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Abstract

Process variations within Field Programmable Gate Arrays (FPGAs) provide a rich

source of entropy, making them well-suited for the implementation of Physical Un-

clonable Functions (PUFs). This dissertation presents three studies on FPGA-based

PUFs. First, we explore a ring-oscillator (RO) PUF that leverages localized entropy

from individual look-up table (LUT) primitives, analyzing design bias. Next, we in-

vestigate delay variations that occur through the routing network and switch matrices

of FPGAs using a feature of Xilinx called dynamic partial reconfiguration (DPR).

Finally, we evaluate entropy across FPGAs from Xilinx, Altera, and Microsemi using

the Shift-Register Reconvergent-Fanout (SiRF) PUF architecture to compare path

delay variations and PUF-generated bitstrings. Collectively, these studies provide

insights into designing PUF architectures that maximizes entropy levels suitable for

cryptographic applications.
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Chapter 1

Introduction

A physical unclonable function (PUF) is hardware security primitive that is able to

generate one or more unique digital bitstrings for security functions such as encryp-

tion and authentication within a device. Key storage utilizing secure non-volatile

memory (NVM) can be replaced by a PUF, which reduces overall system cost. PUFs

accept a challenge and produce a response, e.g., an encryption key, that can be re-

produced at any point during system operation and under adverse environmental

conditions.

The security properties of a PUF architecture are closely tied to the physical

layer components that define its source of entropy, i.e., the layout characteristics

of the circuit structure from which random variations are measured, digitized, and

processed into bitstrings. Although many different types of integrated circuits can

by used as the platform for a PUF, the FPGA is a popular choice because it allows

prototypes to be created and validated quickly while providing layout-level control

over the design of the PUF’s circuit structures. Moreover, advanced FPGA features

such as dynamic partial reconfiguration (DPR) can be leveraged to impede adver-

sarial reverse engineering attacks by making physical layer components of the PUF
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Chapter 1. Introduction

architecture unavailable in operational systems.

PUFs leverage entropy or random variations that occur unavoidably in the fab-

rication processes associated with modern microelectronic device manufacturing.

Physical layer variations which occur in transistor gate, source and drain geometries,

in contact and via resistances, in the widths of wires, and in transistor threshold

voltages, manifest as variations in the electrical parameters of the transistors and

gates which implement a digital circuit. The most important, and most significantly

affected, are parameters that impact the delay of signals propagating through circuit

netlists that implement digital functions. Given this rich source of entropy, many

types of PUF architectures have been proposed that leverage delay variations as the

primary source of entropy available for key and authentication bitstring generation.

This dissertation explores these key aspects of PUF design across three studies

discussed in three separate chapter. Chapter 2 introduces the SR-PUF, a small,

localized PUF architecture that utilizes LUTs within FPGAs as a source of entropy.

Chapter 3 investigates delay variations that occur through the routing network and

switch matrices of FPGAs. Finally, Chapter 4 presents a comparison of the statistical

quality of the bitstrings across three different low-cost FPGA-SoC device classes:

Xilinx, Altera, and Microsemi.
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Chapter 2

FPGA LUT Bias Analysis

The physical layer entropy exploited by a PUF is defined by its circuit structure

and the extent of the region required for its implementation. PUF architectures

that build arrays of identically designed test structures, e.g., ring-oscillators (ROs),

possess small implementation regions and extract entropy from localized variations in

process parameters. In contrast, PUF architectures that define constituent elements

over larger regions have access to a larger pool of entropy. More importantly, small

circuit structures have greater sensitivity to the adverse effect of bias and require

additional post-processing steps to achieve high statistical quality in the generated

bitstrings.

In this experiment, we propose a small, localized, PUF architecture, called the

SR-PUF, that utilizes 6-input look-up tables (LUTs) within FPGAs as a source of

entropy. The LUTs are configured as shift-registers, enabling, for the first time, an

analysis of path delay variation along individual paths within the LUT. The paths

are measured in a RO configuration, which is designed to enable all common path

components in the RO structure to be removed through a differencing operation.

Therefore, the source of entropy for the SR-PUF is only the component of the RO

3



Chapter 2. FPGA LUT Bias Analysis

path that passes through the LUT itself. This configuration also enables an analysis

of LUT path-length bias. Calibration methods are proposed that reduce undesirable

sources of bias, including LUT path-length bias, and a statistical analysis is carried

out on the bitstrings generated from 30 copies of a Xilinx FPGA.

The main contributions of this experiment are given as follows:

1. A novel, highly compact ring-oscillator-based PUF architecture is proposed.

2. An analysis of path-length bias that exists within Xilinx LUTs is presented.

3. A calibration method is proposed that significantly reduces LUT path-length

bias, as well as other sources of bias.

2.1 Background

RO-based PUF architectures were first introduced by [4] and later improved in [5].

An RO PUF is characterized as a localized PUF architecture constructed as an array

of identically-designed circuit structures, where each structure consists of an odd

number of inverters connected in a loop configuration. RO PUFs have been studied

extensively over the last two decades. We summarize the current state-of-the-art in

the following.

Reprogrammable RO PUF architectures are proposed in [6], [7] and [8] as a

means of reducing area overhead while increasing access to a wider extent of local-

ized random variations within FPGA constituent elements, e.g., LUTs, wires and

switch boxes. In [6], the authors eliminate routing delay variation, and utilize only

within-LUT delay variation, by creating multiple distinct ROs within the same ring

structure using free LUT inputs as a means of changing SRAM cells that implement

the inverters. The PUF architecture proposed in [7] utilizes dynamic partial recon-
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Chapter 2. FPGA LUT Bias Analysis

figuration to reduce area overhead of implementing a single inverter RO architecture.

