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Abstract

Process variations within Field Programmable Gate Arrays (FPGAs) provide a rich
source of entropy, making them well-suited for the implementation of Physical Un-
clonable Functions (PUFs). This dissertation presents three studies on FPGA-based
PUFs. First, we explore a ring-oscillator (RO) PUF that leverages localized entropy
from individual look-up table (LUT) primitives, analyzing design bias. Next, we in-
vestigate delay variations that occur through the routing network and switch matrices
of FPGAs using a feature of Xilinx called dynamic partial reconfiguration (DPR).
Finally, we evaluate entropy across FPGAs from Xilinx, Altera, and Microsemi using
the Shift-Register Reconvergent-Fanout (SiRF) PUF architecture to compare path
delay variations and PUF-generated bitstrings. Collectively, these studies provide
insights into designing PUF architectures that maximizes entropy levels suitable for

cryptographic applications.
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Chapter 1

Introduction

A physical unclonable function (PUF) is hardware security primitive that is able to
generate one or more unique digital bitstrings for security functions such as encryp-
tion and authentication within a device. Key storage utilizing secure non-volatile
memory (NVM) can be replaced by a PUF, which reduces overall system cost. PUFs
accept a challenge and produce a response, e.g., an encryption key, that can be re-
produced at any point during system operation and under adverse environmental

conditions.

The security properties of a PUF architecture are closely tied to the physical
layer components that define its source of entropy, i.e., the layout characteristics
of the circuit structure from which random variations are measured, digitized, and
processed into bitstrings. Although many different types of integrated circuits can
by used as the platform for a PUF, the FPGA is a popular choice because it allows
prototypes to be created and validated quickly while providing layout-level control
over the design of the PUF’s circuit structures. Moreover, advanced FPGA features
such as dynamic partial reconfiguration (DPR) can be leveraged to impede adver-

sarial reverse engineering attacks by making physical layer components of the PUF
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architecture unavailable in operational systems.

PUFs leverage entropy or random variations that occur unavoidably in the fab-
rication processes associated with modern microelectronic device manufacturing.
Physical layer variations which occur in transistor gate, source and drain geometries,
in contact and via resistances, in the widths of wires, and in transistor threshold
voltages, manifest as variations in the electrical parameters of the transistors and
gates which implement a digital circuit. The most important, and most significantly
affected, are parameters that impact the delay of signals propagating through circuit
netlists that implement digital functions. Given this rich source of entropy, many
types of PUF architectures have been proposed that leverage delay variations as the

primary source of entropy available for key and authentication bitstring generation.

This dissertation explores these key aspects of PUF design across three studies
discussed in three separate chapter. Chapter 2 introduces the SR-PUF, a small,
localized PUF architecture that utilizes LUTs within FPGAs as a source of entropy.
Chapter 3 investigates delay variations that occur through the routing network and
switch matrices of FPGAs. Finally, Chapter 4 presents a comparison of the statistical
quality of the bitstrings across three different low-cost FPGA-SoC device classes:

Xilinx, Altera, and Microsemi.



Chapter 2

FPGA LUT Bias Analysis

The physical layer entropy exploited by a PUF is defined by its circuit structure
and the extent of the region required for its implementation. PUF architectures
that build arrays of identically designed test structures, e.g., ring-oscillators (ROs),
possess small implementation regions and extract entropy from localized variations in
process parameters. In contrast, PUF architectures that define constituent elements
over larger regions have access to a larger pool of entropy. More importantly, small
circuit structures have greater sensitivity to the adverse effect of bias and require
additional post-processing steps to achieve high statistical quality in the generated

bitstrings.

In this experiment, we propose a small, localized, PUF architecture, called the
SR-PUF, that utilizes 6-input look-up tables (LUTs) within FPGAs as a source of
entropy. The LUTs are configured as shift-registers, enabling, for the first time, an
analysis of path delay variation along individual paths within the LUT. The paths
are measured in a RO configuration, which is designed to enable all common path
components in the RO structure to be removed through a differencing operation.

Therefore, the source of entropy for the SR-PUF is only the component of the RO
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path that passes through the LUT itself. This configuration also enables an analysis
of LUT path-length bias. Calibration methods are proposed that reduce undesirable
sources of bias, including LUT path-length bias, and a statistical analysis is carried

out on the bitstrings generated from 30 copies of a Xilinx FPGA.

The main contributions of this experiment are given as follows:

1. A novel, highly compact ring-oscillator-based PUF architecture is proposed.
2. An analysis of path-length bias that exists within Xilinx LUTs is presented.

3. A calibration method is proposed that significantly reduces LUT path-length

bias, as well as other sources of bias.

2.1 Background

RO-based PUF architectures were first introduced by [@] and later improved in [5].
An RO PUF is characterized as a localized PUF architecture constructed as an array
of identically-designed circuit structures, where each structure consists of an odd
number of inverters connected in a loop configuration. RO PUFs have been studied
extensively over the last two decades. We summarize the current state-of-the-art in

the following.

Reprogrammable RO PUF architectures are proposed in [6], [7] and [8] as a
means of reducing area overhead while increasing access to a wider extent of local-
ized random variations within FPGA constituent elements, e.g., LUTs, wires and
switch boxes. In [G], the authors eliminate routing delay variation, and utilize only
within-LUT delay variation, by creating multiple distinct ROs within the same ring
structure using free LUT inputs as a means of changing SRAM cells that implement

the inverters. The PUF architecture proposed in [7] utilizes dynamic partial recon-
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figuration to reduce area overhead of implementing a single inverter RO architecture.
A set of eight partial bitstreams are used to configure each of the LUTs in a CLB,
one-at-a-time, in an RO configuration. The scheme is expanded further by using
each of the 6 input ports of the LUT in different configurations. In [&], the authors
make use of unused LUT inputs to select different within-LUT paths to implement
each inverter of the RO, again dramatically increasing access to a wider extent of

localized random variations.

The analysis provided in [d] for the bistable ring PUF show that placement and
routing have a dramatic impact on the randomness of the PUF. They found that
only 15.6% of multiple PUF instances on the same FPGA show 0-1 frequency charac-
teristics that are in the acceptable range for a good quality PUF. A variation-aware

strategy for RO placement to improve reliability is proposed in [I10].

A pairing strategy that selects neighboring ROs as a means of dealing with sys-
tematic process variation, i.e., undesirable bias that reduces uniqueness, is proposed
in [I7]. They also propose to add 2-to-1 multiplexers (MUXs) at each stage of the
RO to increase the number of distinct RO paths to 8. A variant of this reconfigurable
PUF is proposed in [12] that expands the number of configurations per RO to 256.
The authors of [I3] propose a third reconfigurable RO that allows for the insertion
and removal of inverters in the RO circuit path. The entropy of the PUF can then
be confined to single inverters instead of the entire RO structure. An XOR-based,
configurable RO PUF is proposed in [14] which replaces the inverter gates with XOR

gates, and allows multiple different circuit paths through the RO circuit structure.

The authors of [[H] and [06] analyze bias in RO PUFs on Altera FPGAs and
show that bias is introduced based on the location of the RO on the die, as well as
which LUT inputs are used and whether non-PUF-related (payload) activities are
occurring. A chip-to-chip performance removal technique is proposed in which the

mean frequency of each RO (computed from a sample population of devices) is used
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to offset the RO frequencies in each device, as a means of improving uniqueness.

The authors of [I7] carried out a large scale RO experiment on 217 Xilinx Artix-7
boards, which uses a three stage RO implemented within each slice. Their analysis
considers within-die systematic variation and design bias, and its impact on random
within-die variations, the latter representing the true source of entropy for RO PUFs.
They conclude that comparisons between ROs that have exactly the same routing is

the only way to generate bitstrings without bias.

A technique to reduce hardware overhead by modulating the frequency of one
RO in relation to another is proposed in [I8]. The authors elaborate on a tech-
nique known as Frequency Offset Architecture that manages the trade-off between

hardware utilization and performance in RO PUF design.

The authors of [19] introduce advancements to RO-based PUFs and RS latch-
based PUFs by incorporating a Temporal Majority Voting scheme, fine and coarse
programmable delay line configurations, and hard macro techniques. These enhance-
ments result in improved performance in terms of reliability, uniqueness and unifor-

mity, an increased number of independent response bits and the creation of area-

efficient PUF designs.

A phase calibration process that shifts the phase of the RO output signal is
proposed in [20]. This method eliminates asynchronous timing measurement error by
conducting repeated measurement cycles, adjusting the delay with each cycle before
comparing counter values to generate an output bit. This leads to improvement in

the stability and accuracy of the RO PUF.

A comparison of the proposed SR-PUF is carried out with an additional set of

closely related compact PUF architectures in the following sections.
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2.2 SR-PUF design

The SR-PUF design is presented in this section. The source of randomness (entropy)
for the SR-PUF is delay variations that occur within the MUX’ing structure of
look-up tables (LUTs). The delay variations are measured by integrating LUTS,
configured as shift-registers, in a ring-oscillator circuit design, as shown in Fig. 2.
Individual paths through the LUTs are selected for measurement using the LUT
inputs in[z]. One path is highlighted in magenta that starts at the Clk input of the
configuration memory bit (CMB) storage element and passes through the internal
MUX’ing structure to the LUT output labeled out. Transitions on the CMB outputs
are created by shifting a pattern of "0101..." through the CMB array. The pulse
generator receives a rising or falling edge on out and generates a clock pulse that

causes another shift of the CMB bitstring, enabling the design to behave as a RO.

SR-PUF T
TTo Cnter

LUT path Q
/I

Pulse generator

From
15 other
SR-PUFs

Figure 2.1: SR-PUF design utilizing the Xilinx Shift-register LUT. One of the 32
paths that represent the source of entropy for the SR-PUF is highlighted in magenta.
The Pulse generator shown on the right is shared among 15 other copies of the SR-
PUF.

A block diagram of the SR-PUF architecture and supporting circuitry is shown
in Fig. 2. The top portion shows a row of 16 LUTs configured as shift-registers
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(labeled SRy through SR;s5), with the shift output ) connected back to its D input
through a 2-to-1 MUX. The shift registers are implemented using the Xilinx library
primitive, SRLC32E [21]. The Ctrl select signal of the two 2-to-1 MUXs (labeled
Data and Clk in Fig. 2 is used to enable the CMB arrays of the 16 LUTs to be
configured with an alternating '0” and "1’ bit pattern. The configuration of the CMB
arrays takes place after the bitstream is loaded and before any RO measurements are
made. A set of states in the state machine implementation of the SR-PUF introduces
an alternating sequence of '0’ and "1’ on CMB__data, which is scanned into the CMB
arrays by toggling the CMB_clk signal.

Macrog
CMB_data E J
= D 0101...01 Q

L"Toaaey

count_out
16 Ot —

RO_enabley 4

|
i
tTo ¢l

macro_sel on ©one-hot enable

=
flag
runtime
531ash 3

Figure 2.2: SRP hard macro containing 16 SR, each with 32 ROs. Pulse generator
circuit is shared across all seven macros in a clock region of the FPGA.

The remaining components complete the cyclic circuit structure of the RO. Inputs
SR_sel and RO _sel, shown on the left side of Fig. 22, select one of the 16 SR, and
one of the CMB bit positions, respectively. The outputs of the SR, drive a 16-to-1
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MUX, which is implemented in two levels within Vivado implementation view using

five 4-to-1 MUXs.

The output of the 16-to-1 MUX drives one of the inputs to a NAND gate. The
other input, labeled RO _enabley for Macrog, serves to enable or disable the RO.
The NAND gate output fans out and drives both inputs of a 2-input XOR gate. One
of the inputs is delayed using a sequence of five buffers as a means of implementing
an edge-to-pulse converter. The pulse generated on the XOR output drives the clock
inputs to the SR, CMB FFs. The rising edge of this pulse shifts the CMB bit pattern
by one position to the right within each SR,.

The components shown along the bottom of Fig. 22 are used to measure the
oscillation frequency of one of the 4096 ROs implemented across the eight macros.
The pulse signals from the macros route through a MUX to the clock input of a
16-bit counter, which records the number of oscillations of the ROs. The timer
block is a 23-bit counter that is used to stop the RO oscillations after a specific,

user-configurable, time interval.

A RO measurement is carried out as follows. The Rst signal is pulsed to clear
the state of the measurement system. The macro_sel, SR__sel and RO__sel signals
are set to select one of the 4096 ROs and a user-specified parameter is placed on the
runtime input signal. The measurement process begins by asserting the Go signal.
The go reg signal is asserted on the next rising edge of the system clock, Clk.
The 23-bit timer output value (which is initially 0) is compared with the runtime
signal and the flag signal asserted if the timer is less than the runtime parameter.
The AND gate output is asserted under these conditions, which enables one of the
RO __enable, signals to a macro, and the 23-bit temer. The RO__enable is asserted
until the timer becomes equal to the runtime value. This ensures that all ROs are
allowed to ring for the same delta-t during the measurement process. The system

clock is configured to run at 100 MHz in our experiments.
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2.2.1 Macro Design and Analysis Strategy

The macro component of the SR-PUF is designed as a pblock, or hard macro, in Xil-
inx Vivado. The eight macros of the SR-PUF design are shown enclosed in magenta
rectangles in Fig. ZZ3. The macro in the lower left corner is synthesized first, and
then the placement and routing information, i.e., coordinates of the LUTs, switches
and wires, are read out using tcl commands and modified to create the remaining
seven vertically offset macros. This ensures that the macros are identically designed,
potentially enabling direct comparisons between ROs at the same locations in each
macro. For example, ROy can be compared with RO g, where RO, ,, . is defined
with x referring to the macro, y to the SR and z to the RO within the SR, i.e.,
macrog, SR,, RO,. An abstraction of the SR-PUF design is shown in Fig. 24 that

illustrates the identically designed versus non-identically designed SR components.

