conditions and thickness of the film. 
 
Reference: [11] Monti, J. M., Stewart, J. A., Custer, J. O., Adams, D. P., Depla, D., & Dingreville, R. 
(2023). Linking simulated polycrystalline thin film microstructures to physical vapor deposition 
conditions. Acta Materialia, 245, 118581. 
DOI: https://doi.org/10.1016/j.actamat.2022.118581 
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1.12. Learning incoherent light emission steering from metasurfaces using 
generative models 

Spatiotemporal control over incoherent light sources is critically important for applications such as 
displays, remote sensing, clean energy, and illumination. Incoherent light emission made up of 
randomized wavefronts is incompatible with known beam steering techniques that rely on coherent 
electromagnetic wave interference. The emerging field of tunable dielectric metasurfaces consisting of 
sub- wavelength arrays of optical nanoresonators has recently enabled active re-direction of incoherent 
light (photoluminescence, PL) emission. This was achieved by illuminating (pumping) the metasurface 
with a pump laser reflecting off a programmable spatial light modulator (SLM) with sawtooth grating 
patterns as input. Achieving efficient beam steering requires the generation of optimal pump patterns 
programmed into the SLM to maximize the PL emitted towards a given direction. Given the 
innumerable possibilities and the lack of a theoretical physical framework to guide the exploration of 
pump patterns, we use an active learning algorithm running a closed loop optical experiment with a 
generative model to explore and optimize novel pump patterns. We achieve up to an order of 
magnitude enhancement in the steering efficiency by using pump patterns that are generated by a 
variational auto-encoder, with minimal number of experiments. The results presented in this paper 
highlight the unique ability of generative models and active learning to dramatically improve steering 
efficiency by finding novel optical pump patterns that are beyond human intuition. Our combination 
of advanced machine learning techniques driving closed loop nanophotonic experiments might pave 
the way to derive the underlying physics of emergent light-matter phenomena. 

 
Figure 12.  Generative models combined with equation learner can learn how to steer light from fast and 
high-throughput experiments. 

 
Reference: [12] Iyer, P. P., Desai, S., Addamane, S., Dingreville, R., & Brener, I. (2023). Learning 
incoherent light emission steering from metasurfaces using generative models. In Proceedings of the 
IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 3770-3777). 
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1.13. Connecting vibrational spectroscopy to atomic structure via supervised 
manifold learning: beyond peak analysis 

Vibrational spectroscopy is a nondestructive technique commonly used in chemical and physical 
analyses to determine atomic structures and associated properties. However, the evaluation and 
interpretation of spectroscopic profiles based on human-identifiable peaks can be difficult and 
convoluted. To address this challenge, we present a reliable protocol based on supervised manifold 
learning techniques meant to connect vibrational spectra to a variety of complex and diverse atomic 
structure configurations. As an illustration, we examined a large database of virtual vibrational 
spectroscopy profiles generated from atomistic simulations for silicon structures subjected to different 
stress, amorphization, and disordering states. We evaluated representative features in those spectra via 
various linear and nonlinear dimensionality reduction techniques and used the reduced representation 
of those features with decision trees to correlate them with structural information unavailable through 
classical human-identifiable peak analysis. We show that our trained model accurately (over 97% 
accuracy) and robustly (insensitive to noise) disentangles the contribution from the different material 
states, hence demonstrating a comprehensive decoding of spectroscopic profiles beyond classical 
(human-identifiable) peak analysis. 

 
Figure 13.  We extracted materials state descriptors beyond classical peak-width analysis through a 
machine-learned approach which takes as input an observed vibrational spectroscopy spectrum and 
outputs a vector describing stress and strain full tensors, fraction of disorder, internal length scale 
associated with disorder. The workflow consists of first reducing the dimensionality of the vibrational 
spectrum via an autoencoder, then use the latent representation of the spectrum into a regression model 
(in the present case a decision tree) to regress the state of the materials. 
 
Reference: [13] Vizoso, D., Subhash, G., Rajan, K., & Dingreville, R. (2023). Connecting vibrational 
spectroscopy to atomic structure via supervised manifold learning: Beyond peak analysis. Chemistry of 
Materials, 35(3), 1186-1200. 
DOI: https://doi.org/10.1021/acs.chemmater.2c03207 
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1.14. Machine Learning for Materials Science: Barriers to Broader Adoption 
Machine learning is on a bit of a tear right now, with advances that are infiltrating nearly every aspect 
of our lives. In the domain of materials science, this wave seems to be growing into a tsunami. Yet, 
there are still real hurdles that we face to maximize its benefit. This Matter of Opinion, crafted as a 
result of a workshop hosted by researchers at Sandia National Laboratories and attended by a cadre 
of luminaries, briefly summarizes our perspective on these barriers. By recognizing these problems in 
a community forum, we can share the burden of their resolution together with a common purpose 
and coordinated effort. 

 
Figure 14.  There are four basic categories that create barriers to the efficient usage of machine learning 
algorithms in materials science: (1) psychological trust, (2) intellectual awareness of available algorithms 
and their proper usage, (3) availability of infrastructural capabilities for both data collection and data analysis 
at a large scale, and (4) in some cases, existing algorithms must be modified to accommodate the data 
sources and embed physics knowledge. 
 
Reference: [14] Boyce, B., Dingreville, R., Desai, S., Walker, E., Shilt, T., Bassett, K. L., ... & Warren, 
J. A. (2023). Machine learning for materials science: Barriers to broader adoption. Matter, 6(5), 1320-
1323. 
DOI: https://doi.org/10.1016/j.matt.2023.03.028 
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1.15. Sputtered-deposited Mo thin films: Multimodal characterization of 
structure, surface morphology, density, residual stress, electrical 
resistivity and mechanical response 

Multimodal datasets of materials are rich sources of information which can be leveraged for expedited 
discovery of process–structure–property relationships and for designing materials with targeted 
structures and/or properties. For this data descriptor article, we provide a multimodal dataset of 
magnetron sputter-deposited molybdenum (Mo) thin films, which are used in a variety of industries 
including high temperature coatings, photovoltaics, and microelectronics. In this dataset we explored 
a process space consisting of 27 unique combinations of sputter power and Ar deposition pressure. 
The phase, structure, surface morphology, and composition of the Mo thin films were characterized 
by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and Rutherford 
backscattering spectrometry. Physical properties—namely, thickness, film stress and sheet 
resistance—were also measured to provide additional film characteristics and behaviors. Additionally, 
nanoindentation was utilized to obtain mechanical load-displacement data. The entire dataset consists 
of 2072 measurements including scalar values (e.g., film stress values), 2D linescans (e.g., x-ray 
diffractograms), and 3D imagery (e.g., atomic force microscopy images). An additional 1889 quantities, 
including film hardness, modulus, electrical resistivity, density, and surface roughness, were derived 
from the experimental datasets using traditional methods. Minimal analysis and discussion of the 
results are provided in this data descriptor article to limit the authors’ preconceived interpretations of 
the data. Overall, the data modalities are consistent with previous reports of refractory metal thin 
films, ensuring that a high-quality dataset was generated. The entirety of this data is committed to a 
public repository in the Materials Data Facility. 



 

36 

 
Figure 15.  A summary of the 2,072 measurements performed on a combinatorial library of pure Mo films 
deposited under a range of conditions and characterized via several complementary modalities. 
 
Reference: [15] Kalaswad, M., Custer, J. O., Addamane, S., Khan, R. M., Jauregui, L., Babuska, T. F., 
... & Adams, D. P. (2023). Sputter-deposited Mo Thin films: multimodal characterization of structure, 
surface morphology, density, residual stress, electrical resistivity, and mechanical response. Integrating 
Materials and Manufacturing Innovation, 12(2), 118-129. 
DOI: https://doi.org/10.1007/s40192-023-00297-4 
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1.16. Revealing the structure-property relationships of amorphous carbon 
tribofilms on platinum-gold surfaces 

Nanocrystalline metal alloys have shown great promise as electrical contact materials, given their 
mechanical and tribological properties. In particular, platinum-gold (Pt–Au) nanocrystalline alloys 
have demonstrated coefficients of friction as low as 0.01 and specific wear rates on the order of 10−9 
mm3 N−1 m−1, largely due to the formation of carbon-based tribofilms at the sliding interfaces. In 
this study, we advance our understanding of the Pt–Au tribofilm structure-property relations and 
growth mechanisms via high-throughput and high-resolution measurements as a function of Pt–Au 
composition. As the solute content increased from 0 at. % to 10 at. % Au, cross-sectional and plan-
view transmission electron microscopy demonstrated a decrease in average grain size d and an 
accompanied increase in grain boundary (GB) segregation. The decrease in d and increase in GB solute 
segregation translated to a decrease in modulus Er and an increase in hardness H as determined via 
nanoindentation; the Er trend was mainly described using a rule-of-mixtures approximation, whereas 
the H trend was ascribed to solid solution strengthening and GB stabilization. The steady state-friction 
μ and wear rate decreased with the addition of Au; low Au-content films showed substrate wear, while 
high Au-content films showed stable tribofilm growth in both macroscale and nanoscale friction tests. 
The carbon bonding configuration of the tribofilms was investigated by near-edge X-ray absorption 
fine structure spectroscopic analyses and found to be similar to that of hydrogenated amorphous 
carbon films. Altogether, the study provided insight into the mechanistic origins of the tribofilms, thus 
opening the door to tunable properties ranging from mitigation for electrical contacts to the creation 
of self-healing films for solid lubricants. 

 

Figure 16.  (top row) Cross-sectional images of as-deposited films, (middle row) plan view images, and 
(bottom row) corresponding STEM-EDS composition maps, revealing gold segregation at grain boundaries. 
 
Reference: [16] DelRio, F. W., Mangolini, F., Edwards, C. E., Babuska, T. F., Adams, D. P., Lu, P., 
& Curry, J. F. (2023). Revealing the structure-property relationships of amorphous carbon tribofilms 
on platinum-gold surfaces. Wear, 522, 204690. 
DOI: https://doi.org/10.1016/j.wear.2023.204690  
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1.17. Automated high-throughput fatigue testing of freestanding thin films 
Mechanical testing at small length scales has traditionally been resource-intensive due to difficulties 
with meticulous sample preparation, exacting load alignments, and precision measurements. 
Microscale fatigue testing can be particularly challenging due to the time-intensive, tedious repetition 
of single fatigue experiments. To mitigate these challenges, this work presents a new methodology for 
the high-throughput fatigue testing of thin films at the microscale. This methodology features a 
microelectromechanical systems-based Si carrier that can support the simultaneous and independent 
fatigue testing of an array of samples. To demonstrate this new technique, the microscale fatigue 
behavior of nanocrystalline Al is efficiently characterized via this Si carrier and automated fatigue 
testing with in situ scanning electron microscopy. This methodology reduces the total testing time by 
an order of magnitude, and the high-throughput fatigue results highlight the stochastic nature of the 
microscale fatigue response. This manuscript also discusses how this initial capability can be adapted 
to accommodate more samples, different materials, new geometries, and other loading modes. 

 
Figure 17.  A Si Micro-Electro-Mechanical system (MEMS)-based platform enables the simultaneous 
fatigue testing of up to 12 thin-film tensile bars, with concurrent automated imaging of fatigue damage 
progression in the Scanning Electron Microscope (SEM). 
 
Reference: [17] Barrios, A., Kunka, C., Nogan, J., Hattar, K., & Boyce, B. L. (2023). Automated High‐
Throughput Fatigue Testing of Freestanding Thin Films. Small Methods, 7(7), 2201591. 
DOI: https://doi.org/10.1002/smtd.202201591 
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1.18. A Workflow for Accelerating Multimodal Data Collection for 
Electrodeposited Films 

Future machine learning strategies for materials process optimization will likely replace human capital-
intensive artisan research with autonomous and/or accelerated approaches. Such automation enables 
accelerated multimodal characterization that simultaneously minimizes human errors, lowers costs, 
enhances statistical sampling, and allows scientists to allocate their time to critical thinking instead of 
repetitive manual tasks. Previous acceleration efforts to synthesize and evaluate materials have often 
employed elaborate robotic self-driving laboratories or used specialized strategies that are difficult to 
generalize. Herein we describe an implemented workflow for accelerating the multimodal 
characterization of a combinatorial set of 915 electroplated Ni and Ni–Fe thin films resulting in a data 
cube with over 160,000 individual data files. Our acceleration strategies do not require manufacturing-
scale resources and are thus amenable to typical materials research facilities in academic, government, 
or commercial laboratories. The workflow demonstrated the acceleration of six characterization 
modalities: optical microscopy, laser profilometry, X-ray diffraction, X-ray fluorescence, 
nanoindentation, and tribological (friction and wear) testing, each with speedup factors ranging from 
13–46x. In addition, automated data upload to a repository using FAIR (Findable, Accessible, 
Interoperable, Reusable) data principles was accelerated by 64x. 

 
Figure 18.  An accelerated electroplating workflow uses custom parallel combinatorial synthesis and a 

multi-sample holder, loaded into 6 automated instruments ranging from X-ray Flourescence to 
Nanoindentation.    

