SAND2024-11571

SANDIA REPORT

SAND2024-11571 Sandia
Printed September 2024 National
Laboratories

Learning Operators for
Structure-Informed Surrogate Models

Anthony Gruber

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550




Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology
& Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering:  http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order:  https://classic.ntis.gov/help/order-methods

NS

Natic I Nuclear Security A inistra




ABSTRACT

This report summarizes the work performed under the author’s two-year John von Neumann LDRD
project, which involves the non-intrusive surrogate modeling of dynamical systems with remarkable
structural properties. After a brief introduction to the topic, technical accomplishments and project
metrics are reviewed including peer-reviewed publications, software releases, external presentations
and colloquia, as well as organized conference sessions and minisymposia. The report concludes
with a summary of ongoing projects and collaborations which utilize the results of this work.
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1. INTRODUCTION

At the time this John von Neumann fellowship LDRD was funded, the DOE’s Modeling and Simula-
tion (ModSim) infrastructure lacked cost-effective surrogates which incorporate known qualitative,
quantitative, and topological structure present in the high-fidelity models governing many applica-
tions of interest. Conversely, it was recognized that having direct access to mathematical operators
which represent the fundamental physical and mathematical correspondences underlying empirical
measurements allows for lightweight models which are accurate, explainable, and generalizable to
unseen scenarios. This motivated the present work, which aimed in the following directions:

* Development of a rigorous mathematical foundation for the surrogate modeling of systems
with Hamiltonian, metriplectic, and Hodge-de Rham structure.

* Development of practical structure-informed surrogates which are (1) accurate, (2) stable,
(3) convergent, (4) efficient, and (5) non-intrusive.

* Deployment of the mentioned surrogates in situations which demonstrate their inherent
explainability and superior generalization to unseen timescales and parameter ranges.

My project succeeded in addressing these criteria in a way that substantially improved the state of
the art in non-intrusive and structure-informed surrogate modeling. As this project was beginning,
surrogate modeling suffered from the following deficiencies:

* An over-reliance on “general purpose” methods such as the data-driven training of multi-
layer perceptrons (MLPs), which lack both explainability and theoretical guarantees on
out-of-distribution inputs.

* Poor-performing structure-informed techniques characterized by the weak enforcement of
physical constraints or the requirement of intrusive access to the high-fidelity model, often
leading to unpredictable and untrustworthy results in practice.

* Hard-constrained methods for incorporating Hamiltonian and metriplectic structure which
are insufficiently general, require prohibitive code-intrusion, and are not guaranteed to ap-
proximate arbitrary systems within their structural class.

To address these troublesome difficulties, my project concentrated on three important mathematical
structures of widespread interest frequently encountered in applications to climate modeling, elec-
tromagnetism, and thermomechanics: Hamiltonian structure, metriplectic structure, and Hodge-de
Rham structure. Adapting techniques from varied areas including projection-based model reduc-
tion, machine learning, convex optimization, finite element analysis, exterior algebra, and tensor
calculus, the project was able to:



* Develop the first method for Hamiltonian operator inference (OpInf) which is applicable to
both canonical and noncanonical Hamiltonian systems and places no additional requirements
on the form of the reduced basis, producing a non-intrusive and provably Hamiltonian
surrogate from only snapshots of the state variable [1].

* Remedy the general lack of variational consistency in projection-based Hamiltonian surrogate
modeling, leading to intrusive and non-intrusive models of canonical Hamiltonian systems
which are provably bounded in error and orders of magnitude more performant than the
current state-of-the-art at the same computational cost [2].

* Publish open-source software implementing the non-intrusive Hamiltonian surrogate models
in [1, 2].

* Produce the first machine-learned metriplectic surrogate model which is provably universally
approximating and admits a bound on generalization error [5].

* Extend the research on bracket-based surrogate models to graph-structured data, produc-
ing machine-learnable structure-preserving surrogates on graphs respecting Hamiltonian,
gradient flow, double bracket, and metriplectic dynamics [7].

* Formulate and develop the first cohomology-aware reduced-order model based on proper
orthogonal decomposition, enabling a Hodge-de Rham complex preserving discretization of
standard- and mixed- form partial differential equations (PDEs) which correctly approximates
harmonically dominant solutions [6].

Other notable research accomplishments include a structure-preserving Hamiltonian Oplnf which
automatically captures parametric dependence in the Hamiltonian functional [3], as well as a non-
intrusive method for the hyper-reduction of nonlinear reduced models which respects variational
consistency [8].

The next chapter provides a brief description of some technical highlights from this project. For
further details, the reader is referred to the publications mentioned in Section 3.
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2. TECHNICAL HIGHLIGHTS

This chapter briefly highlights some impactful research goals attained during this project.

2.1. Hamiltonian Operator Inference

A primary focus of this project was on the design of non-intrusive model reduction algorithms for
Hamiltonian systems based on ideas from operator inference (Oplnf) [9]. Recall that the Hamil-
tonian formalism provides a mechanical framework encompassing a wide variety of conservative
dynamical systems which arise from a least-action variational principle. Given a phase space P of
solutions, it reduces the problem of understanding a complicated dynamical system to the simpler
problem of understanding a scalar-valued function H : P — R, called the Hamiltonian, along with
a skew-symmetric Poisson bracket {-,-} : P X P — P encoding the dynamical structure. More
formally, given a state vector x with components in P ¢ R¥, it follows that any Hamiltonian system
can be written in the form

x={x,H(x)} = L(x)VH (x), 2.1)

for some Hamiltonian H : RY — R and some (potentially degenerate) Poisson matrix L : RY —
RM*N_ LT = —L which is antisymmetric and satisfies the Jacobi identity'. Note that this expression
immediately shows that the Hamiltonian is conserved along trajectories of the system, since its
derivative in time H = {H, H} = 0 vanishes by antisymmetry.