Figure 2.3: Vivado implementation view showing layout of the SR-PUF hard macros.

The design of the SR-PUF actually allows ROs other than those at identical po-
sitions across the macros to be compared. From Fig. P, the path from out through
the pulse generator component to the SR clock input labeled Pulse is common for

all 32 paths within the LUT. Therefore, the delay contribution introduced by this

10
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Figure 2.4: SR-PUF design abstraction for identifying sources of bias.

Table 2.1: SR-PUF Resource Utilization
BEL \ One Macro Eight Macros Measure Unit GPIO Total

LUTs 28 224 143 044 911
FFEs 0 0 40 883 923
MUXF7 2 16 0 0 16

shared path can be eliminated using a differencing operation, e.g, RO o0 - ROpp 1.
Unfortunately, the paths through the LUT are not identically designed, and exhibit
bias as we will show. Therefore, additional post-processing is required to enable

comparisons between RO, within each macro, and SR,.

2.2.2 SR-PUF Area Overhead Analysis and Comparison

The resource utilization reported by Xilinx Vivado for the macro is given in Table
270, The resources used for each macro are given in the second column, while the
third column gives the resources used in all 8 macros of our implementation. The
Measure Unit resources correspond to the components shown along the bottom of
Fig. 2. The column labeled GPIO corresponds to two 32-bit general purpose input-
output (GPIO) registers that are used as an interface to the PS side of the Zynq 7010

11
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CLB, CLB, CLB;3
SliceLL |:| NAND SliceL D BUF, SliceLL D Ato-] MUX
[] BUF, [ ] BUFs [] 4-to-1 MUX
[] BUF, []xor [] 3-t0-1 MUX
D BUF; D 4-to-1 MUX D unused
SliceM |:| SR, SliceMD SRs SliceMD SR,
[ sR, []sRe [] srio
[] SRy [] SR, []srp,
D SR, D SRg D SRy

Figure 2.5: CLB packing strategy of SR-PUF for minimal resource utilization.

device for status, data and control. The resources used within each macro consist of
two 2-to-1 MUXF7s and 28 LUTSs, sixteen for the shift registers, five for the 16-to-1
MUX (implemented in two stages using 4-to-1 MUXs), one for the NAND gate, one
for the XOR gate and five for the XOR buffers.

For the purpose of comparing the SR-PUF with others in the following, we show
an alternative mapping of the SR-PUF components in Fig. 4. Here, we utilize 3
CLBs (24 LUTSs) to implement a set of 384 complete ROs, with MUXs and pulse
generator included. The LUTs labeled BUF, represent the sequence of 5 buffers
driving the XOR gate in the top portion of Fig. 2. The three 4-to-1 MUXs select
one of the shift-register outputs in each SLICEM while the 3-to-1 MUX selects one
of the 4-to-1 MUX outputs for measurement. The remaining LUTs map to the other

components shown in the top portion of Fig. 2.

Table 2 gives implementation details, bitstring uniqueness characteristics and
hardware efficiency values for the SR-PUF and a selected set of previously proposed
compact PUF architectures. The hardware efficiency (HE) metric proposed in [22] is
used in the table for comparing PUF architectures, and is given by Eq. ZZ3. The term
N refers to the number of CLBs, and for the comparision done below, we assume each
CLB contains 8 LUTs. A smaller HE metric corresponds to a more compact PUF

architecture. The z component of Eq. P22 expresses the number of PUF primitives,

12
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e.g., ROs, within each CLB, while C' describes how combinations of ROs expand into
the number of bits that all CLBs are capable of producing. It follows that larger

values for z and C are desirable.

C = Nx(N-1) (2.1)
2
Rbit =z x(C (22)
N
HE = 2.3
Rt (23)

The PUFs proposed by [23], [24], [25], [26], [I1] and [5] are RO-based, while [27]
and [28] propose cross-coupled PUF primitives. For the cross-coupled primitives, the
value of C' in Eq. 22 is 1 because the PUF cell self-evaluates to a binary value upon

excitation.

The Hardware Efficiency row in Table 222 gives the HE values with N set to 3
to enable direct comparisons with the SR-PUF alternative mapping strategy shown
in Fig. 23, which uses three CLBs. The SR-PUF and Transformer PUF possess
the smallest HE values, and therefore, represent the most hardware efficient PUF

architectures.

Table 2.2: Implementation characteristics of compact PUF architectures.

This . L _ . _ . i .
Work 2 [z2] [za] [25] [2%] (28] (1) (5]
Year 2023 2022 2021 2020 2017 2017 2016 2011 2007
PUF SR R?0 DD Single former  Pico RRO CRO RO
Slice RO
Devi Zynq  Spartan  Artix Artix Artix Artix  Spartan Spartan Virtex
evIee 1 7010 6 7 7 7 7 6 3E 4
U?l:‘s““ 50.19% 49.96% 49.48%  48.05%  49.44%  49.90% 49.97% 47.31% 46.15%
Hardware
Efficiency | 0.016  0.25 0.75 0.5 0.016 0.75 0.25 0.125 1
(N=3)
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2.3 RO Count Data Post-Processing Methods

The average RO counts (ROC) measured from the 32 ROs in SRy and SR;, and
from 30 FPGAs, are shown in Fig. 2Z8. The ROs are numbered 0 to 63 along the
x-axis (note: the group identified as 32 to 63 actually correspond to ROs 0 to 31
within SR;). The averages are computed from a set of sixteen samples, i.e., each
RO is measured repeatedly and the mean RO count is computed and plotted. All

samples fell within the 3 * ¢ bounds.

The ROs were configured to run for 5.12 psec (running for longer periods of time
did not increase the resolution of the intrinsic entropy in the path delays because
the noise component also increased, effectively maintaining the signal-to-noise ratio).
The average RO count across all 4096 ROs and all FPGAs is 1862, which gives an
average frequency of oscillation of 364 MHz. All measurements were made at room

temperature.

Chip Performance Bias and Design Bias
SR,

Counts

=10

" Chip#
Figure 2.6: Raw RO Counts for the 32 ROs in SRy and SR; across all FPGAs.

The differences in the RO counts observed in Fig. P& are introduced by the
following five sources of variation: chip-to-chip and across-chip process variation,

design bias, LUT path-length bias, within-die variation and noise. Noise is reduced

14
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significantly using the average of 16 samples, as described above, which was confirmed
using several re-runs of the entire experiment. Chip-to-chip and across-chip process
variations and variations introduced by design bias are significant, e.g., RO counts
for RO vary over the range of 1550 to 2400 across the 30 chips. As we will
discuss, LUT path-length bias is much smaller but has a significant impact on the
randomness statistical quality of the SR-PUF bitstrings. The remaining source of

variation, namely, within-die, represents the main source of entropy for the SR-PUF'.

The goal of the data post-processing operations is to significantly reduce, ideally
eliminate, the undesirable sources of bias, namely, chip-to-chip and across-chip pro-
cess variations, and variations introduced by non-identically designed (design bias)

components and LUT path-length bias.

2.3.1 LUT Path-Length Bias Analysis

Before describing the data post-processing operations used for PUF bitstring gen-
eration, we first analyze LUT path-length bias. The contribution to the RO count
values from chip-to-chip process variations and design bias are removed using Egs.
22 through 270. These equations perform two linear transformations. The first one
standardizes the RO counts using the mean and standard deviation of a group of
ROs while the second one reverses the process using two fixed parameters, up,.; and
0Bref- The RO groups are defined as the 32 ROs within each shift-register. The
notation described earlier, RO, , ., is expanded here to include a FPGA number, c,
ie., RO.yy .. Each FPGA has 8 macros = 16 SRs/macro so the transformation is

carried out separately 128 times on each of the RO groups.

32
Z ROc,x,y,z

z=1
u = 2.4
Bexy 32 ( )
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32
Z (ROc,x,y,z —uBG, T, y)2
z=1
UBc,x7y = 31 (25)
ROC(E z — UB¢z
ZBery: = (BO:cay: — UBeay) (2.6)
UBc,x,y
ROCBc,m,y,z = ZBc,m,y,z * OBref + UBref (27)

The first transformation significantly reduces chip-to-chip and across-chip per-
formance differences and variations introduced by design bias but preserves LUT
path-length bias and within-die variations. The second transformation scales all RO
counts to a zero mean and a fixed range, which normalizes the performance differ-
ences across all FPGAs and shift-registers to the average value of the population.
The values used for up,.; and op,.s are 0.0 and 20.9, with the latter representing
the average range of variations in the RO counts across all shift-registers and FPGAs

before the transformations are applied.

10
zo \
10

Chip #0007

Count

RO#

Figure 2.7: LUT path-length bias for the 32 ROs in each shift-register averaged
across all macros and shift-registers in each FPGA (Chip #).

The bar graphs in Figs. 277 and 228 portray the average LUT path-length bias for
each of the 32 ROs. Fig. 220 plots the results for each FPGA while Fig. shows the
results averaged across all FPGAs. The differences in the bar heights suggests that a
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Figure 2.8: LUT path-length bias for the 32 ROs in each shift-register averaged
across all FPGAs, macros and shift-registers.

symmetric MUXing scheme as shown in Fig. Z11is not used within the Xilinx 6-input
LUT. The ROs in the first half of the LUT are slower, on average, than those in the
second half, with the exception of RO3;. Each increment of the RO count on the y-
axis corresponds to approximately 1.45 ps. Therefore, from Fig. 28, the variation in
delay due to LUT path-length bias varies from -14.5 to 7.4 in RO counts, and between
-21.0 to 10.8 ps in actual delay. Given that within-die variations are approximately
+6 RO counts on average (as we will show), this represents a significant bias that

needs to be removed in order to generate high quality bitstrings.

2.4 PUF Application Results

The linear transformations required to reduce three of the sources of undesirable vari-
ations, namely, chip-to-chip process variations, and variations introduced by design
and LUT path-length bias, are given in Eqs. 28 through ZZT1. Note that across-
chip process variations are not addressed by these transformations. Here, the groups
of ROs included in each transformation operation are the identically-designed ROs

across the eight macros. Therefore, 512 separate transformations are performed for
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each FPGA. The values used for up,.; and op,.y are 0.0 and 46.3, with the latter
representing the average range of variations in the RO counts across all RO groups

and FPGAs before the transformations are applied.

8
Z ROc,x,y,z

r=1
uPc,y,z = T (28)

OPcy,» = = (29>

(ROc,x,y,z - uPc,y,z)

OPc,y,z

(2.10)

ZPc,w,y,z =

ROCPc,x,y,z = ZPc,x,y,z * Oref + Uref (211)

The primary component of the variation that remains after these transformations
is within-die variations, which represent the best source of entropy for the SR-PUF.
The bar graph in Fig. 229 depicts the RO counts for the same ROs and in the format
as shown in Fig. 28 to illustrate the effect of the transformations. The distribution
appears to be random with no obvious signs of bias. The range of variation is
approximately +14, which translates to £21 ps of delay variation, using 1.45 ps per

RO count in the conversion.

The mean delay and range computed across all 4096 ROs for each chip are plotted
in Fig. 2Z10. The mean values are relatively constant at approximately + 3.0 ps,
while the range varies from approximately + 10 to + 20 ps. This indicates that
within-die variations vary over a range of 2X in the sample of FPGAs used in our
analysis. The data calibrated as shown in Fig. P11 is used in the bitstring generation

algorithm described in the next section.
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Within-Die Variations Only

SR,

ROC Count
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T

Figure 2.9: Within-die variation in RO counts for the 32 ROs in SRy and SR, across
all FPGAs.

20 + range (30)
15W\N\/\/\/\/
10

5 + mean

NI e i R
P T T D
-5

- mean

-10
-15 /WV\/\/\/\/\
-20 - range (36)

T _5 10 15 20 25 _30]
Chip #

LUT path delay variations (ps)

Figure 2.10: Average mean and range of within-die variation in RO counts of all ROs
in each of the FPGAs.