Reference: [18] Bassett, K. L., Watkins, T., Coleman, J., Bianco, N., Bailey, L. S., Pillars, J., ... & 
Boyce, B. L. (2023). A Workflow for Accelerating Multimodal Data Collection for Electrodeposited 
Films. Integrating Materials and Manufacturing Innovation, 12(4), 430-440. 
DOI: https://doi.org/10.1007/s40192-023-00315-5 
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1.19. Latent representation of microstructure evolution: a survey 
Characterizing and quantifying microstructure evolution is critical to forming quantitative 
relationships between material processing conditions, resulting microstructure, and observed 
properties. Machine-learning methods are increasingly accelerating the development of these 
relationships by treating microstructure evolution as a pattern recognition problem, discovering 
relationships explicitly or implicitly. These methods often rely on identifying low-dimensional 
microstructural fingerprints as latent variables. However, using inappropriate latent variables can lead 
to challenges in learning meaningful relationships. In this work, we survey and discuss the ability of 
various linear and nonlinear dimensionality reduction methods including principal component 
analysis, autoencoders, and diffusion maps to quantify and characterize the learned latent space 
microstructural representations and their time evolution. We characterize latent spaces by their ability 
to represent high-dimensional microstructural data in terms of compression achieved as a function of 
the number of latent dimensions required to represent the data accurately, their accuracy based on 
their reconstruction performance, and the smoothness of the microstructural trajectories in latent 
dimension. We quantify these metrics for common microstructure evolution problems in material 
science including spinodal decomposition of a binary metallic alloy, thin film deposition of a binary 
metallic alloy, dendritic growth, and grain growth in a polycrystal. This study provides considerations 
and guidelines for choosing dimensionality reduction methods when considering materials problems 
that involve high dimensional data and a variety of features over a range of lengths and time scales. 

 
Figure 19.  Latent representation of microstructure via various machine-learning algorithms (e.g. 
autoencoders, principal component analysis, diffusion maps) are evaluated in terms of the ability of the 
machine-learning strategy to (i) reconstruct the microstructure from its latent representation, both in terms 
of local and global features; and (ii) the ability to describe smooth microstructure evolution trajectory in the 
latent space. Smoothness of the latent representation of the microstructure as a function of time is important 
for adaption and control of those microstructure when linked with process conditions. 
 

Reference: [19] Desai, S., Shrivastava, A., D’Elia, M., Najm, H. N., & Dingreville, R. (2024). Trade-
offs in the latent representation of microstructure evolution. Acta Materialia, 263, 119514. 

DOI: https://doi.org/10.1016/j.actamat.2023.119514 
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1.20. Beyond Combinatorial Materials Science – The 100 Prisoners Problem 
Advancements in high-throughput data generation and physics-informed artificial intelligence and 
machine-learning algorithms are rapidly challenging the status quo for how materials data is collected, 
analyzed, and communicated with the world. Machine-learning algorithms can be executed in just a 
few lines of code by researchers with minimal data science expertise. This perspective addresses the 
reality that the ecosystems which have been constructed to nurture new materials discovery and 
development are not yet well equipped to take advantage of the radically more powerful and accessible 
computational and algorithmic tools which have the immediate potential to enhance the pace of 
scientific advancement in this field. A novel architecture for managing materials data is proposed and 
discussed from the standpoint of how historical and emerging subfields of materials science could 
have been or might still significantly improve the impact of materials discoveries to the many human 
societal needs for new materials. 

 
Figure 20.  (a) a typical workflow where measurements, interpretation, and even publication can be 
disconnected from data sharing and advanced analytics, (b) a future workflow where data sharing via a 
FAIR repository and advanced analysis can occur automatically in conjunction with data collection. 
 
Reference: [20] Fowler, J. E., Kottwitz, M. A., Trask, N., & Dingreville, R. (2024). Beyond 
Combinatorial Materials Science: The 100 Prisoners Problem. Integrating Materials and Manufacturing 
Innovation, 13(1), 83-91. 
DOI: https://doi.org/10.1007/s40192-023-00330-6 
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1.21. Reconstruction of high-resolution atomic force microscopy 
measurements from fast-scan data using a Noise2Noise algorithm 

The acquisition of large atomic-force-microscopy (AFM) scans at nanoscale resolutions can take hours 
and produce datasets with millions of pixels, which is time consuming and computationally expensive 
to analyze. In this paper, we present an approach to speed up this process by using a computer-vision 
algorithm, namely the Noise2Noise algorithm, to reconstruct high-resolution, low scan speed AFM 
data from high-speed, noisy, sparsely sampled AFM data. This algorithm is trained on various noise 
types to reproduce different sources of experimental noises encountered during the acquisition of 
AFM data. Our results demonstrate that a sparse, uniform AFM scan of 20× 20 μ m at 128× 128 pixel 
resolution can be processed within seconds, and the output image is comparable to a higher quality 
raw data scan which required 30 min or more to collect, reducing not only the acquisition and analysis 
time, but also the size of the data being collected. 

 

 

Figure 21.  We used a Noise2Noise (N2N) algorithms to reconstruct high-resolution atomic force 
microscopy (AFM) images from noisy AFM images. (a) One target AFM image corresponds to a high-
resolution ‘clean’ image and the other corresponds to a ‘noisy’ sparsely sampled image. We used different 
types of noise to train the network. (b) Once trained, we employed this algorithm to take scans at fast scan 
speeds and lower sampling density to reconstruct the corresponding slow-scan AFM image, significantly 
reducing scan time and decreasing processing complexity. The results demonstrate that it is possible to 
reconstruct high-resolution scans from sparse or noisy AFM images with minimal time and computational 
requirements. 
 

Reference: [21] Natinsky, E., Khan, R. M., Cullinan, M., & Dingreville, R. (2024). Reconstruction of 
high-resolution atomic force microscopy measurements from fast-scan data using a Noise2Noise 
algorithm. Measurement, 227, 114263. 

DOI: https://doi.org/10.1016/j.measurement.2024.114263 
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1.22. AI for Technoscientific Discovery: A Human-Inspired Architecture 
We present a high-level architecture for how artificial intelligences might advance and accumulate 
scientific and technological knowledge, inspired by emerging perspectives on how human intelligences 
advance and accumulate such knowledge. Agents advance knowledge by exercising a technoscientific 
method—an interacting combination of scientific and engineering methods. The technoscientific 
method maximizes a quantity we call “useful learning” via more-creative implausible utility (including 
the “aha!” moments of discovery), as well as via less-creative plausible utility. Society accumulates the 
knowledge advanced by agents so that other agents can incorporate and build on to make further 
advances. The proposed architecture is challenging but potentially complete: its execution might in 
principle enable artificial intelligences to advance and accumulate an equivalent of the full range of 
human scientific and technological knowledge. 

 
Figure 22.  An AI agent, here shown in the bottom center, can complement human agent’s ability to unearth 
scientific facts and replicate engineering functions. 
 

Reference: [22] Tsao, J. Y., Abbott, R. G., Crowder, D. C., Desai, S., Dingreville, R. P. M., Fowler, J. 
E., ... & Stracuzzi, D. J. (2024). AI for Technoscientific Discovery: A Human-Inspired Architecture. 
Journal of Creativity, 34(2), 100077. 

DOI: https://doi.org/10.1016/j.yjoc.2024.100077 
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1.23. Bayesian optimization for stable properties amid processing fluctuations 
in sputter deposition 

We introduce a Bayesian optimization approach to guide the sputter deposition of molybdenum thin 
films, aiming to achieve desired residual stress and sheet resistance while minimizing susceptibility to 
stochastic fluctuations during deposition. Thin films are pivotal in numerous technologies, including 
semiconductors and optical devices, where their properties are critical. Sputter deposition parameters, 
such as deposition power, vacuum chamber pressure, and working distance, influence physical 
properties like residual stress and resistance. Excessive stress and high resistance can impair device 
performance, necessitating the selection of optimal process parameters. Furthermore, these 
parameters should ensure the consistency and reliability of thin film properties, assisting in the 
reproducibility of the devices. However, exploring the multidimensional design space for process 
optimization is expensive. Bayesian optimization is ideal for optimizing inputs/parameters of general 
black-box functions without reliance on gradient information. We utilize Bayesian optimization to 
optimize deposition power and pressure using a custom-built objective function incorporating 
observed stress and resistance data. Additionally, we integrate prior knowledge of stress variation with 
pressure into the objective function to prioritize films least affected by stochastic variations. Our 
findings demonstrate that Bayesian optimization effectively explores the design space and identifies 
optimal parameter combinations meeting desired stress and resistance specifications. 

 
Figure 23.  Bayesian-guided determination of the “next” most valuable data point to acquire, at (left) the 
first iteration of Bayesian selection, and (right) the seventh iteration of Bayesian selection.   The exploitation 
term is captured by expected value based on a Gaussian process model in (a), and exploration term is 
captured by the uncertainty of the model’s expected value expressed as a standard deviation multiplied by 
a scaling term (b).  A weighted sum of these two terms results in the acquisition function shown in (c). 
 

Reference: [23] Shrivastava, A., Kalaswad, M., Custer, J. O., Adams, D. P., & Najm, H. N. (2024). 
Bayesian optimization for stable properties amid processing fluctuations in sputter deposition. Journal 
of Vacuum Science & Technology A, 42(3). 

DOI: https://doi.org/10.1116/6.0003418   
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1.24. Unsupervised physics-informed disentanglement of multimodal data 
We introduce physics-informed multimodal autoencoders (PIMA) - a variational inference framework 
for discovering shared information in multimodal datasets. Individual modalities are embedded into a 
shared latent space and fused through a product-of-experts formulation, enabling a Gaussian mixture 
prior to identify shared features. Sampling from clusters allows cross-modal generative modeling, with 
a mixture-of-experts decoder that imposes inductive biases from prior scientific knowledge and 
thereby imparts structured disentanglement of the latent space. This approach enables cross-modal 
inference and the discovery of features in high-dimensional heterogeneous datasets. Consequently, 
this approach provides a means to discover fingerprints in multimodal scientific datasets and to avoid 
traditional bottlenecks related to high-fidelity measurement and characterization of scientific datasets. 

 
Figure 24.  A physics-informed multimodal autoencoder fuses data from images of handwritten numbers 
0-9 alongside toy empirical data with corresponding slopes 0-9.  The expert physics model in the decoder 
allows embedding of an expected physical rule. 
 
Reference: [24] Walker, E., Trask, N., Martinez, C., Lee, K., Actor, J. A., Saha, S., ... & Boyce, B. L. 
(2024). Unsupervised physics-informed disentanglement of multimodal data. Foundations of Data Science, 
0-0. 
DOI: https://doi.org/10.3934/fods.2024019 
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1.25. Rethinking materials simulations: Blending direct numerical simulations 
with neural operators. 

Direct numerical simulations (DNS) are accurate but computationally expensive for predicting 
materials evolution across timescales, due to the complexity of the underlying evolution equations, the 
nature of multiscale spatio-temporal interactions, and the need to reach long-time integration. We 
develop a new method that blends numerical solvers with neural operators to accelerate such 
simulations. This methodology is based on the integration of a community numerical solver with a U-
Net neural operator, enhanced by a temporal-conditioning mechanism that enables accurate 
extrapolation and efficient time-to-solution predictions of the dynamics. We demonstrate the 
effectiveness of this framework on simulations of microstructure evolution during physical vapor 
deposition modeled via the phase-field method. Such simulations exhibit high spatial gradients due to 
the co-evolution of different material phases with simultaneous slow and fast materials dynamics. We 
establish accurate extrapolation of the coupled solver with up to 16.5 speed-up compared to DNS. 
This methodology is generalizable to a broad range of evolutionary models, from solid mechanics, to 
fluid dynamics, geophysics, climate, and more. 

 
Figure 25.  Direct numerical simulation using a phase field model (True) compared to an accelerated hybrid 
simulation approach that integrates a faster U-Net solver with periodic, slower phase field solutions. 
 
Reference: [25] Oommen, V., Shukla, K., Desai, S., Dingreville, R., & Karniadakis, G. E. (2024). 
Rethinking materials simulations: Blending direct numerical simulations with neural operators. npj 
Computational Materials, 10(1), 145. 

DOI: https://doi.org/10.1038/s41524-024-01319-1 
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1.26. Unlocking alternative solutions for critical materials via materials 
informatics 

Critical materials are materials that are essential for a broad range of modern technologies but subject 
to supply risks, and for which there are no easy substitutes. The list of materials that are considered 
critical depends on who, where, and when you ask. This ambiguity is due to several factors, including 
geopolitical instability, resource depletion, and environmental concerns. In the US, lithium (Li) has 
become the poster child for criticality, owing to the rapid rise in electric vehicles and the vanishingly 
small domestic production. Other examples include beryllium (Be), an important material for solar 
photovoltaics and electric-vehicle batteries, or neodymium (Nd) and dysprosium (Dy), because of 
their use in magnets. A 2023 assessment by the US Department of Energy identified “the electric 
eighteen” critical materials, which even include materials that are viewed as common, such as copper 
(Cu) and silicon (Si). While their supply risk is modest, their ubiquity in the energy sector renders any 
disruption potentially devastating. 
 
The quest for the discovery and manufacturing of new and innovative materials to replace critical 
materials remains as vital as ever. Future critical materials disruptions will likely need to be solved in a 
matter of years or even months, rather than the decade or more often quoted as the requisite 
timeframe to mature from materials discovery to commercialization. In addition to this need for agility, 
a broadly coordinated federal strategy across all industrial sectors must address economic viability, 
ease of production, domestic availability, and lifecycle environmental impact. Resistance to change 
within the materials industry, along with a lack of awareness about environmental impacts, can slow 
down this transition. Regulatory frameworks may not be conducive to promoting sustainability, and 
technical challenges in fabricating materials with comparable performance to their traditional 
counterparts can be daunting. Additionally, limited data availability, existing infrastructure geared 
towards conventional materials, and market uncertainties can all pose substantial roadblocks. 
Therefore, to meet economic, industrial, and technological needs, it is imperative to accelerate the 
discovery of alternatives to critical materials by developing new and disruptive methods to identify 
materials with the desired properties in a timely and responsive manner. 
 