A set of eight partial bitstreams are used to configure each of the LUTs in a CLB,

one-at-a-time, in an RO configuration. The scheme is expanded further by using

each of the 6 input ports of the LUT in different configurations. In [8], the authors

make use of unused LUT inputs to select different within-LUT paths to implement

each inverter of the RO, again dramatically increasing access to a wider extent of

localized random variations.

The analysis provided in [9] for the bistable ring PUF show that placement and

routing have a dramatic impact on the randomness of the PUF. They found that

only 15.6% of multiple PUF instances on the same FPGA show 0-1 frequency charac-

teristics that are in the acceptable range for a good quality PUF. A variation-aware

strategy for RO placement to improve reliability is proposed in [10].

A pairing strategy that selects neighboring ROs as a means of dealing with sys-

tematic process variation, i.e., undesirable bias that reduces uniqueness, is proposed

in [11]. They also propose to add 2-to-1 multiplexers (MUXs) at each stage of the

RO to increase the number of distinct RO paths to 8. A variant of this reconfigurable

PUF is proposed in [12] that expands the number of configurations per RO to 256.

The authors of [13] propose a third reconfigurable RO that allows for the insertion

and removal of inverters in the RO circuit path. The entropy of the PUF can then

be confined to single inverters instead of the entire RO structure. An XOR-based,

configurable RO PUF is proposed in [14] which replaces the inverter gates with XOR

gates, and allows multiple different circuit paths through the RO circuit structure.

The authors of [15] and [16] analyze bias in RO PUFs on Altera FPGAs and

show that bias is introduced based on the location of the RO on the die, as well as

which LUT inputs are used and whether non-PUF-related (payload) activities are

occurring. A chip-to-chip performance removal technique is proposed in which the

mean frequency of each RO (computed from a sample population of devices) is used
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to offset the RO frequencies in each device, as a means of improving uniqueness.

The authors of [17] carried out a large scale RO experiment on 217 Xilinx Artix-7

boards, which uses a three stage RO implemented within each slice. Their analysis

considers within-die systematic variation and design bias, and its impact on random

within-die variations, the latter representing the true source of entropy for RO PUFs.

They conclude that comparisons between ROs that have exactly the same routing is

the only way to generate bitstrings without bias.

A technique to reduce hardware overhead by modulating the frequency of one

RO in relation to another is proposed in [18]. The authors elaborate on a tech-

nique known as Frequency Offset Architecture that manages the trade-off between

hardware utilization and performance in RO PUF design.

The authors of [19] introduce advancements to RO-based PUFs and RS latch-

based PUFs by incorporating a Temporal Majority Voting scheme, fine and coarse

programmable delay line configurations, and hard macro techniques. These enhance-

ments result in improved performance in terms of reliability, uniqueness and unifor-

mity, an increased number of independent response bits and the creation of area-

efficient PUF designs.

A phase calibration process that shifts the phase of the RO output signal is

proposed in [20]. This method eliminates asynchronous timing measurement error by

conducting repeated measurement cycles, adjusting the delay with each cycle before

comparing counter values to generate an output bit. This leads to improvement in

the stability and accuracy of the RO PUF.

A comparison of the proposed SR-PUF is carried out with an additional set of

closely related compact PUF architectures in the following sections.
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2.2 SR-PUF design

The SR-PUF design is presented in this section. The source of randomness (entropy)

for the SR-PUF is delay variations that occur within the MUX’ing structure of

look-up tables (LUTs). The delay variations are measured by integrating LUTs,

configured as shift-registers, in a ring-oscillator circuit design, as shown in Fig. 2.1.

Individual paths through the LUTs are selected for measurement using the LUT

inputs inrxs. One path is highlighted in magenta that starts at the Clk input of the

configuration memory bit (CMB) storage element and passes through the internal

MUX’ing structure to the LUT output labeled out. Transitions on the CMB outputs

are created by shifting a pattern of "0101..." through the CMB array. The pulse

generator receives a rising or falling edge on out and generates a clock pulse that

causes another shift of the CMB bitstring, enabling the design to behave as a RO.

Figure 2.1: SR-PUF design utilizing the Xilinx Shift-register LUT. One of the 32
paths that represent the source of entropy for the SR-PUF is highlighted in magenta.
The Pulse generator shown on the right is shared among 15 other copies of the SR-
PUF.

A block diagram of the SR-PUF architecture and supporting circuitry is shown

in Fig. 2.2. The top portion shows a row of 16 LUTs configured as shift-registers
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(labeled SR0 through SR15), with the shift output Q connected back to its D input

through a 2-to-1 MUX. The shift registers are implemented using the Xilinx library

primitive, SRLC32E [21]. The Ctrl select signal of the two 2-to-1 MUXs (labeled

Data and Clk in Fig. 2.1) is used to enable the CMB arrays of the 16 LUTs to be

configured with an alternating ’0’ and ’1’ bit pattern. The configuration of the CMB

arrays takes place after the bitstream is loaded and before any RO measurements are

made. A set of states in the state machine implementation of the SR-PUF introduces

an alternating sequence of ’0’ and ’1’ on CMB_data, which is scanned into the CMB

arrays by toggling the CMB_clk signal.

Figure 2.2: SRP hard macro containing 16 SR, each with 32 ROs. Pulse generator
circuit is shared across all seven macros in a clock region of the FPGA.