Hamiltonian systems are highly relevant as dynamical models and come in two variants, known
respectively as canonical and noncanonical. The distinction lies fundamentally in their associated
Poisson structure, which is symplectic in the case of canonical systems and degenerate otherwise.
In particular, when the phase space P ¢ R?M separates cleanly into position and momentum
variables (g, p), the matrix field L = J = [0 I;—1 0] is the usual (constant) symplectic matrix of
dimension 2M, and the system (2.1) becomes

. {4\ _(0 1\(8,H)\
(-5 -

which are the canonical Hamiltonian equations of motion. Conversely, it is often the case that the
Poisson matrix field L contains functions in its kernel (e.g., mass, momentum), known as Casimir
invariants, which disrupt this canonical structure. This has consequences for model reduction: not
all techniques for building effective surrogates in the canonical case carry over to the noncanonical
one. This project investigated both classes of systems, culminating in the works [1, 2] which are
now highlighted.

'This is a technical condition involving L and its partial derivatives, which reads component-wise as
N .o
Yooy (LaLjkg+LjLeiy+ LigLij ) =0, 1 <i,j,k <N.
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2.1.1. Noncanonical Hamiltonian operator inference

We developed the first non-intrusive OpInf model for noncanonical Hamiltonian systems in [1],
which provably respects Hamiltonian structure and requires only snapshot data from the full-order
model (FOM), often a system of semi-discrete partial differential equations (PDEs). Recall that
Oplnf is a projection-based technique for building reduced-order models (ROMs) in a solution
space of coefficients corresponding to some reduced basis U € RV*", typically generated by the
method of proper orthogonal decomposition (POD), where N > n denotes the dimension of the
FOM solution. Assuming snapshot data X € R¥*™ for the FOM system is given and a conserved
quantity H : R¥ — R has been identified (or postulated), the noncanonical Hamiltonian Oplnf in
[1] seeks a solution to the convex problem

argmin |)A(t - I_ﬁH(X)|2 , sit. LT =-L,
EERan

where X = UTX, VH(X) = UTVH(X), and X; ~ §,X denotes an approximation to the temporal
derivative of X. Key to this approach is strong enforcement of the antisymmetry condition LT = —L,
which guarantees that the learned operator L defining the reduced Poisson structure leads to a valid
Hamiltonian reduced-order model (ROM) for the coeflicients of the approximate solution ¥ = Ux
in the basis U, given as

%= LVH(%) = LUTVH(U%).

It can be shown that the proposed approach is Hamiltonian-conserving and provably convergent to
the corresponding intrusive Hamiltonian ROM based on Galerkin projection and the approximation
L = UTLU. An example in comparison to other methods is given in Figure 2-1, where accuracy
and stability benefits can be observed. This work has paved the way for future investigations
into non-intrusive ROMs for noncanonical Hamiltonian systems of larger scale, such as Maxwell’s
equations for plasma or the shallow water equations for oceanic modeling.

2.1.2. Variationally consistent Hamiltonian operator inference

More techniques for projection-based model reduction are available in the canonical Hamiltonian
case. Before our work in [2], state-of-the-art in this area relied on a specially designed basis called
the proper symplectic decomposition [10] (PSD), whose defining property is that UTJ = JUT,
implying that canonical Hamiltonian systems project to canonical Hamiltonian systems. While
this is a highly desirable property that guarantees stability and interpretability, the problem of
computing a good PSD basis is nontrivial and only limited algorithms exist for accomplishing
this. Moreover, it is frequently the case that these algorithms produce PSD bases which are not
expressive enough to yield a good ROM, as can be seen from the projection errors in Figure 2-2.

In view of these issues, other methods for Hamiltonian model reduction have been developed which
accommodate any desired reduced basis, but these suffer from a significant drawback: they are
not variationally consistent. This means that the Galerkin projection of the true solution does not
satisfy the discrete equations, which can dramatically affect the accuracy of these ROMs. The work
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Figure 2-1. Snapshots in time corresponding to the FOM and ROM solutions to a predictive KdV
equation example with N = 1024 and » = 32 modes. Note the lack of spurious oscillations in the
H-OpInf ROMs from [1].

in [2] remedies this defect by proposing a new strategy based on Petrov-Galerkin projection (see
Figure 2-3), which guarantees a variationally consistent, conservative, and symplectic Hamiltonian
ROM. We show that this strategy can be applied in both intrusive and non-intrusive OpInf contexts,
and prove an error estimate showing the trade-off between the expressivity of the reduced basis U
and the deviation of the ROM from canonical Hamiltonian form. An example of the improvement
gained from our variationally consistent approach is pictured in Figure 4-1 of Section 4 using a
realistic example from Sandia’s Albany code [11] with the material properties of steel. Remarkably,
our variationally consistent approach is at present the only Hamiltonian method for projection-based
ROM which can reliably predict the dynamics of an elastic bracket outside of the time interval
where it has been trained.

2.1.3. Tensor parametric Hamiltonian operator inference

It is common for FOM systems of interest to rely on a number of parameters which control the
behavior of their solutions. In this case, the operators which must be learned through Oplnf
carry around this parametric dependence, complicating the learning problem and preventing the
application of standard methods for non-intrusive ROM. This has left a large gap in the research
literature, as practitioners are left with only cumbersome or ad hoc methods for incorporating
parametric dependence into Oplnf surrogates.

To address this issue, our work in [3, 4] shows that, when the parametric dependence in the FOM is
linear (or generalized linear), then a matrix operator M (u) = Ty € RVN with dependence on the
parameter vector u € R” can be written as the contraction of this vector against a constant order-3
tensor T € RVXNXP Therefore, if an effective (e.g., convex) learning problem can be formulated for
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Figure 2-2. POD basis shapshot energies and projection errors corresponding to the plate example
in [2]. Note that the PSD algorithms “Cotangent Lift” and “Complex SVD” are unable to produce an
informative basis for the solution space.

Lagrangian FOM L.T. Hamiltonian FOM Hamiltonian FOM

Galerkin Petrov-Galerkin

projection

' i
‘ Lagrangian ROM FL.T.A)[ Hamiltonian ROM ’ Hamiltonian ROM

Figure 2-3. A diagram illustrating the behavior of Hamiltonian/Lagrangian FOMs under Galerkin
projection. While (most) canonical Hamiltonian and Lagrangian systems are equivalent under the
Legendre transformation (L.T.) at both the FOM and ROM levels, this equivalence does not
commute with Galerkin projection. Conversely, the variationally consistent ROM presented in [2]
projects Hamiltonian FOMs to Hamiltonian ROMs in every case.