Researchers and engineers have traditionally used their expertise and intuition, in concert with ab initio 
and heuristic models, to guide the discovery of new materials. However, machine learning (ML) and 
artificial intelligence (AI) systems are now surpassing human intuition limits for complex tasks such 
as image recognition, materials design and discovery, or autonomous experiments. These data-driven 
approaches can also compensate for predictive shortcomings in traditional models arising from 
assumptions, simplifications, and imperfect calibrations. As artificial intelligence algorithms become 
more powerful and accessible, many materials scientists are increasingly embracing this emerging 
scientific domain to accelerate the discovery and development of new materials. Materials 
informatics—the amalgam of materials science, AI and ML, and advanced data analytics—holds one 
of the keys to addressing roadblocks to discovering alternative solutions to critical materials. The 
promise of materials informatics is that the discovery and manufacturing of materials solutions that 
will replace critical materials can be simultaneously and rapidly optimized by semi-autonomous 
systems, where the engineers do not have to envision all possible materials replacement solutions and 
then painstakingly (and expensively) test each solution with build-and-check methods. Instead, 
engineers can select appropriate algorithms, embed known physical laws and constraints, and assign 
design and materials objectives. Materials informatic approaches have already proven quite useful for 
certain materials problems such as broad and rapid searches across the periodic table (or more often, 
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a rational subset) to achieve particular alloying effects, albeit such approaches may not be as obviously 
applicable for difficult-to-predict behaviors such as fatigue life, for instance. 

 
Figure 26.  Notionally, AI algorithms offer the ability to detect complex or hidden “fingerprints” in large 
datasets obtained via high-throughput simulation and multimodal characterization, guiding the identification 
of alternative material solutions to replace at-risk materials. 
 
Reference: [26] Dingreville, R., Trask, N.A., Boyce, B.L. Karniadakis, G.E. (2024). Unlocking 
alternative solutions to critical materials via materials informatics. The Bridge. Issue on Critical 
Materials, 54(2).  
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1.27. Bayesian blacksmithing: discovering thermomechanical properties and 
deformation mechanisms in high-entropy refractory alloys 

Finding alloys with specific design properties is challenging due to the large number of possible 
compositions and the complex interactions between elements. This study introduces a multi-
objective Bayesian optimization approach guiding molecular dynamics simulations for 
discovering high-performance refractory alloys with both targeted intrinsic static 
thermomechanical properties and also deformation mechanisms occurring during dynamic 
loading. The objective functions are aiming for excellent thermomechanical stability via a high 
bulk modulus, a low thermal expansion, a high heat capacity, and for a resilient deformation 
mechanism maximizing the retention of the BCC phase after shock loading. Contrasting two 
optimization procedures, we show that the Pareto-optimal solutions are confined to a small 
performance space when the property objectives display a cooperative relationship. Conversely, 
the Pareto front is much broader in the performance space when these properties have antagonistic 
relationships. Density functional theory simulations validate these findings and unveil underlying 
atomic-bond changes driving property improvements. 
 

 
Figure 27.  The multi-objective function consists of optimizing both (static) thermomechanical properties 
(bulk modulus, coefficient of thermal expansion, heat capacity) and target a specific deformation 
mechanism (retained BCC phase upon shock) in a model alloy: MoNbTaTi.  Three-dimensional projections 
of the calculated property performance spaces of optimizations A (panel a) and B (panel b). Pareto optimal 
points are colored purple, while points from the initial database are colored turquoise. Points evaluated 
during optimization but which do not lie on either Pareto front are colored grey. To aid in visualization, two-
dimensional projections are drawn onto the visible faces, and shadows are projected onto the points within 
the three-dimensional volume. 
 
Reference: [27] Startt, J., McCarthy, M. J., Wood, M. A., Donegan, S., & Dingreville, R. (2024). 
Bayesian blacksmithing: discovering thermomechanical properties and deformation mechanisms in 
high-entropy refractory alloys. npj Computational Materials, 10(1), 164. 
DOI: https://doi.org/10.1038/s41524-024-01353-z 
  

https://doi.org/10.1038/s41524-024-01353-z
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1.28. Tunable amorphous carbon films formed on ultralow wear, Pt-Au alloys 
The mechanocatalytic formation of carbonaceous films at the interface between sliding metallic 
contacts is simultaneously advantageous for reducing friction and adhesion in several tribological 
applications and detrimental for electrical contacts as they can induce device failure by increasing the 
contact resistance. Yet, remarkably little is still known about the chemistry, structural and mechanical 
properties, and tunability of these interfacial layers. In this study, we performed contact pressure-
dependent tribological experiments in dry nitrogen containing trace organics on four, nanocrystalline 
Pt-Au alloys ([Au] from 0 at.% to 10 at.%), a promising class of alloys for ultralow wear and electrical 
contact applications. The ex-situ, multi-technique characterization results did not only provide insights 
into the chemical nature and mechanical behavior of the mechanocatalytic, carbon-rich films formed 
on Pt-Au surfaces, but also revealed the interplay between catalytic and mechanochemical tribofilm 
formation controlled by the composition-dependent electronic structure of the Pt-Au substrate and 
the applied contact pressure. The results of this work provide guidelines for tailoring nanocrystalline 
alloys to control their mechano-catalytic activity on the basis of variations of the alloy mechanical 
properties and element’s electronic structure with the alloy stoichiometry. 
 

 
Figure 28.  (left) Tribologically-induced mechano-catalytic yield (omitting non-contact region) as a function 
of the Au 4f7/2 binding energy shift. (upper right) AM-FM nanomechanical mapping reveal that 
tribochemically-induced particles are mechanically distinct from the substrate.  (lower right).  A ternary 
phase diagram based on spectroscopic analysis showing tetrahedral amorphous C:H tribofilms (ta-C:H, 
green region) that formed during sliding contact in Pt-Au. 
 
Reference: [28] Edwards, C. E., Babuska, T. F., Curry, J. F., DelRio, F. W., Killgore, J. P., Boyce, B. 
L., ... & Mangolini, F. (2024). Tunable amorphous carbon films formed on ultralow wear, Pt–Au 
alloys. Carbon, 226, 119220. 
DOI: https://doi.org/10.1016/j.carbon.2024.119220 
  

https://doi.org/10.1016/j.carbon.2024.119220
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1.29. High-Throughput Microstructural Characterization and Process 
Correlation using Automated Electron Backscatter Diffraction 

The need to optimize the processing conditions of additively manufactured (AM) metals and alloys 
has driven advances in throughput capabilities for material property measurements such as tensile 
strength or hardness. High-throughput (HT) characterization of AM metal microstructure has fallen 
significantly behind the pace of property measurements due to intrinsic bottlenecks associated with 
the artisan and labor-intensive preparation methods required to produce highly polished surfaces. This 
inequality in data throughput has led to a reliance on heuristics to connect process to structure or 
structure to properties for AM structural materials. In this study, we show a transformative approach 
to achieve laser powder bed fusion (LPBF) printing, HT preparation using dry electropolishing and 
HT electron backscatter diffraction (EBSD). This approach was used to construct a library of > 600 
experimental EBSD sample sets spanning a diverse range of LPBF process conditions for AM Kovar. 
This vast library is far more expansive in parameter space than most state-of-the-art studies, yet it 
required only approximately 10 labor hours to acquire. Build geometries, surface preparation methods, 
and microscopy details, as well as the entire library of >600 EBSD data sets over the two sample 
design versions, have been shared with intent for the materials community to leverage the data and 
further advance the approach. Using this library, we investigated process–structure relationships and 
uncovered an unexpected, strong dependence of microstructure on location within the build, when 
varied, using otherwise identical laser parameters. 

 
Figure 29.  A streamlined high-throughput workflow enabled the collection of electron backscatter 
diffraction maps from hundreds of uniquely processed additively manufactured metals. 
 
Reference: [29] Fowler, J. E., Ruggles, T. J., Cillessen, D. E., Johnson, K. L., Jauregui, L. J., Craig, R. 
L., ... & Boyce, B. L. (2024). High-Throughput Microstructural Characterization and Process 
Correlation Using Automated Electron Backscatter Diffraction. Integrating Materials and Manufacturing 
Innovation, 1-15. 
DOI: https://doi.org/10.1007/s40192-024-00366-2 

https://doi.org/10.1007/s40192-024-00366-2
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1.30. Dataset of simulated vibrational density of states and x-ray diffraction 
profiles of mechanically deformed and disordered atomic structures in 
gold, iron, magnesium, and silicon 

 
This dataset is comprised of a library of atomistic structure files and corresponding X-ray diffraction 
(XRD) profiles and vibrational density of states (VDoS) profiles for bulk single crystal silicon (Si), 
gold (Au), magnesium (Mg), and iron (Fe) with and without disorder introduced into the atomic 
structure and with and without mechanical loading. Included with the atomistic structure files are 
descriptor files that measure the stress state, phase fractions, and dislocation content of the 
microstructures. All data was generated via molecular dynamics or molecular statics simulations using 
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. This dataset can 
inform the understanding of how local or global changes to a materials microstructure can alter their 
spectroscopic and diffraction behavior across a variety of initial structure types (cubic diamond, face-
centered cubic (FCC), hexagonal close-packed (HCP), and body-centered cubic (BCC) for Si, Au, Mg, 
and Fe, respectively) and overlapping changes to the microstructure (i.e., both disorder insertion and 
mechanical loading). 
 

 

Figure 30.  (a) Render of a bulk Fe microstructure at 0.15 dpa and 0.05 hydrostatic tensile strain. Atoms 
are coloured according to their phase: blue is BCC, white is disordered. Dislocation lines are coloured 
according to their type: green are ½〈111〉 and magenta are 〈100〉. Corresponding (b) VDoS profile, 
truncated at 500 cm-1 and (c) XRD profile for the microstructure rendered in (a). 
 
Reference: [30] Vizoso, D., & Dingreville, R. (2024). Dataset of simulated vibrational density of states 
and X-ray diffraction profiles of mechanically deformed and disordered atomic structures in Gold, 
Iron, Magnesium, and Silicon. Data in Brief, 55, 110689. 
DOI: https://doi.org/10.1016/j.dib.2024.110689 
  

https://doi.org/10.1016/j.dib.2024.110689
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1.31. Benchmarking machine learning strategies for phase-field problems 
We present a comprehensive benchmarking framework for evaluating machine-learning approaches 
applied to phase-field problems. This framework focuses on four key analysis areas crucial for 
assessing the performance of such approaches in a systematic and structured way. Firstly, interpolation 
tasks are examined to identify trends in prediction accuracy and accumulation of error over simulation 
time. Secondly, extrapolation tasks are also evaluated according to the same metrics. Thirdly, the 
relationship between model performance and data requirements is investigated to understand the 
impact on predictions and robustness of these approaches. Finally, systematic errors are analyzed to 
identify specific events or inadvertent rare events triggering high errors. Quantitative metrics 
evaluating the local and global description of the microstructure evolution, along with other scalar 
metrics representative of phase-field problems, are used across these four analysis areas. This 
benchmarking framework provides a path to evaluate the effectiveness and limitations of machine-
learning strategies applied to phase-field problems, ultimately facilitating their practical application. 
 

 

Figure 31.  Visual comparison of the simulation trajectories between the direct numerical solver (top row, 
ground truth), and predictions from the validation set from our three machine-learning solvers: the U-Net 
(second row), the LDM (third row), and LMKS (fourth row). Results for the three machine-learning solvers 
are displayed in terms of the relative absolute error (RAE) with respect to the ground truth predictions. 
Additionally, panels (a)–(d) provide quantitative comparisons between the three machine-learning solvers 
and the direct numerical simulations as a function of simulation time in terms of the relative mean-squared 
error (Rel. MSE) of the concentration field, the Rel. L2 metric for the 2-point statistics (Rel. L2 in 2-PS), the 
RAE for the energy (RAE Energy), and the RAE for the phase volume fraction (RAE Vf ). 
 
Reference: [31] Dingreville, R., Roberston, A. E., Attari, V., Greenwood, M., Ofori-Opoku, N., 
Ramesh, M., & Zhang, Q. (2024). Benchmarking machine learning strategies for phase-field 
problems. Modelling and Simulation in Materials Science and Engineering, 32(6), 065019. 
DOI: 10.1088/1361-651X/ad5f4a 

https://sandialabs.sharepoint.com/sites/BeyondFingerprinting/Shared%20Documents/General/Final%20SAND/10.1088/1361-651X/ad5f4a
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1.32. Guided combinatorial synthesis and automated characterization 
expedites the discovery of hard, electrically conductive PtxAu1-x films 

Sputter-deposited Pt-Au thin films have been reported to develop a hard, thermally 
stable,nanocrystalline structure, yet little is known about how these characteristics vary with PtxAu1-
xcomposition and process conditions. Toward this end, this document describes an extensive, 
combinatorial Pt-Au thin film library including characterized film compositions, structure and 
properties. Complemented by kinematic Monte Carlo simulations of co-deposition, a broadrange of 
PtxAu1-x compositions (from x ~ 0.02 to 0.93) was first established by sputtering withvaried 
magnetron powers and gun tilt angles. The produced films were subsequently interrogated using 
automated nano-indentation, X-ray reflectivity, X-ray diffraction, Atomic Force Microscopy, surface 
profilometry, four-point probe sheet resistance techniques, and Wavelength Dispersive Spectroscopy 
in order to determine how hardness, modulus, density, surface roughness, structure and resistivity vary 
with film stoichiometry and process parameters. Combinatorial films displayed an assortment of 
properties with the hardness of some films exceeding values reported previously for this material 
system. High hardness, high modulus, and low resistivity were generally attained when using increased 
deposition energy and reduced angle-of-incidence processes. Overall, the research identified 
promising, new PtxAu1-x compositions for future study and pinpointed strategies for improved 
deposition. 

