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ABSTRACT

For computational physics simulations, code verification plays a major role in establishing
the credibility of the results by assessing the correctness of the implementation of the un-
derlying numerical methods. In computational electromagnetics, surface integral equations,
such as the method-of-moments implementations of the electric-, magnetic-, and combined-
field integral equations, are frequently used to solve Maxwell’s equations on the surfaces
of electromagnetic scatterers. These electromagnetic surface integral equations yield many
code-verification challenges due to the various sources of numerical error and their possible
interactions. In this report, we provide approaches to separately measure the numerical
errors arising from these different error sources. We demonstrate the effectiveness of these
approaches in Gemma.
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1. INTRODUCTION

1.1. Gemma

Gemma is a computational electromagnetics code that simulates three-dimensional scatter-
ing problems by solving electromagnetic surface integral equations in the frequency domain.
It is designed to be massively parallel and to run on heterogeneous computer architectures.
Gemma is part of the Radiation Analysis Modeling and Simulation of Electrical Systems
(RAMSES) tool suite, which is used to support the nuclear-deterrence mission at Sandia Na-
tional Laboratories. In this report, we present our code-verification activities for Gemma.

1.2 Electromagnetic Surface Integral Equations

For electromagnetic scatterers, Maxwell’s equations, together with appropriate boundary
conditions, may be formulated as surface integral equations (SIEs). The most common
SIEs for modeling time-harmonic electromagnetic phenomena are the electric-field integral
equation (EFIE), which relates the surface current to the scattered electric field, and the
magnetic-field integral equation (MFIE), which relates the surface current to the scattered
magnetic field. The EFIE arises from the condition that the total tangential electric field on
the surface of a perfect electric conductor is zero, whereas the MFIE arises from the condition
that the component of the total magnetic field tangent to the surface of a perfect electric
conductor is equal to the surface current density. At certain frequencies, the accuracy of the
solutions to the EFIE and MFIE deteriorates due to the internal resonances of the scatterer.
Therefore, the combined-field integral equation (CFIE), which is a linear combination of the
EFIE and MFIE, is employed to overcome this problem.

These SIEs are typically solved through the method of moments (MoM), wherein the surface
of the electromagnetic scatterer is discretized using planar or curvilinear mesh elements,
and four-dimensional integrals are evaluated over two-dimensional source and test elements.
These integrals contain a Green’s function, which yields singularities when the test and source
elements share one or more edges or vertices, and near-singularities when they are otherwise
close. The accurate evaluation of these integrals is an active research topic, with many
approaches being developed to address the (near-)singularity for the inner, source-element
integral [1-10], as well as for the outer, test-element integral [11-15].



1.3. Code Verification

For computational physics codes in general, it is necessary to assess the implementation and
the suitability of the underlying models in order to develop confidence in the simulation
results. These assessments typically fall into two complementary categories: verification and
validation. Validation evaluates the appropriateness of the models instantiated in the code
for representing the relevant physical phenomena, and is typically performed through com-
parison with experimental data. Verification, on the other hand, assesses the correctness
of the numerical solutions produced by the code, through comparison with the expected
theoretical behavior of the implemented numerical methods. Following Roache [16], Knupp
and Salari [17], and Oberkampf and Roy [18], verification can be further divided into the
activities of code verification and solution verification. Solution verification involves the esti-
mation of the numerical error for a particular simulation, whereas code verification assesses
the correctness of the implementation of the numerical methods within the code. Code
verification ultimately sets the expectations for solution verification. A review of code and
solution verification is presented by Roy [19].

Code verification is the primary focus of this report. Differential, integral, and integro-
differential equations may be solved exactly only in special cases. In the general case, the
integral and differential operators must be approximated by discrete operators to yield a
tractable system of equations. The difference between the discrete and continuous operators
is the truncation error. As a result of the truncation error, even if the discretized equations
are solved exactly, the resulting solution will only approximately satisfy the original contin-
uous equations, introducing a discretization error — the difference between the solution to
the discrete equations and the solution to the continuous equations. If the discretization
error tends to zero as the discretization is refined, the consistency of the code is verified [16].
This may be taken a step further by examining not only consistency, but the rate at which
the error decreases as the discretization is refined, thereby verifying the order of accuracy
of the discretization scheme. The correctness of the numerical-method implementation may
then be verified by comparing the expected and observed orders of accuracy obtained from
numerous test cases with known solutions.

In addition to assessing the suitability and correctness of the numerical methods, the error
measured from code-verification activities enables the accuracy of different algorithms to be
compared and provides an initial error estimate for solution-verification activities.