The remaining components complete the cyclic circuit structure of the RO. Inputs

SR_sel and RO_sel, shown on the left side of Fig. 2.2, select one of the 16 SRy and

one of the CMB bit positions, respectively. The outputs of the SRy drive a 16-to-1
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MUX, which is implemented in two levels within Vivado implementation view using

five 4-to-1 MUXs.

The output of the 16-to-1 MUX drives one of the inputs to a NAND gate. The

other input, labeled RO_enable0 for Macro0, serves to enable or disable the RO.

The NAND gate output fans out and drives both inputs of a 2-input XOR gate. One

of the inputs is delayed using a sequence of five buffers as a means of implementing

an edge-to-pulse converter. The pulse generated on the XOR output drives the clock

inputs to the SRy CMB FFs. The rising edge of this pulse shifts the CMB bit pattern

by one position to the right within each SRy.

The components shown along the bottom of Fig. 2.2 are used to measure the

oscillation frequency of one of the 4096 ROs implemented across the eight macros.

The pulse signals from the macros route through a MUX to the clock input of a

16-bit counter, which records the number of oscillations of the ROs. The timer

block is a 23-bit counter that is used to stop the RO oscillations after a specific,

user-configurable, time interval.

A RO measurement is carried out as follows. The Rst signal is pulsed to clear

the state of the measurement system. The macro_sel, SR_sel and RO_sel signals

are set to select one of the 4096 ROs and a user-specified parameter is placed on the

runtime input signal. The measurement process begins by asserting the Go signal.

The go_reg signal is asserted on the next rising edge of the system clock, Clk.

The 23-bit timer output value (which is initially 0) is compared with the runtime

signal and the flag signal asserted if the timer is less than the runtime parameter.

The AND gate output is asserted under these conditions, which enables one of the

RO_enablex signals to a macro, and the 23-bit timer. The RO_enable is asserted

until the timer becomes equal to the runtime value. This ensures that all ROs are

allowed to ring for the same delta-t during the measurement process. The system

clock is configured to run at 100 MHz in our experiments.
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2.2.1 Macro Design and Analysis Strategy

The macro component of the SR-PUF is designed as a pblock, or hard macro, in Xil-

inx Vivado. The eight macros of the SR-PUF design are shown enclosed in magenta

rectangles in Fig. 2.3. The macro in the lower left corner is synthesized first, and

then the placement and routing information, i.e., coordinates of the LUTs, switches

and wires, are read out using tcl commands and modified to create the remaining

seven vertically offset macros. This ensures that the macros are identically designed,

potentially enabling direct comparisons between ROs at the same locations in each

macro. For example, RO0,0,0 can be compared with RO1,0,0, where ROx,y,z is defined

with x referring to the macro, y to the SR and z to the RO within the SR, i.e.,

macrox, SRy, ROz. An abstraction of the SR-PUF design is shown in Fig. 2.4 that

illustrates the identically designed versus non-identically designed SR components.

Figure 2.3: Vivado implementation view showing layout of the SR-PUF hard macros.

The design of the SR-PUF actually allows ROs other than those at identical po-

sitions across the macros to be compared. From Fig. 2.1, the path from out through

the pulse generator component to the SR clock input labeled Pulse is common for

all 32 paths within the LUT. Therefore, the delay contribution introduced by this

10
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Figure 2.4: SR-PUF design abstraction for identifying sources of bias.

Table 2.1: SR-PUF Resource Utilization
BEL One Macro Eight Macros Measure Unit GPIO Total
LUTs 28 224 143 544 911
FFs 0 0 40 883 923
MUXF7 2 16 0 0 16

shared path can be eliminated using a differencing operation, e.g, RO0,0,0 - RO0,0,1.

Unfortunately, the paths through the LUT are not identically designed, and exhibit

bias as we will show. Therefore, additional post-processing is required to enable

comparisons between ROz within each macrox and SRy.

2.2.2 SR-PUF Area Overhead Analysis and Comparison

The resource utilization reported by Xilinx Vivado for the macro is given in Table

2.1. The resources used for each macro are given in the second column, while the

third column gives the resources used in all 8 macros of our implementation. The

Measure Unit resources correspond to the components shown along the bottom of

Fig. 2.2. The column labeled GPIO corresponds to two 32-bit general purpose input-

output (GPIO) registers that are used as an interface to the PS side of the Zynq 7010

11
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Figure 2.5: CLB packing strategy of SR-PUF for minimal resource utilization.

device for status, data and control. The resources used within each macro consist of

two 2-to-1 MUXF7s and 28 LUTs, sixteen for the shift registers, five for the 16-to-1

MUX (implemented in two stages using 4-to-1 MUXs), one for the NAND gate, one

for the XOR gate and five for the XOR buffers.

For the purpose of comparing the SR-PUF with others in the following, we show

an alternative mapping of the SR-PUF components in Fig. 2.5. Here, we utilize 3

CLBs (24 LUTs) to implement a set of 384 complete ROs, with MUXs and pulse

generator included. The LUTs labeled BUFx represent the sequence of 5 buffers

driving the XOR gate in the top portion of Fig. 2.2. The three 4-to-1 MUXs select

one of the shift-register outputs in each SLICEM while the 3-to-1 MUX selects one

of the 4-to-1 MUX outputs for measurement. The remaining LUTs map to the other

components shown in the top portion of Fig. 2.2.

Table 2.2 gives implementation details, bitstring uniqueness characteristics and

hardware efficiency values for the SR-PUF and a selected set of previously proposed

compact PUF architectures. The hardware efficiency (HE) metric proposed in [22] is

used in the table for comparing PUF architectures, and is given by Eq. 2.3. The term

N refers to the number of CLBs, and for the comparision done below, we assume each

CLB contains 8 LUTs. A smaller HE metric corresponds to a more compact PUF

architecture. The x component of Eq. 2.2 expresses the number of PUF primitives,

12



Chapter 2. FPGA LUT Bias Analysis

e.g., ROs, within each CLB, while C describes how combinations of ROs expand into

the number of bits that all CLBs are capable of producing. It follows that larger

values for x and C are desirable.