2.4.1 Bitstring Generation Algorithm

The proposed bitstring generation algorithm avoids bit flip errors using a thresholding
technique, in contrast to applying error correction techniques. A subset of the RO
calibrated differences (ROCD) are plotted along the x-axis for FPGA; in Fig. 211
as an illustration. Two symmetrical thresholds at +2 are highlighted and the region
between them is labeled weak. ROs that generate values in this region are close to

the bit-flip line at 0, and are excluded by recording a bit value of 0 in the helper data
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bitstring for these ROs during enrollment (not shown). Strong bits, on the other
hand, are represented by RO count values falling above the upper threshold or below
the lower threshold, and are assigned a bit value of 1 in the helper data bitstring.
The outputs from the enrollment operation are the strong bitstring and the helper
data bitstring. Bits in the strong bitstring are assigned 0 (1) if they are less (greater)
than 0 and below (above) the lower (upper) threshold.

a 15 strong bit region
Q .. Bit=1
3110
& .
:,’ 5
& ‘z
A 0 el
B| 5 . A
S ‘e . .
£ [-10 Thresholds
g _15| strong bit region Bit=0
~
1 30 60 90 120 150 ]
RO pairing #

Figure 2.11: Illustration of the SR-PUF bitstring generation, which utilizes two
thresholds of +2 to avoid bit-flip errors.

Although the ROC Count values shown in Fig. 29 and the ROCD in Fig. 211
appear to be random, there still exists small levels of bias that was not removed by
the calibration process described earlier. The left-over bias restricts the elements

that can be paired in the bitstring generation algorithm.

Bitstring generation during enrollment is carried out by applying the following

operations to the ROC Count values.

e Create 2048 ROCD by subtracting pairs of unique RO values from the set of
4096.

e Apply the thresholding technique to the ROCD to select bits classified as
strong, to create a strong bitstring or BSg, while simultaneously generating

the helper data bitstring, BSgp.
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The bias that remains is not apparent in the BSg that is generated. However, the
"Runs’ test in the NIST statistical test suite fails if pairings are selected randomly
from the original set of 4096 RO count values (to create the differences). One of
the pairing strategies that succeeds in producing high quality random bitstrings is
to select the pairing using adjacent ROs in the array, e.g., RO 00 and ROq 1. The
results given below utilize this pairing strategy. Alternative strategies that also

succeed are discussed below.

2.4.2 Experimental Results

Inter-chip hamming distance has emerged as a standard for evaluating uniqueness
of the bitstrings generated by the set of FPGAs. The ideal value is 0.5, which
indicates that half of the bits in the pairing of two bitstrings from different FPGAs
are different (and half are the same). Eq. B4 gives the expression for computing
hamming distance, where bs; represents the entire bitstring from FPGA; while bs; j
refers to individual bits k. The bits k that are compared are those that are classified
as strong in both bitstrings, i.e., those corresponding to the same RO pairings. The
strong bit selection and same RO pairing condition used in the Hamming distance
calculation reduces the number of bits that are compared from the original length of

2048. The min(|bs,|, |bs;|) refers to this smaller number of comparisons.

min(|bs;|,|bs;])
Z bSi,k @ bsj,k

InterChipHD, ; = —= -
nteroniphib; ; min(|bs;|, |bs;]) | |

The results are shown in Fig. 212 for the adjacent pairing strategy. Bitstring Size
652 refers to the smallest number of strong bits in the bitstrings from all FPGAs.
The number of strong bits for each of the FPGAs is plotted in Fig. 2213, which shows
the smallest sized strong bitstring is associated with FPGA number 26. The average

number of bits used in each of the HD calculations subject to the same RO pairing
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condition referenced above is 161. The interchip HD values for all combinations of
30 FPGAs, e.g., 30%29/2 = 435, are plotted as a histogram. The mean of 50.19 is

very close to the ideal value.

InterChip Hamming Distance
"I Bitstring || Mean = 50.19
Size Std =4.09
652

10

Counts

r T T T T 1
0.0 02 0.4 06 0.8 1.0

Hamming Distance

Figure 2.12: Inter-chip HD distribution using RO pairing strategy that uses adjacent
ROs in the differencing operation.

1300
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Figure 2.13: Strong bitstring sizes after thresholding for the 30 FPGAs using adjacent
ROs in the differencing operation.

The results obtained by applying the NIST statistical test suite to the 30 FPGA
bitstrings of size 652 bits are given in Fig. EZT4. NIST requires all bitstrings to be
the same size, so bitstrings longer than 652 bits are truncated. The limited size of

the bitstrings allowed only five of the NIST tests to be applied. A test is considered
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passed when at least 28 of the 30 FPGA bitstrings pass the test. All NIST tests are
passed, with all bitstrings passing every test, except for the LongestRun test, where

one FPGA failed. These results indicate that the bitstrings are random and high

quality.
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Figure 2.14: NIST statistical test results for 30 FPGAs. Bitstring size is 652 bits,
restricting the number of applicable NIST tests to the five shown.

A second pairing strategy that succeeds in passing all NIST tests is to pair ver-
tically adjacent ROs in the array, e.g., use ROyoo and RO as a pair in the
differencing operation. Moreover, the combined bitstrings defined using both adja-
cent pairing strategies also pass all NIST tests and produce a mean InterChipH D
value of 50.14 %. Other non-adjacent pairing strategies fail at least one of the NIST
statistical tests, in particular the Runs test. Failing a NIST test indicates that fewer
than 28 FPGA bitstreams produce a test statistic larger than the required o value,
0.01.

These results suggest the following conclusions related to the design and perfor-

mance of the SR-PUF architecture:

1. Calibration that reduces LUT path-length bias, as well as chip-to-chip process

variation and design bias, is required for obtaining high quality bitstrings with
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good statistical properties.

2. Across-chip bias is not addressed using the proposed calibration method, result-
ing in non-random artifacts occurring in the bitstrings created using arbitrary

pairing strategies.

3. PUF architectures that leverage localized sources of entropy require additional
processing steps, in contrast to PUF architectures that derive entropy over a
larger region of the device where localized bias effects are less dominant because

of the averaging effect.
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FPGA Interconnect and Switch

Matrices Analysis

The physical layout components of a FPGA device consist of look-up tables (LUTS),
flip-flops (FFs), switch matrices (SMs) and wires, plus sets of commonly used com-
ponents including block RAMs, digital-signal-processing (DSP) blocks and digital
clock managers (DCMs). The performance characteristics of these components are
impacted by imperfections in the device manufacturing process. Processing varia-
tions affect each device differently, making, e.g., the propagation delay along the
same routes in different chips distinct. The random and unique nature of process
variation effects represent the cornerstone of PUF technology. This paper focuses on
the analysis of variation in constituent elements of the FPGA, namely, the SMs and

wires.

The experimental evaluation carried out in this work is performed on device
instances of the Xilinx Zynq system-on-chip (SoC) 7010 architecture. This specific
device is chosen because we have access to 34 copies which enables a statistical

analysis. Additionally, Xilinx uses the same LUT and SM footprints across most,
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if not all, of the 7-series devices, making the analysis presented here relevant to
this family of devices. The Zynq 7010 consists of a processor system (PS) and
programmable logic (PL) region. In the PL component, the SMs are responsible
for configuring routes and for implementing fan out connections of input wires to
multiple out-going wires. The implementation details of the SMs are not provided to
end users because they are considered proprietary. However, low-level routing tools
allow routes through SMs to be manipulated. In an initial set of experiments, called
Hand-Crafted, we use routing commands to re-route signals through SMs as a means
of extending a set of reference routes, called BaseRoutes, to include additional wires
and SMs, called RouteFExts. A second larger Tool-Crafted design is created in which
the Vivado place&route tool is used to create the BaseRoutes and RouteExts, as an

alternative to the hand-crafted routes of the first design.

The delay of the RouteExts are extracted and isolated by subtracting out the
BaseRoute delay. DPR is used as a means of eliminating artifacts introduced by
MUXs (LUTs) in the delays of the RouteExts by fixing all LUT positions in the
DPR bitstreams to the same locations. The RouteExts in the hand-crafted design are
constructed to include different types of routing resources, including single, double,
quad and long lines. Delay measurements are made using an on-chip, high resolution
timing engine, which provides a resolution of ~ 18 picoseconds (ps). Multiple sample

averaging is used to increase resolution even further.

Delay measurements are carried out on the RouteExts instantiated on a set of
identically configured Zynq 7010 devices, and a statistical analysis of delay variation
is presented. Our goal is to measure and isolate the contribution of SMs and routing
wires to the entropy leveraged by a delay-based PUF. This work, in conjunction with
our previous research on LUT entropy [29], will facilitate the construction of PUF
architectures that maximize entropy, i.e., correct-by-construction. The following

contributions characterize the technique and results presented in this paper.
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A dynamic partial reconfiguration technique is applied to measure and isolate

the delays associated with wires and SMs in the programmable logic of a set

of FPGAs.

e Wire and SM configurations are constructed using different routing resource

types to assess the impact of wire length on the level of entropy.

e A series of data post-processing operations are proposed as a means of extract-
ing only within-die delay variations, which represent the most robust random

source of variations for a PUF.

e An estimate of within-die variations is derived for a wire-SM combination, and
an analysis of the bitstrings derived using only wire-SM delay variations is

presented to determine their statistical properties.

The remainder of this paper presents related work in Section B, while Section
B2 describes the system architecture, tool flow and data post-processing algorithms
for the Hand-Crafted and Tool-Crafted designs. Section B33 presents the results from

the two experiments and Section B4 presents conclusions.

3.1 Background

In [30], the authors use dynamic reconfiguration to enable fine control over delays
in experiments which use a time-to-digital converter (TDC) by manipulating route
options through SMs. A fine resolution delay tuning method to improve linearity in
TDCs is proposed in [31]. The authors introduce additional capacitive loads, as fan

out branches, to nets passing through SMs.

A path delay timing method is proposed in [32] that constructs nearly identical

path structures and uses differencing to obtain the delay of the changed segment.
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The goal of the work was to accurately measure the impact of extending paths using
additional routing resources (similar to the work proposed here). However, dynamic
partial reconfiguration was not used to create the path length extensions, resulting in
additional artifacts introduced by changing pin locations in the static portion of the
path. Moreover, the authors provide very little data on within-die and across-chip

variations.

A RO-based differential delay characterization method is proposed in [33] for
application to variation aware design (VAD) methodologies. Multiple ROs are con-
structed with overlapping path segment components and a set of equations are solved
to deduce the path segment delays. A RO construction technique allowed statistical
delay characterization of individual LUTs and direct, double and hex path segment

delays.

Tuan et. al [34] investigate within-die variation in 65-nm FPGAs using a unique
RO structure composed of non-inverting buffers and self-timed reset latches. The
measured within-die variations are decomposed into random and systematic com-
ponents. The analysis and techniques can be used to improve performance of de-
vices using a location-aware timing model. More recently, the authors of [35] use
soft-macro sensors to characterize within-die and die-to-die variation for creating
device-signature variability maps. They too decompose variability into random and
systematic components, and expand the analysis to include different FPGA resources

and across temperature-voltage operating conditions.

The authors of [B6] propose a finely tunable programmable delay line (PDL)
mechanism with high precision and low overhead using a single LUT. A PDL-based
symmetric switch method is applied to an arbiter-based PUF to correct delay dis-
crepancies caused by FPGA routing asymmetries. By applying majority voting and
categorization of challenges into reliability groups, they show that PUF response

stability can be increased across adverse environmental conditions.
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In [37], the authors utilize two distinct manual placement and routing approaches
to enhance precision of FPGA-based TDCs. In the first approach, uniform routing
paths and controlled delay elements are used while the second approach enhances
the first by introducing a combination of long and short routing wires. Notably, the

second approach achieved better dynamic range and resolution.

A comprehensive overview of how measurements can be conducted on FPGAs
to characterize within-die delay variability is proposed in [88]. The authors propose
precise measurement techniques to analyze both systematic and stochastic delay
variability in FPGAs by employing an array of ring oscillators and critical path
tests on various 90nm FPGA devices. This approach enabled them to quantify the

variability and analyze its impact on future FPGA technologies.

A Programmable Ring Oscillator PUF (PRO PUF) is introduced in [39], which
utilizes dynamic partial reconfiguration to generate bitstrings by manipulating switch
matrices within its architecture. The architecture is divided into static and dynamic
areas, with the latter being modifiable during operation, specifically altering signal
transmission paths in the switch matrix without affecting other structural compo-
nents. Bitstring generation and the selection of different transmission paths through
the switch matrix are controlled by challenge, with each unique path corresponding
to a specific external configuration file, enabling the generation of a wide array of

challenge response pairs (CRPs).

The technique proposed in this paper shares similarities with [39], particularly
as it relates to the application of DPR and the utilization of static and dynamic
regions. However, the approach proposed in [39] explores routing networks within
the DPR region but does not explicitly remove variations introduced by the LUT
architecture. Additionally, rather than using a challenge to specify each configura-
tion, our approach applies only two partial bitstreams, which fix the LUT positions

in both designs. The delays measured using the BaseRoute and RouteExt partial
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Figure 3.1: Block diagram of the test architecture for the Hand-Crafted experiments
showing the Programmable Logic and Processor System partitions on a Xilinx Zynq
7010 SoC. The static region is shown on the left, which includes the path delay timing
engine. Two dynamic partial reconfiguration instances of the routing architecture are
shown on the right. It should be noted that only one of these designs is instantiated
at any given instance in time. They are shown side-by-side to make it easy to see the
routing differences. The differencing technique captures delay variations only in the
white-highlighted regions, and removes the delay contribution of wires and LUTSs in
the cyan-highlighted regions through common-mode rejection.

bitstreams enables, through differencing, only variations introduced by the routing

wires and switch matrices to contribute to the entropy of generated bitstrings.