1.4. Manufactured Solutions

Exact solutions to systems of engineering interest are rare, and those that do exist often
require dramatic simplifications to both the domain geometry and the equations themselves
in order to obtain a tractable problem. Hence, manufactured solutions are frequently em-
ployed to produce problems of sufficient complexity with known solutions [20]. The method
of manufactured solutions (MMS) is a general technique for constructing problems of arbi-
trary complexity with known solutions. One begins this process in reverse by manufacturing
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the desired solution. In principle, this manufactured solution (MS) may be any function,
but several properties are desirable [17]:

1. The MS should consist of combinations of elementary functions, such as polynomial,
trigonometric, and exponential functions. This not only simplifies derivations and imple-
mentation, but ensures that the MS (and its derivatives) will be representable to sufficient
precision within the tested code.

2. The MS should be sufficiently smooth, such that the error incurred by the discretization
is small on relatively coarse meshes. This ensures that the order of accuracy may be
estimated with minimal computational expense.

3. The MS should be general enough that all terms of the governing equations are exercised.

4. The MS should have a sufficient number of nontrivial derivatives, such that the expected
order of accuracy of the discretization can be observed. In the most ideal case, the solution
will have an infinite number of nontrivial derivatives.

5. Since the robustness of the code is not the primary concern, the MS should not have any
features that inhibit the solution of the discretized equations.

Once a solution is manufactured, it is substituted directly into the governing equations.
In general, the MS is not expected to satisfy the governing equations. Instead, a residual
term appears, which quantifies the deviation from the satisfaction of the equations. If this
residual is added to the governing equations as a source term, the resulting equations will
be exactly satisfied by the MS. Concerns are immediately raised regarding uniqueness of the
solution to the manufactured problem, but this has rarely been found to cause difficulties in
practice [20]. The result of this process is a problem, of arbitrary complexity, for which an
exact solution is known.

The code to be verified is then modified to support the additional source term and may then
be verified by comparing the simulation result for the manufactured problem against the
known solution. Ideally, the source term is computed analytically; however, when this is not
possible, the source term needs to be computed consistently and at least as accurately as the
numerical methods being verified. Otherwise, the error in the source term will overshadow
that of the numerical methods, contaminating the verification assessment.

MMS is purely a mathematical process; the physics of the problem need not be considered,
provided the MS remains within the bounds of validity for the underlying algorithms. This
enables the user to avoid difficulties that would normally complicate the solution.

1.5. Code Verification for Electromagnetic Integral Equations

There are many examples of code verification in the literature for different computational
physics disciplines. These disciplines include aerodynamics [21], fluid dynamics [22-28],
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solid mechanics [29], fluid—structure interaction [30, 31], heat transfer in fluid-solid interac-
tion [32], multiphase flows [33, 34], radiation hydrodynamics [35], plasma physics [36-39],
electrodynamics [40], and ablation [41-45].

However, existing literature contains few instances of MMS being used in the verification of
software for integral equations. This is due to the simple fact that, while analytical differ-
entiation is a straightforward exercise, analytical integration is not always possible. Hence,
the residual source term arising from the manufactured solution may not be representable in
closed form, and its implementation may be accompanied by numerical techniques that carry
their own uncertainties. Furthermore, for the EFIE, MFIE, and CFIE, the aforementioned
(nearly) singular integrals can further complicate the numerical evaluation of the source
term. Therefore, much of the elegance, simplicity, and instilled confidence of MMS is lost
when applied to integral equations in a straightforward manner, and, as a result, effective
implementation of MMS in the context of boundary element codes has been an open subject
of research.

Prior to our work, the most substantial code-verification effort for integral equations in
computational electromagnetics was the work of Marchand et al. [46, 47|, in which the au-
thors calculate the MMS source terms for the EFIE using numerical techniques. While the
quadrature error can be driven low enough that mesh-refinement studies become feasible,
the presence of this additional error often places a lower bound on the discretization er-
ror that can be obtained, and therefore limits the scope of the mesh-refinement study, in
addition to being undesirable for the aforementioned reasons. To further complicate mat-
ters, for the MoM implementation of the EFIE, the discretized equations can easily become
ill-conditioned [48].

For the MoM implementation of the electromagnetic integral equations, numerical error is
introduced from three sources:

1. Domain discretization. While planar surfaces can be represented exactly by planar
elements, the approximation of sufficiently smooth curved surfaces with planar elements
introduces a second-order numerical error [49, Chap. 3]. This error can be reduced by
employing curved elements [50].