Projection

the tensor 7', then parametric dependence is captured automatically with standard Oplnf principles.
This represents a major step forward, as all previous non-intrusive ROM technology is enabled

immediately and without additional modification.

To describe how this works more precisely, note that the intrusive Galerkin ROM with reduced

basis U € R¥*" corresponding to a full-order model of the form x = M (u)x is given by
X=UTM(p)Uzx = (Tp) %,

where the reduced tensor 7' € R™P is defined via T = UT(Tu)U. In the Oplnf context, this

implies the goal of learning 7 ~ T by solving the optimization problem

N

argmin Z

T s=0

2

A A

Xs,t - (T/ls) Xs

2

where the “hat” notation is as in Section 2.1.1 and the subscript s indexes the parameter snapshots.
We show in [3, 4] that this problem is equivalent to a linear system in n?p variables, which is
readily solved with standard numerical techniques. It follows that the tensor parametric OpInf ROM

14



Training u

0 5 10 15 20 25 30 35
_— | | | — _— | | T Reduced dimension r

0. 0.1 0.2 0.3 04 05 046 le-11 0.0003 0.0006 0.0009
gn(x, T) gnix, T) —v— OpinfROM error ~ —+— Intrusive ROM error  ——- Projection error

Figure 2-4. Solution to the heat equation (left) at a particular instant in time with different thermal
conductivity in each quadrant. Absolute error plot (middle) of the solution at this time point and
parameter value. A scaling study (right) showing decay of the error with the addition of basis
modes.

% = (T )% for the coefficients £ in the Galerkin approximation X = UZX is a useful approximation to
the intrusive ROM which requires no access to the FOM code and expresses the correct parametric
dependence by construction.

The effectiveness of this procedure can be shown by considering the following initial boundary
value problem for the heat equation on a domain Q ¢ R?,

Ou(x,t) = c(u)Au(x, 1), x e Qx(0,T],
u(x,0) = up(x), X €Q, (2.2)
u(x,t) =0, x € 0Qx(0,T],

where ¢(u) : R? — R is the parameterized thermal conductivity

c(u) = pilo +wlo, +...+upla,, (2.3)

which is piecewise-constant on Q = (J!_, €; since 1q, denotes the indicator function. In this case,
the discrete FOM system generated by, e.g., the finite element method is of the form discussed
above, and the tensor parametric technology applies straightforwardly. An example of the results
in this case is shown in Figure 2-4, where it can be seen that the results are in good agreement with
the intrusive parametric Galerkin ROM.

In addition, it is shown in [3, 4] that our tensor parametric Oplnf can be adapted to preserve
Hamiltonian structure as well. Following the techniques established in [1, 2], we show that it is
enough to solve an inference problem of the form

P st Tv=+N"'(Tv)"M Vv eR?,

A A —

s As (T,us) As

argmin

where Ay € R™" By € R™7, Cy € R™ contain snapshot data and M € R™" is symmetric and
positive semi-definite. Applying matrix calculus and the method of Lagrange multipliers, the

15
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Figure 2-5. A comparison of ROMs for the parametric 1D wave equation with variable wave speed
across four connected subdomains. Parameter-reproductive (left) and parameter-predictive (right)
examples demonstrate that the Hamiltonian structure-preserving Opinf ROMs from [3, 4] (blue,
orange) perform more stably than the structure-uninformed OpInf ROMs (green, red) with
increasing basis dimension.

equivalence of this inference to a linear system can again be demonstrated, guaranteeing that the
solution T € R™"*P is symmetric in the inner product defined by M, as required for Hamiltonian
structure preservation. Applying this technique to a structure-preserving mixed finite element
discretization of the 1D parametric wave equation

8tl‘Q(x’ t) = C(,U)ZAQ(X, t)’ X € Q X (O’ T]»

g(x,1) =0, x € 9Q x (0,T], 0.4
q(x,0) = qo(x), x €Q, '
0:q(x,0) =0, x €Q,

with parameterized wave speed c(u)? : R? — R,

c(p) = ,u%lgl + ,Ll%lgz +...+ ,uf,lgp, (2.5)

then yields a Hamiltonian structure-preserving ROM given by £ = J(Tu)#, which can be stepped
forward in time? to generate an approximation ¥ = U%. The results of this are pictured in Figure 2-5,
where it is shown that the proposed structure-preserving tensor parametric ROM offers stability
advantages in predictive simulations. Future work will investigate both the unstructured and

structured variants of this tensor parametric Oplnf in the model reduction of large-scale parametric
PDE:s.

’Here, J is either UTJU or (UTJU)~! depending on the consistency properties of the reduced basis U
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2.2, Metriplectic Dynamics and Bracket-Based Surrogate Models

Metriplectic, also called GENERIC, systems [12, 13] provide a principled formalism for encoding
dissipative dynamics in terms of thermodynamic variables that conserve energy and produce
entropy. In particular, formal expression of the reversible and irreversible parts of state evolution
with separate algebraic brackets leads to a general framework for maintaining essential conservation
laws while simultaneously respecting dissipative effects. Said differently, the metriplectic formalism
offers a principled extension to the Hamiltonian variational principle which captures dissipation in
a complete thermodynamic way, making it explainable and useful for modeling nonconservative
systems.