3.2 System Architecture

A block diagram showing the system architecture implemented on the Xilinx Zynq
7010 device is given in Fig. Bl. The PL component shown along the top consists of
two regions; a static region (SR) on the left and a dynamic partial reconfiguration
(DPR) region on the right. The SR region incorporates a set of state machines and

a time-to-digital converter (TDC), as well as a register interface, labeled GPIO for
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general purpose input/output, to the processor system component of the SoC. The
Controller and TDC are capable of measuring path delays at a resolution of ~ 18 ps
in single-shot mode, and up to a total path length of ~ 25 nanoseconds [40]. In our
experiments, the paths are measured 16 times and averaged to reduce measurement

noise in the single-shot measurements.

Two experimental designs are evaluated in this paper. In both designs, a set
of BaseRoutes and RouteExts are created. The implementation layouts of the
BaseRoute and RouteExts are identical everywhere except for the wires and SMs
used for the route(s) between the source and destination LUTs. The BaseRoutes
and RouteExts in the first design are hand-crafted to allow a wide variety of routing
resources to be utilized in the RouteExt designs, e.g., single, double, quad and long
lines. The BaseRoutes and RouteExts are implemented in a set of 67 partial bit-
streams, one-at-a-time. The second design utilizes only one BaseRoute DPR region
and one RouteExt DPR region, and includes a set of 8192 distinct paths, composed
of series-connected RouteExts, that can be configured and tested using an input
challenge. The first design is referred to as Hand-Crafted, while the second one is

referred to as Tool-Crafted.

As an example, the right side of Fig. Bl shows the DPR regions for the BaseRoute
(top) and RouteExt (bottom) from a Hand-Crafted experiment. P&R constraints
are used in the Xilinx Vivado CAD tool flow to construct both implementations,
which fix the positions of the wires, SMs and LUTs. The regions enclosed by the
rectangles show routing components that are locked down and remain static in both
DPR bitstreams. The route is modified only in the region circled on the right. The
base route passes directly through the SM while the route extension extends the

route to other wire and SM components.

The testing process first programs the DPR region with the BaseRoute DPR bit-
stream and measures the delay. The FPGA is then reprogrammed with the Route-
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Figure 3.2: Block diagram of the reconvergent-fanout module (RFM).

Ext DPR bitstream and the path is re-measured. The delay of the wires and SMs
that define the route extension is obtained by subtracting the BaseRoute delay from
the RouteExt delay, which removes all common-mode components of the path de-
lay. In many cases, the RouteExt design from the previous experiment is used as the

BaseRoute for the next design, extending the route further in successive experiments.

The second, tool-generated, design utilizes two stacked modules from the SiRF
PUF called the reconvergent-fanout module (RFM) [1]. A block diagram of the
RFM is shown in Fig. BZ2. The module consists of two rows of 4-to-1 MUXs separated
by AND, OR and AND-OR (AO) gates (the experimental design inserts two more
rows identical to those shown). The select inputs to the MUXs are controlled by the
row-path-select (RPS) inputs on the left. The same gate configuration is repeated
across four columns, coly through colz, with the logic gate outputs distributed across
all four columns using rotate input and output, ri, and ro,, wires. Rising and falling
transitions are introduced by a Launch FF shown along the top of the figure, which
fans-out to the logic gate inputs in each of columns. A 16-to-1 MUX, shown along
the bottom of the figure, is used to select a path to be timed by the TDC. The design
with two stacked RFM modules possesses 131,072 distinct paths, of which 8192 are
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S
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Reconvergent-Fanout Modules (RFM)

Figure 3.3: Tool-Crafted Experiment: Implementation views of the static portion
(left), and BaseRoute and RouteExt DPR regions (right). Although difficult to
see, the LUTs (colored orange) are identical in number and position in both of
the DPR regions and only the routing is different. This feature enables the entropy
contribution of only the interconnect and switch matrices to be isolated and analyzed.
The differences in the patterns associated with the green-highlighted interconnect
suggest that the routing tool introduced a large amount of diversity in the two
designs.

testable with rising and falling transitions using 132-bit challenges.

Unlike the Hand-Crafted design, placement constraints are used only to fix the
placement of the LUTs implementing the logic gates and MUXSs, and the Vivado
P&R tool is used to create the routing structure. In order to force the P&R tool to
create different routes in the BaseRoute and RouteExt designs, a timing constraint
is used during the implementation of the BaseRoute which is removed during the
implementation of the RouteExt. The 13 ns timing constraint forces the P&R tool
to construct a routing architecture that minimizes the number of wires and series-
inserted SMs between the fixed LUT inputs and outputs. The LUT input/output
nets in the RouteExt design, on the other hand, almost always utilize a larger number
of wires and SMs, resulting in longer delays. The Vivado implementation views

in Fig. B=3 show the static design of the SiRF PUF timing engine and bitstring
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generation algorithm on the left and BaseRoute and RouteExt DPR regions on the
right.

All experiments are carried out with the clock frequency set to 50 MHz. Clock
frequency has only a very small impact on the analysis of entropy, and only impacts
noise levels. This is true because the technology determines the propagation speed

of the signals along the routes.

3.2.1 FPGA Tool Flow

STEP 1: Synthesize fixed
components of experimental
design, e.g., TDC

|

r ~

J

STEP 2: BaseRoute and RouteExt
created by fixing the positions of
the LUTs and varying the
positions of the SMs and wires

)
(STEP 3: Read synthesized design ]
from step 1, and BaseRoute
design checkpoint (DCP) from
step 2. Create DPR region using
pblock in Vivado, run PNR, lock
static design.

!

STEP 4: Read locked static
design from step 3, and
BaseRoute DCP from step 2. Run
PNR to create final BaseRoute
bitstream.

!

STEP 5: Repeat step 4 for
RouteExt DCP. Note, partials
bitstreams are created as well.

Figure 3.4: Xilinx Vivado tool flow for generating full and partial bitstreams for
Hand-Crafted and Tool-Crafted experiments.

A flowchart of the bitstream generation process is depicted in Fig. B3. The

operations carried out in the five-step process are as follows.
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1. Synthesize the timing engine and other components of the static design.

2. Routing constraints are used to fix SMs and wires for the Hand-Crafted experi-
ment in 67 separate designs, while timing constraints are used to force different

routes from the Vivado PNR tool in the Tool-Crafted experiment.

3. TCL commands are used to create the DPR region, which is represented as a
pblock in Vivado. The locked static design is used to maintain the exact same

layout in all DPR designs created.
4. PNR is run to join the static and DPR designs.

5. The full bitstream is used to program the device, followed by any sequence of

partial bitstreams created by this tool flow.

3.2.2 Delay Post-Processing Algorithm

The data collected from the Hand-Crafted design is used to estimate the level of
within-die variations (entropy) introduced by routing wires and SMs. The data post-
processing algorithm is crafted to achieve this goal and is described in this section
using timing data from a set of 34 Zynq 7010 FPGAs. The algorithm consists of four
steps, and is illustrated in Fig. B3.

1. The programmable logic of the FPGAs is programmed with the full bitstream,
followed by a sequence of partial bitstream programming operations. The tim-
ing engine measures both rising and falling delays of paths implemented within
each of the partial bitstreams. The curves labeled 1) BaseRoute €& RouteEuxt
Raw Delay in Fig. BA show the rising path delays for the base route (black)
and route extensions (blue) measured from the 34 FPGAs (falling delays are
omitted). The acyonyms BR and RF refer to BaseRoute and RouteExtensions,

respectively. We use the term Raw to refer to both sets.
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1) BaseRoute & RouteExt Raw Delay 2) Compensate Raw Delays
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Figure 3.5: Data post-processing algorithm applied to data from the Hand-Crafted
experiments. 1) BaseRoute & RouteFrt Raw Delay: BR (black) and RE (blue) rising
path delays. 2) Compensate Raw Delays: GPEV applied to calibrate the BR and
RE delays to remove global process variations. 3) Subtract BaseRoute delay: BR
rising and falling delays subtracted from RE rising and falling delays. 4) Remouve
DC bias: DC bias removed from the delay values showing only levels of entropy along
the y-axis.

2. The RE and BR delays are calibrated to remove global process variations using
a Global Process and Environmental Variation (GPEV) module. The GPEV
module applies a pair of linear transformations given by Eqs. ?? through ?7.
The mean and standard deviation of the 134 Raw delays from each FPGA
are computed and the Raw delays are standardized using Eqgs. 7?7 and 77. A
second linear transformation using 0.0 and 44.1 for p,.r, and o,y (Eq. ?7?) is
then applied to convert the standardized values back to a form similar to the
original data (44.1 is the mean o across all FPGAs). The same fi,.r and o,.r
are used for all devices in the second transformation, which effectively removes
global performance differences while preserving within-die variations. Although

difficult to observe, the variations in the rising delays across all FPGAs in the
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plot labeled 2) Compensate Raw Delays from Fig. B are smaller than those
from Step 1. We use the symbol 'F’ for FPGA, i’ for FPGA instance, ¢’ for
calibrated and 'r’ for route in these equations. The GPEV calibrated delays
are referred to as BR,. and RE,.

3. The rising and falling path delays from the BaseRoute design are subtracted
from the corresponding rising and falling path delays of the RouteExt designs
in the graph labeled 3) Subtract BaseRoute delay of Fig. BH. We refer to these
delay differences as DVR, and DVF, (DV is an acronym for delay value). The
delays of the DVR, and DVF, vary from 80 picoseconds (ps) to 1.8 nanoseconds

(ns) across all 67 rise and fall delays.

4. The final transformation is shown in 4) Remove DC bias. The DVR, and DVF.
posses a DC bias that exists because the routes are not identically designed.
The process of removing bias is accomplished by computing the mean delay of
each DVR, and DVF, across all FPGAs and then subtracting this offset from
the compensated raw delays. We use the symbol 'R’ here to refer to individual
route extensions and 'x’ for the route extension number. Eq. ?? and 77 gives
expressions for computing the rise and fall compensated raw delays without

bias, annotated as DVR/F_, with "o’ referring to ’offset’.

3.2.3 Tool-Crafted Data Post-Processing

The goal in this Tool-Crafted experiment is to evaluate entropy and uniqueness-
related statistics of bitstrings generated using the delays of only wire and SB com-
ponents in the FPGAs. The sequence of graphs in Fig. B@ show the data post-
processing algorithm applied to the delays collected from one FPGA in this experi-
ment. The data post-processing algorithm is modified with two additional steps over

the process given for the Hand-Crafted experiments. Moreover, the addition of a
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differencing step to create DVD changes the step in which GPEV is applied.
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Figure 3.6: Data post-processing algorithm applied to data from the Tool-Crafted
experiments. 1) Raw BaseRoute & RouteExt: The first 100 raw rising delays (left)
and the first 100 raw falling delays (right). 2) DVR and DVF: BR delays are sub-
tracted from RE delays. 3) DVD: DVR values are randomly paired and subtracted
from DVF values. 4) DV D.: The GPEV calibration process is applied to DVD. 5)
DV D.,: The mean of DV D, is subtracted from each DV D, value. 6) SDV D.,: A
scaling operation is applied to the DV D, values.

1. The Raw DVR and DVF are plotted in the upper left graph, where we show

the first 100 rising delays on the left and the first 100 falling delays on the right,

both from the larger sets of 4096 values in each group. The vertical shift in

the two data sets, with rising delays having smaller overall delays, illustrates a

common process-related characteristic that p-channel (pull-up) devices are not
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well correlated with n-channel (pull-down) devices on the same FPGA. This

pattern varies depending on the FPGA.

2. In contrast to the Hand-Crafted algorithm, the second step involves subtracting
the BaseRoute delays from the RouteExt delays. The first 100 DVR and DVF
are plotted in the 2) DVR and DVF graph.

3. In step 3, the 4096 DVR are randomly paired and subtracted from the 4096
DVF, as a means of doubling the level of entropy in the delay differences
(DVD). Note that additional DVD can be created by other random pairing
and differencing operations applied to the DVR and DVF groups, up to a total

of (4096)? unique combinations.

4. The GPEV operation is applied to the DVD to create DVD,, using Eqs. 77
through ?? with 4096 replacing 134, DVD replacing Raw and 28.0 replacing
44.1 for oyey.

5. Step 5 converts the DVD,. to DVD,, by subtracting the mean DV D, delay
from each of the individual DV D,, using Eq. 77 and ?7?.

6. The operation carried out in Step 6 is optional, and serves only to make the
number of strong bits in the generated bitstrings approximately the same for
each FPGA when a threshold is applied (described below). The scaling opera-
tion computes the average range of the variation in the DVD,, of each FPGA ¢
and multiplies all DVD,, by a ratio that makes the ranges approximately equal
for all devices. The ratios vary between 1.00 and 1.91 and illustrate that the
level of random variations (entropy) in each FPGA is not constant. We refer

to the delays shown in Step 6 as SDVD,, ('S’ for scaled) in the following.
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Figure 3.7: Illustration of the bit-flip avoidance bitstring generation algorithm. The
space between the magenta lines represents the threshold region. Bits that fall out-
side of this region are considered strong bits, while those that fall within are classified
as weak bits.