2. Solution discretization. Common in the solution to differential, integral, and integro-
differential equations, the approximation of the solution in terms of a finite number of
basis functions, or alternatively the approximation of the underlying equation operators
in terms of a finite amount of solution queries, is the most common contributor to the
numerical error. For sufficiently smooth solutions, this error can be reduced by employing
higher-order basis functions [50] or stencils.

3. Numerical integration. The analytical evaluation of the integrals in integral equations
is usually not possible. For well-behaved integrals, quadrature rules or other integration
methods can be used, with the expectation that the associated numerical error is at least
of the same order as that arising from the solution-discretization error. A less rigor-
ous expectation is that the error from numerical integration decreases as the fidelity of
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the numerical integration algorithm is increased (e.g., increasing the number of quadra-
ture points). However, for singular or nearly singular integrals, such convergence is not
assured [51].

It is important to account for these error sources when performing code verification.

For the EFIE, Freno et al. [52] manufacture the Green’s function, permitting the numerical-
integration error to be eliminated and the solution-discretization error to be isolated. Freno
et al. [53] also provide approaches to isolate the numerical-integration error. For the MFIE
and CFIE, Freno and Matula [54, 55] isolate and measure the solution-discretization error
and numerical-integration error.

1.6. This Work

In this report, we present code-verification techniques for the method-of-moments implemen-
tation of the EFIE, MFIE, and CFIE that isolate and measure the solution-discretization
error and numerical-integration error. We manufacture the electric surface current density,
which yields a source term that we can treat as a manufactured incident field. For curved
surfaces, the domain-discretization error cannot be completely isolated or eliminated, but
methods are presented in [54] to account for it in the MFIE. These methods can be applied
to the other SIEs straightforwardly. In this report, we avoid the domain-discretization error
by considering only planar surfaces. As in [52, 54, 56], we isolate the solution-discretization
error by manufacturing the Green’s function in terms of even powers of the distance be-
tween the test and source points. With this form, we can evaluate the integrals exactly,
thereby avoiding numerical-integration error. We isolate the numerical-integration error on
both sides of the equations by canceling the influence of the basis functions. This approach
has been demonstrated for the MFIE [54], CFIE [55], and EFIE [56]. With the solution-
discretization error and numerical-integration error isolated, we perform convergence studies
for different manufactured Green’s functions and geometries.

This report is organized as follows. In Chapter 2, we describe the EFIE, MFIE, and CFIE
and their discretization. In Chapter 3, we describe the challenges of using MMS with these
equations, as well as our approaches to mitigating them. In Chapter 4, we demonstrate the
effectiveness of our approaches in Gemma for several different configurations. In Chapter 5,
we summarize this work.
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2. THE METHOD-OF-MOMENTS IMPLEMENTATION OF
THE ELECTRIC-, MAGNETIC-, AND COMBINED-FIELD
INTEGRAL EQUATIONS

In time-harmonic form, the scattered electric field ES and magnetic field H® due to induced
surface currents on a scatterer can be computed by [57]

ES(x) = —(jwA(x) + VO(x)), (2.1)
HS(x) = lV x A(x), (2.2)
]
where the magnetic vector potential A is defined by
A(x)=p . J(xG(x,x")dS’, (2.3)

and, by employing the Lorenz gauge condition and the continuity equation, the electric scalar
potential ® is defined by

O(x)="> (| V. -IXG(x,x")dSs'. 2.4
x) =L [ v 36)Gx %) (2.4)
In (2.3) and (2.4), the integration domain S’ = S is the closed surface of a perfect electric
conductor, where the prime notation is introduced here to distinguish the inner and outer
integration domains later in this section. Additionally, J is the electric surface current
density, ¢ and € are the permeability and permittivity of the surrounding medium, and G is
the Green’s function

o—JkR
ATR’

where R = |R||2, R = x — X/, and k = w,/u€ is the wavenumber.

G(x,x') = (2.5)

2.1. The Electric-Field Integral Equation

The total electric field E is the sum of the incident electric field EZ, which induces J, and
E®. On S, the tangential component of E is zero, such that

ES = —E7, (2.6)

where (-); denotes the tangential component. Substituting (2.1) into (2.6) yields the EFIE
at a point on the surface of the scatterer, from which we can compute J from EZ:

(jwA + V), = EL. (2.7)

14



2.2. The Magnetic-Field Integral Equation

The total magnetic field H is the sum of the incident magnetic field HZ and H®. On S,
nxH=1J, (2.8)

where n is the unit vector normal to S. Noting that V x [J(X,)G(X, x’)} =VG(x,x') x J(x')
and