The compact, bracket-based expression of metriplectic dynamics is crucial to its advantage:
since conservative and dissipative contributions can be formally factored out, phenomenolog-
ical models can be built by specifying each of these components separately. Precisely, as
stated in [5], metriplectic dynamics on the finite or infinite dimensional phase space # are
generated by a free energy function(al) F :  — R, F = E + S defined in terms of a pair
E.S : P — R representing energy and entropy, respectively, along with two algebraic brackets
{3}, [>]:C®(P)xC®(P) - C*(P) which are bilinear derivations on C* (P) with pre-
scribed symmetries and degeneracies {S,-} = [E, -] = 0. Here {-, -} is an antisymmetric Poisson
bracket, which is a Lie algebra realization on functions, and [, -] is a degenerate metric bracket
which is symmetric and positive semi-definite on the same function space. These brackets are often
identified with symmetric matrix fields L : # — Skew, (R) , M :  — Sym, (R) satisfying

{F,G}=VF-LVG, [F,G|=VF-MVG,

for all functions F, G € C* (#) and all states x € P. Using the degeneracy conditions along with
Vx = I and slightly abusing notation leads the standard equations for metriplectic dynamics,

%={x,F}+[x,F] = {x,E} + [x,S] = LVE + MVS,

which are provably energy conserving and entropy producing.

2.2.1. Machine-learned metriplectic surrogate models

The primary drawback of the metriplectic formalism lies in the fact that analytic expressions for the
functionals E, S and the brackets defined by L, M are highly complicated, and no general algorithm
exists to compute them for a given system of interest. To that end, the work in [5] focused on
machine-learning surrogates for these systems from snapshot data in a way which guarantees their
special mathematical structure is preserved. By exploiting ideas from exterior algebra, we showed
that a general metriplectic system can be parameterized with hand-crafted learnable matrix fields
that scale optimally with the number of degrees of freedom in the system and the rank of the
dissipation field M. This lead to an architecture, diagrammed in [5], based on neural ordinary
differential equations (NODESs) [14] which is provably universally approximating on metriplectic
systems, admits a bound on generalization error, and achieves state-of-the-art performance on
benchmark metriplectic learning tasks. Some results are pictured in Figure 2-6, which shows
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the correct metriplectic evolution of two equilibrating gases. This lends confidence to the idea
that the metriplectic learning strategy developed as part of this project can be applied to learn
thermodynamically-consistent surrogates of real-world systems from observational data.
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Figure 2-6. The ground-truth and predicted position, momentum, instantaneous entropy, and
energies for a metriplectic benchmark involving the equilibration of gases in two containers. Our
method, NMS [5], is provably metriplectic and most accurate in the training (white), validation
(yellow), and testing (red) regimes when compared to previous metriplectic machine learning
methods (SPNN, GNODE, GFINN).

22.2. Bracket-based graph neural networks

In addition to learning metriplectic systems from data, our work in [7] demonstrated that bracket-
based dynamical systems can also be useful for designing graph neural network (GNN) architectures
in a way that mitigates some of their inherent drawbacks. By applying ideas from the graph exterior
calculus [15] to design GNN architectures reflecting the bracket-based structures in Table 2-1,
we showed that such GNNs are able to mitigate the well-known over-smoothing problem [16]
commonly encountered in GNN applications, whereby the feature representations at each node
exhibit exponential homogenization with depth due to repeated Laplacian aggregations at each
layer.

To understand how this works, note that graph-structured data comes equipped with a combinatorial
notion of graph derivative defined by the incidence matrices of k-cliques—ordered subgraphs of
k + 1 nodes—on (k + 1)-cliques. Denoting the set of k-cliques in the graph G by Gy and its dual
space of linear functionals by QF . these derivatives are commonly denoted as dy : Qr — Qgy1,
and it can be shown that dj o dy = 0 for any k. Pictured in 2-7, the derivatives dy, dg and d; are
simply the graph analogues of the usual vector calculus gradient, divergence, and curl.

Making use of the graph derivatives dy and their adjoints d; : QK1 5 QF with respect to learnable
inner products encoding graph attention (see [7] for details), bracket-based GNN architectures,
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Formalism Equation Requirements Completeness Character

Hamiltonian x={x,E} L*=-L, complete conservative
Jacobi’s identity

Gradient x=-[x,E] M =M incomplete totally dissipative

Double Bracket x = {x,E}+{{x,E}} L*=-L incomplete partially dissipative

Metriplectic x={x,E}+ [x,S] L*=-L,M*=M, complete partially dissipative

LVS=MVE =0

Table 2-1. The abstract bracket formulations employed in [7]. “Conservative” indicates purely
reversible motion, “totally dissipative” indicates purely irreversible motion, and “partially
dissipative” indicates motion which either dissipates E (in the double bracket case) or generates §
(in the metriplectic case).

Graph Gradient Graph Divergence Graph Curl

Figure 2-7. An illustration of the lowest-order graph derivative operators.

pictured in Figure 4-2 of Section 4, can be designed which are guaranteed to conserve or dissipate
learned energy/entropy quantities. Although this idea is physics-based, its primary advantage in the
graph setting lies in constraining the mechanism of the resulting GNNs in ways which are provably
stable or otherwise advantageous for predictive accuracy. For example, our Hamiltonian bracket
architecture designed in this way is incapable of over-smoothing in the traditional sense: since
the network propagation is conservative by construction, there is no way for dissipative effects to
homogenize network predictions as the network depth increases. We show in [7] that incorporating
physics information into GNN design leads to improved accuracy in a variety of physics- and non-
physics- based tasks including node classification, feature imputation, and trajectory prediction. It
is particularly remarkable that the bracket-based structure-preserving character of our GNNs can
improve predictive performance on large graph-structured datasets, such as citation networks, even
when the task at hand has no physical interpretation.

2.3. Cohomology-Aware Model Reduction

Cohomology theories are topological tools that allow practitioners to understand when a local
solution to a differential equation on a subdomain extends to a global one on the entire domain,
or, said differently, how drastically the Fundamental Theorem of Calculus fails to hold on a given
domain. This is of crucial importance in ModSim, where activities like co-design require the
geometric perturbation of solution domains along with the fast solution of PDEs on these domains.
Enabling model reduction in these instances is difficult, as well-understood techniques such as
POD do not respect the topological properties of the original domain, and so cannot automatically
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approximate the appropriate space of solutions to the original problem when this topology is
important.