3.2.4 Bitstring Generation Algorithm

The SDVD,, data shown in Step 6 of Fig. B@ is used as input to the bitstring
generation algorithm. As indicated earlier, the GPEV transformation applied in
Step 4 calibrates for chip-to-chip (global) process variations and delay variations
introduced by adverse environmental conditions. The transformations carried out in
Steps 5 and 6 remove DC bias and scale the remaining within-die variations of each
device to make them similar across chips. All of these transformations are designed
to make it possible to apply a simple bit-flip avoidance algorithm during bitstring
generation that leverages the within-die random variations that remain, and produces

bitstrings nearly equivalent in size.

Bitstring generation is the final step (Step 7) of the proposed data post-processing
algorithm, and is illustrated in Fig. BZ using the first 15 SDVD,, from the Tool-
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Crafted experiment. Here, the data for all 34 devices is superimposed, with the
delays for only the first two device line-connected, and highlighted in red and blue,
to illustrate the randomized behavior of the points above and below zero. The black
points are associated with the remaining 32 devices. The y-axis is given in units
returned by the TDC, where each unit value is equal to 18 ps of delay. The range of
+6 corresponds to +108 ps.

The two horizontal lines represent thresholds that are used to improve reliability,
i.e., points within the region between the threshold are not used during bitstring
generation [d1]. Given the focus of this paper is on the analysis of entropy within
the constituent components of paths in FPGAs, we utilize room temperature only
to analyze entropy and evaluate uniqueness in the generated bitstrings. Moreover,
the bitstrings are generated using only those points above and below the thresholds,
called strong bits, as a means of emulating the actual bitstring generation algorithm.
Points above the upper threshold are assigned a bit value of 1, while those below the

lower threshold are assigned 0.

3.3 Experimental Results

The experimental results for the Hand-Crafted and Tool-Crafted designs are pre-
sented separately in the following sections. As indicated, the analysis for the Hand-
Crafted experiment is focused on determining the level of entropy that wires and
SMs provide for delay-based PUFs implemented on FPGAs. The entropy contribu-
tion introduced by a third constituent element of FPGAs, namely, LUTs, as presented
in [29], is discussed for completeness. The analysis presented for the Tool-Crafted
experiments is focused on entropy and uniqueness statistical characteristics of bit-

strings generated using wires and SMs as the only source of entropy.
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3.3.1 Experimental Results: Hand-Crafted Design

The vertical range of the delays plotted for each Route # in the 4) Remove DC
bias graph of Fig. B portrays within-die variations for each of the hand-crafted
routes. In our analysis, we correlate the width of the vertical ranges, measured
as 3 = o delay variations, with the physical layout characteristics of the routes. In
particular, the number unit-sized wires and SMs are tabulated for each route as the
metric proposed for the physical characteristics. The number of unit-sized wires is
the number of equivalent single wires that define the route. In particular, double

wires count as 2 single wires, quad wires count as 4, while long wires count as 6.

The number of unit-sized wires and SMs are plotted in Fig. B as a stacked
bar graph with the number of SMs shown along the bottom of each bar and the
number of unit-sized wires shown along the top. Two degenerate cases occur for
routes 14 and 66, where the changes between the BaseRoute and RouteExt involve
only "bounces’ within a single switch matrix, i.e., the remaining components of the
route are identical. For route 14, multiple bounces in the RouteExt replace a single
bounce in the BaseRoute, while for route 66, a single bounce replaces a different
single bounce in the same SM. Fig. B9 shows Vivado implementation views for the

BaseRoute and RouteExt SM within the route 66 designs.

The scatter plot shown in Fig. B0 plots the proposed physical characterization
metric of the routes along the x-axis against the measured 3 = ¢ delay variations
along the y-axis. The relationship between unit-size wires and SBs is factored in by
adding a constant of 14.2 to the values in the bar graph for the number of unit-sized
wires. The red points correspond to the rising delay variations while the blue points
correspond to the falling delay variations. A linear regression analysis is performed
on each group of points separately in support of determining the relationship between

levels of entropy and physical characteristics of the wires and SMs. A least-squares

42



Chapter 3. FPGA Interconnect and Switch Matrices Analysis

B Switch Matrix
I Unit-sized wire

35

254

20

15

10+

Number of Wires and SMs

0 10 20 30 40 50 60
Route #

Figure 3.8: Physical characteristics of the Hand-Crafted routes, showing the number
of SMs in the lower portion of the bars and the number of unit-sized wires in the
upper portion. The sum of the SMs and unit-sized wires that make up each bar
graph is strongly correlated with the range of variation shown in Fig. B3, step 4:
Remove DC bias.

estimate (LSE) of the regression line is plotted through both groups of points.

The LSE of the regression line is computed using a python function from the
linear algebra library call lstsq. The numerical values from the bar graph in Fig. B3,
namely the number of unit-size wires and SMs, are used as our model and serve as
input to this function. The function returns two coefficients and a y-intercept, with
the former two values representing the weighted contribution of the wires and SMs,

respectively, to the total measured entropy of the route.

The coefficients generated for the rising delays are 2.06 and 27.75 for wires and
SMs, respectively, while those for the falling delays are 2.17 and 12.35. Here, we
see the main contribution to entropy is due to the SMs, and the contribution by
SMs is more than double for rising delays than it is for falling delays. Moreover, the

close matching of the magnitudes for the wire coefficients support that fact that wire
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Figure 3.9: Vivado implementation view of the BaseRoute SM (left) and RouteExt
SM (right) for Hand-Crafted route 66, showing the only change in the entire route
is a change to the 'bounce’ which occurs within the SM.

variation should be independent of a rising or falling transition. Last, the fact that
both regression lines are nearly superimposed supports our modeling of the variation

as two constituent components of the measured variations.

The 3 * o value at x = 1 in Fig. B0 is approximately 17ps on average, and
represents the delay variation introduced by a single wire-SM combination. For
comparison, the result presented in [29] indicates that the 3 * o (range) of delay
variation associated with the LUT in Zynq 7010 FPGAs is approximately 30 ps.
Therefore, the variation introduced by a wire-SM combination is somewhat smaller

than the variation introduced by a LUT.

3.3.2 Experimental Results: Tool-Crafted Design

The delays measured in the Tool-Crafted experiments is used to generate 128-bit
bitstrings for each of the 34 FPGAs. The bitstrings are subjected to several statistical
tests including inter-chip hamming distance (HD), NIST statistical tests, entropy and

min-entropy tests to evaluate their statistical quality.
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Entropy Analysis of Route and Switch Matrices
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Figure 3.10: Correlation analysis of physical path characteristics against the level of
entropy measured in the path composed of SMs and wires. The Pearson’s correlation
coefficient is 96% for the rise and 89% for the fall.

Inter-chip hamming distance measures the uniqueness of the bitstrings by count-
ing the number of bits that are different in pairings of the bitstrings from different
chips. The ideal value is 50%, which indicates that half of the bits are different in
each pairing. Eq. B4 is used to compute inter-chip hamming distance, with bs; and
bs; representing the size of the bitstrings from FPGAs 7 and j. The number of bits
compared is given by k, which is a subset of the bits in both bitstrings of the pair.
Only strong bits corresponding to the same DV D,, within the two bitstrings of the
pair are considered in the HD calculation, which is given by k. The distribution of
the inter-chip HDs is shown in Fig. 1. The distribution varies from approximately
43% to 56% and possesses a mean value close to ideal at 50.04%.

min(|bs;|,|bs;])

Z bSi’k 6—) ij’k

InterChipHD, ; = —=! :
nterChipHD; ; min(|bs;|, |bs;]) v

The results of the NIST statistical tests applied to the bitstrings of length 128
bits is shown in Fig. BT2. Only six of the NIST tests are applicable given the limited
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Figure 3.11: Distribution of inter-chip hamming distances computed using all possi-
ble pairing of bitstrings from the 34 FPGAs.

size of the bitstrings. All tests are passed with 34 FPGAs passing 5 of the tests and
with 33 FPGAs passing the Runs test. The entropy and min-entropy of the bitstrings
is computed as 0.9957 and 0.9084, respectively. These results indicate the bitstrings
are of cryptographic quality.

Figure 3.12: NIST statistical results for bitstrings of length 128 from the Tool-Crafted
Experiment.

3.4 Conclusions

An analysis of within-die variations (entropy) in the constituent elements of an
FPGA, namely, wires and switch matrices, is presented in this paper. Within-die
variations of these components is isolated by using a feature of FPGAs called dy-
namic partial reconfiguration (DPR) and a set of constraints. The constraints are
used to fix the locations of LUTs and components of the timing engine. Partial

bitstreams are created which vary the routing characteristics of two versions of the
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design, one which instantiates a set of base routes (called the BaseRoute design )
and a second which extends the base routes by adding wires and additional switch

matrices, called the RouteExt design.

The LUTs are fixed to the exact same positions in both designs, allowing compo-
nents of the path delays related only to the route extensions to be isolated through
a delay difference operation. We analyze the RouteExt delays from two sets of ex-
periments, one designed to allow variations in the constituent elements of the path
to be analyzed, called Hand-Crafted, and a second designed to allow an analysis of
the statistical properties of the bitstrings generated using only entropy contributed

by wires and SMs, called Tool-Crafted.

The results show the within-die variations in delay associated with a SM is ap-
proximately 17 ps, in contrast, the delay variations of a LUT, as reported in previous
work, is approximately 30 ps. This enables paths for PUF applications to be con-

structed with levels of entropy that meet target goals.

The results show that the statistical characteristics of the bitstrings generated in
the Tool-Crafted experiments are of high quality, achieving nearly 50% for inter-chip
hamming distance (the ideal value) and passing all applicable NIST statistical tests.

Future work will investigate path construction techniques that optimize entropy
by creating a diverse netlist of SMs, wires and LUTs. PUF architectures constructed
in this fashion will be more robust to adverse environmental conditions and machine

learning attacks.
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PUF-generated Bitstrings
Comparison on Three Device

Classes

In this experiment, we investigate the level of entropy available to the Shlft-register
Reconvergent-Fanout (SiRF) PUF when implemented on three different low-cost
FPGA-SoC device classes, namely, the Zynq 7010 SoC device manufactured by Xil-
inx, the CycloneV SoC device manufactured by Altera and the PolarFire SoC device
manufactured by Microsemi. Propagation delays through logic gates within SiRF’s
engineered netlist are measured using a high resolution time-to-digital converter
(TDC) instantiated in the programmable logic (PL) of each SoC device. Our anal-
ysis isolates delay components introduced by within-die variations by applying data
post-processing methods designed to remove global chip-to-chip and environmentally-
induced variations from the measured path delays. We present results that illustrate
the level of within-die variations using TDC-measured values of the actual delays,
as well as the stability of these delay variations across twenty-five instances of the

devices, and across a range of temperatures from —40°C to 85°C. We refer to the
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delay variations introduced by changes in environmental conditions as temperature-
voltage noise (TV-noise), despite the fact that we did not vary supply voltage in our

experiments.

The SiRF PUF algorithm is used to post-process the TDC-measured delay val-
ues into reproducible bitstrings. Statistical tests are applied to measure the statis-
tical quality of the bitstrings, with assessments performed to determine the level of
uniqueness and reliability, as well as a suite of tests for measuring randomness. The
statistical tests utilize Hamming distance to measure uniqueness and reliability, and
the NIST statistical test suite for evaluating randomness [42]. Entropy and min-
entropy are also reported for completeness. The statistical quality of the generated
bitstrings for each of the device classes are compared to evaluate the impact of the
FPGA fabric primitives, interconnect components and manufacturing technology on
the level of entropy and noise. An entropy(signal)-to-(TV-)noise (SNR) ratio is de-
rived which reflects a critically important overall statistical quality metric for each

of the device classes.

The specific contributions of this work include:

e An analysis of entropy and TV-noise across multiple copies of SoC FPGAs
manufactured by three mainstream manufacturers using the SiRF PUF archi-
tecture, with the entropy source designed nearly identically within the pro-

grammable logic associated with each device class.

e An instantiation of a time-to-digital-converter (TDC) on each of the device
classes for obtaining high-resolution measurements of path delays, and a de-

scription of the implementation challenges and differences.

e A statistical quality assessment of the bitstrings produced by a set of devices
from each device class, a comparison of important statistical quality metrics,

namely uniqueness, reliability and randomness, and the formulation of a SNR
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metric that reflects that overall statistical quality of the PUF-generated bit-

strings.

The remainder of this paper is organized as follows. Section BEZ1 discusses related
work. Section B=2 describes the experimental designs, including differences in the
implementations within each device class. Section E=3 presents experimental results,

while Section B4 presents our conclusions.

4.1 Related Work

The work presented in [43] report RO PUF bitstring statistics for Xilinx, Altera and
Microsemi devices as we do in this paper. However, the work was done on small
numbers of devices fabricated in older technology nodes, in particular, 13 Altera
Cyclone II, 5 Xilinx Spartan 3 and 5 Actel Fusion FPGAs, and across a limited
temperature range of 30 °C to 80 °C. Moreover, the paper does not carry out an
analysis of PUF soft data, e.g., actual RO counts, to determine the ratio of entropy-
to-TV-noise, nor does it provide a full statistical assessment of the bitstrings across

commercial-grade environmental conditions.