C “
N ˆ pN ´ 1q

2
(2.1)

Rbit “ x ˆ C (2.2)

HE “
N

Rbit

(2.3)

The PUFs proposed by [23], [24], [25], [26], [11] and [5] are RO-based, while [27]

and [28] propose cross-coupled PUF primitives. For the cross-coupled primitives, the

value of C in Eq. 2.2 is 1 because the PUF cell self-evaluates to a binary value upon

excitation.

The Hardware Efficiency row in Table 2.2 gives the HE values with N set to 3

to enable direct comparisons with the SR-PUF alternative mapping strategy shown

in Fig. 2.5, which uses three CLBs. The SR-PUF and Transformer PUF possess

the smallest HE values, and therefore, represent the most hardware efficient PUF

architectures.

Table 2.2: Implementation characteristics of compact PUF architectures.
This
Work [23] [27] [24] [25] [28] [26] [11] [5]

Year 2023 2022 2021 2020 2017 2017 2016 2011 2007

PUF SR R3O DD Single
Slice RO Transformer Pico RRO CRO RO

Device Zynq
7010

Spartan
6

Artix
7

Artix
7

Artix
7

Artix
7

Spartan
6

Spartan
3E

Virtex
4

Unique-
ness 50.19% 49.96% 49.48% 48.05% 49.44% 49.90% 49.97% 47.31% 46.15%

Hardware
Efficiency

(N=3)
0.016 0.25 0.75 0.5 0.016 0.75 0.25 0.125 1
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2.3 RO Count Data Post-Processing Methods

The average RO counts (ROC) measured from the 32 ROs in SR0 and SR1, and

from 30 FPGAs, are shown in Fig. 2.6. The ROs are numbered 0 to 63 along the

x-axis (note: the group identified as 32 to 63 actually correspond to ROs 0 to 31

within SR1). The averages are computed from a set of sixteen samples, i.e., each

RO is measured repeatedly and the mean RO count is computed and plotted. All

samples fell within the 3 ˚ σ bounds.

The ROs were configured to run for 5.12 µsec (running for longer periods of time

did not increase the resolution of the intrinsic entropy in the path delays because

the noise component also increased, effectively maintaining the signal-to-noise ratio).

The average RO count across all 4096 ROs and all FPGAs is 1862, which gives an

average frequency of oscillation of 364 MHz. All measurements were made at room

temperature.

Figure 2.6: Raw RO Counts for the 32 ROs in SR0 and SR1 across all FPGAs.

The differences in the RO counts observed in Fig. 2.6 are introduced by the

following five sources of variation: chip-to-chip and across-chip process variation,

design bias, LUT path-length bias, within-die variation and noise. Noise is reduced
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significantly using the average of 16 samples, as described above, which was confirmed

using several re-runs of the entire experiment. Chip-to-chip and across-chip process

variations and variations introduced by design bias are significant, e.g., RO counts

for RO0,0,0 vary over the range of 1550 to 2400 across the 30 chips. As we will

discuss, LUT path-length bias is much smaller but has a significant impact on the

randomness statistical quality of the SR-PUF bitstrings. The remaining source of

variation, namely, within-die, represents the main source of entropy for the SR-PUF.

The goal of the data post-processing operations is to significantly reduce, ideally

eliminate, the undesirable sources of bias, namely, chip-to-chip and across-chip pro-

cess variations, and variations introduced by non-identically designed (design bias)

components and LUT path-length bias.

2.3.1 LUT Path-Length Bias Analysis

Before describing the data post-processing operations used for PUF bitstring gen-

eration, we first analyze LUT path-length bias. The contribution to the RO count

values from chip-to-chip process variations and design bias are removed using Eqs.

2.4 through 2.7. These equations perform two linear transformations. The first one

standardizes the RO counts using the mean and standard deviation of a group of

ROs while the second one reverses the process using two fixed parameters, µBref and

σBref . The RO groups are defined as the 32 ROs within each shift-register. The

notation described earlier, ROx,y,z, is expanded here to include a FPGA number, c,

i.e., ROc,x,y,z. Each FPGA has 8 macros ˚ 16 SRs/macro so the transformation is

carried out separately 128 times on each of the RO groups.

uBc,x,y “

32
ř

z“1

ROc,x,y,z

32
(2.4)
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σBc,x,y “

g

f

f

f

e

32
ř

z“1

pROc,x,y,z ´ uBc, x, yq2

31
(2.5)

ZBc,x,y,z “
pROc,x,y,z ´ uBc,x,yq

σBc,x,y

(2.6)

ROCBc,x,y,z “ ZBc,x,y,z ˚ σBref ` uBref (2.7)

The first transformation significantly reduces chip-to-chip and across-chip per-

formance differences and variations introduced by design bias but preserves LUT

path-length bias and within-die variations. The second transformation scales all RO

counts to a zero mean and a fixed range, which normalizes the performance differ-

ences across all FPGAs and shift-registers to the average value of the population.

The values used for µBref and σBref are 0.0 and 20.9, with the latter representing

the average range of variations in the RO counts across all shift-registers and FPGAs

before the transformations are applied.

Figure 2.7: LUT path-length bias for the 32 ROs in each shift-register averaged
across all macros and shift-registers in each FPGA (Chip #).