In the ongoing work [6], co-funded by the ASCR MMICC-3 center M2dt, we have worked to
remedy this defect by exploiting ideas from the finite element exterior calculus (FEEC) [17]. The
key to our approach lies in the construction of an appropriate cochain complex, a sequence (&, d) of
vector spaces QF and linear maps d satisfying d o dy_; = 0. Along with appropriate chain maps
Py between the FOM and ROM “rungs” of the complex (c.f. Figure 2-8) satisfying dy Py = Py+1dy,
we can show that this construction induces well-defined endomorphisms Py : H*(Q) — H*(Q)
on cohomology. This implies that the cohomology of the reduced space will be inherited from the
cohomology of the full space provided the projection mappings Py are constructed in an appropriate
way.

di—1 di
Qg = Qp T—— 41

* *

dk—l dk
Pk_ll Pkl Pk+1l
~ d _ ~ d ~
dfQk Lo Ok TE o gQk

Figure 2-8. A commutative diagram illustrating the cochain complexes (Q*, d;) and (QF, 4X) which
are used in building the cohomology-aware ROMSs in [6], along with the data-driven chain maps P,
inducing morphisms on cohomology.

In constructing the projections Py : QX — QF, we make use of the Hodge decomposition Q% =
im dy ®im d; ®ker A (see Figure 2-9), where d;. denotes the Lz—adjoint of dy and Ay = dy—1d;_, +
d,dy is the Hodge Laplacian. This is the differential k-form analogue of the usual Helmholtz-
Hodge decomposition of vector fields, e.g., v = V¢ + V x  + h. Importantly, the L>-orthogonality
of the different components of the Hodge decomposition allows for data-driven projections Py =
P, + P ;- + P;, which are built from snapshots of the system state; each learned projection P, =U, Ul*
is built according to the POD decomposition X; ~ U;X; V", where X; denotes the projection of the
snapshot set X onto the /"™ component of the Hodge decomposition. It follows that Py is orthogonal
and maps each component of the Hodge decomposition into itself, enabling the commutative
diagram shown in Figure 2-8 when Py_ = d_ Pydy- and Piy = diPid, (A" denotes the
Moore-Penrose pseudoinverse of A).

A simple example of where this technique is necessary and improves greatly upon the current state
of the art is given by Poisson’s equation on a domain [0, 1]? with periodic boundary conditions:

Aou = f in (0, 1)2,
u(0,y) =u(l,y) on{0,1}x [0, 1], (2.6)
u(x,0) =u(x,1) on [0,1] x{0,1}.
This problem is ill-posed as written above since dim ker Ag = R, reflecting the fact that u’ = u + ¢

solves the system for any solution u and constant c. This means that the system (2.6) must be
augmented with the gauge condition (u, 1);2 = ¢ for some constant c. This poses great challenges
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Figure 2-9. A cartoon illustration of the Hodge decomposition of one-forms (duals of vector fields)
in the ¢2 inner product.

for model reduction, where snapshots of the system (2.6) have been collected into a matrix X,
possibly with different gauges. In this case, a data-driven basis U constructed via standard POD
will not induce a valid morphism on cohomology between functions on the problem domain M and
the reduced domain span(U), and hence will not lead to a solvable reduced model in any desired
gauge. To see this more precisely, note that a discrete analogue of (2.6) after, say, discretization by
linear finite elements, is given by

Ku = Mf,

2.7
lTMoll = ClTM()l, ( )

where My, K are the standard mass and stiffness matrices of the scheme and u, f represent coef-
ficients in the finite element basis. Now, if U is a data-driven basis constructed from snapshots
of u satisfying (2.7), potentially for different c, it follows that the Galerkin-projected system to be
solved for @i = Ul is

UTKUu = UTMof,
1™MUa = c1"Mp1.

However, this system is not solvable in general. First, note that it is highly unlikely that span U L
ker K since the harmonic part of each snapshot u contributes to the POD basis computation.
Moreover, the gauge condition is fixed by the left-hand side involving the basis, and there are no
degrees of freedom left in &t which can be used to satisfy the right-hand side for arbitrary c. This is a
direct consequence of the lack of cohomology-preservation mentioned above, which has significant
consequences on the accuracy of the ROM (c.f. Figure 2-10).

This situation can be effectively remedied using the cohomology-aware technology introduced
before. In this case, the coexact and harmonic components® X+, X}, are extracted from the snapshot
data and used to form the Galerkin approximation @t = U;-lig+ + Upli,. Projection of the governing
equations then leads to the solvable ROM:

UT. KU, = UL Mf,
lTMOUﬁh = ClTMol.

3that there is no exact component X,; follows from a simple degree argument
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Notice that this resembles a mixed-form finite element method due to the use of separate bases
Ug-, Uy, for the discrete Hodge components of the approximate solution . The impact of this is
shown in Figure 2-10, where a reconstruction based on our cohomology-aware approach provides
an accuracy gain of nine orders of magnitude over the naive POD-ROM on a simple manufactured
problem.

1.0+
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Figure 2-10. Poisson ROM reconstruction of a harmonically dominant function. Left: naive POD
with n = 4 modes, relative error 75%. Right: HAR POD with » = 3 coexact and » = 1 harmonic mode,
relative error 1.8 x 1077%.

Note that the advantages of this approach do not stop at Poisson’s equation; the technique behind
our cohomology-aware model reduction is generally applicable to any system of PDEs which take
place on a topologically nontrivial domain. For example, the solution to Maxwell’s equations
inside a domain with obstacles (e.g., a circuit box) will depend crucially on the number and
placement of these obstacles, and naive model reduction approaches such as standard Galerkin
POD will not respect this. This can have dramatic impacts on important physical aspects of the
system, such as charge conservation and magnetic flux, which are likely to produce un-physical and
untrustworthy predictions at the ROM level. Therefore, it is essential that strategies such as that in
[6] are developed in order to accelerate the rapid design and prototyping of electrical components
necessary for carrying out Sandia’s mission.
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3. PROJECT METRICS

Throughout the duration of the project, 1 prioritized outreach activities and the dissemination
of research results through publications, external presentations, and open-source software. This
section summarizes the publications generated during my project, the conference and colloquium
talks I gave, the students I mentored, the proposals I (co-)wrote, and the special sessions I (co-
)organized.