VG(x,x') = -V'G(x,x), (2.9)
from (2.2) and (2.3),
HS(x) = /S J(X) % V'G(x,x)dS’
when x is just outside of S. Therefore, at S,

n x HS = lim n x / J(x) x V'G(x,x')dS" = ;J 41 x / J(x) x V'G(x,x)dS", (2.10)

x—S

where the final term is evaluated through principal value integration. From (2.8) and (2.10)
the MFIE at a point on the surface of the scatterer is [58, 59

1
53 —nx / J(x') x V'G(x,x')dS" = n x HZ. (2.11)
2.3. The Method of Moments

Inserting (2.3) and (2.4) into (2.7), projecting (2.7) onto an appropriate space V containing
vector fields that are tangent to S, and integrating by parts yields the variational form of
the EFIE: find J € V| such that

/ EZ . vdS =
S
jwu /S (x) - /S J(x)G(x,x)ds'ds — - / Vovlx) [ V3G x)ASdS  (2.12)

for all v € V, where the overbar denotes Complex conjugation.

We can write (2.12) more succinctly in terms of a sesquilinear form and inner product:

at(J,v) =0° (EZ,V>, (2.13)
where the sesquilinear form and inner product are defined by
a®(u,v) = a®(u,v) + a®(u,v), (2.14)
a®(u,v) :jw,u/ v(x) / u(x')G(x,x')dS'dS,
a®(u,v) = - V v(x / V' u(x)G(x,x")dS'dS,

v (u,v) = /Su(x) - v(x)dS.
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Projecting (2.11) onto V yields the variational form of the MFIE: find J € V, such that

1 5. _ S . / / / / _ = . T
5 /SV Jds /SV(X) (n(x) X /,J(x) X VG(X,X)dS)dS = /SV (n x H )dS (2.15)
for all v.€ V. We can write (2.15) more succinctly as

aM(3,v) = bM(HT,v), (2.16)

where the sesquilinear forms are defined by

a(u,v) = ;/S\_’(X) -u(x)dS —/

S\_f(x) : (n(x) X /, u(x’) x V'G(x,x’)dS’)dS, (2.17)

PM(u, v) = /S (%) - [n(x) x u(x)]ds.

2.4. The Combined-Field Integral Equation

The CFIE linearly combines the EFIE (2.13) and MFIE (2.16) to yield the variational prob-
lem: find J € V, such that

a(J,v) = b(EZ,HI,V> Vv eV, (2.18)
where
a(J,v) = ;‘QS(J,V) + (1 - a)d™(3,v), (2.19)
z T v) = g £ Z v —« M 1 V). .
b(E”, HY,v) nb(E, )+ (1= a)p™(H", V) (2.20)

In (2.19) and (2.20), a € [0, 1] is the combination parameter, and 7 = m is the charac-
teristic impedance of the surrounding medium. It should be noted this is one of multiple
choices for the CFIE [60, 61]; however, the verification methods presented in this report can
be applied to the other CFIE choices.

In (2.18), setting o = 0 yields the variational form of the MFIE. To simplify the notation
in this report, we use (2.18) to represent the CFIE, MFIE, and EFIE. For the EFIE, we set
a = 1 and implicitly multiply (2.18) by 7 to remove the 1/ factor.

2.5. Discretization

To solve the variational problem (2.18), we discretize S with a mesh composed of triangular
elements and approximate J with J, in terms of the Rao-Wilton-Glisson (RWG) basis
functions A;(x) [3]:

ny

Jn(x) =D JiA(x), (2.21)

=1
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where ny is the total number of basis functions. The RWG basis functions are second-order
accurate [49, pp. 155-156], and are defined for a triangle pair by

/.
injp;r, for x € T}
A](X) Qprj_’ fOI“XGTj_ )
j
0, otherwise

where /; is the length of the edge shared by the triangle pair, and A;“ and A} are the areas
of the triangles Tj+ and T} associated with basis function j. p;L denotes the vector from the
vertex of T]-Jr opposite the shared edge to x, and p; denotes the vector to the vertex of T}
opposite the shared edge from x.

These basis functions ensure that J; is tangent to the mesh when using planar triangular
elements. Additionally, along the shared edge of the triangle pair, the component of A;(x)
normal to that edge is unity. Therefore, for a triangle edge shared by only two triangles,
the component of J; normal to that edge is J;. The solution is considered most accurate
at the midpoint of the edge [49, pp. 155-156]; therefore, we measure the solution at the
midpoints.