A more recent study uses the TERO-PUF on a Xilinx Spartan 6 in 45 nm tech-
nology and an Altera CycloneV in 28 nm [d4]. Although larger sets of devices are
used (30 Spartan 6 and 18 CycloneV devices), the size of the bitstrings analyzed is
very small at 128-bits, and the reliability assessment is carried out over a limited
range between —15 °C to 65 °C and for the Xilinx devices only. To their credit,
the authors did investigate supply voltage variations, which was not possible in our
study because of the large number of board modifications required, but did so only
at room temperature. Last, a tolerance of 10% is used for reliability, which restricts

the results of the analysis to fuzzy-match-based authentication, and not encryption
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keys, unless error correction is used.

An analysis of chip-to-chip, within-die and TV-noise variations in a set of 512
ring-oscillators (ROs) instantiated on 125 Xilinx Spartan 3E FPGAs is presented
in [45]. Although the study is focused on one device class, it presents an analysis
of RO frequency variation, a.k.a. an analysis of RO soft data. The authors of [46]
expand on the analysis performed in [d5] by applying normality and similarity tests,
principle component analysis and entropy estimation to the RO data sets. In [47],
the author investigates an accurate reliability model for PUFs, which assumes error
probabilities are not uniform across all PUF cells, and derives a heterogeneous model

as an alternative to commonly used fixed error rate models.

A soft data-based thresholding scheme is proposed in [48] that utilizes an error
avoidance methodology, similar to the methodology proposed in [d9]. The authors
of [60] describe a signal(entropy)-to-(TV-)noise ratio (SNR) similar to the one ap-
plied empirically in our work, but the analysis is applied to RO and Loop PUFs.
More recently in [51], a simulation-based framework is proposed that estimates the

reliability of response bits, and which can be used to filter unreliable bits.

Unlike previous work, the FPGA-SoCs used in this work possess the same fea-
ture size, which enables a better apples-to-apples comparison. In particular, the
Zynq 7010 is manufactured using TSMC’s 28HPL process [62] [53], the CycloneV
is manufactured on TSMC’s 28LP process [54] and the PolarFire is manufactured
on UMC’s 28 nm SONOS process [65]. The core power supply voltages are 1.0 V,
1.1 V and 1.0 V, respectively. A second important contribution of this work is the
derivation of a entropy (signal)-to-(TV)noise (SNR) ratio for each device class. The
SNR ratio is fundamental to predicting the overall quality of the PUF architecture

and its generated bitstrings, as we will show.
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4.2 System Overview
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Figure 4.1: SiRF block diagram highlighting multiple, simultaneous signal path prop-
agations and an instance of reconvergent-fanout.

In this section, we describe the implementation details of the SiIRF PUF for each
of the three device classes, as well as the differences that exist in the specific logic

gate primitives available in the device technology libraries.

The SiRF PUF architecture is shown as a block level diagram in Fig. B70. The
architecture is modular, constructed as a set of interconnected blocks arranged in
rows and columns. The example architecture shown in the figure, and used in the
experiments on the devices in each of the device classes, is composed of three rows,
rowy through rowsy, and eight columns, coly through col;. The Launch FFs shown
along the top of the figure launch signal transitions into the netlist components
which traverse successive rows of shift-registers, logic gates and MUXes. Two signal

transition paths are illustrated in the figure, which show signals moving from top to
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bottom and left to right. Signal paths can also wrap around either edge of the module
using the rotate inputs ri, and outputs ro,, creating a complex, diverse network of
paths through the module. No place and route constraints are needed or used during
the implementation of the SIRF PUF, except as noted below for the implementation
of the TDCs on the three device architectures.

The netlist is engineered to remain glitch-free, ensuring that exactly one transition
propagates along any given signal path. The glitch-free characteristic of the netlist is
critical to obtaining reliable measurements of path delays, especially when operating
the PUF under extreme environmental conditions. Each row can be configured with
challenge bits to propagate either rising or falling edges, but not both. Therefore, the
entropy associated with both transitions can be combined using a challenge which
controls the transition direction bits (T"DClng|[z]) shown on the left side of the figure
with arbitrary assignments of ’0’ for falling and ’1’ for rising transitions. Glitch-free
operation is guaranteed by forcing all transitions to be either rising or falling within

any given row and by using only non-inverting logic gates within the network.

Other components of the challenge control which path is selected through the
shift-registers, labeled SRChing|z], and which paths through the 4-to-1 MUXes are
selected to drive the next row, labeled MChing[y]. Each module includes a set of
XNOR gates that invert falling transitions that may be generated by the previous
row to ensure that the shift-registers are capable of continuing signal propagation.
From the callout shown along the top of Fig. B, the incoming signals to a module
drive the clock signal of the shift registers, where only rising transitions will cause
the shift registers to shift the bit sequence by one bit position to the right. The shift-
registers are initialized with an alternating sequence of ’0’s and ’1’s, which ensures
any 1-bit shift will create either a rising or falling transition on the output of the

shift-register.

The netlist is also engineered to create a large number of instances of reconvergent
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fanout. The left side of Fig. B illustrates the concept of reconvergent-fanout using
the rotate-in signal ri5. A rising transition propagating from upstream nodes drive
ris, which fans out to the inputs labeled 3 on two of the 4-to-1 MUXSs shown by
the red arrows. Assuming the challenge M Ching, is set such that both of these
inputs are selected, the MUX outputs reconverge on the inputs of the AND gate. If
a rising transition is propagating, then the signal that arrives last along one of the
two branches will dominate the timing on the AND gate output, i.e., the AND gate
output will not switch from low to high until both rising edges have arrived. Given
that proprietary vendor place & route tools create the implementation of the SiRF
netlist without constraints, it is unknown which branch has a physically longer path,
e.g., longer wire lengths, without inspecting the layout. It is also possible that both
branches of the reconvergent-fanout are nearly equal in delay. In either case, there is
uncertainty regarding which path dominates the timing, which complicates model-
building techniques that require physical layer models. Moreover, for the equal delay
case, it may happen that the branch which dominates the timing varies from one

device to another, further increasing the level of uncertainty.

All paths through the nelist eventually emerge and connect to a 32-to-1 MUX
shown along the bottom of Fig. E1. The timing engine state machine logic controls
the path select bits of the 32-to-1 MUX, enabling each of the signal paths to be
directed to a time-to-digital converter (TDC) (discussed below).

4.2.1 Xilinx, Altera and Microsemi Implementation Details

We describe differences in the logic element primitives amongst the three FPGA-SoC
device classes in this section. The TDC utilizes hardwired carry chain primitives,
which have different underlying structures in the programmable fabrics of each device
class. The shift register primitives are also implemented differently. Zynq devices

support a 32-bit shift register primitive while Cyclone and PolarFire, to the best
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of our knowledge, infer shift registers from RTL behavioral descriptions rather than

providing device primitives or hard macros.
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Figure 4.2: Schematic diagrams showing the Major Phase Shift (MPS), Timing, and
Test Path elements of the TDC.

A block diagram of the TDC is shown in Fig. B2, The TDC is composed of
three submodules, called the Major Phase Shift Unit (MPS), the Timing Unit and
the Test Path Unit. The Timing Unit is constructed using hard-wired carry chain
components which makes it possible to measure path delays with a resolution in
the 10’s of picoseconds range. Carry chains are commonly embedded as primitives
in FPGA PL-side architectures to enable CAD tools to optimize timing during the

synthesis of RTL code. Addition and subtraction are very common functional unit
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operations in the control and/or data paths of RTL code and the embedded carry
chains are leveraged to improve their performance. For the TDC, the high speed
propagation capability along the carry chain, and the ability to connect the outputs
of the carry chain buffers to FFs, provides a mechanism to obtain timing resolution
of path delays that are on order of 10X better than what is possible using equivalent

LUT-based resources.

A timing measurement is performed using a launch-capture strategy, where the
system clock (Clk) driving the Launch FFs in Fig. B, and the Launch FF in Fig.
A2, is used to launch a rising transition into the SiRF PUF netlist and MPS Unit
simultaneously. The rising edge propagates through the SiRF PUF netlist to the
32-to-1 MUX and drives the SiRF _path input of the TDC, while the MPS Unit edge
propagates along the delay chain to a selected tap point. The simultaneous launching
of both signals creates a race condition, with the signal propagating through the MPS
Unit serving as a stop_ clk signal that halts the race. The relative delays of both
signals determines how far the rising edge SiRF _path signal propagates along the
carry chain before the MPS Unit signal asserts the clock inputs to the Timing Unit
FFs. After the stop clock event, the Timing Unit FFs store a thermometer code, i.e.,
a sequence of 1’s followed by a sequence of 0’s. The number of 0’s in the thermometer
code (TC) represents a digital delay value (DV) for the tested path, which is then
stored by the SiRF PUF algorithm in a block RAM (BRAM).

The MPS Unit incorporates a MUXing structure to enable the selection of a tap
point. During testing of a path, a state machine repeats the launch-capture test with
incrementally larger tap point selections, where each increment increases the delay
of the stop clk signal, until a valid TC, i.e., one with a non-zero number of 1’s, is
produced. Therefore, the actual delay of the tested path is the sum of the TC and
the selected tap point delay. To determine the delays corresponding to the set of tap

points (64 tap points are shown in Fig. B2), a calibration operation is carried out
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prior to any SiRF netlist testing operations. Calibration utilizes the Test Path Unit
to configure test paths of various lengths, which are used as the test path signal to
the Timing Unit, instead of the SiRF path signal input. A sequence of calibration
tests are performed using test paths of different lengths to enable an accurate average
delay value to be computed for each tap point. The final DV stored in the BRAM
is the sum of a valid TC and the calibration-derived delay of the selected tap point.

Details of the calibration process are omitted here but can be found in [66].
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Figure 4.3: Zynq 7010 LUT configuration that implements the initial portion of
TDC [ii].

As mentioned, the carry chain component is very common in FPGA PL-side
architectures, and is used in the configuration of the TDCs in all three of the FPGA
device classes. The layout details differ from one device class to another, but nearly

the same level of resolution is achievable.

The Zynq 7 series device class provides a CARRY4 primitive (upgraded to a
CARRYS for UltraScale+ architectures) for implementing fast carry chains. The
TDC in the Zynq 7010 device is configured to use 32 copies of the CARRY4 block
connected in series, to define a carry chain of length 128. The first copy of the
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CARRY4 chain is shown in Fig. BZ3, where the path-under-test (PUT) drives the
CYINIT input of the topmost CARRY4. A set of thermometer code FFs within the
SLICE are connected to the CO (carry-out) outputs of the CARRY4, and the carry-
out[3] signal is routed to the carry-in of the next CARRY4 block. The stop_clk
signal is derived from a global clock buffer, which drives the clock inputs of the

thermometer code (TC) FFEs.
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Figure 4.4: CycloneV ALM configuration that implements the initial portion of TDC

2].

A carry chain is instantiated in the CycloneV devices using the cyclonev_lcell _combjj
library component, as shown in Fig. B (thanks goes to [57] for the solution). A
sequence of Altera FPGA adaptive logic modules (ALMs) are shown, which define
the first two elements of the TDC. The top-most ALM is used to introduce the PUT
edge into the carry chain. Unlike the Zynq device, TC FFs are connected to the
SUM__OUT outputs of the LCELL primitive within the same ALM. The carry chain
is constructed with 256 elements, in contrast to the Zynq implementation, which
contains 128 elements. The carry chain length only impacts the speed of TDC cal-
ibration process, and does not effect the timing resolution of the TDC. Therefore,
differences in the length of the TDC are inconsequential to the analysis presented

herein.
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3].

PolarFire defines an ARI1 primitive that can be used to implement a fast carry
chain, as shown in Fig. BZ3. Unlike the Zynq and Cyclone devices, the delay through
each of the carry chain elements, defined as a sequence of ARI1 primitives, is not
monotonically increasing, which creates ’holes’ in the TCs, i.e. ’0’s in the sequence
of "1’s. However, from timing simulation, we found that sequences defined using
every third ARI1 element are monotonic. Therefore, a set of three 128-bit TC chains
are created by connecting every third element in a sequence as shown in the figure.
Moreover, we also determined that the first 5 elements of the TDC carry chain were
not well correlated with the remaining values, and are therefore skipped as shown in
the figure. The length of the carry chain is expanded to 391 elements to accommodate

these constraints.

The three TCVs obtained for a PUT in the PolarFire devices are averaged using
the expression in Eq. B, which expands the range of the TDC from 128 to 192. As
we will see, this pseudo-averaging of three TCs per test reduces measurement noise

levels over the single-valued TDCs implemented on the Zynq and Cyclone devices.
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However, the SiRF PUF algorithm enables multiple TC samples of each PUT to be
collected and averaged, which is used in the Zynq and Cyclone analyses to make the

comparison of noise levels nearly equivalent.