 
Figure 32.  Wafer maps of key properties measured across 5 combinatorial wafers each consisting of 112 
unique deposition conditions (cm square patches). 
 
Reference: [32] Adams, D.P., Kothari, R., Addamane, S., Jain, M., Dorman, K., Desai, S., Sobczak, 
C., Kalaswad, M., Bianco, N., DelRio, F.W., Custer, J.O., Rodriguez, M.A., Boro, J., Dingreville, R., 
Boyce, B.L. (2024). Guided combinatorial synthesis and automated characterization expedites the 
discovery of hard, electrically conductive PtxAu1-x films, J. Vac. Sci. Techn. A. Accepted for 
publication. 
DOI: https://doi.org/10.1116/6.0003785 

https://doi.org/10.1116/6.0003785
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1.33. Toughness from Imagery: extracting more from failure analysis using 
deep convolutional neural networks 

Understanding the origins of mechanical failures is critical to the prevention of future failures.  In this 
study, additively manufactured Charpy bars, commonly used to measure the impact toughness of 
materials, were produced over a wide range of process conditions. The Charpy V-Notch toughness 
was measured on over 200 samples alongside corresponding optical images of both sides of the 
fracture surface. Convolutional neural network models were trained to correlate the fractographic 
images with quantitative toughness values. Several different neural network architectures were 
compared, along with other strategies for data cleaning and downsampling. The best models predicted 
Charpy toughness values from imagery with a mean absolute percent error of 8.5%. The neural 
network results were interpreted through a Gradient-weighted Class Activation Mapping (Grad-CAM) 
saliency map; toughness values were correlated with expected physical characteristics such as porosity, 
shear lips, fracture surface edges, etc.  A model trained on data from a Kovar alloy was found to 
maintain predictivity when applied to other similar alloy systems (300-series stainless steels) without 
any additional training.  The primary optical images used in this study were macrofractography images 
spanning the entire fracture surface; a follow-on study using microfractographic images was less 
predictive, but retained some utility. This work illustrates opportunities for developing data-driven 
approaches to provide quantitative assessment and qualitative interpretations of fracture surfaces.   
 

 
Figure 33.  Parity plot of a neural network model for Charpy toughness (CVN) predicted based on inset 
imagery versus ground truth measurements.  Training utilized holdout data from only the Kovar dataset.  
The model not only predicts Kovar toughness from fracture images (insets) but can also have similar 
predictive power for similar austenitic stainless steel alloys, 304L and 316L. 
 
Reference: [33] Bianco, N., Fitzgerald, K., Cillessen, D., Brown, N., Carroll, J., Garland, A., Bassett, 
K.L., Schroder, J.B., Boyce, B.L. (2024). Toughness from Imagery: extracting more from failure 
analysis using deep convolutional neural networks, submitted to Journal of Failure Analysis and Prevention, 
Accepted for publication.  
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1.34. Sputter-deposited Mo thin films: characterization of grain structure and 
Monte Carlo simulations of sputtered atom energies and incidence angles 

Multimodal datasets for materials provide the large amount of information needed for expediting the 
discovery of process-structure-property relationships important to materials performance.  In this 
Data Descriptor article, we describe a dataset for magnetron sputtered molybdenum thin films.  The 
dataset is taken from 27 unique depositions that vary sputter power and argon sputter pressure.  High 
angle annular dark field and bright field cross-section transmission electron micrographs were 
obtained from films produced in each of the depositions.  Automated crystal orientation mapping was 
used to derive inverse pole figures from the imaged areas covering hundreds of grains, and MTEX, a 
Matlab toolbox for analyzing crystallographic textures, extracted statistics of the grain sizes and tilt.  
Additionally, the binary-collision Monte Carlo computer program SiMTra was used to simulate aspects 
of film deposition.  SiMTra monitors the gas-phase transport effects on the energy and angular 
distributions of the arriving metal species as a function of the process parameters. The SiMTra 
simulations accounted for sample rotation in a true planetary configuration wherein substrates passed 
repeatedly under a 200 mm-diameter cathode in a sputter-down, co-planar geometry.  For the 
predicted angle of incidence and energy, probability density functions, uniformity maps, and average 
quantities are reported for different sputter powers, Ar pressures, and working distances.  Overall, the 
described data set provides opportunities for examining process-structure relationships. The entirety 
of this data is committed to a public repository in the Materials Data Facility. 
 

 

Figure 34.  Paired High Angle Annular Darkfield and Brightfield transmission electron micrographs obtained 
from three different Mo films sputter deposited using a power of 100 W.  Films are shown in cross-section, 
and the argon pressure used for the deposition is listed to the left of the HAADF images. Increased surface 
roughness and branching are evident at higher process pressures. 
 
Reference: [34] Custer, J.O., Kalaswad, K., Kothari, R.S., Kotula, P.G., Ruggles, T., Dingreville, R., 
Henriksen, A., Adams, D.P. (2024). Sputter-deposited Mo thin films: characterization of grain 
structure and Monte Carlo simulations of sputtered atom energies and incidence angles. To be 
submitted to Integrating Materials and Manufacturing Innovations. 
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1.35. Cu-Ag Nanocrystalline Thin Films: Materials Library for the Study of 
Process-Property-Microstructure Relationships 

A compositional and deposition-parameter space investigation of nanocrystalline Cu-Ag thin films 
was performed to construct a materials library for both traditional and machine learning analysis. 
Facilitated by combinatorial methods, 672 co-sputtered films of Cu-Ag have been deposited via pulsed 
DC magnetron methods utilizing single element targets. Varying the gun-tilt angle, power at each 
cathode, and Ar pressure enabled swift examination of nearly the full range of alloy compositions and 
a relevant portion of deposition atomistics. Wavelength dispersive spectroscopy, atomic force 
microscopy, x-ray diffraction, x-ray reflectivity, sheet resistance, optical profilometry and 
nanoindentation were employed for automated mapping analysis of the resulting films. The resultant 
hardness, modulus, film density, crystal texture and resistivity of films having different composition 
were analyzed in terms of key characteristics of deposition (incident atom kinetic energy and incidence 
angle) predicted by the binary-collision, kinematic Monte Carlo program SiMTra. The survey revealed 
compositional and energetic dependencies of film tarnishing, gains in mechanical performance against 
literature values, and resistivity dependence on composition described by Nordheim’s rule. Much of 
the results are discussed in the context of microstructural variations and differences in film density. 
Additionally, TEM demonstrates several forms of compositional variation including Ag segregation 
to Cu grain boundaries as well as 5-nm period, intragranular compositional modulations. Annealing 
of a Cu-rich alloy reveals that despite room-temperature grain boundary segregation of the Ag solute 
in such composition of Cu-Ag, this as-deposited structure is not thermally stable above 100 °C.  

 

Figure 35.  Visualization of a subset of depositions, measurements, and correlative analyses performed, 
focused on the relationship between resistivity and sputtered atom energy retained on arrival at the 
substrate. The full set includes 8 wafers (6 co-sputtered, 2 single element) with differing deposition 
conditions, 896 resulting films, and 7 main modalities of measurement supplemented by TEM. 
  
Reference: [35] Dorman, K. R., Bianco, N., Kothari, R., Kalaswad, M., Sobczak, C., Desai, S., 
Custer, J., Addamane, S., Jain, M., Hinojos, A., Rodriguez, M., DelRio, F., Boyce, B. L., Dingreville, 
R., & Adams, D. P. (2024). Cu-Ag Nanocrystalline Thin Films: Materials Library Development for 
the Study of Process-Property-Microstructure Relationships. To be submitted to Thin Solid Films. 
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1.36. Unsupervised Multimodal Fusion of In-process Sensor Data for Advanced 
Manufacturing Process Monitoring  

Effective monitoring of manufacturing processes is crucial for maintaining product quality and 
operational efficiency. Modern manufacturing environments often generate vast amounts of 
multimodal data, including visual imagery from various perspectives and resolutions, hyperspectral 
data, and machine health monitoring information such as actuator positions, accelerometer readings, 
and temperature measurements. However, interpreting this complex, high-dimensional data presents 
significant challenges, particularly when labeled datasets are unavailable or impractical to obtain. This 
paper presents a novel approach to multimodal sensor data fusion in manufacturing processes, 
inspired by the Contrastive Language-Image Pre-training (CLIP) model. We leverage contrastive 
learning techniques to correlate different data modalities without the need for labeled data, 
overcoming limitations of traditional supervised machine learning methods in manufacturing contexts. 
Our proposed method demonstrates the ability to handle and learn encoders for five distinct 
modalities: visual imagery, audio signals, laser position (x and y coordinates), and laser power 
measurements. By compressing these high-dimensional datasets into low-dimensional 
representational spaces, our approach facilitates downstream tasks such as process control, anomaly 
detection, and quality assurance. The unsupervised nature of our method makes it broadly applicable 
across various manufacturing domains, where large volumes of unlabeled sensor data are common. 
We evaluate the effectiveness of our approach through a series of experiments, demonstrating its 
potential to enhance process monitoring capabilities in advanced manufacturing systems. This 
research contributes to the field of smart manufacturing by providing a flexible, scalable framework 
for multimodal data fusion that can adapt to diverse manufacturing environments and sensor 
configurations. The proposed method paves the way for more robust, data-driven decision-making in 
complex manufacturing processes.  

 
Figure 36.  (left) We use contrastive loss to train encoders for each modality. Contrastive loss pushes 
corresponding vectors closer together in latent space. (right) We use the encoders for inference over the 
data to identify clusters and anomalies. The red and blue dots on the 2D scatter plot are data tuples from 
a nominal print (in red) and a purposefully off-nominal print (blue). Each dot represents an individual part 
for a unique layer, and each group of red and blue circles represents a distinct part on the build plates. 
The red and blue dots are not directly on top of each other which shows we are able to discriminate 
between the nominal and off-nominal builds. 
 
Reference: [36] M. McKinney, A. Garland, D. Cillessen, J. Adamczyk, D. Bolintineanu, M. Heiden, 
E. Fowler, B.L. Boyce, (2024). Unsupervised multimodal fusion of in-process sensor data for 
advanced manufacturing process monitoring. To be submitted to Journal of Manufacturing Systems. 
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1.37. Understanding PtxAu1-x films through unsupervised disentanglement of 
multimodal data  

Recent literature has explored a broad range of PtxAu1-x compositions and has shown under certain 
conditions these films display hardness values exceeding that of their constituents (Pt, Au). Although 
studies have correlated film hardness with various conditions, challenges with making sense of the 
complex combinatorial space have ultimately left explainability as inconclusive. In effort to further 
our understanding of these high-hardness PtxAu1-x films, an unsupervised clustering algorithm based 
on variational inference is implemented which encodes disparate modalities (scalars, spectra, ..) into a 
shared latent representation. Through clustering of this latent representation, the algorithm identifies 
distinct mechanistic regimes with correlations across modalities. The underpinnings of this approach 
enables training on data with missing information (e.g., corrupted measurements) and enables cross-
modal estimation. This approach is demonstrated with a PtxAu1-x dataset, which showcases its 
capability as a tool for improving explainability of complex multimodal datasets. With this algorithm 
we explore the complex combinatorial space and offer new insights into our understanding of the 
high-hardness PtxAu1-x films. 

 
 

Figure 37 (Top left) the trained model’s two-dimensional latent space identifying three clusters with (bottom 
left) each cluster representing a unique range of compositions with different hardness values. (Right) the 
latent space sampled and colored by the trained model’s generated hardness, unveiling three regions of 
high hardness. The middle circle is dense with datapoints and converges to a local maximum, which 
suggests robustness in the process conditions for producing these high-hardness films. This is in opposition 
to the bottom right circle where there is sparsity in the data and suggestions wiggle room in the process 
conditions to produce even higher hardness films in subsequent experiments. 
 