Defining V), to be the span of RWG basis functions associated with the mesh on S, the
Galerkin approximation of (2.18) is now: find J;, € V,,, such that

a(Ip, A;) = b(EZ, H?, Ai) (2.22)

for i = 1,...,m. Letting J* denote the vector of coefficients used to construct Jj (2.21),
(2.22) can be written in matrix form as ZJ" = V| where Z; ; = a(A;, A;) is the impedance

matrix, JJ’? = J; is the current vector, and V; = b(EI JH7, AZ-) is the excitation vector.
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3. MANUFACTURED SOLUTIONS

We define the residual functional for each test basis function as
ri(u) = a(u, A;) — b(E", H, A;).
We can write the variational form (2.18) in terms of (3.1) as
ri(J) = a(J, A;) — b(ET, H?, A;) = 0.
Similarly, we can write the discretized problem (2.22) in terms of (3.1) as

ri(Jn) = a(In, Ai) — b(ET, HY, A;) = 0.

The method of manufactured solutions modifies (3.3) to be
ri(Jn) = ri(Jus),

where Jyg is the manufactured solution, and r(Jys) is computed exactly.

Inserting (3.2) and (3.3) into (3.4) yields
a(Jn, A;) = a(Jus, Ay).
However, instead of solving (3.5), we can equivalently solve (2.22) by setting
b(ET, H”, A;) = a(Jus, A).
Equation (3.6) is satisfied by [52]

J
eEw JS

E’ = 2 Jus(x)G(x,x) + V' - Jys(x) VG (x,X')] dS,

which, from (2.9), is equivalent to

J
ew Jsr

Ef = {k2JMs(X,)G(X, x') =V - Ius(x)V'G(x, x’)}dS’,
and [54]

1
H? = §JMS X n — /s' Jus(x') x V'G(x,x")dS’.

18
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Figure 3-1. Gus (3.9) for different values of g.

3.1. Manufactured Green’s Function

Integrals containing the Green’s function (2.5) or its derivatives, such as those appearing in
a(+,-) (2.19) and b(+, -, -) (2.20) cannot be computed analytically. Additionally, the singularity
when R — 0 complicates their accurate approximation, potentially contaminating conver-
gence studies. Therefore, as is done in [52, 54, 56], we manufacture the Green’s function,
using the form

2\ 9
Gris(x, %) = Gy(x, %) = G0<1 - ;) , (3.9)
where Gy =1m™, ¢ €N, and R,,, = maxx x'es I is the maximum possible distance between
two points on the domain. The even powers of R permit the aforementioned integrals to be
computed analytically for the basis functions, as well as for many choices of Jys, avoiding
contamination from numerical-integration error. A plot of (3.9) is shown in Figure 3-1 for
multiple values of q.

3.2. Solution-Discretization Error

In (2.22), if the integrals in a(-,-) (2.19) and b(-,-,-) (2.20) are evaluated exactly, the only
contribution to the discretization error is the solution-discretization error. Solving for J*
enables us to compute the discretization error

ey=J"—-17J,, (3.10)

where J,,; denotes the component of Jyg flowing from Tj+ to T; . The norm of (3.10) has the
property |leg|| < CyhP?, where Cjy is a function of the solution derivatives, h is representative
of the mesh size, and pjy is the order of accuracy. By performing a mesh-convergence study
of the norm of the discretization error, we can ensure the expected order of accuracy is
obtained. For the RWG basis functions, the expectation is second-order accuracy (py = 2)
when the error is evaluated at the edge centers [49].
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3.3. Solution Uniqueness

For the EFIE, the manufactured Green’s function Gys (3.9) yields a matrix that is practically
singular, admitting infinite solutions J”. For the MFIE, the matrix arising from only the first
term of (2.17), which does not contain a Green’s function, is nonsingular. Additionally, the
matrix arising from the first and second terms is nonsingular when Gy is used. However,
the matrix arising from only the second term is practically singular.

In [52, 62], a mitigation approach is presented to select J* by solving the optimization
problem

minimize ||eyl|,

3.11
subject to  a(Jy,, A;) = b(EZ, HZ, Ai>. (3:11)

The solution to (3.11) is
Jh — Jn ‘|‘ Ql(u - Q{{Jn)7
where Ru = P7V and Q;, Ry, and P arise from the pivoted QR factorization of Z*.