The bar graphs in Figs. 2.7 and 2.8 portray the average LUT path-length bias for

each of the 32 ROs. Fig. 2.7 plots the results for each FPGA while Fig. 2.8 shows the

results averaged across all FPGAs. The differences in the bar heights suggests that a
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Figure 2.8: LUT path-length bias for the 32 ROs in each shift-register averaged
across all FPGAs, macros and shift-registers.

symmetric MUXing scheme as shown in Fig. 2.1 is not used within the Xilinx 6-input

LUT. The ROs in the first half of the LUT are slower, on average, than those in the

second half, with the exception of RO31. Each increment of the RO count on the y-

axis corresponds to approximately 1.45 ps. Therefore, from Fig. 2.8, the variation in

delay due to LUT path-length bias varies from -14.5 to 7.4 in RO counts, and between

-21.0 to 10.8 ps in actual delay. Given that within-die variations are approximately

˘6 RO counts on average (as we will show), this represents a significant bias that

needs to be removed in order to generate high quality bitstrings.

2.4 PUF Application Results

The linear transformations required to reduce three of the sources of undesirable vari-

ations, namely, chip-to-chip process variations, and variations introduced by design

and LUT path-length bias, are given in Eqs. 2.8 through 2.11. Note that across-

chip process variations are not addressed by these transformations. Here, the groups

of ROs included in each transformation operation are the identically-designed ROs

across the eight macros. Therefore, 512 separate transformations are performed for
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each FPGA. The values used for µP ref and σP ref are 0.0 and 46.3, with the latter

representing the average range of variations in the RO counts across all RO groups

and FPGAs before the transformations are applied.

uPc,y,z “

8
ř

x“1

ROc,x,y,z

8
(2.8)

σPc,y,z “

g

f

f

f

e

8
ř

x“1

pROc,x,y,z ´ uPc,y,zq2

7
(2.9)

ZPc,x,y,z “
pROc,x,y,z ´ uPc,y,zq

σPc,y,z

(2.10)

ROCPc,x,y,z “ ZPc,x,y,z ˚ σref ` uref (2.11)

The primary component of the variation that remains after these transformations

is within-die variations, which represent the best source of entropy for the SR-PUF.

The bar graph in Fig. 2.9 depicts the RO counts for the same ROs and in the format

as shown in Fig. 2.6 to illustrate the effect of the transformations. The distribution

appears to be random with no obvious signs of bias. The range of variation is

approximately ˘14, which translates to ˘21 ps of delay variation, using 1.45 ps per

RO count in the conversion.

The mean delay and range computed across all 4096 ROs for each chip are plotted

in Fig. 2.10. The mean values are relatively constant at approximately ˘ 3.0 ps,

while the range varies from approximately ˘ 10 to ˘ 20 ps. This indicates that

within-die variations vary over a range of 2X in the sample of FPGAs used in our

analysis. The data calibrated as shown in Fig. 2.11 is used in the bitstring generation

algorithm described in the next section.
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Figure 2.9: Within-die variation in RO counts for the 32 ROs in SR0 and SR1 across
all FPGAs.

Figure 2.10: Average mean and range of within-die variation in RO counts of all ROs
in each of the FPGAs.

2.4.1 Bitstring Generation Algorithm

The proposed bitstring generation algorithm avoids bit flip errors using a thresholding

technique, in contrast to applying error correction techniques. A subset of the RO

calibrated differences (ROCD) are plotted along the x-axis for FPGA1 in Fig. 2.11

as an illustration. Two symmetrical thresholds at ˘2 are highlighted and the region

between them is labeled weak. ROs that generate values in this region are close to

the bit-flip line at 0, and are excluded by recording a bit value of 0 in the helper data
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bitstring for these ROs during enrollment (not shown). Strong bits, on the other

hand, are represented by RO count values falling above the upper threshold or below

the lower threshold, and are assigned a bit value of 1 in the helper data bitstring.

The outputs from the enrollment operation are the strong bitstring and the helper

data bitstring. Bits in the strong bitstring are assigned 0 (1) if they are less (greater)

than 0 and below (above) the lower (upper) threshold.

Figure 2.11: Illustration of the SR-PUF bitstring generation, which utilizes two
thresholds of ˘2 to avoid bit-flip errors.

Although the ROC Count values shown in Fig. 2.9 and the ROCD in Fig. 2.11

appear to be random, there still exists small levels of bias that was not removed by

the calibration process described earlier. The left-over bias restricts the elements

that can be paired in the bitstring generation algorithm.

Bitstring generation during enrollment is carried out by applying the following

operations to the ROC Count values.

‚ Create 2048 ROCD by subtracting pairs of unique RO values from the set of

4096.

‚ Apply the thresholding technique to the ROCD to select bits classified as

strong, to create a strong bitstring or BSS, while simultaneously generating

the helper data bitstring, BSHD.
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The bias that remains is not apparent in the BSS that is generated. However, the

’Runs’ test in the NIST statistical test suite fails if pairings are selected randomly

from the original set of 4096 RO count values (to create the differences). One of

the pairing strategies that succeeds in producing high quality random bitstrings is

to select the pairing using adjacent ROs in the array, e.g., RO0,0,0 and RO0,0,1. The

results given below utilize this pairing strategy. Alternative strategies that also

succeed are discussed below.