Reference: [37] Shilt, T., Adams, D. P., Martinez, C., Dingreville, R. (2024). “Understanding PtxAu1-

x films through unsupervised disentanglement of multimodal data”. To be submitted to npj 
Computational Materials. 
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2. LIST OF PUBLISHED DATASETS 
In addition to peer-reviewed manuscript, we also published four, publicly available datasets: 

 

1. D.P. Adams, S. Addamane, J.O. Custer, F. DelRio, M. Kalaswad, L. Jauregui, R. Khan, A. 
Henriksen (2022). “Sputter deposited Mo thin films: multimodal characterization of residual stress, 
resistivity, crystallinity and surface morphology”, Materials Data 
Facility.  https://doi.org/10.18126/io99-ldj2  
 
2. S. Desai, R. Dingreville, A. Shrivastava (2023) Microstructure evolution dataset from phase-
field simulations (spinodal decomposition, physical vapor deposition, grain growth, dendrite 
growth), Materials Data Facility. https://doi.org/10.18126/ivdc-l57i  
 
3. Fowler, J. Elliott; Ruggles, Tim J.; Cillessen, Dale E.; Johnson, Kyle L.; Jauregui, Luis J.; 
Henriksen, Amelia A.; Bianco, Nathan R.; Boyce, Brad L. (2023). High Throughput EBSD 
Characterization of Additive Kovar.” Materials Data Facility. https://doi.org/10.18126/7d9u-edev  
 
4. D. Visozo, R. Dingreville, (2023). Simulated vibrational density of states and x-ray diffraction 
profiles of mechanically deformed and disordered atomic structures in gold, iron, magnesium, and 
silicon, Materials Data Facility, https://doi.org/10.18126/tacz-v14v  
 
5. R. Kothari, A. Henriksen, R. Dingreville, D.P. Adams, (2024). Analysis of SimTra Outputs 
for Sputter Deposition involving Planetary Substrate Travel. To be submitted to Materials Data 
Facility.  
 

https://doi.org/10.18126/io99-ldj2
https://doi.org/10.18126/ivdc-l57i
https://doi.org/10.18126/7d9u-edev
https://doi.org/10.18126/tacz-v14v
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3. LIST OF REPORTS 
1. H.H. Lim, J.F. Curry, M.T. Dugger, “Improved Throughput and Analysis of Scratch Test 
Results via Automation and Machine Learning”, SAND2022-1836  
 
2. N. Trask, “AI-enabled high-throughput science: multimodality and computational 
challenges” AI@DOE Roadmapping Workshop (2021).  
 
3. M. D’Elia, A. Howard, R.M. Kirby, N. Kutz, A. Tartakovsky, H. Viswanathan, “Discovering 
new governing equations using ML”, in: Machine Learning in Heterogeneous Porous Materials, a report for 
the National Academies, 2022. [note: unclear if this report is final or not]  
 
4. Sanchez, D. “Breaking the Mold: Individual and Situational Moderators of Cognitive 
Flexibility in Material Deposition and Machine Learning Personnel.” SAND2022-13767 O.   
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4. SUMMARY OF UNPUBLISHED WORK 

4.1. Combining variational autoencoders with latent Bayesian optimization to 
find optimal physical vapor deposition parameters 

4.1.1. Motivation 
To identify a set of optimal deposition parameters, we propose a method that integrates the 
dimensionality reduction capabilities of a variational autoencoder (VAE) [38] with a Gaussian process 
(GP) surrogate model [39-41]. This approach is motivated by several factors. Firstly, the VAE enables 
dimensionality reduction, allowing us to apply the Gaussian process in a lower-dimensional parameter 
space. Secondly, the VAE helps to uncover a decorrelated latent space, simplifying the process of 
optimal design within that space. Additionally, the architecture allows for the integration of 
multimodal information through the inclusion of additional encoders [24]. However, this approach 
presents challenges, such as issues with extrapolation when selecting optimal design points and the 
potential for poorly structured latent spaces that hinder surrogate modeling. Previous studies that have 
combined VAEs with GP regression across various applications have explored strategies to overcome 
these challenges. 

4.1.2. Method 
In this section, we introduce the complete PVD-based optimal design algorithm for quickly identifying 
deposition parameters that yield the desired film characteristics. Figure 38 provides a schematic 
overview of our approach. It is important to note that the VAE/GP algorithm (center block of Figure 
38) is versatile and can be applied to other contexts as well. 

scenarios

 

Figure 38.  Schematic of the full algorithmic approach. 

4.1.3. Results (PVD dataset for model training) 
The VAE/GP model was trained using data from three combinatorial copper/silver wafer 
depositions. Each wafer contains 112 films, providing a total of 336 data points for model training, 
validation, and testing. To assess the model's performance, 235 points (approximately 70%) were 
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allocated for training (100 for the first training set and 135 for the second), 67 points (about 20%) 
were used for validation to select the best model, and 34 points (roughly 10%) were reserved for 
testing. The VAE/GP training was repeated ten times with different training, validation, and testing 
data sets to evaluate the robustness of the results. For the final atomistic parameter recommendations, 
269 points were used for model training (100 for the first training set and 169 for the second), while 
67 points were used for validation. We then tested the model using results from the recommended set 
of depositions. The process parameter input to the VAE/GP algorithm, is a vector comprising the 9 
atomistic parameters obtained by simulating each of the three depositions in SIMTRA. Additionally, 
we included XRD data as a secondary modality. During model training, we initially trained the 
VAE/GP algorithm using only the process parameters. In a subsequent training phase, we 
incorporated the XRD data. Throughout this section, we will compare the results from these two 
phases of training, i.e., with and without the inclusion of the XRD data. 

 

Figure 39. Approximately 40 replications of SIMTRA are required to get convergence of the atomistic 
parameter estimates. Showing the maximum value of Equation (31) across 336 films (112 films for each of 
the three wafers describe in Table 1). We see that with approximately 40 replications the maximum relative 
change in the mean prediction is less than 5%. 
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Figure 40.  Proposed sample point in latent space (orange square) falls within the domain of the training 
and validation data (gray dots). Additionally, this visualization of the latent space shows that the six latent 
variables follow a roughly Gaussian distribution (see diagonal density estimations) and are uncorrelated 
(see scatter plots). 

 

Table 1.  Recommended atomistic parameter values from the three approaches. 
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4.1.4. Discussion 
Overall, these results underscore the robustness of the VAE/GP algorithm in modeling material 
properties, particularly when enhanced with supplementary structural data such as XRD. The findings 
also highlight the algorithm's capability to generalize across different datasets without sacrificing 
accuracy, making it a promising tool for material science applications where predictive accuracy and 
model generalization are crucial. 
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4.2. Manipulating Coefficient of Thermal Expansion via Laser Powder Bed 
Fusion Energy Setting 

4.2.1. Motivation 
A highly desirable characteristic of Kovar® steel (Fe-balance, Co-17%, Ni-29%) from Carpenter 
Technology Corporation is its low coefficient of thermal expansion. Initial studies, such as Batch 603 
shown in Figure 2, demonstrate the impact of changes in process conditions on the coefficient of 
thermal expansion. The primary motivation for this research is to identify key process settings and 
correlate these conditions with the coefficient of thermal expansion.   

4.2.2. Method 
Kovar® steel with a particle size distribution of 15-45 µm was used in a Renishaw AM400 Laser 
Powder Bed Fusion (LPBF) machine to investigate the effects of various process parameters. Machine 
limits for power, velocity (point distance and exposure time), hatch spacing, and scan pattern were 
provided as the basis for the experiment. A combinatorial set of process parameters was generated 
and a subset of 90 combinations was selected to manage the number of samples on the build platform. 
Each parameter setting produced three types of test samples: a density cube, a tensile specimen, and 
a coefficient of thermal expansion (CTE) specimen. The density cubes were measured using 
Archimedes testing, tensile specimens were tested using an Instron load cell, and CTE specimens were 
analyzed using a heat plate with digital image correlation. 

 

Figure 41.  This figure illustrates the manufacturing process of 90 Kovar steel samples using the Renishaw 
AM400 Laser Powder Bed Fusion (LPBF) machine. The samples were produced under various process 
parameter settings to investigate their effects on material properties. 
 
 

 

4.2.3. Results 
The study investigated the effects of various process parameters on Kovar® steel samples produced 
using a Renishaw AM400 Laser Powder Bed Fusion (LPBF) machine. Coefficient of thermal 
expansion (CTE) measurements using digital image correlation revealed that the process parameters 
resulted in CTE values both lower and higher than the nominal Kovar CTE. This investigation was 
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part of a broader series of studies characterizing Kovar steel. The selected group of samples exhibited 
a significant disparity in CTE results, prompting further analysis. Despite extensive testing, no direct 
correlation was found between the measured CTE values and the process parameters. Overall, the 
data suggest that while optimizing certain process parameters can influence the material properties of 
Kovar® steel produced using LPBF, the relationship between process settings and CTE remains 
complex and warrants further investigation. 

 
Figure 42.  Subset of coefficient of thermal measurements from Batch 603 as a function of change to 
process settings. 
 

4.2.4. Discussion 
 
This study investigated the effects of various process parameters on the of Kovar® steel samples 
produced using a Renishaw AM400 LPBF machine. Identifying process parameters that impact CTE 
has shown success in downstream applications, particularly in matching Kovar CTE to Sandia 
National Laboratories (SNL) ceramic materials, which has resulted in successful brazed joints and the 
development of internal components. However, a key lesson learned is the complexity and vastness 
of the parameter space. A more effective approach may involve first developing a robust 
understanding of additive Kovar material properties before attempting to explore the extensive 
parameter space. This foundational knowledge can guide more targeted experiments, ultimately 
optimizing process parameters to enhance the material properties of Kovar® steel produced using 
LPBF. 
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4.3. High Throughput Electrodeposition Process Development 

4.3.1. Motivation 
The electrodeposition of alloys enabled the development of materials with unprecedented material 
and performance properties. Controlling the composition and mechanical properties of alloys is 
challenging due to chemical and electrochemical incompatibilities of different metal salt sources. We 
have developed an accelerated process built around exploring and mapping the chemical and 
electrochemical mechanisms of different metal depositions through automation and parallelization. 
With this method we characterize electrolytes and deposition conditions in a broad scope that allows 
us to optimize the electrochemical synthesis of alloys with controllable properties.  
 
Several major revisions of how we do electrodeposition research have been developed through this 
project. Firstly, we have taken advantage of automated tools for solution synthesis. This process allows 
us to screen qualifying electrolyte solutions for parameters such as solubility while being a surrogate 
for Ultraviolet-visible (UV-Vis) spectroscopy with batch optical microscopy. Once potentially viable 
electrolytes have been down selected, we use custom designed, 3D printed electrodeposition cell 
hardware to ensure that each deposition undergoes consistent set up and conditions while the process 
is underway while also maintaining large batch numbers. To power and control our cell hardware we 
have also built a custom tool that manages the deposition currents and voltages, establishes the correct 
operating parameters for the designated amount of time, and logs dynamic in-situ measurements. 

4.3.2. Method 
The results section will outline the development of a high throughput plating system and the processes 
developed to enable high throughput experimentation. These include solubility studies, titration, auto 
pipettor operation, and hardware development to enable specific deposition parameters. 

4.3.3. Results 
The first requirement of a suitable electrolyte is the solubility of the metal precursors. This is heavily 
dependent on the speciation of the metal as it manifests in the electrolyte system, less so on the 
solubility of the metal salt source which may be completely different. The speciation is an artifact of 
a few different interacting parameters. The addition of chelating agents will change the speciation of 
the metal precursor which has a substantial influence on both the solubility and deposition 
mechanisms. The pH of the solution influences the configuration of the complexing agent, particularly 
if they are weak acids and can protonate/deprotonate as well as directly influencing the metal 
precursor. Typically, pH tuning manifests as oxide or hydroxide formation of the metal species at 
higher pH, which often leads to precipitation.  
 
Temperature also influences solubility but is not generally a stepwise function and trends are typically 
an increase of solubility at increasing temperatures. We define viable solubility to be determined at 
room temperature, even if the expectation is that the depositions will occur at elevated temperature. 
Not only does this ensure that the solutions are always liquid, but it also ensures axillary problems 
such as precipitation are kept to a minimum and allows solution handling to be significantly simplified.  
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Figure 43.  Schematic overview of electrodeposition process and variability. 

 
Auto-pipettor solution making:  We used a commercially available auto-pipettor for rapidly 
generating large numbers of unique solutions. The Opentrons OT-2 was purchased for a previous 
project and was an ideal fit for the grand challenge effort. Automated pipetting addresses multiple 
issues facing experimental chemists. The automated process provides precise and reproducible 
preparation of solutions. This process removes the time intensive labor as well as alleviates many 
safety concerns when working with acids, bases or other potentially toxic compounds. We embedded 
a calibration check process involving using 15 vials of known mass and dispensed various volumes of 
water in each to ensure the volume measurement was accurate prior to making electrolytes. 
 
Our methodology involved the preparation of a series of electrolyte solutions, each distinguished by 
specific metal salt precursors, complexing agents, and pH levels. Alkaline hydroxides, namely NaOH 
and KOH, were utilized for the precise adjustment of solution pH, with deionized water serving as 
the solvent across all preparations. The selection of reagents was guided by their relevance to the 
desired electrolyte properties, with high-purity metal salts and a range of complexing agents 
constituting the primary components.  
 