In formulating the optimization problem (3.11), the choice of ||e;||, as the cost function
has the benefit of yielding a closed-form solution. However, in order to assess the rate of
convergence, we must select a second norm that is used to report the error. ||ezl|_, is often
preferred for error reporting in code verification because it is more sensitive and therefore
more rigorous. However, the mismatch between the minimized norm (L?) and the reported
norm (L) may require finer meshes to enter the asymptotic region. Therefore, as a trade-off,
we additionally solve the optimization problem

minimize ||ey||

3.12
subject to a(Jy, A;) = b(E”, HZ, A,;). (3.12)
The L*-norm of the error arising from the solution to (3.12) reaches the asymptotic re-
gion faster than that arising from (3.11) but requires the solution to a linear programming
problem, which is more expensive.

3.4. Numerical-Integration Error

In practice, the integrals in a(-, -) (2.19) and b(-, -, -) (2.20) are evaluated numerically, yielding
the approximations a?(-,-) and (-, -, -). a%(+,-) and b?(-, -, -) are obtained by integrating over
each triangular element using quadrature, and generally incur a numerical-integration error.
Therefore, it is important to measure the numerical-integration error without contamination
from the solution-discretization error.
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In [54], approaches are presented to isolate the numerical-integration error by canceling
or eliminating the solution-discretization error. In this report, we cancel the solution-
discretization error and measure the numerical-integration error from

€a= aq(JhMS’ Jth) - a(Jthv Jth)7 (313)
ep= b1 (EI, HZ, JhMS) - b(EZ, HZ, JhMS>, (3.14)

where Jp,,, is the basis-function representation of Jys, obtained from (2.21) by setting the
coefficients J; equal to the normal component of Jyg at the midpoint of each edge associated
with A;(x). The presence of the basis functions in the minuend and subtrahend of (3.13)
and (3.14) cancels the solution-discretization error. Equations (3.13) and (3.14) have the
properties |e,| < C,hP* and |ey| < CphPt, where C, and C are functions of the integrand
derivatives, and p, and p, depend on the quadrature accuracy.

Reference [54] shows that e, (3.13) and e, (3.14) are proportional to their influence on the
discretization error ey (3.10).
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4. NUMERICAL EXAMPLES

In this chapter, we demonstrate the effectiveness of the approaches described in Chapter 3
using Gemma.

4.1. The Electric-Field Integral Equation

For the EFIE, we consider two unit-square flat plates, as shown in Figure 4-1, with one
rotated out of the plane of the other by an angle 6.

We manufacture the surface current on the plate Jys(x) = {J¢(€), J,(€)} using sinusoidal
functions:

Je(&) = Jocos(m&/2) cos(mn/4), (4.1)
Jn(&) = Jo cos(m€/4) sin(mn),

where Jy = 1 A/m and the plate-fixed coordinate system &(x;60) is given by

f(xﬂ)—l x, for  <0m
" L )xcosf+ zsinf, forx >0m’

nx)=y/L,

(7,7) ‘ :

—

—

=

Figure 4-1. Computational domain consisting of two unit-square plates. Coordinates are expressed in the
plate-fixed coordinate system &(x;0).
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Figure 4-2. Manufactured surface current Jyg for flat plates.

where L = 1 m. At the edges of the domain, the normal component of Jyg(x) is zero,
satisfying the boundary conditions. Figures 4-2a and 4-2b provide plots of (4.1) and (4.2).

We consider two types of meshes: a uniform mesh and a twisted mesh, examples of which are
shown in Figures 4-3a and 4-3b with the total number of triangles n, = 1600. The twisted
mesh is obtained by transforming the uniform mesh, using the transformation provided in
Reference [28].

We account for potential disparities in the magnitudes of the contributions to Z from A and
D:

Z=27*+17°%
where Zf% = a®*(A;, A;) and Z%; = a®(A;, A;). To ensure the errors of one are not overshad-
owed by those of the other, we consider the contributions Z* and Z® together and separately,

with e = 1 F/m and p = 1 H/m. ZA contains the factor wu = k%/(ew), whereas Z® contains
the factor 1/(ew). When we consider the contributions separately, we are effectively taking
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(a) Uniform

(b) Twisted

Figure 4-3. Two different types of meshes, shown with n; = 1600.

the limits as k — oo for Z* and k — 0 for Z®. When we consider the contributions together,
we set k =1 m~! for Z. We adjust V accordingly.

The numerical integration is performed using polynomial quadrature rules for triangles. For
multiple quadrature point amounts, Table 4-1 lists the maximum polynomial degree of the
integrand the points can integrate exactly [63, 64|, as well as the convergence rates of the
errors for inexact integrations of nonsingular integrands. These properties correspond to the
optimal point locations and weights.