TCVpve = (TCVy + TCVy + TCV3) /2 (4.1)

Shift Registers
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D Q31
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HaN |

Cyclone V 32-bit shift register and Cyclone V 4-bit shift register
32-to-1 MUX 4-to-1 MUX

Figure 4.6: Implementation of a 32-bit shift registers on the Zynq 7010 (top) ]
CycloneV (bottom-left), and a 4-bit shift register for the CycloneV (bottom-right).

Native device primitive support for shift registers exists only on the Zynq device,
as a unisim library component called the SRLC32E. The schematic for the SRLC32E
is shown along the top of Fig. B0, and its implementation uses one LUT. The Zynq
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primitive uses the LUT resources to implement both the shift register and selec-
tion MUX because the circuit structures required to implement the LUT are nearly

equivalent to the circuit structures required for the shift-register-MUX combination.

In contrast, we were not able to find a Cyclone and PolarFire dedicated shift
register-MUX primitive, and instead, construct the functionality using multiple look-
up table primitives. The lower left portion of Fig. B8 shows the layout of an equiv-
alent 32-bit shift-register-MUX combination on the Cyclone. The fabric resources
needed include 19 ALMs and 32 FFs. Although not shown, PolarFire requirements
are similar. In an attempt to match the number of resources used for the SiRF PUF
netlist across all device classes, the Cyclone and PolarFire shift-register-MUX im-
plementations are reduced from 32 bits to 4 bits, as shown on the right-bottom side
of Fig. B@. This ensures the path lengths are similar in all three implementations,
which in turn, improves the fairness of the comparisons of entropy, TV-noise and the

bitstring metrics.

4.2.2 Architecture

Portions of the implementation views of the SiRF PUF on the Zynq 7010, CycloneV
and PolarFire devices are shown in Fig. BZ0. The red-dotted rectangles highlight
the regions corresponding to the fixed components of the TDC implementations. As
indicated earlier, the carry chains of the TDCs in the Zynq, Cyclone and PolarFire
are 128, 256 and 390 elements in length, respectively. The PL fabric resources in all

three devices easily accommodate the integration of the TDCs.

All three designs were synthesized with a timing constraint of 50 MHz, and all
three produced SiRF netlist path delay values in the range of 5 ns to 20 ns. The
carry chains in the TDC implementations support path delay measurements in the

range of 2 to 4 ns. Therefore, the delay range expansion provided by the MPS Unit
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Figure 4.7: Implementation views of SiRF PUF on the three device classes, with
highlighted TDC components.

and the calibration process described earlier are essential to enabling SiRF netlist

path delays to be measured.

4.3 Experimental Results

The major objective of our analysis is to measure and compare the average level of
entropy and TV-noise present in the SiRF netlist path delays across the three device
classes. The evaluation is carried out using a set of 25 devices from each device
class. The same set of characterization vectors are applied to all 75 devices, and a
set of 64,000 high-resolution delay values (DVs) are collected from each device under

nominal conditions. We refer to this data as the enrollment data. Five additional
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Figure 4.8: Superimposed distributions of 2048 DV D, DV D, and DV D,, from 25
Zynq, Cyclone and PolarFire devices illustrating the SiRF PUF group processing
operations.

regeneration experiments are carried out which repeat these experiments at tem-
peratures given by {—40 °C,0 °C,25 °C,50 °C,85 °C}. The combined enrollment
and regeneration data sets are used for the entropy and TV-noise analyses, while the
bitstring analyses uses the enrollment data and regeneration data in the traditional

way for evaluation of reliability and other statistical metrics.

As we have done in previous works [68], we post-process the DVs to compensate
for global process variations and changes in environmental conditions as a means
of extracting delay variations introduced by within-die process variations. The first

section of the results shows the effect of applying our proposed mathematical trans-
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formations to the raw DVs to accomplish this goal, which also reveals the levels of
TV-noise that remain. The SiRF PUF’s entropy-TV characterization process selects
a subset of the 64,000 DVs that are best described as compatible, where compatibility
is defined as path delays that scale approximately linearly with changes in temper-
ature conditions. We provide a brief description of the entropy-TV characterization
process in this paper, and refer readers to [568] for a detailed description of the pro-
cess. The values reported for the average level of entropy and TV-noise are derived

using only the DV-compatibility sets.

The next section of our results focuses on a quantitative evaluation of overall lev-
els of entropy and TV-noise for each device class. The applied data transformations
remove global biases from the raw DV from each device class to enable a compar-
ison of the signal(entropy)-to-TV-noise ratios. The last section presents results of
a statistical analysis of the bitstrings from each device class, including analysis of
randomness, uniqueness and reliability. Parameters to the SiRF PUF algorithm’s
reliability enhancement techniques are tuned for each device class to make the com-

parison as fair as possible.

4.3.1 DYV Post-Processing

The SiRF PUF algorithm applies a sequence of transformations to a set of 2048 rising
DVs (DVR) and 2048 falling DVs (DVF). The superimposed distributions generated
by operations important to our analysis in this paper are shown in Fig. B8 for sets
of 25 devices from the Zynq, Cyclone and PolarFire device classes. The following

summarizes the operations that produce these distributions.

1. The DVDiffs module creates a one-to-one pairing relationship between the 2048
DVR and 2048 DVF stored in BRAM, and subtracts the DVF from the DVR

to produce DVD. The superimposed distributions from the 25 devices in each
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device class are shown in the left column of Fig. B=3.

2. The global process and environmental variation (GPEV) module applies a pair
of linear transformations to the DVD to produce DV D, as shown in the center
column of the figure. GPEV removes delay variations introduced by chip-to-
chip (global) process variations, and significantly reduces temperature-supply

voltage effects on the path delays.

3. The SpreadFactors module eliminates path length bias effects, which are present]
because the paths through the SiRF netlist vary in length. This occurs because
no placement or routing constraints are used to fix the positions of the gates
and wires in the SiRF netlist. The right-most column in the figure depicts
distributions of DV D,,.

Several characteristics are revealed in the distributions. First, the DVD distri-
butions associated with the Zynq device class exhibit shifts left-and-right that are
not as dramatic in the Cyclone and PolarFire distributions. These shifts are intro-
duced by chip-to-chip (global) process variations. The PolarFire distributions are
nearly coincident, exhibiting very little global process variation effects. Unfortu-
nately, wafer-lot information is not available for the device sets, which might explain
the disparity observed across the device classes. Second, the compensation carried
out by GPEV yields wider distributions for the Zynq devices, which suggests that
larger differences exist in the rising and falling delays of these devices, especially
when compared with the narrow distributions associated with the PolarFire devices.
And third, the widths of the DV D, distributions are nearly the same for the Zynq
and Cyclone device classes, while the PolarFire distributions are approximately 33%
wider. The DV D, distributions portray the level of entropy available to the PUF,

and therefore, the PolarFire devices dominate this metric.

The level of entropy is critically important to all PUF architectures but cannot
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Figure 4.9: Example DV D, DV D. and DV D,, from 25 Zynq, Cyclone and PolarFire
devices illustrating entropy and TV-noise assessment.

be assessed without considering the level of TV-noise present. Entropy below the
noise floor cannot be accessed by the PUF unless error correction methods are uti-
lized during bitstring generation. The SiRF PUF, however, utilizes error avoidance

methods which require the level of entropy to be above the TV-noise floor.

4.3.2 Analysis of Entropy and TV-Noise

A key component to the assessment of quality of the SiRF PUF on each of the three
device classes is to evaluate the ratio of entropy-to-TV-noise (SNR). The graphs in
Fig. B9 provide a visual aid to how the SNR is computed. The top-most row shows
the first five DV D, DV D, and DV D.s (of the 2048) from the 25 superimposed
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distributions in Fig. B8. Therefore, each group of points in a column contains
25 points, one for each device. The sequences of line-connected points show the
transformations from DV D through DV D, which translate the points vertically

toward 0.0 and reduce their vertical spread.

The second row of graphs labeled Entropy zooms in by a factor 10 and shows
only the DV D.s. Both of our metrics for entropy and TV-noise are computed using
these points. Entropy is computed for each group of points as the spread or range of
the points around 0.0, which is annotated by the magenta lines and arrows. As an
example, the level of entropy is labeled as 10, 8 and 19, respectively, for the left-most
set of points of each device class. The third row of graphs shows an equivalent metric
for TV-noise. Here, only the first device from the set of 25 in each device class is
shown, and the points correspond to the DV D., computed across the enrollment
and 5 temperature (regeneration) corners. The vertical spread (range) of the points
in this case represents TV-noise that was not eliminated by GPEV. We refer to this
residual noise as uncompensated TV-noise or UC-TVN. As indicated, UC-TVN
defines the noise floor, and it must be smaller than the level of entropy in order for
the SiRF PUF’s error avoidance scheme to be effective. As an example, the range of
UC-TVN is annotated as 3, 4 and 4 respectively, for the left-most groups of points in
each graph, which shows the entropy-to-UC-TVN requirement is met, i.e., UC-TVN

is at least a factor of 2 smaller than entropy.

An overall assessment of entropy and UC-TVN for each of the three device classes
is shown graphically in Fig. B0 through Fig. BET2. Entropy is referred to as
within-die variation or WID in these graphs because WID better describes what it
represents. Here, we plot the WID as a set of black points and UC-TVN as a set
of blue points. Each of the 2048 points in either case represent the range of the
DV D, across the 25 devices as described in reference to Fig. 9. As indicated in
the figures, WID is computed using data collected at 25 °C.
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Figure 4.10: Zynq 7010: WID vs. UC-TVN using 2048 DV D, s from one challenge
set.
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Figure 4.11: CycloneV: WID vs. UC-TVN using 2048 DV D, from one challenge
set.

The mean values of WID and UC-TVN for all 2048 points are also shown in the
three figures, and are given for Zynq as 10.40 and 2.08, for Cyclone as 11.30 and
4.20 and for PolarFire as 17.00 and 3.29. The corresponding ratios of WID-to-UC-
TVN, i.e., SNR, are given as 5.0, 2.69 and 5.17, respectively, for Zynq, Cyclone and
PolarFire. As is true for SNR metrics in general, the larger the ratio the better, so
PolarFire is best, with Zynq as a close second, while Cyclone performs significantly
worse than PolarFire and Zynq. Another metric that reveals this fact is depicted

in the figures as WC-UC-TVN, which identifies the worst-case UC-TVN across all
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— PolarFire: WID vs UC-TVN
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Figure 4.12: PolarFire: WID vs. UC-TVN using 2048 DV D,s from one challenge
set.

2048 points. While the WC-UC-TVN is smaller than than the (smallest) worst-case
WID for Zynq and PolarFire (a desirable characteristic), this is not the case for
Cyclone. In fact there is a fair amount of overlap in the black and blue points. As
we show later, the higher noise levels associated with the Cyclone device makes it

more difficult to obtain our target reliability metric of 1-bit-flip-per-million.

It is difficult to speculate on why the Cyclone device class possesses higher noise
levels than Zynq and PolarFire. One possibility is rooted in the layout characteristics
of the programmable fabric, while another stems from the CAD tools responsible for
the generation of the netlist and for placement and routing. A third possibility is
related to the manufacturing facility. An analysis of the test data collected during
calibration of the TDC (not included here) indicates the TDC itself is stable and
is not the source of the noise. Future experiments are planned in which the SiRF
netlist will be placed inside of a logic lock region in order to fix the logic placement

within the device, to determine if this improves the noise levels.

A second interesting artifact of this analysis is the different shapes of the DV D,
distributions shown in the right-most column of Fig. A=R. As indicated earlier, Zynq

and Cyclone are manufactured in a TSMC foundry, while PolarFire is manufactured
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by UMC. The PolarFire distribution has a wider band in the heart of the distribution
(at Count = 50), while Zynq and Cyclone are narrower and very similar in shape.
These characteristics might be leveraged, for example, to identify the foundry-of-

origin of the device. Future work is planned to investigate this further.

4.3.3 SiRF PUF Reliability Enhancement Techniques

? Zynq: Chip Cy. Enrollment, 25°C 15| Cwelone: Chip Cy. Enrollment. 25°C ? Pu_]anil'e: Chip C;. Enrollment, 25°C
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0 DVD,, index &5 [0 DVD,, index [ o DVD,, index 616]

Figure 4.13: Mlustration of bit-flip avoidance via Thresholding. Enrollment results
are shown along the top row for the Zynq, Cyclone and PolarFire devices, respec-
tively. Only DV D.s data points classified as strong are shown. Regeneration is
shown along the bottom row, with DV D., produced under different temperature
conditions superimposed on the enrollment data. Encroachment of the blue (cold
temperature) and red (hot temperature) data points within the threshold region il-
lustrates the effect of UC-TVN. Data points that cross the 0 line result in bit-flip
errors.

The SiRF PUF algorithm utilizes a bit-flip avoidance technique called Threshold-
ing, in contrast to error correction, to achieve high reliability standards. Thresholding
removes bits that have a high probability of flipping value during regeneration. An
illustration of Thresholding is shown in Fig. B13, as it is applied to the DV D, data

points obtained from one each of the Zynq, Cyclone and PolarFire devices.
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Thresholding defines two symmetric thresholds around the 0 line, that are used
during device enrollment to identify and eliminate unreliable bits. The top row
of graphs shows thresholds of +3, +5 and +4 for the Zynq, Cyclone and PolarFire
devices, respectively, where DV D, that fall within the threshold region are excluded
(and are not shown) during enrollment. We refer to DV D, that fall above the upper
threshold and below the lower threshold (the points that are shown in the graphs)

as strong bits in the following.