2.4.2 Experimental Results

Inter-chip hamming distance has emerged as a standard for evaluating uniqueness

of the bitstrings generated by the set of FPGAs. The ideal value is 0.5, which

indicates that half of the bits in the pairing of two bitstrings from different FPGAs

are different (and half are the same). Eq. 4.4 gives the expression for computing

hamming distance, where bsi represents the entire bitstring from FPGAi while bsi,k

refers to individual bits k. The bits k that are compared are those that are classified

as strong in both bitstrings, i.e., those corresponding to the same RO pairings. The

strong bit selection and same RO pairing condition used in the Hamming distance

calculation reduces the number of bits that are compared from the original length of

2048. The minp|bsi|, |bsj|q refers to this smaller number of comparisons.

InterChipHDi,j “

minp|bsi|,|bsj |q
ř

k“1

bsi,k ‘ bsj,k

minp|bsi|, |bsj|q
(2.12)

The results are shown in Fig. 2.12 for the adjacent pairing strategy. Bitstring Size

652 refers to the smallest number of strong bits in the bitstrings from all FPGAs.

The number of strong bits for each of the FPGAs is plotted in Fig. 2.13, which shows

the smallest sized strong bitstring is associated with FPGA number 26. The average

number of bits used in each of the HD calculations subject to the same RO pairing
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condition referenced above is 161. The interchip HD values for all combinations of

30 FPGAs, e.g., 30*29/2 = 435, are plotted as a histogram. The mean of 50.19 is

very close to the ideal value.

Figure 2.12: Inter-chip HD distribution using RO pairing strategy that uses adjacent
ROs in the differencing operation.

Figure 2.13: Strong bitstring sizes after thresholding for the 30 FPGAs using adjacent
ROs in the differencing operation.

The results obtained by applying the NIST statistical test suite to the 30 FPGA

bitstrings of size 652 bits are given in Fig. 2.14. NIST requires all bitstrings to be

the same size, so bitstrings longer than 652 bits are truncated. The limited size of

the bitstrings allowed only five of the NIST tests to be applied. A test is considered
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passed when at least 28 of the 30 FPGA bitstrings pass the test. All NIST tests are

passed, with all bitstrings passing every test, except for the LongestRun test, where

one FPGA failed. These results indicate that the bitstrings are random and high

quality.

Figure 2.14: NIST statistical test results for 30 FPGAs. Bitstring size is 652 bits,
restricting the number of applicable NIST tests to the five shown.

A second pairing strategy that succeeds in passing all NIST tests is to pair ver-

tically adjacent ROs in the array, e.g., use RO0,0,0 and RO1,0,0 as a pair in the

differencing operation. Moreover, the combined bitstrings defined using both adja-

cent pairing strategies also pass all NIST tests and produce a mean InterChipHD

value of 50.14 %. Other non-adjacent pairing strategies fail at least one of the NIST

statistical tests, in particular the Runs test. Failing a NIST test indicates that fewer

than 28 FPGA bitstreams produce a test statistic larger than the required α value,

0.01.

These results suggest the following conclusions related to the design and perfor-

mance of the SR-PUF architecture:

1. Calibration that reduces LUT path-length bias, as well as chip-to-chip process

variation and design bias, is required for obtaining high quality bitstrings with
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good statistical properties.

2. Across-chip bias is not addressed using the proposed calibration method, result-

ing in non-random artifacts occurring in the bitstrings created using arbitrary

pairing strategies.

3. PUF architectures that leverage localized sources of entropy require additional

processing steps, in contrast to PUF architectures that derive entropy over a

larger region of the device where localized bias effects are less dominant because

of the averaging effect.
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FPGA Interconnect and Switch

Matrices Analysis

The physical layout components of a FPGA device consist of look-up tables (LUTs),

flip-flops (FFs), switch matrices (SMs) and wires, plus sets of commonly used com-

ponents including block RAMs, digital-signal-processing (DSP) blocks and digital

clock managers (DCMs). The performance characteristics of these components are

impacted by imperfections in the device manufacturing process. Processing varia-

tions affect each device differently, making, e.g., the propagation delay along the

same routes in different chips distinct. The random and unique nature of process

variation effects represent the cornerstone of PUF technology. This paper focuses on

the analysis of variation in constituent elements of the FPGA, namely, the SMs and

wires.

The experimental evaluation carried out in this work is performed on device

instances of the Xilinx Zynq system-on-chip (SoC) 7010 architecture. This specific

device is chosen because we have access to 34 copies which enables a statistical

analysis. Additionally, Xilinx uses the same LUT and SM footprints across most,
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if not all, of the 7-series devices, making the analysis presented here relevant to

this family of devices. The Zynq 7010 consists of a processor system (PS) and

programmable logic (PL) region. In the PL component, the SMs are responsible

for configuring routes and for implementing fan out connections of input wires to

multiple out-going wires. The implementation details of the SMs are not provided to

end users because they are considered proprietary. However, low-level routing tools

allow routes through SMs to be manipulated. In an initial set of experiments, called

Hand-Crafted, we use routing commands to re-route signals through SMs as a means

of extending a set of reference routes, called BaseRoutes, to include additional wires

and SMs, called RouteExts. A second larger Tool-Crafted design is created in which

the Vivado place&route tool is used to create the BaseRoutes and RouteExts, as an

alternative to the hand-crafted routes of the first design.

The delay of the RouteExts are extracted and isolated by subtracting out the

BaseRoute delay. DPR is used as a means of eliminating artifacts introduced by

MUXs (LUTs) in the delays of the RouteExts by fixing all LUT positions in the

DPR bitstreams to the same locations. The RouteExts in the hand-crafted design are

constructed to include different types of routing resources, including single, double,

quad and long lines. Delay measurements are made using an on-chip, high resolution

timing engine, which provides a resolution of „ 18 picoseconds (ps). Multiple sample

averaging is used to increase resolution even further.