Number of points 1 3 4 6 7 12 13
Maximum integrand degree 1 2 3 4 ) 6 7
Convergence rate Oh*) Oy oY) Oms Oms O Omhd)

Table 4-1. Polynomial triangle quadrature properties.
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4.1.1. Solution-Discretization Error

To isolate and measure the solution-discretization error, we proceed with the assessment
described in Section 3.2. With Gygs (3.9), we are able to compute the integral in (3.7) ana-
lytically, which yields a finite-degree polynomial integrand for b(EI ,HZ, Ai> (2.22). Because

the integrands of a(Jp, A;) and b(EI JHZ, Ai) in (2.22) are finite-degree polynomials, they
can be integrated exactly with the appropriate amount of polynomial quadrature points.

Figures 4-4 and 4-5 show the L*> norm of the discretization error ||ey|| (3.10) arising from
only the solution-discretization error for § = {0°, 45°, 90°, 135°}, ¢ = {1, 2} in Gys (3.9),
the uniform and twisted meshes, and the contributions to the EFIE together and separately.
With Gys, the matrices are practically singular; therefore, we use the approach of (3.11) in
Section 3.3 to select a unique solution. The convergence rates are all O(h?) as expected.

4.1.2. Numerical-Integration Error

To isolate and measure the numerical-integration error, we perform the assessments described
in Section 3.4. Figures 4-6 and 4-7 show the numerical-integration errors e, (3.13) and
ey (3.14) when the solution-discretization error is canceled for § = {0°, 135°}, ¢ = 2 in
Gus (3.9), the twisted mesh, and the contributions to the EFIE together and separately. In
the legend entries of the subfigures in the left columns of Figures 4-6 and 4-7, the first number
is the amount of quadrature points used to compute the integral over S, whereas the second
is the amount used to compute the integral over S’. In the legend entries of the subfigures
in the right columns of Figures 4-6 and 4-7, the number is the amount of quadrature points
used to compute the integral over S. The numerical-integration error is nondimensionalized
by the constant eg = 1 A-V. Each of the solutions converges at the expected rate listed in
Table 4-1.

4.2, The Magnetic-Field Integral Equation

For the MFIE, we consider two domains: a cube and a rhombic prism, each with all edges
of length 1 m, as shown in Figures 4-8 and 4-9 with the total number of triangles n;, = 1200.
The acute angle of the rhombic prism is 45°. We manufacture the surface current density

JMs(X) = Jg(f,’f])eg, Where

sin ™ sin® L , forn-e, =0
Je(€m) = Jod " \2L 3 , (4.3)

0, forn-e, #0
Jo=1A/m, and L =1 m. £ € [0, 4] m is perpendicular to n = y € [0, 1] m, wrapping
around the surfaces for which n-e, = 0, beginning at # = 0 m and 2 = 1 m for the cube and

r = z = \/2/2 m for the rhombic prism, as depicted in Figure 4-9, which shows the nets of
these domains. Equation (4.3) is of class C?. Figures 4-10 and 4-11 show plots of (4.3).
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Figure 4-8. Meshes for the cube (left) and the rhombic prism (right), with n; = 1200.

We account for potential disparities in the magnitudes of the contributions to (2.17) from
the first (Term 1) and second (Term 2) terms by considering them together and separately.

4.2.1. Solution-Discretization Error

To isolate and measure the solution-discretization error, we proceed with the assessment
described in Section 3.2. With Gys (3.9), we are able to compute the integral in (3.8) ana-

lytically, which yields a finite-degree polynomial integrand for b(EI JHZ, Ai> (2.22). Because

the integrands of a(J,, A;) and b(EI JHZ, Ai) in (2.22) are finite-degree polynomials, they
can be integrated exactly with the appropriate amount of polynomial quadrature points.

Figure 4-12 shows the L* norm of the discretization error ||ey|| . (3.10) arising from only
the solution-discretization error for the cube and rhombic prism for ¢ = {1, 2} in Gys (3.9).
For Term 1 and both terms, the matrices are nonsingular, and the convergence rates are all
O(h?) as expected. With Gys, the matrices for Term 2 are practically singular; therefore, we
use the approaches of (3.11) and (3.12) in Section 3.3 to select unique solutions. Minimizing
les]l., (3-12) yields lower error values that approach O(h?) sooner.