As indicated earlier, a set of challenges are applied to generate a set of 2048
DV D, for each device. The number of DV D, that survive the Thresholding pro-
cess are given as 645, 142 and 616, for the Zynq, Cyclone, and Polarfire devices
respectively. A strong bitstring, a.k.a., an encryption key, is generated from the
DV D, by assigning 1’s to DV D, that fall above the upper threshold and 0’s to
those that fall below the lower threshold. During enrollment, the bitstring generation
algorithm also creates a helper data bitstring to record the positions of the strong
bits in the sequence of 2048 DV D.,, assigning 1 if a strong bit is generated, and
0 if a bit is skipped. The helper data does not leak information about the values
of the strong bits, and can therefore be stored in non-safeguarded, standard non-
volatile memory for use during regeneration. The regeneration algorithm reads and
interprets the helper data bitstring, generating strong bits when helper data bits are
1.

The threshold values are determined from characterization experiments, similar
to the experiments carried out here. The threshold of +5 for the Cyclone device class
is larger than the value for the Zynq and PolarFire device classes, indicating higher
levels of UC-TVN. The threshold is chosen to achieve a given reliability standard,
which is discussed in the next section. For a fixed level of entropy, a larger thresh-
old reduces the number of strong bits that can be generated from the set of 2048

DV D.,. For the example Cyclone device shown, the reduction is significant, where
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only 142 bits of the 2048 possible bits are classified as strong. In contrast, the Zynq
device produces a strong bitstring of length 645 while the PolarFire device produces
616 strong bits. The consequence of fewer bits is the requirement to run the SiRF
PUF algorithm a second time using a different set of challenges as a means of, e.g.,
generating a 256-bit encryption key for the Cyclone device, while only one iteration

is needed for Zynq and PolarFire devices.

The second row of graphs in Fig. 13 shows DV D, produced by the same three
devices while subjecting them to different temperature conditions. The helper data
bitstrings produced during enrollment are used to select the same DV D, for re-
generation of the strong bitstrings. The adverse impact of UC-TVN is depicted as
an encroachment of the regenerated DV D, into the threshold region. The thresh-
old is selected to minimize the probability that a regenerated DV D.s appears on
the opposite side of the 0 line, when compared to the position of the corresponding
enrollment-generated DV D.,, which would result in a bit-flip error in the regener-
ated strong bitstring. Despite the larger threshold for the Cyclone device, several
regenerated DV D, (colored blue and red) get very close to, and in one case cross,
the bit-flip line. The Zynq device performs best with respect to minimizing UC-
TVN because only a threshold of +3 is required to achieve zero bit-flip errors. The
PolarFire device ranks second with a requirement of +4 for the threshold, while the

Cyclone device ranks last.

Despite the reliability enhancements provided by DV-compatibility set selection,
GPEV and Thresholding, bit-flip errors can still occur. A third reliability enhance-
ment scheme, called XMR, can be layered on top of these methods to improve re-
liability even further. XMR uses redundancy to encode super-strong bits from a
sequence of strong bits, and adds protection against bit-flip errors by allowing, e.g.,
one strong bit in a sequence of three strong bits to flip value during regeneration.

A correct, error-free super-strong bit is generated in these cases because majority
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Figure 4.14: Entropy and min-entropy statistics for all device classes.

vote is used to determine the final value of the bit during regeneration. Similar to
Thresholding, the level of protection against bit-flip errors can be tuned using a pa-
rameter to XMR, where increasing the level of redundancy, e.g., from 3 to 5, 7, etc,

provides higher levels of reliability [568].
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Figure 4.15: InterChip Hamming distance statistics for all device classes.
4.3.4 Bitstring Statistical Analysis

In this section, we evaluate the super-strong bitstrings (SBS) generated by the 25
devices from each device class against statistical quality metrics including random-
ness, uniqueness and reliability. As indicated earlier, we regenerate the SBS using
the same challenges across a set of 5 temperature conditions, and use the regener-
ated SBS to evaluate reliability. Randomness and uniqueness are evaluated using

the enrollment-generated bitstrings only, which is possible when reliability statistics
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meet cryptographic standards of less than one bit flip in a million. To obtain statis-
tically significant results, multiple challenges are used to generate bitstrings of size
5800 to more than 1.4 million bits per device depending on the requirements of the

test.

The bar graphs in Fig. B14 show the entropy and min-entropy statistical results
for XMR values of 3 through 11 along the x-axis and for the three device classes
along the y-axis. Entropy and min-entropy are computed using Eqs. B2 and B3,
respectively, where py represents the fraction of bits that are ’0’, p; represents the
fraction that are ’1’, and p,,q.. is the larger of pg and p;. The best possible value of

entropy and min-entropy is 1.0, which occurs when both fractions are 0.5.

The level of entropy across the device classes is nearly identical, where a slight
decreasing trend is observable, from approximately 0.999 to 0.987, as XMR is in-
creased from 3 to 11. Overall, the entropy results indicate very high levels exist
across all three device classes, and the level is insensitive to the XMR level. The
levels of min-entropy are again similar across the device classes but the sensitivity
to XMR level is more noticeable, decreasing from approximately 0.93 at XMR 3 to
0.86 at XMR 11. However, despite the reduced levels, these results are similar to
min-entropy levels published for other PUF architectures.

H(z) = > —(pi x logs(p:)) (4.2)

=0

Hoo(x) = _l0g2(pma:v) (43>

The results of inter-chip Hamming distance (InterChip-HD) are shown in Fig.
1A, where we show the results using two different variants of the HD metric. Inter-
HD measures the level of uniqueness across the bitstrings generated from the set

of devices in each device class. Uniqueness is evaluated by pairing the enrollment
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Figure 4.16: Probability of failure and smallest bitstring size statistics for all device
classes.

bitstrings from each device class under all combinations (300 pairings with 25 devices)
and then counting the number of bits that differ in each pairing. The best possible

result occurs when the average number of bits that differ across all pairings is 50%.

Both of the InterChip-HD and Aligned InterChip-HD metrics are computed using
Eq. E4. The difference is rooted in the selection of bit pairings that are used in the
summation. For the traditional InterChip-HD results shown by the left bar graph,
all bit pairings are used up to the length of the shorter bitstring. For the aligned
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analysis, a bit pairing is included only if the paths tested by the devices that generate
the two bits in the pairing are the same. Although the InterChip-HD metric for the
Aligned analysis more accurately reflects the uniqueness characteristics of the SiRF
PUF, the super-strong bit selection processes associated with the Thresholding and
XMR methods significantly reduce the number of bits that qualify. For example,
only 45 bits on average are used per bitstring pairing for XMR 3, which decreases
to only 3 bits on average for XMR 11. Therefore, the sample size for the Aligned

analysis is much smaller.

The bar graphs for both analyses show the average InterChip HD computed
across all device bitstring pairings, where nearly ideal results of 50% are achieved
under the traditional analysis, and slightly larger values (approximately 52%) are
achieved under the Aligned analysis. There exists little or no distinction in the
results for each of the device classes.

min(|bs;|,|bs;]|)

bSiJ€ @ bs]}k

InterChip-HD, ; = —= N
nterChip i\ min(‘bSi’,‘ij’) v

The Probability of Failure (POF) results are shown in the left bar graph of
Fig. B8, where failure refers to the occurrence of a bit-flip error(s). The re-
liability of the SiRF PUF in reproducing bitstrings without errors is measured
in our experiments using data collected under 5 different temperatures, given by

{—40 °C,0 °C, 25 °C, 50 °C, 85 °C}.

The POF results are derived from the intra-chip Hamming distance (IntraChip
HD) metric given by Eq. B3, which counts the number of differences between a
bitstring generated under nominal conditions and each of the bitstrings generated by
the same device using the same challenges under different temperatures. The tuple
(i,m,j) designates a bitstring pairing using the nominal bitstring n and a bitstring

generated under TV corner j for device i. The total number of bit flip errors counted
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is converted to a POF by dividing the total number of bit flip errors by the total
number of bits considered in the analysis. If no bit flip errors are detected in any
device at any TV corner, we use the ratio of 1 over the number of bits evaluated as

an upper bound approximation of reliability, which assumes one bit-flip occurred.

[bsil)
Intra-HD; = Y bSing @ Dsij (4.5)

k=1

The negative integer values shown along the z-axis of the bar graph in Fig. B—18
are the exponents of a value with base 10, so -6 corresponds to 1076 or 1-in-a-million
as the probability of failure. Bit-flip errors are counted separately for each of the
25 devices and then an overall metric is computed by taking the sum of bit-flip
errors across all devices and dividing by the total number of bits inspected across all
devices. In order to increase the significance of the results, a large set of challenges
are applied to the devices. For example, the XMR 3 analysis inspected more than
37 million bits across all 25 devices in each device class, so the smallest value of any

exponent is -7.58.

Bit-flip errors occur in all device classes at XMR 3, where we see the reliability of
the Zynq device class just meets the industry standard of 1079, while for the Cyclone
and PolarFire device classes, reliability is worse, and in the range of 10~°. However,
for XMR 5, only 1 bit-flip is present in the Zynq and Cyclone analyses, and 2 in the
PolarFire analysis with more than 17 million bits inspected. Although the reliability
appears to degrade for XMRs 7, 9 and 11, it is due to the smaller numbers of bits
inspected and is not due to bit-flip errors, in fact, none were observed at any of these
XMR levels. These results indicate very high levels of reliability can be achieved for
XMR values of 5 or above.

The right bar graph in Fig. 18 shows the minimum number of bits generated
using one iteration of the SiRF PUF algorithm, averaged across all devices in the

class. The size of the SBS bitstring decreases as XMR is increased, as expected,
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Figure 4.17: NIST statistical test results for Zynq and Cyclone devices.

because the number of bits used in the XMR redundancy scheme increases for larger
XMR values. From the analysis presented in Section B3, which shows higher levels
of UC-TVN exist in the Cyclone device class, the primary penalty is shown here
where the number of usable bits is smaller at each XMR level when compared with
the Zynq and PolarFire device classes. Assuming XMR 5 is used due of reliability
constraints, the average minimum number of bits for Zynq, Cyclone and PolarFire
are 168, 137 and 158, respectively. Therefore, in all cases, two iterations of the SiRF
PUF algorithm are needed to generate a 256-bit AES key at a XMR level of 5.
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The NIST results for each of the device classes are shown in Fig. B4 and
AR [@2]. The size of the SBS subjected to NIST testing varies from 5800 for XMR
11 to nearly 30,000 for XMR 3, which enabled seven of the NIST statistical tests to
be run. With a population of 25 devices, NIST requires that at least 23 of the devices
pass each of the tests in order for the test to be considered passed overall. Therefore,
bar heights below 0.92 indicate that 22 or fewer devices passed the test. The bar
graphs indicate nearly all of the tests are passed for Zynq, except for one failure
at XMR 7 for Approx. Entropy, where only 19 devices passed. For Cyclone, two
additional fail cases are observed for the Approx. Entropy test, at XMR 3 and 5 with
22 and 21 devices passing, respectively. The worst case is again for XMR 7 with only
16 of the devices passing. PolarFire’s results show three additional fail-by-1 cases
for XMR 3 (Frequency, Cum. Sums and Approx. Entr.), but are otherwise similar
to Zynq’s results. Overall, despite the fail cases, the NIST results are generally very

good, showing all three device classes are able to produce high quality bitstrings.
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Figure 4.18: PolarFire NIST statistcal results.
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4.4 Conclusions

In this experiment, we implement, test and compare the SiIRF PUF architecture and
the quality of the generated bitstrings on 25 copies of devices from Xilinx, Altera and
Microsemi. The SiRF algorithm is run at room temperature to generate enrollment
bitstrings, and then again with the devices placed in a temperature chamber and
subjected to temperatures over the range from —40 °Cto85 °C, to regenerate the
bitstrings. Statistical tests including entropy, min-entropy, inter-chip Hamming dis-
tance (HD), intra-chip HD, and tests from the NIST statistical test suite are used to

evaluate the randomness, reliability and uniqueness characteristics of the bitstrings.

The results of our analysis show that all three devices produce high quality bit-
strings suitable for cryptographic applications. Overall, the SIRF PUF implemented
on the Zynq platform performs slightly better than the Cyclone and PolarFire imple-
mentations, when assessed from a Entropy(signal)-to-(TV)noise perspective. More-
over, devices from the Cyclone class possess the highest level of TV-noise. However,
the Zynq implementation is also the most mature and improvements are likely possi-
ble for the newer Cyclone and PolarFire implementations, which will be investigated
in future work. High levels of statistical quality are reported for the bitstrings from
all device classes, again, with Zynq performing slightly better. Another interesting
artifact of the analysis, and a topic for future work, is the presence of distinguishing

features in the delay distributions of devices fabricated in TSMC and UMC foundries.
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