Delay measurements are carried out on the RouteExts instantiated on a set of

identically configured Zynq 7010 devices, and a statistical analysis of delay variation

is presented. Our goal is to measure and isolate the contribution of SMs and routing

wires to the entropy leveraged by a delay-based PUF. This work, in conjunction with

our previous research on LUT entropy [29], will facilitate the construction of PUF

architectures that maximize entropy, i.e., correct-by-construction. The following

contributions characterize the technique and results presented in this paper.
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‚ A dynamic partial reconfiguration technique is applied to measure and isolate

the delays associated with wires and SMs in the programmable logic of a set

of FPGAs.

‚ Wire and SM configurations are constructed using different routing resource

types to assess the impact of wire length on the level of entropy.

‚ A series of data post-processing operations are proposed as a means of extract-

ing only within-die delay variations, which represent the most robust random

source of variations for a PUF.

‚ An estimate of within-die variations is derived for a wire-SM combination, and

an analysis of the bitstrings derived using only wire-SM delay variations is

presented to determine their statistical properties.

The remainder of this paper presents related work in Section 3.1, while Section

3.2 describes the system architecture, tool flow and data post-processing algorithms

for the Hand-Crafted and Tool-Crafted designs. Section 3.3 presents the results from

the two experiments and Section 3.4 presents conclusions.

3.1 Background

In [30], the authors use dynamic reconfiguration to enable fine control over delays

in experiments which use a time-to-digital converter (TDC) by manipulating route

options through SMs. A fine resolution delay tuning method to improve linearity in

TDCs is proposed in [31]. The authors introduce additional capacitive loads, as fan

out branches, to nets passing through SMs.

A path delay timing method is proposed in [32] that constructs nearly identical

path structures and uses differencing to obtain the delay of the changed segment.
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The goal of the work was to accurately measure the impact of extending paths using

additional routing resources (similar to the work proposed here). However, dynamic

partial reconfiguration was not used to create the path length extensions, resulting in

additional artifacts introduced by changing pin locations in the static portion of the

path. Moreover, the authors provide very little data on within-die and across-chip

variations.

A RO-based differential delay characterization method is proposed in [33] for

application to variation aware design (VAD) methodologies. Multiple ROs are con-

structed with overlapping path segment components and a set of equations are solved

to deduce the path segment delays. A RO construction technique allowed statistical

delay characterization of individual LUTs and direct, double and hex path segment

delays.

Tuan et. al [34] investigate within-die variation in 65-nm FPGAs using a unique

RO structure composed of non-inverting buffers and self-timed reset latches. The

measured within-die variations are decomposed into random and systematic com-

ponents. The analysis and techniques can be used to improve performance of de-

vices using a location-aware timing model. More recently, the authors of [35] use

soft-macro sensors to characterize within-die and die-to-die variation for creating

device-signature variability maps. They too decompose variability into random and

systematic components, and expand the analysis to include different FPGA resources

and across temperature-voltage operating conditions.

The authors of [36] propose a finely tunable programmable delay line (PDL)

mechanism with high precision and low overhead using a single LUT. A PDL-based

symmetric switch method is applied to an arbiter-based PUF to correct delay dis-

crepancies caused by FPGA routing asymmetries. By applying majority voting and

categorization of challenges into reliability groups, they show that PUF response

stability can be increased across adverse environmental conditions.

28



Chapter 3. FPGA Interconnect and Switch Matrices Analysis

In [37], the authors utilize two distinct manual placement and routing approaches

to enhance precision of FPGA-based TDCs. In the first approach, uniform routing

paths and controlled delay elements are used while the second approach enhances

the first by introducing a combination of long and short routing wires. Notably, the

second approach achieved better dynamic range and resolution.

A comprehensive overview of how measurements can be conducted on FPGAs

to characterize within-die delay variability is proposed in [38]. The authors propose

precise measurement techniques to analyze both systematic and stochastic delay

variability in FPGAs by employing an array of ring oscillators and critical path

tests on various 90nm FPGA devices. This approach enabled them to quantify the

variability and analyze its impact on future FPGA technologies.

A Programmable Ring Oscillator PUF (PRO PUF) is introduced in [39], which

utilizes dynamic partial reconfiguration to generate bitstrings by manipulating switch

matrices within its architecture. The architecture is divided into static and dynamic

areas, with the latter being modifiable during operation, specifically altering signal

transmission paths in the switch matrix without affecting other structural compo-

nents. Bitstring generation and the selection of different transmission paths through

the switch matrix are controlled by challenge, with each unique path corresponding

to a specific external configuration file, enabling the generation of a wide array of

challenge response pairs (CRPs).

The technique proposed in this paper shares similarities with [39], particularly

as it relates to the application of DPR and the utilization of static and dynamic

regions. However, the approach proposed in [39] explores routing networks within

the DPR region but does not explicitly remove variations introduced by the LUT

architecture. Additionally, rather than using a challenge to specify each configura-

tion, our approach applies only two partial bitstreams, which fix the LUT positions

in both designs. The delays measured using the BaseRoute and RouteExt partial
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Figure 3.1: Block diagram of the test architecture for the Hand-Crafted experiments
showing the Programmable Logic and Processor System partitions on a Xilinx Zynq
7010 SoC. The static region is shown on the left, which includes the path delay timing
engine. Two dynamic partial reconfiguration instances of the routing architecture are
shown on the right. It should be noted that only one of these designs is instantiated
at any given instance in time. They are shown side-by-side to make it easy to see the
routing differences. The differencing technique captures delay variations only in the
white-highlighted regions, and removes the delay contribution of wires and LUTs in
the cyan-highlighted regions through common-mode rejection.

bitstreams enables, through differencing, only variations introduced by the routing

wires and switch matrices to contribute to the entropy of generated bitstrings.