4.2.2. Numerical-Integration Error

To isolate and measure the numerical-integration error, we perform the assessments described
in Section 3.4. Figure 4-13 shows the numerical-integration errors e, (3.13) and e, (3.14)
when the solution-discretization error is canceled for the cube and rhombic prism with ¢ = 2
in Gus (3.9). In the legend entries of the subfigures in the left column of Figure 4-13, the
first number is the amount of quadrature points used to compute the integral over S, whereas
the second is the amount used to compute the integral over S’. In the legend entries of the
subfigures in the right column of Figure 4-13, the number is the amount of quadrature points
used to compute the integral over S. The numerical-integration error is nondimensionalized
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Figure 4-10. Manufactured surface current density Jugs for the cube (left) and the rhombic prism (right).
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Figure 4-12. MFIE, solution-discretization error: ¢ = ||e||, for different term combinations and ¢ values in

Gwms (3.9). For Term 2, a unique solution is obtained by minimizing ||ez||, (3.11) and |les|| ., (3.12).

by the constant g = 1 A% Each of the solutions converges at the expected rate listed in
Table 4-1.

4.3.

The Combined-Field Integral Equation

For the CFIE, we consider the cube and rhombic prism from Section 4.2.

4.3.1.

Solution-Discretization Error

To isolate and measure the solution-discretization error, we proceed with the assessment
described in Section 3.2. With Gys (3.9), we are able to compute the integral in (3.8) ana-

lytically, which yields a finite-degree polynomial integrand for b(EI JHZ, Ai> (2.22). Because
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the integrands of a(J,, A;) and b(EI,HZ7 Ai) in (2.22) are finite-degree polynomials, they
can be integrated exactly with the appropriate amount of polynomial quadrature points.

For multiple values of the combination parameter «, Figure 4-14 shows the L* norm of the
discretization error ||ez||, (3.10) arising from only the solution-discretization error for the
cube and rhombic prism for ¢ = {1, 2} in Gus (3.9). The matrices are nonsingular. The
convergence rates are all O(h?) as expected.

4.3.2. Numerical-Integration Error

To isolate and measure the numerical-integration error, we perform the assessments described
in Section 3.4. Figure 4-15 shows the numerical-integration errors e, (3.13) and e, (3.14) when
the solution-discretization error is canceled for the cube and rhombic prism with a@ = 1/2
and ¢ = 2 in Gys (3.9). In the legend entries of the subfigures in the left column of Figure 4-
15, the first number is the amount of quadrature points used to compute the integral over
S, whereas the second is the amount used to compute the integral over S’. In the legend
entries of the subfigures in the right column of Figure 4-15, the number is the amount of
quadrature points used to compute the integral over S. The numerical-integration error
is nondimensionalized by the constant g5 = 1 A2, Each of the solutions converges at the
expected rate listed in Table 4-1.
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5. CONCLUSIONS

In this report, we presented code-verification approaches for the method-of-moments imple-
mentation of the electric-, magnetic, and combined-field integral equations to isolate and
measure the solution-discretization error and numerical-integration error in Gemma.

We isolated and measured the solution-discretization error by integrating exactly over the
domain. To integrate exactly, we manufactured the Green’s function, and presented opti-
mization approaches to select a unique solution when the manufactured Green’s function
makes the matrix practically singular.

We isolated and measured the numerical-integration error by removing the solution-discretization
error. We removed the solution-discretization error by canceling the basis-function contri-
bution.

We demonstrated the efficacy of these approaches and observed the expected rates of con-
vergence from Gemma.

This report underscores the critical role of rigorous code verification in ensuring the relia-
bility and accuracy of computational electromagnetics solutions, paving the way for Gemma
to contribute significantly to advancements in the field and inspire further research into
innovative verification methodologies.
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APPENDIX: ADDITIONAL NORMS OF THE DISCRETIZATION
ERROR

In Chapter 4, the solution-discretization error is measured using the L* norm of the dis-
cretization error |les]|.. (3.10). In this appendix, we measure the L' and L? norms of the
discretization error.

A.l. The Electric-Field Integral Equation

In Figure 4-5, the discretization error for the EFIE cases is measured in the L* norm.
In Figure A-1, we measure the discretization error in the L' norm, and, in Figure A-2,
we measure the discretization error in the L? norm. As with the cases in Figure 4-5, the
convergence rates are all O(h?) as expected.

A.2. The Magnetic-Field Integral Equation

In Figure 4-12, the discretization error for the MFIE cases is measured in the L* norm.
In Figure A-3, we measure the discretization error in the L! norm, and, in Figure A-4,
we measure the discretization error in the L? norm. As with the cases in Figure 4-12, the
convergence rates are all O(h?) as expected.

A.3. The Combined-Field Integral Equation

In Figure 4-14, the discretization error for the CFIE cases is measured in the L*> norm. In
Figure A-5, we measure the discretization error in the L' and L? norms. As with the cases
in Figure 4-14, the convergence rates are all O(h?) as expected.
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