We ran into significant challenges working with a strictly liquid handling system and aiming to generate 
solutions of uniform volume in which the constituents and products may not be soluble. These 
challenges stemmed from the need to combine the metal salts with their electrolytes and be in either 
the high or low pH regime. We found the precursors were not always soluble along the full range of 
pH values causing precipitation. Additionally, if concentrated base was used the high local pH caused 
formation of metal hydroxides that were not soluble. The innovation we developed involved starting 
with two stock solutions. These stock solutions are made with acid sources of complexing agents and 
additional acid to ensure they could reach the low end of the pH range we were exploring, and then 
the second stock solution had the same source, with added Na or KOH to reach the high side of the 
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pH range. The solution handler natively accepts 96 well plates. These plates are critical in the 
electrolyte screening process because it is able to canvas a large array of electrolyte conditions. For 
instance, we can sweep from a pure acid stock solution to a pure base stock solution and also have 
ten pH’s along the way. Not only does this process give solubility information but also serves as a 
rudimentary titration curve giving us an accurate starting point for how to generate a solution of a 
given composition at any pH we are interested in making. However, due to the solubility of the metal 
salts in these stock solutions often not representing the solubility across the pH range, we had to be 
creative in the pre-processing steps for these screenings. To solve this problem, we dissolved our 
metal salts in water and distributed the solution in all of the needed cells throughout the well plate 
prior to adding any other material. We then dried these solutions out of well plates, removing all the 
water and leaving a predetermined quantity of metal salt that generally has low or no vapor pressure. 
Solutions were then mixed in graded proportions using the auto-pipettor, generating a pH gradient 
that is the equivalent of adding NaOH or KOH in isolation in a consistent set of other constituents. 
Using this method, we were able to obtain a wide range of operable pHs with eight different 
complexing agents at a time.  
 
Once the solutions were made in the well plates they were sealed and mixed and allowed to come to 
equilibrium for a minimum of 24 hours. The wells were then imaged with a Keyence VHX-7000 
microscope with transmitted lighting from the backside. This enables us to log the conformation of 
the electrolytes, their color changes and if there are any solids in the well due to insolubility. 
Transmitted light images are show in Figure 44 for different metal precursors, complexing and a pH 
gradient. 
 

 

 
Figure 44.  Optical microscope images of Ni Pt Co and Cu solutions with a variety of complexing agents 
and pH values demonstrating the operating conditions of the respective electrochemical baths. 
 
Once the images were collected, we could easily verify which solutions were to be down selected based 
on presence of solids. Each of the solutions also had their pH’s measured to determine the boundaries 



 

71 

of a particular metal-complex electrolyte. This is only a pass/fail test and allows us to screen and 
reduce the sample size to only deposit from promising electrolytes. It is obvious to tell which solutions 
are viable to move forward with a visual inspection, which is where we started with the qualification. 
However, color analysis is easy to do and provides a more quantitative analysis of the electrolyte. The 
distribution of the color palate is indicative of the presence of solids, as a fully soluble solution has a 
completely uniform coloration. A comparison of a solution with precipitate and a fully dissolved salt 
is shown in Figure 45.  
 
Interestingly, the use of the well plates and the colors of the solution vary as a function of pH. 
Typically, UV-Vis spectroscopy would be used to provide insight into complexation of the metal and 
the complexing agents. However, this technique is time consuming if access to an instrument that 
accepts the 96 well plates is not available or expensive if that instrument needs to be purchased. We 
made the most of the tools available to us and used the fundamental links between the color and 
spectroscopy we explored, showing promise of the microscopy as a faster, cheaper surrogate for the 
spectroscopy technique. A custom python script was used to determine the Red Blue Green (RGB) 
value of each pixel in the microscopy image. A distribution of those RGB values were then plotted to 
visualize distribution. This distribution is a direct correlation to the absorbance measured in the UV-
Vis instrument and using a machine learning approach we should be able to approximate the spectrum 
without having to add additional processing steps to the workflow. Figure 45 B and D demonstrate 
the distribution of RGB values. One key observation we made from these measurements is the more 
homogenous the solution color is the sharper the distribution of the RGB values. This observation 
could also be used to automate screening of the solutions that precipitate at the same time we predict 
the UV-Vis spectrum.  

 
Figure 45.  Optical microscope images of Ni based electrolytes with various states of solubility as well as 
the RGB color distribution of those electrolytes. 
 
Once we have the viability determined by solubility analysis and the pH measured out for each series, 
we have enough information to scope out the range of solutions that can be continued for further 
testing as well as the constituent concentrations needed to make each solution at a target pH. This can 
be quite complicated to predict due to interactions of multiple buffers in the solutions and varies 
drastically between different metals and complexing agents in use. A plot of the pH vs sodium 
hydroxide concentration is shown in Figure 46, showing the significant shift in pH due to the addition 
of the nickel salt precursor. 

A C B C 
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Figure 46.  pH curve for acetic acid with and without Ni demonstrating the effect of adding the Ni. 

 
 
 

 
Figure 47.  Operating pH ranges for each of the complexing agents tested for Ni. 

 
This process was extrapolated across many different complexing agents and a figure of the full 
operating regime for each of the complexes can be found in Figure 47. The low pH region seems to 
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be the most common applicable regime for the 200 mM Ni. Select solutions from this down selection 
were moved forward to electrochemical testing, described below. 
 
Deposition Hardware:  The development of 3D printed templates for electrodeposition cells 
represents a significant advancement in the field of electrochemistry. By incorporating counter, 
reference, and working electrodes, along with reusable working electrode substrate holders and built-
in electrical connections, these templates offer a streamlined and efficient approach to accelerated 
electrodeposition experiments. The iterative design of these modular cartridges allowed us to optimize 
and ultimately simplify the design resulting in a robust system that requires little maintenance. 
Additionally, the reusability and integrated design of the templates not only enhance experimental 
reproducibility but also contribute to a more sustainable research practice by reducing the need for 
disposable components. This effort underscores the potential of 3D printing in advancing high 
throughput methodologies in electrochemical research, which is a field that has grown accustomed to 
throughput and scope limitations. These limitations often stem from the long preparation and cleaning 
stages. By having a modular system, we can prepare several sets of samples at a time parallelizing the 
entire electroplating process. We decided that 16 parallel depositions at volumes that are 10 mL or 
less fit our application well; however, the modularity of this system allows it to be rapidly modified to 
other applications. We attempted to minimize the sample volumes and reduce waste, while 
maintaining sample sizes and deposition thicknesses that were large enough to suit the post deposition 
analysis. Limitations with x ray diffraction (XRD) and tribology narrowed the acceptable geometry to 
1 cm diameter circle samples and a target thickness of 1 micron. Large samples would likely require 
larger volumes and you could reduce volumes if you had smaller samples size requirements. We also 
ran 16 in parallel due to the power supply hardware and data acquisition software accepting 16 inputs. 
An image of the final product can be found in Figure 48. 
 

 
Figure 48.  3D printed well plates and cartridges for the electrochemical deposition system. 
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The final design was achieved after dozens of iterations and takes advantage of platinized titanium 
mesh counter electrodes and silver/silver chloride reference electrodes which are generally agnostic 
to aqueous electrochemical applications. These electrode choices enable us to re-use the same 
electrodes for different metal sets, which was determined to be the preferrable solution vs attempting 
to use more specific soluble electrodes, which would not only require different sets of counter 
electrodes to be purchased and swapped out for each system but would also potentially convolute the 
results as the influence would be less consistent.  
 
Managing electronic connections was challenging when running this many depositions in parallel. For 
each cell we have the power circuit which requires two connections as well as a measurement circuit 
necessitating another two connections. For all channels there are a grand total of 64 connections, so 
it was imperative we make these connections as effortless and reliable as possible. We integrated pin 
and socket wire harness electrical connections that could easily be connected and disconnected when 
needed, this enabled us to make iterations on the hardware without necessitating fully rebuilding the 
wiring for each. Additionally, the cartridge has a connection to the wells. This is facilitated through 
IO pin connections. These allow the fast swapping of the cartridges while also making instant 
connections. Reference and counter electrode connections are integrated into the wells as well. The 
counter electrode is permanent and thus requires no set up before experimentation; however, the 
reference electrodes simply need plugged in. The reference electrodes need to spend most of their 
time in a saturated NaCl electrolyte to prevent voltage shifts. The optimization of the wiring allowed 
us to easily run diagnostics on the connections as well as significantly reduce the time to set up an 
experiment. 
 
We have discussed at length the challenges with time and high throughput approaches for 
electrochemical studies. One aspect that take a substantial amount of time is sample preparation. Our 
work requires well defined areas of deposition to both facilitate the follow-on material analysis as well 
as have defined controls of the electrodeposition system so proper sample masking is critical. We 
opted to use re-usable electrode holders with viton o-rings to seal against the substrate face and define 
a circular area that was 1 cm in diameter. These 3d printed and spring-loaded cartridges allowed us to 
easily insert and remove the working electrode substrates. These cartridges also had built in wiring for 
the electrical connections and building them in banks of 8 enabled bulk connection to a wiring harness 
which reduced the effort that is normally needed to individually connect each electrode. An image of 
the well plate and pair working electrode banks is shown in Figure 49, with wiring for all the electrodes 
in place. 
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Figure 49.  Schematic of the cell stack that included the magnetic stirring as a feature. 

 
We approached control of the electrolyte mixing in 3 different ways. The first of which was to have 
no solution agitation. The main benefits of this approach are ease of use and consistency between 
experiments. The main drawback is poor relevance to electrodeposition conditions which generally 
require some amount of solution agitation to function properly. We implemented magnetic stirrers in 
each well by addition of a baseplate with an electric motor driving a corrugated bolt attached to gear 
with magnets under each well. A sample of this version of the system is found in Figure 7. This solved 
many issues; each well was mixed, and the rotation rates were consistent due to the belt driving all of 
the gears at the same rate. A large drawback of this process was that each well required the additional 
step of adding a miniature stir bar, and each stir bar required cleaning steps between uses. Thus, a 
simplified the mixing process was established by adding vibrating functionality to the well plates. Proof 
of concept was established using a silicone coated vibrating device that was chemically resistant in case 
of splashing and was attached to the wells through a 3d printed fixture. This process was easy to 
implement and reliably consistent over the entire set of experiments; however, the representation of 
the mixing was also convoluted and unique. Recently we have added an additional well stage that 
consists of two platforms with isolation springs between. The upper platform housed the agitation 
while the springs allowed for the energy to remain in the upper stage and also provided smoothing of 
the agitation for a more uniform mixing across all samples.  
 
There are many options for controlling temperature of the wells, we opted to run the entire deposition 
set up in an over to ensure that the temperatures were consistent and uniform. Some general issues to 
be aware of are the dwell time needed to achieve uniform temperature between all the components 
after they have been placed in the oven and evaporation losses in the wells from sitting at elevated 
temperature. We measured the temperatures of the electrolyte to ensure it had come up to temperature 
and kept a water bath in the oven to increase the humidity and mitigate evaporation losses. Additional 
measures were developed to prevent evaporation such as adding a lid and covering with parafilm. 
These steps greatly reduced the evaporation of the electrolyte during electroplating.  
 
Opentrons has come out with new hardware since we initially purchased the auto pipettor used for 
this project. We developed our well plate layout and dimensions with to integrate with auto pipettor 
capabilities; however, the process still necessitates manually moving well plates to a new area for 
electrodeposition due to heat and mixing functions. The newer commercially of-the-shelf (COTS) 
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hardware is capability of moving well plates in the tool and heating and mixing for programmable 
durations. Integrating electronic connections into this hardware could enable the entire process to be 
more automatic, drastically increasing the throughput even more than its current status. 
 
Overall, the tools developed for electroplating have overcome many challenges typically associated 
with high throughput electroplating experimental setups. Figure 50 depicts the advances we have made 
on the time it takes to generate our samples. We have effectively designed hardware that allows us to 
minimize the time and effort required to generate these samples. The next major improvement in this 
workflow is utilizing solution handlers to aid in electrolyte preparation. There are currently two facets 
of our workflow that require the most time. Solution preparation and sample masking. Solution prep 
takes so long because we are often interested in very specific conditions, if we were able to use the 
opentrons to make the larger volumes of solutions we can reduce the amount of time we take to 
correct the pH to the values we are interested in. Furthermore, the use of gold on wafers eliminates 
the need to activate the substrate; however, it requires us to make front side connection in a system 
designed to make backside connection. We do this through the addition of a copper foil. Adding this 
to the samples is time intensive and also requires us to test electrical connection to of the cell. This 
may be the price to pay to ensure that we are plating on an active surface every time.  
 

 
Figure 50.  Time investment vs major iteration of the high throughput experimental system. 

 
Deposition power control:  Our team designed and acquired state-of-the-art NI power supply 
system. This system was supported by the concurrent development of a custom LabVIEW software 
program, specifically designed to meet the demands of electrodeposition research, including precise 
control and measurement of electronics with respect to current, voltage and time. A standout feature 
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of this new power supply is its capability to run 16 channels in parallel, significantly increasing the 
throughput of experiments and enabling simultaneous processing under individualized conditions. 
The hardware’s level of precision ensures that the experimental conditions are consistent across all 
channels, thereby improving the reproducibility of results. The Hardware can be found in Figure 51. 

 
Figure 51.  16 channel setup for the electrochemical depositions. 

 
This power supply system utilizes custom LabVIEW software, designed from the ground up to offer 
the necessary control and monitoring capabilities. The software facilitates precise control of current 
and voltage across each of the 16 channels. Furthermore, the software includes real-time monitoring 
and data logging features, enabling researchers to track the progress of experiments and make 
informed adjustments as needed, as well as convenient data handling post processing which is 
imperative for the follow up analysis and machine learning goals. The custom operating graphic user 
interface (GUI) is shown in Figure 52. 

 
Figure 52.  User interface and example of the cell initialization file for the data acquisition software. 
 