3.1. Publications and Presentations

Publications. By September 2024, the project had four associated journal articles and peer-
reviewed conference proceedings: two published [1, 7], one accepted for publication [2], and
one more under review [5]. Three additional journal articles [3, 6, 8] and two CSRI Summer
Proceedings papers [4, 18] are under active development and expected to be submitted by the
middle of FY2025. Details of the completed papers are as follows:

* A.Gruber, I. Tezaur, “Canonical and noncanonical Hamiltonian operator inference”, Comput.
Methods Appl. Mech. Eng., 2023.

* A. Gruber, K. Lee, N. Trask, “Reversible and irreversible bracket-based dynamics for deep
graph neural networks”, Neural Information Processing Systems (NeurIPS) 2023.

* A. Gruber, I. Tezaur, “Variationally consistent Hamiltonian model reduction”, SIAM J. Appl.
Dyn. Sys. (to appear).

* A. Gruber, K. Lee, H. Lim, N. Park, N. Trask, “Efficiently parameterized neural metriplectic
systems”, arXiv:2405.16305 (under review for NeurIPS 2024).

Open-source Software. Source code for carrying out the Hamiltonian operator inference pro-
cedures in [1, 2] was released under SCR#:2917.0 and hosted at the Sandia Github site https:
//github.com/sandialabs/HamiltonianOpInf.

Presentations. I presented a total of 17 talks and posters (11 invited, 6 contributed) associated
with the work completed during this project, with several more scheduled for later in the calendar
year. The titles, dates, and locations of these events are given below.

Invited External Presentations

* “Learning metriplectic systems and other bracket-based dynamics”, Mathematics Seminar
series (virtual), University of Vienna, Vienna, Austria. (June 19, 2024).
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* “Learning metriplectic systems and other bracket-based dynamics”’, Minisymposium on
Mathematics of Machine Learning, CMS summer meeting, University of Saskatchewan,
Saskatoon, Canada. (June 2, 2024).

* “Learning bracket-based dynamical systems for property preserving model reduction”, guest
lecture, UPenn, Philadelphia, PA. (Apr. 23, 2024).

* “Property-preserving model reduction in bracket-based dynamical systems”, UNM Applied
Mathematics Seminar Series, Albuquerque, NM. (March 25, 2024).

* “Learning Operators for Structure-Informed Surrogate Models”, DOE ASCR PI Meeting,
Albuquerque, NM. (poster; Jan. 8, 2024)

* “Data-driven dynamical systems with structural guarantees”, S. Scott Collis Advanced Mod-
eling & Simulations seminar series (virtual), El Paso, TX. (Nov. 10, 2023).

* “Property-preserving model reduction for conservative and dissipative systems”, Numerical
Analysis of Galerkin ROMs seminar series (virtual), INRIA, Bordeaux, France. (Oct. 10,
2023).

* “Data-driven surrogate models for bracket-based dynamical systems”, Minisymposium on
Data-driven Methods for Circuits and Devices, 2nd IJACM MMLDE-CSET, El Paso, TX.
(Sep. 27,2023).

* “Mathematics in different settings” (virtual), Hong Duc University, Thanh Héa, Vietnam.
(May 20, 2023).

* “Energetically consistent model reduction for Hamiltonian and metriplectic systems”, CRUNCH
webinar (virtual), Brown University, Providence, RI. (Dec. 9, 2022).

* “Convolutional neural networks for data compression and reduced-order modeling”, Min-
isymposium on Machine Learning for Large-Scale Scientific Data Analytics, SIAM MDS,
(Sep. 28, 2022).

Contributed External Presentations

* “Flexible and variationally consistent Hamiltonian model reduction”, Model Reduction and
Surrogate Modeling (MORe2024), La Jolla, CA. (Sep. 10, 2024)

+ “Learning metriplectic systems from full and partial state information”, 16/ World Congress
on Computational Mechanics, Vancouver, Canada. (July 23, 2024)

* “Reversible and irreversible bracket-based dynamics for deep graph neural networks” (poster),
Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA. (Dec. 12,
2023)

* “Variational consistency in model reduction for conservative and dissipative systems”, Min-
isymposium on Data-Driven Methods — Solids, A Conference Celebrating the 80" Birthday
of Thomas J.R. Hughes, Austin, TX. (Oct. 23, 2023)
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“Canonical and Noncanonical Hamiltonian Operator Inference”, Minisymposium on Geo-
metric Mechanics Formulations and Structure-Preserving Discretizations, 17" U.S. National
Congress on Computational Mechanics, Albuquerque, NM. (July 26, 2023)

“Canonical and Noncanonical Hamiltonian Model Reduction”, Workshop on Establishing
Benchmarks for Data-Driven Modeling of Physical Systems, University of Southern Califor-
nia, Los Angeles, CA. (April 6, 2023)

Organization. Five special sessions at major international conferences were organized to promote
outreach and make contact with state-of-the-art research in structure-informed surrogate modeling.
The organizational activities undertaken during this project are as follows.

3.2

Co-organizer, “Structure-preserving model reduction for large-scale systems”, minisympo-
sium, SIAM Computational Science and Engineering, Mar. 3-7, 2025.

Co-organizer, “Geometric Mechanics Formulations and Structure-Preserving Discretizations
for Models of Physical Systems”, minisymposium, SITAM Joint Mathematics Meetings, Jan.
8-11, 2025.

Co-organizer, “Advances in machine learning on graphs for physical sciences and data anal-
ysis”, minisymposium, SIAM Mathematics of Data Science, Oct. 21-25, 2024.

Co-organizer. “Geometric Mechanics formulations and structure-preserving discretizations
for continuum mechanics and kinetics models”, minisymposium, 16th World Congress on
Computational Mechanics, July 21-26, 2024.

Co-organizer. “Geometric Mechanics Formulations and Structure-Preserving Discretiza-
tions”, minisymposium, 17th U.S. National Congress on Computational Mechanics, July
26-30, 2023.