The integration of the new power supply system into our laboratory workflow has been challenging, 
but thanks to the intuitive design of the LabVIEW software and the robust performance of the 
hardware we have seen rapid gains in our process flow. We have adapted to the new system, leveraging 
its capabilities to expand the scope and scale of electrodeposition experiments. The system's user-
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friendly interface and automated features have reduced the manual workload associated with setting 
up and running experiments, allowing our lab to focus more on defining new experiments, analysis, 
and innovation. An example of the voltage time series data for different nickel deposition experiments 
running at variable current densities is shown in Figure 53.  

 
Figure 53.  Voltage vs time trace for Ni deposition experiments as an output from the Data Acquisition 
(DAQ) system. 
 
The ability to conduct 16 electrodeposition experiments in parallel represents a significant leap 
forward in experimental throughput. This multi-channel approach not only accelerates the research 
process but also opens new avenues for systematic studies of electrodeposition parameters, which is 
core to this grand challenge effort. By running experiments in parallel, we can efficiently explore a 
wide range of conditions, such as varying current densities or electrolyte compositions, within a 
fraction of the time required for sequential experiments. This high-throughput capability is particularly 
beneficial for optimization studies and the development of new materials, where a large dataset is 
crucial for identifying viable or optimal conditions.  
 
The culmination of these process improvements has enabled us to deposit individualized unique 
samples at an unprecedented rate in our lab. Figure 54 is an image of 200 samples plated in an 
afternoon with 3 people’s efforts (1 staff, 1 postdoc and 1 undergrad intern). 200 unique depositions 
is often more than are produced during a project’s entire run.  



 

79 

 
Figure 54.  200 Ni plated samples plated using the high throughput tooling over the course of one afternoon. 
 

4.3.4. Discussion 
We have explored the deposition of nickel and platinum with additions of 16 different complexing 
agents, some common and some less conventional to discover satisfactory deposition options for alloy 
synthesis. This process is novel not only because of our high throughput methodology but the focus 
on generating the best alloy deposition electrolyte instead of taking common nickel or platinum 
systems that may be better performing for deposition of pure films and adding a second metal source. 
The increased screening and processing system we have built is enabling for this methodology shift, 
where we are less limited by the vast number of electrolytes and depositions needed to screen 
electrolytes from scratch. 
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4.4. Use of High Throughput and Machine Learning Integration for the 
Exploration and Optimization of Electroplated Ni, Pt, and NiPt Alloys 

4.4.1. Motivation 
Nickel and platinum are heavily utilized metals across various industries and are often used coating 
layers. Both Ni and Pt offer corrosion resistance in harsh chemical environments. Ni is also 
ferromagnetic, making it useful in electromagnetic applications. Pt is widely known for its exceptional 
catalytic properties, electronic conductivity, and high-temperature stability. Together, NiPt alloys have 
shown enhanced catalytic activity and selectivity—as they combine the properties of both metals. NiPt 
alloys also show improved mechanical and corrosion properties over the pure elements.  

Given its utility (efficient use of materials, precise control over coating properties, and versatility across 
a wide range of substrates), electroplating is an often used, and desirable, synthetic method for creating 
coating layers and has been used to produce Ni and Pt films for a long time (e,g. the first practical 
recipe for Ni was discovered/developed in 1843). While NiPt alloys have also been electroplated 
before, little exists in the way of broad systematic study aimed at mapping wide chemical and 
processing spaces. Below is a description of work in which high-throughput testing and 
characterization methods were applied in an attempt to accelerate the workflow necessary for 
exploring vast empirical domains.  

 

4.4.2. Method 
A series of Ni and Pt electrolytes were prepared by dissolving NiSO4 or H2PtBr6 in aqueous solutions 
containing one of a series of 15 different chemicals/ligand-types, shown in Table 1. Ligand chemistries 
were chosen to explore both chemistries with established precedent and expand into new chemical 
territory—namely with the use of combined carboxylate and amine functionalities in amino acids as 
well as the use of less traditional functionalities in this space in sulfolane and thiourea.   

Acidic stock solutions of each chemistry were prepared by dissolving 1 M of the respective ligand in 
water, except for citrate and borate which were prepared at concentrations of 0.5 M and 0.4 M, 
respectively. 0.5 M (NH4)2SO4 was made to produce 1 M NH4

+. For SO4
2−, Cl−, and Br− chemistries, 

0.9 M of the corresponding sodium salt was combined with 0.1 M of the associated acid (H2SO4, HCl, 
HBr). 0.1 M H2SO4 was also common to all solutions. Each acidic stock solution was titrated with 15 
M NaOH to measure the exact concentrations of H2SO4 and acid form of the ligand of interest. Basic 
stock solutions were made by adding enough NaOH to the acid stock solutions to get the pH to about 
13. The accurate acid concentrations, from titrations, were used to determine the volumes of acid and 
base stocks to combine to create targeted pHs for plating electrolytes. Electroplating electrolytes were 
prepared with appropriate ratios of acid and base stock solutions, dissolving NiSO4 at 0.2 M (for Ni 
depositions) or 0.025 M H2PtBr6 (for Pt depositions). 

Current efficiencies were estimated from XRF peak intensities of the respective metal peaks. XRF 
intensities were calibrated to corresponding thicknesses by creating a calibration curve for XRF 
intensity vs. known metal thickness. 
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Table 2.  Ligand chemistries explored for Ni, Pt, and NiPt electroplating. 

 
 

4.4.3. Results 
Role of the Substrate: Bronze vs. Au(111)/Si(100) 

Focusing on Ni electrodeposition, the ligands in Table 2 were investigated. The first series of 
depositions was conducted on bronze substrates. These were primarily chosen to improve electrical 
contact and leak proofing of the deposition wells; the bronze substrates were purely metallic allowing 
backside contact. However, the surface finish of the bronze substrates was not ideal as received 
(several prominent scratch marks) and even polishing with a computer numerical control (CNC) mill 
did not create the ideal mirror-like, smooth surface desirable for a study trying to isolate variables like 
initial substrate surface morphology. So, thereafter we chose to return to Au/Si substrates.  

While switching to the Au substrates provided a condition removing initial surface finish as a variable 
it had the unfortunate consequence of causing our electrodeposits to grow in an epitaxial-like fashion, 
following the crystalline orientation of the Au(111) substrate. X-ray diffractograms showed only 
<111> peaks for Ni deposits. To address this issue, we began targeting thicker films in our plating 
protocol, as it is known—and we discovered—that thicker deposits will eventually relax from the 
strain associated with matching the substrate’s orientation, leading to whatever crystalline orientations 
(texture) the processing parameters (namely chemistry and current density) create when free from 
substrate-directed growth. As of this writing XRD has not yet been acquired for thicker deposits on 
Au(111) substrates. 

 

Ni, Pt, and NiPt Electrodepositions in Various Chemistries and Across a Range of Current 
Densities 

The general procedure for conducting our electrodeposition experiments was to perform depositions 
at 5, 25, and 75 mA/cm2 within different chemical environments. Given the vastness of possible 

Most Acidic -H1 -H2 -H3
Ligand Formula pka1 Formula pka2 Formula pka3 Formula
Thiourea SC(NH)2 13.87
sulfolane C4H8SO2 13
Ammonia [NH4]+ 9.25 NH3
Borate BO3H3 9.15 [BO3H2]-
Acetate H3C2O2H 4.76 [H3C2O2]-
Citrate C6H5O7H3 3.128 [C6H5O7H2]- 4.761 [C6H5O7H]2- 6.396 [C6H5O7]3-
Phosphate PO4H3 2.15 [PO4H2]- 7.2 [PO4H]2- 12.35 [PO4]3-
Malonate H2CO4H2 2.83 [H2CO4H]- 5.69 [H2CO4]2-
Alinate H3CNH2O2H 2.34 [H3CNH2O2]- 9.69 [H3CNHO2]2-
Glycate H2NCH2O2H 2.34 [H2NCH2O2]- 9.6 [HNCH2O2]2-
Prolate H7C5NHO2H 1.99 [H7C5NHO2]- 10.6 [H7C5NO2]2-
Sulfamate H2NSO3H 1 [H2NSO3]-
Methane SulfonateH3CSO3H -1.9 [H3CSO3]-
Sulfate H2SO4 -3 [HSO4]- 1.92 [SO4]2-
Chloride HCl -6.3 Cl-
Bromide HBr -8.7 Br-
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inputs to explore a first-pass experimental matrix was assembled with the intention of minimizing 
experimentation while still maximizing representation of chemical and energy/current space. Figure 
54a shows first-pass heat maps for Ni and Pt plated on Au at 5 and 25 mA/cm2. With these maps the 
researcher can quickly identify where Pt and Ni overlap, in terms of plating ability/behavior. The 
researcher can also quickly identify gaps that ought to be further explored. Figure 54b shows a second 
series of Ni depositions performed based on identified gaps in the first pass. These experiments 
identified acetate in the pH 4-7 range as a promising chemistry for Ni and Pt co-deposition at 5 and 
25 mA/cm2. Bromide chemistry at pH 6-7 was also a promising chemistry. 

 

 
Figure 55.  Heat maps of normalized current efficiency for a) First-pass Ni and Pt depositions and b) 
Second-pass Ni and Pt depositions. Ni depositions are on the left, Pt on the right. 5 mA/cm2 was used for 
the top maps while 25 mA/cm2 was used for the bottom maps. Chemistry/ligands are displayed in the row 
headers while pH ranges are displayed in the column headers. Each cell represents the average normalized 
current efficiency measured for the given experimental conditions. 
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Attempts to electroplate NiPt alloys were made at 25 and 50 mA/cm2, varying both the ligand 
chemistry and the concentration of Ni and Pt salts. Results are shown below in Figure 55. 

 

 
Figure 56.  Heat maps of normalized current efficiency for a) First-pass Ni and Pt depositions and b) 
Second-pass Ni and Pt depositions. Ni depositions are on the left, Pt on the right. 5 mA/cm2 was used for 
the top maps while 25 mA/cm2 was used for the bottom maps. Chemistry/ligands are displayed in the row 
headers while pH ranges are displayed in the column headers. Each cell represents the average normalized 
current efficiency measured for the given experimental conditions. 
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Figure 57.  Attempt to electroplate NiPt. 
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4.5. Kinetics and Deposition Performance of the Nickel-Glycine Electroplating 
System 

4.5.1. Motivation 
Glycine has long been used as an additive in electroplating chemistries. However, its exact working 
mechanisms are not known. The current work sought to study this system more deeply using kinetic 
analysis. In the nickel-plating system, it was found that the kinetics of deposition, quantified using 
exchange current io, for glycine outperformed that of saccharine, boric acid, and L-proline. io had a 3rd 
order dependence on the concentration of glycine, directly corresponding to the maximum number 
of ligands around Ni2+. Under concentrated conditions (1.2M) and elevated temperature (40C), baths 
comprised of the Ni(Gly)3 coordination complex yielded faradaic efficiencies of 78.7, 82.3, and 64.5% 
at 20, 40, and 80 mA cm-2. It was found that the grain size and texture were invariant with current 
density, giving a grain size of 10.16 nm and a texture coefficient of 2.1 for the (111) crystal plane.  

4.5.2. Method 
Electrochemical experiments were carried out in 60ml solutions with a constant amount of 0.3M Ni2+ 
in the form of NiSO4. All molecular additives for screening studies were used at a concentration of 
0.05M. The pH for glycine, proline, saccharine, and boric acid were 4.8, 5.05, 4.77, and 6.21. To 
synthesize Ni(Gly)2(H2O)2, a metal to ligand ratio of 1:2 was used and tested at a pH of 8. For Ni(Gly)3, 
a ratio of 1:3 was used and tested at a pH of 10. pH was adjusted with either 98% Sulfuric Acid or 
KOH pellets. A stir rate of 300 rpm was used during measurements. All experiments conducted in 3-
electrode beaker cells with Ag/AgCl reference, a titanium mesh anode, and a 1.2 to 1.8 cm2 area 
coupon, either a (111) Au substrate on silicon. All chemicals were purchased through Sigma Aldrich.  
Exchange current was calculated from LSV curves ran from 0 to -1200mV at 2.5 mV/s. Because each 
additive alters the concentration of protons in solution, a correction was applied to account for this. 
Corrected exchange currents were found by calculating the expected io at the measured pH after adding 
the catalyst based on the exponential fit equation of figure 1(a), y = 1740.6x-7.902. This value was then 
subtracted from the measured value to get the ‘true’ rate enhancement due to the catalyst alone. LSV 
curves and chronopotentiometry measurements were generated using a Voltalab PGZ402 universal 
pulse dynamic-EIS voltametery instrument. SEM images were acquired using a FLEXSEM Hitachi 
SU 1000III at an accelerating voltage of 18kEV at a working distance of 10mm. XRD was gathered 
using a Bruker D2 Phaser using a Cu Kα X-Ray source.  
 
Overpotential was measured by η = Vexp – Eo, where E0 is the standard reduction potential of Ni2+ + 
2 e- → Ni0. This value was -0.454 V (v.s. Ag/AgCl) for un-complexed species. For Ni-glycine 
complexes, the reference potential used was Ni(NH3)6 + 2e- → Ni0 + 6 NH3 as no reference potentials 
for the Ni(Gly)3 complex were found. This value was -0.686 V (v.s. Ag/AgCl).  Texture Coefficient 
was calculated using: 

𝑇𝑇.𝐶𝐶. =  
𝐼𝐼(ℎ𝑘𝑘𝑘𝑘)

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(ℎ𝑘𝑘𝑘𝑘)
1
𝑛𝑛
∑ 𝐼𝐼(ℎ𝑘𝑘𝑘𝑘)

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(ℎ𝑘𝑘𝑘𝑘)
𝑛𝑛
1

 (1) 

Where Iref is the reference intensity of polycrystalline Ni metal gathered from the NIST database.  
Grain size was calculated using the Scherrer Equation: 

𝐷𝐷 = 𝐾𝐾𝐾𝐾
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

 (2) 
where K is Scherrer’s Constant (0.94), β is the breadth of the peak at full-width-half-max (FWHM), 
cos(θ) is the cosine of the angle where the peak of interest occurs (measured for the (111) Ni peak in 
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this study), λ is the incident wavelength (1.54 angstrom for Cu Kα), and D is the crystallite size (in 
nanometers).  

 

4.5.3. Results 

 

Figure 58 (a) Exchange current (io) v.s. pH for nickel reduction, (b) io for each additive with pH corrections 
 

Figure 58(a) shows how io varies with pH in a pure Ni2+ solution. It was found that io decayed 
exponentially with pH in pure Ni2+ solutions. Figure 58(b) shows the effect of different catalysts on 
the exchange current. Orange dots are the original values while dark blue dots are the pH corrected 
values. It was found that glycine gave the largest exchange current (0.0229 mA cm-2), followed by 
saccharin (0.015), boric acid (0.0079), and L-proline (0.0020). Figure S1 shows Tafel plots and LSV 
data used to extract io. 

 

Figure 59. (a) Linear sweep voltammetry (LSV) of chemistries as a function of concentration of glycine 
(b) io as a function of glycine concentration 

 

Figure 58(a) shows LSV scans as a function of glycine concentration. It is seen that as the 
concentration of glycine increases, a plateau region starts to form and shift towards lower potentials. 
For complexes Ni(Gly)2(H2O)2 and Ni(Gly)3, no peaks can be seen. The large increase in current 
starting around -0.4 V (v.s. Ag/AgCl) shifts for complexes towards more negative potentials. Figure 
58(b) shows io as a function of glycine concentration. It is seen that a low concentration ( < 0.25M), 

 (a) (b) 

 (a) (b) 
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io increases linearly. After this point, io falls after Ni-glycine complexes form. Overall, the current was 
fitted to a 3rd order polynomial. This suggests that 3 glycine molecules are involved in the deposition 
of Ni, which corresponds to the maximum coordination of nickel by glycine, Ni(Gly)3.  

 

Figure 60.  (a) Chronopotentiometry as a function of time, (b) Faradaic efficiency as a function of current 
density, (c) SEM images at -17 mA cm-2, -40 mA cm-2, and -67 mA cm-2, from left to right. 
 

Figure 60(a) shows chronopotentiometry for a 1.2M Ni(Gly)3 chemistry operated at 40Co. A current 
of -17 mA cm-2 was applied for 20 minutes, a current of -40 mA cm-2 was applied for 10 minutes, and 
a current of -67 mA cm-2 was applied for 5 minutes. It was found that the required overpotential to 
maintain a given rate increased with applied current. Some instability was seen at a current density of 
-17 mA cm-2, while -40 and -67 stable over time. Figure 60(b) shows the calculated faradaic efficiency 
as a function of applied current. A faradaic efficiency of 78.7, 82.3, and 64.5 % were attained at a 
current of -17, 40, and 67 mA cm-2, respectively. Figure 60(c) shows SEM cross-sections acquired at 
each current. Each film was uniform and compact, with -40 mA cm-2 giving the thickest film. 

 

 

 

 

 

(c) 

(b) (a) 
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Figure 61.  (a) XRD as a function of current density (b) Texture coefficient for the (111) and (220) crystal 
plane as a function of current density. 
 

Figure 61a shows XRD of the deposited Ni(Gly)3 film as a function of current density. It was found 
that all films show similar structure with a grain size of around 10.16 nm. Texture analysis found films 
deposited at -67 mA cm-2 had a strong (111) texture. 

4.5.4. Discussion 
The work describes the investigation of glycine in nickel plating, where kinetic analysis and 
performance testing showed the chemistry to have promise for future study. 

 

 
(a) (b) 
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4.6. Electrodeposition of Cobalt films from the Cobalt Tri(L-Prolinato) Complex 
To date, all literature reports of electrodeposited cobalt have shown films that are rough and grown 
with low-to-moderate current efficiency. Here, we describe the deposition of cobalt from tris(L-
prolinato) complexes. At a constant current density of 10 mA cm-2, a 3.32 μm thick film was deposited 
at 64.5% Faradaic efficiency. At 40 mA cm-2, a 5.91μm thick film was deposited at 28.72% efficiency. 
At 10 mA cm-2, the film had a purity of 95.4% (weight % Co), as measured using Energy Dispersive 
X-ray Spectroscopy (EDS). From XRD measurements, the films show strong (220) texture with a 
grain size of 14 nm. UV-VIS spectroscopy found that the electronic structure of Co(Pro)3 greatly 
differs from the “standard” aqueous Co(H2O)6 complex. Density Functional Theory (DFT) 
calculations show that L-Proline forms a weak, water-like solvation shell around Co2+. We believe this 
metal complex to hold great promise for electrodeposition of cobalt.  

4.6.1. Methods 
The formation of tris-Prolinato was based off a report by Kato et al. [42] Co(Pro)3 was synthesized 
using 0.3M Co2+ in the form of CoSO4. L-Proline was used in a 3:1 ratio to Co2+. The complex was 
formed by mixing ligand and metal in solution and slowly increasing pH to a working value of 11. The 
solution was mixed overnight at room temperature. The pkA values of L-Proline are 2.0 for the 
carboxylic acid group and 10.6 for the pyrrolidine group [43]. pH was adjusted using KOH pellets. All 
chemicals were purchased from Sigma Aldrich. A stir rate of 300 rpm was used during measurements. 
All experiments were conducted in 3-electrode beaker cells with Ag/AgCl reference, a Ti mesh anode, 
and a 1.2cm2 electron beam evaporated (111) textured Au film on a Si coupon. Chronopotentiometry 
and linear sweep voltammetry was generated using a Voltalab PGZ402 universal pulse dynamic-EIS 
voltametery instrument. SEM/EDS was acquired using a FLEXSEM Hitachi SU 1000III at an 
accelerating voltage of 18kEV at a working distance of 10mm. UV-VIS was captured using a 
Thermoscientific Genesys150 from 190nm to 1100nm in plastic cuvettes. XRD was gathered using a 
Bruker D2 Phaser using a Cu Kα X-Ray source.  
 
Overpotential was measured by η = Eexp – Eo, where Eo is the standard reduction potential of Co2+ + 
2e- → Co0 (-0.474V v.s. Ag/AgCl). Texture Coefficient (T.C.) was calculated using: 

𝑇𝑇.𝐶𝐶. =  
𝐼𝐼(ℎ𝑘𝑘𝑘𝑘)

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(ℎ𝑘𝑘𝑘𝑘)
1
𝑛𝑛
∑ 𝐼𝐼(ℎ𝑘𝑘𝑘𝑘)

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(ℎ𝑘𝑘𝑘𝑘)
𝑛𝑛
1

 (3) 

where Iref is the reference intensity of polycrystalline Co metal gathered from the NIST database.  
 
Grain size was calculated using the Scherrer Equation: 

𝐷𝐷 = 𝐾𝐾𝐾𝐾
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

 (4) 
where K is Scherrer’s Constant (0.94), β is the breadth of the peak at full-width-half-max (FWHM), 
cos(θ) is the cosine of the angle where the peak of interest occurs (measured for the (111) Ni peak 
and the (220) peak for Co in this study), λ is the incident wavelength (1.54 angstrom for Cu Kα), and 
D is the crystallite size (in nanometers).  
 
All electronic structure calculations are done using the QUANTUM ESPRESSO package [44]. We 
use norm-conserving pseudopotentials from the PseudoDojo repository [45] and the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [46]. We use kinetic energy cutoffs of 50 Ry and 
400 Ry for the plane wave basis sets used to describe the Kohn-Sham orbitals and charge density, 



 

90 

respectively. We use a 2x2x2 Monkhorst-Pack grid [47] to sample the Brillouin zone in our 
calculations. 
 
We place each molecule inside a 15 Å3 box and allow geometry optimization until the interatomic 
forces are lower than 50 meV/Å. To simulate the solvation environment of the molecule, we use the 
self-consistent continuum solvation method as implemented Environ package for Quantum Espresso 
[48]. For charged molecules, we use the Martyna-Tuckerman correction to avoid issues around 
periodic boundary conditions [49]. 

4.6.2. Results and Discussion 

 

Figure 62. (a) FTIR, (b) UV-VIS, and (c) solution colors of Co(H2O)6 and Co(Pro)3. 

 
Figure 62(a) FTIR shows C-O and C-N bonds for L-Proline at 1202 cm-1 and 1465 cm-1 with mixed 
vibrations in between [49]. A prominent peak for Co(H2O)6 and Co(Pro)3 are shown around 1100 cm-

1 and 1098 cm-1, respectively. When coordinated with Co2+, the C-O and C-N vibrations modes vanish. 
Figure 62(b) shows UV-VIS of solutions, where a prominent peak with a doublet between 430 and 
580 nm is seen, attributed to the 4A1g

 →4T1g electron transition and spin-orbit couple splitting [51]. 
When coordinated with L-Proline, a new peak appears at 380 nm, amidst a broad absorption 
continuum between 580 nm and 280 nm. L-Proline alone shows a strong peak at 260 nm, likely from 
the same absorption band shifted to 270 nm when coordinated with Co2+. Figure 62(c) shows optical 
images of the solutions, with Co(H2O)6 appearing light red and Co(Pro)3 appearing dark red. 

 

C-N 

(a) (b) 

(c) 

C-O 
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Figure 63.  (a) (111) XRD peak of deposited Co as a function of thickness, (b) (220) XRD peak as a 
function of thickness, (c) texture coefficients as a function of thickness, (d) grain size as a function of 
applied current density. 
 
Figure 63(a,b) shows XRD peaks for the (111) and (220) plane, respectively. These peaks were the 
only ones seen that could be identified for cobalt. Figure 63(c) shows the calculated texture coefficient 
as a function of thickness. It was found that as the thickness of the film increased, the texture evolved 
from being exclusively oriented as (111) at 431nm, the texture of the substrate, to (220) at 5.91 um. 
Figure 63(d) shows the calculated grain size as a function of applied current, where it was found that 
a smaller grain size was attained at higher current, from 14.6 nm at 10 mA cm-2 to 13.9 nm at 20 and 
40 mA cm-2. 
 

(a) (b) (111) (220) (c) 

(d) 
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Figure 64.  (a) Chronopotentiometry measurements as a function of current density, (b) Faradaic Efficiency 
as a function of current density, (c) SEM cross-sections as a function of current density (10, 20, and 40 mA 
cm-2) going left to right. 
  
Figure 64(a) shows chronopotentiometry measurements as a function of current density, where a 
linear scaling of potential is seen. Figure 64(b) shows the Faradaic efficiency as a function of applied 
current, where efficiencies of 64.5, 40.1, and 28.7% are seen for 10, 20, and 40 mA cm-2, respectively. 
Figure 64(c) shows SEM cross sections of each film as a function of current density. EDS found the 
films had a purity of 84.8 atomic % cobalt, or 95.4 weight %, with the balance being oxygen. Optical 
profilometry found root mean square (RMS) roughness of the 10, 20, and 40 mA cm-2 samples to be 
614, 519, and 413nm, respectively.  
 

 
Figure 65.  Linear sweep voltammetry (left) and Tafel plot (right) for Co(Pro)3 and Co(H2O)6 complexes  
 
Figure 65 shows a cathodic linear sweep and Tafel plot for Co(H2O)6 and Co(Pro)3 complexes. It is 
seen that Co(Pro)3 shows a reduction peak around -0.95 V (v.s. Ag/AgCl) while Co(H2O)6 shows only 

 
(a) (b) 

(c) 
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a large increase in slope around -0.72 V. Tafel analysis was performed, where an exchange current of 
0.109 and 0.501 mA cm-2 were found for Co(H2O)6 and Co(Pro)3, respectively. In literature, a value 
of 0.0072 mA cm-2 was found for Co2+ for a CoCl2/NiCl2 chemistry containing 0.05 M Co2+, 0.5M 
Ni2+, and 0.5 M boric acid at a pH of 3.0 [52]. The reason for a larger exchange current (15x for 
Co(H2O)6 and 70x for Co(Pro)3) could be due to several factors, such as the presence of Ni2+ and 
boric acid in the literature chemistry, and the large degree of dilution (Co2+ concentration in the current 
work is 6X that of the paper). As for the influence of L-Proline, a previous report used L-Proline in a 
Watt’s nickel chemistry, where it was found that L-Proline increased the exchange current of Ni2+ 
from 0.00028 mA cm-2 to 0.0049 mA cm-2 at a concentration of 0.02M L-Proline and a pH of 3.4 [53].  

 
Figure 66. Calculated DFT energetics for the Co(Pro)2 complex. 

 
Figure 66 shows DFT calculations for the Co(Pro)2 complex. It was found that the desolvation energy 
was low, indicative of hydrogen bonding to the metal center. This is favorable for the electrodeposition 
process as ligands should be shed at the double layer (desolvated) before Co2+ is reduced and deposited 
to metal [54]. 

4.6.3. Discussion 
The work described electrodeposition from the Co(Pro)3 complex chemistry, where promising results 
are found.  
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