Mentoring and Training

Due to my proximity to and strategic alignment with the M2dt ASCR MMICC center and the fHNM
CIS LDRD, I had the opportunity to formally and informally mentor graduate students affiliated
with these programs. These students, my interactions with them, and the scope of their work are
outlined below.

Arjun Vijaywargia, University of Notre Dame. Arjun was a summer 2024 graduate
intern funded by M2dt who continued as year round intern afterwards. Arjun’s work led to
the development of effective, structure-preserving tensor parametric techniques for operator
inference, which will be submitted for journal publication in FY2025. Arjun’s work is based
on ideas generated during this project, and I served as his primary mentor.

Ian Moore, Virginia Tech. Ian was a summer 2024 graduate intern funded by M2dt. Ian
worked to develop methods for coupling non-intrusive operator inference models via the
Schwarz alternating method. 1 served as a secondary technical mentor to Ian, regularly
meeting and assisting him with method development and experimental design.
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3.3.

Rishi Pawar, University of Arizona. Rishi was a 2023 summer graduate intern funded by
fHNM who returned for summer 2024. His work investigated data-driven approaches based
on operator inference and neural ordinary differential equations for the computation of flux
conditions necessary for coupling systems across interfaces. I served as an informal technical
mentor to Rishi during both summers, periodically assisting him in the design of effective
reduced models based on these technologies.

Roxana Pohlmann, Vienna University of Technology. Roxana was a self-funded visiting
researcher at Sandia from September 2023 to January 2024, where she was advised by
Nat Trask (1442) and Rekha Rao (1516) on graph neural network approaches for modeling
problems in injection molding. I served as an informal technical mentor to Roxana, regularly
meeting with her to offer guidance related to graph neural networks in general and our
bracket-based architectures (c.f. [7]) in particular.

Edward Huynh, Arizona State University. Edward was a 2023 summer graduate intern
funded by fHNM who returned for summer 2024. His work involved maturing the theoretical
understanding of term re-weighting in physics-informed neural network loss functions. I
served as an informal technical mentor to Edward in summer 2023, periodically assisting
him in theoretical arguments related to the analysis of neural network architectures. 1 also
reviewed Edward’s 2023 summer CSRI proceedings article entitled A Preliminary Study for
Obtaining Inverse Sobolev-Type Inequalities for Tanh Neural Networks.

Strategic Partnerships

From project inception in FY22, a remarkable effort was made to cultivate new internal and external
collaborations, as well as strengthen existing ones. Below the key collaborations fostered during
this project are summarized.

Irina Tezaur, 8734. Irina provided general mentorship and technical expertise related to
solid mechanics and intrusive model reduction.

Nat Trask, University of Pennsylvania (formerly 1442). Nat is an expert in scientific
machine learning and compatible meshfree methods who provided general mentorship and
technical guidance related to structure-preserving neural networks.

Pavel Bochev, 1400. Pavel provided expertise and general guidance in numerical analysis
and compatible finite elements, with particular emphasis on cohomology-aware methods.

Eric Cyr, 1442. Eric provided technical guidance related to high-performance implementa-
tion and applications of structure-preserving methods to electromagnetics.

Max Gunzburger, Oden Institute at UT Austin. Max provided technical guidance in
intrusive model reduction particularly related to the implementation of strong boundary
conditions.
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Kookjin Lee, Arizona State University. Kookjin is an expert in scientific machine learn-
ing and neural ordinary differential equations who provided technical support on projects
involving structure-preserving machine learning.

Noseong Park, Korea Advanced Institute of Science and Technology. Noseong is an
expert in machine learning and large-scale data analytics who provided implementation
assistance and student support for the learnable metriplectic models developed in [5].

Patrick Blonigan, 8738. Patrick provided technical expertise related to the model reduction
of large-scale Sanda-relevant systems, including the implementation of necessary hyper-
reduction methods.

Alejandro Mota, 8363. Alejandro provided technical expertise in solid mechanics and
realistic material models.

Paul Kuberry, 1442. Paul provided technical expertise in software development related to
compatible mixed finite element schemes.

Chris Eldred, 1442. Chris provided technical expertise in geometric mechanics and experi-
mental design necessary for benchmarking structure-preserving methods.

Shane McQuarrie, 1441. Shane provided technical expertise in non-intrusive model reduc-
tion and parametric operator inference.

These partnerships also led to two joint proposals with external parties and three internal LDRD
proposals, listed below.

External Proposals

* Irina Tezaur and I collaborated with Nathan Urban (PI-BNL) and Youngsoo Choi (LLNL)
on an ASCR Al for Science proposal Few-Shot Optimal Learning of Surrogate Models for
Uncertainty Quantification and Optimization of Exascale Simulations (in progress).

e Irina Tezaur and I collaborated with Ramin Bostanabad (PI-UC Irvine) on an ASCR SciML
proposal Quantifying Epistemic and Aleatoric Uncertainties in Multi-fidelity Operator Learn-
ing (not funded).

Internal Proposals (c.f. Section 4)

* I collaborated with Irina Tezaur (PI) on an FY25-FY28 ESRF LDRD proposal with acronym
“AHeaD” (funded).

* | collaborated with Eric Cyr (PI) on a FY25-FY28 REHEDS LDRD proposal with acronym
“DD-MAKER” (funded).

* I collaborated with Jonas Actor (PI, 1442) on a FY25-FY28 CIS LDRD proposal entitled
“High-Dimensional Variational Gaussian Representation, Approximation, and Discretiza-
tions (H-DIVGRAD)” (not funded).
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4. PROJECT LEGACY

This LDRD project facilitated the development of new and improved methods for structure-informed
surrogate modeling which are non-intrusive and guaranteed to satisfy key properties of their full-
order counterparts. Due to resulting benefits in predictive accuracy, numerical stability, and physical
realism, the products of this project may inspire further work in data-driven surrogate modeling
with structural constraints, eventually bringing it to a level where it can be trusted for mission-
relevant simulations. In particular, the Hamiltonian Oplnf strategies highlighted in Chapter 2.1
have been demonstrated on moderate-to-large scale 3D linear elastic problems (c.f. Figure 4-1) and
are ready to deploy to other large problems of interest whose solutions obey conservative dynamics.
Similarly, the GNN-based networks from Chapter 2.2 have been applied to simulate reversible and
irreversible dynamical behavior on graphs with 250K+ edges, and are ready for regression and
classification tasks on other large graphs.

Overall, my project contributed to the CIS Investment Area goals and objectives in three principal
ways:

* By producing mathematics and software in in support of Sandia structure-informed surro-
gate modeling efforts, specifically targeting Hamiltonian, metriplectic, and Hodge-de Rham
systems, the project generated new capabilities for the non-intrusive surrogate modeling of
systems with important mathematical structure.

* By disseminating this work through 4 peer-reviewed publications, 1 open-source software
release, and 17 external talks, posters, and colloquia, as well as building community via the
organization of 5 special sessions and minisymposia at leading international conferences,
the project strengthened Sandia’s reputation as a leader in structure-preserving modeling &
simulation.

* By engaging with internal and external collaborators and institutions including 2 ASCR
MMICC centers, mentoring 5 graduate students, and promoting numerous cross-center
collaborations between 1400 and 8700, the project fostered ongoing research efforts and
contributed to the development of Sandia’s future workforce.

Remarkably, the project also produced several methods and technologies which have seen insertion
both internally at Sandia and elsewhere. A brief summary of the current users of these products
now follows.

M2dt MMICC center Multifaceted Mathematics for Predictive Digital Twins (M2dt) is a five-year
(FY22-FY27), multi-institutional, ASCR-funded mathematics institute led out of UT Austin by
Karen Willcox and Omar Ghattas. The Sandia PI is Irina Tezaur who manages a funding portfolio
of $2.5M allocated over this time period. The M2dt MMICC-3 ASCR project is focused on
the mathematical foundations of digital twins, including robust and structure-informed methods
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Figure 4-1. z—displacement solutions to the flexible bracket problem, scaled by a factor of 10 for
plotting purposes, at the final time 7 = 2 x 1072 s for the FOM (a) and various intrusive ROMs (b)—(d).

for data-driven model reduction to facilitate optimal control and optimization under uncertainty.
This project provides M2dt with a suite of structure-preserving surrogate models which further
the ultimate goal of trustworthy, real-time computational prediction and inference for informing a
dynamically evolving physical system. The Hamiltonian models developed as part of this project
have already shown promise for stably predicting the deformation of elastic brackets [2], see
Figure 4-1, and development of cohomology-aware ROMs for models with complex topology
based on the work in [6] will continue into FY25.

SEA-CROGS MMICC center Scalable, Efficient and Accelerated Causal Reasoning Operators,
Graphs and Spikes for Earth and Embedded Systems (SEA-CROGS) is another five-year, (FY22-
FY?27) multi-institutional, ASCR-funded mathematics institute led out of Brown University by
George Karniadakis. The Sandia PI is Eric Cyr who manages a funding portfolio of $2.5M
allocated over this time period. The SEA-CROGS MMICC-3 ASCR project aims to develop
physics-informed machine intelligence to augment foundational understanding and optimal control
of complex systems spanning extremely disparate scales, thereby greatly accelerating tasks like
computational modeling, causal reasoning, etiology, and pathway discovery for Earth systems.
In line with the “Graphs” thrust of SEA-CROGS, this project provides bracket-based structure-
preserving graph neural networks which function as explainable prediction engines [7]. This
technology is currently being inserted into work aligned with the “Operators” thrust which will
continue into FY25: to accelerate the modeling of ice sheet dynamics, our structure-informed
graph neural networks, see Figure 4-2, are actively being combined with deep operator networks
(DeepONets) to facilitate the efficient and accurate prediction of field quantities output by ice sheet
models.

AHeaD LDRD Accelerating the Analyst Workflow: Adaptive Hybrid modEls via DomAin De-
composition (AHeaD) is a new three-year LDRD (FY25-FY28) led by Irina Tezaur (8734) and
funded at $2.2M total by the Engineering Sciences Investment Area. The project aims to expedite
analyst workflows and significantly reduce mesh generation times by developing adaptive hybrid
models through domain decomposition. AHeaD will adopt some of the operator inference (Oplnf)
technology developed as part of this project, particularly as it relates to parametric dependence and
the enforcement of Dirichlet boundary conditions. Figure 4-3 shows a coupled FOM-ROM model
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Figure 4-2. A schematic outlining the bracket-based GNN architecture from [7].
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where the ROM is built with non-intrusive OplInf, and boundary conditions are enforced as in [6].
More details can be found in the forthcoming CSRI Proceedings article [18].
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Figure 4-3. OpInf-Schwarz coupling of a heat equation across two subdomains.

DD-MAKER LDRD Data-Driven Models Accelerating Cavity Electromagnetic Response Compu-
tations (DD-MAKER) is a new three-year LDRD (FY25-FY28) led by Eric Cyr (1442) and funded
at $1.7M total by the REHEDS Inverstment Area. This project proposes a data-driven approach for
modeling system generated electromagnetic pulse (SGEMP) that reduces analysis time, enabling
rapid response to system design inquiries. DD-MAKER will develop methods informed by geomet-
ric and topological invariants for rapid predictions across parameter space, and so benefits from the
Hamiltonian-preserving (e.g., [1, 2]) and cohomology-aware (e.g., [6]) methods developed as part
of this project. As DD-MAKER also plans to consider machine-learned surrogates with structure,

the project may also benefit from our methods for learning bracket-based dynamics developed in
[7,5].

Kookjin Lee’s Lab The work on metriplectic systems [7, 5] done with my collaborator Kookjin
Lee will be continued in his lab at Arizona State University. He is the recent recipient of the
NSF CAREER award 2338909 “Accelerating Scientific Discovery via Deep Learning with Strong
Physics Inductive Biases”, which is focused on improved, structure-informed methods for data-
driven system identification. Kookjin and his students will continue to expand on the foundation
built during this LDRD, in collaboration with me as appropriate.
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