3.2 System Architecture

A block diagram showing the system architecture implemented on the Xilinx Zynq

7010 device is given in Fig. 3.1. The PL component shown along the top consists of

two regions; a static region (SR) on the left and a dynamic partial reconfiguration

(DPR) region on the right. The SR region incorporates a set of state machines and

a time-to-digital converter (TDC), as well as a register interface, labeled GPIO for
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general purpose input/output, to the processor system component of the SoC. The

Controller and TDC are capable of measuring path delays at a resolution of „ 18 ps

in single-shot mode, and up to a total path length of „ 25 nanoseconds [40]. In our

experiments, the paths are measured 16 times and averaged to reduce measurement

noise in the single-shot measurements.

Two experimental designs are evaluated in this paper. In both designs, a set

of BaseRoutes and RouteExts are created. The implementation layouts of the

BaseRoute and RouteExts are identical everywhere except for the wires and SMs

used for the route(s) between the source and destination LUTs. The BaseRoutes

and RouteExts in the first design are hand-crafted to allow a wide variety of routing

resources to be utilized in the RouteExt designs, e.g., single, double, quad and long

lines. The BaseRoutes and RouteExts are implemented in a set of 67 partial bit-

streams, one-at-a-time. The second design utilizes only one BaseRoute DPR region

and one RouteExt DPR region, and includes a set of 8192 distinct paths, composed

of series-connected RouteExts, that can be configured and tested using an input

challenge. The first design is referred to as Hand-Crafted, while the second one is

referred to as Tool-Crafted.

As an example, the right side of Fig. 3.1 shows the DPR regions for the BaseRoute

(top) and RouteExt (bottom) from a Hand-Crafted experiment. P&R constraints

are used in the Xilinx Vivado CAD tool flow to construct both implementations,

which fix the positions of the wires, SMs and LUTs. The regions enclosed by the

rectangles show routing components that are locked down and remain static in both

DPR bitstreams. The route is modified only in the region circled on the right. The

base route passes directly through the SM while the route extension extends the

route to other wire and SM components.

The testing process first programs the DPR region with the BaseRoute DPR bit-

stream and measures the delay. The FPGA is then reprogrammed with the Route-
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Figure 3.2: Block diagram of the reconvergent-fanout module (RFM).

Ext DPR bitstream and the path is re-measured. The delay of the wires and SMs

that define the route extension is obtained by subtracting the BaseRoute delay from

the RouteExt delay, which removes all common-mode components of the path de-

lay. In many cases, the RouteExt design from the previous experiment is used as the

BaseRoute for the next design, extending the route further in successive experiments.

The second, tool-generated, design utilizes two stacked modules from the SiRF

PUF called the reconvergent-fanout module (RFM) [41]. A block diagram of the

RFM is shown in Fig. 3.2. The module consists of two rows of 4-to-1 MUXs separated

by AND, OR and AND-OR (AO) gates (the experimental design inserts two more

rows identical to those shown). The select inputs to the MUXs are controlled by the

row-path-select (RPS) inputs on the left. The same gate configuration is repeated

across four columns, col0 through col3, with the logic gate outputs distributed across

all four columns using rotate input and output, rix and rox, wires. Rising and falling

transitions are introduced by a Launch FF shown along the top of the figure, which

fans-out to the logic gate inputs in each of columns. A 16-to-1 MUX, shown along

the bottom of the figure, is used to select a path to be timed by the TDC. The design

with two stacked RFM modules possesses 131,072 distinct paths, of which 8192 are
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Figure 3.3: Tool-Crafted Experiment: Implementation views of the static portion
(left), and BaseRoute and RouteExt DPR regions (right). Although difficult to
see, the LUTs (colored orange) are identical in number and position in both of
the DPR regions and only the routing is different. This feature enables the entropy
contribution of only the interconnect and switch matrices to be isolated and analyzed.
The differences in the patterns associated with the green-highlighted interconnect
suggest that the routing tool introduced a large amount of diversity in the two
designs.

testable with rising and falling transitions using 132-bit challenges.

Unlike the Hand-Crafted design, placement constraints are used only to fix the

placement of the LUTs implementing the logic gates and MUXs, and the Vivado

P&R tool is used to create the routing structure. In order to force the P&R tool to

create different routes in the BaseRoute and RouteExt designs, a timing constraint

is used during the implementation of the BaseRoute which is removed during the

implementation of the RouteExt. The 13 ns timing constraint forces the P&R tool

to construct a routing architecture that minimizes the number of wires and series-

inserted SMs between the fixed LUT inputs and outputs. The LUT input/output

nets in the RouteExt design, on the other hand, almost always utilize a larger number

of wires and SMs, resulting in longer delays. The Vivado implementation views

in Fig. 3.3 show the static design of the SiRF PUF timing engine and bitstring
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generation algorithm on the left and BaseRoute and RouteExt DPR regions on the

right.

All experiments are carried out with the clock frequency set to 50 MHz. Clock

frequency has only a very small impact on the analysis of entropy, and only impacts

noise levels. This is true because the technology determines the propagation speed

of the signals along the routes.

3.2.1 FPGA Tool Flow

Figure 3.4: Xilinx Vivado tool flow for generating full and partial bitstreams for
Hand-Crafted and Tool-Crafted experiments.

A flowchart of the bitstream generation process is depicted in Fig. 3.4. The

operations carried out in the five-step process are as follows.
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1. Synthesize the timing engine and other components of the static design.

2. Routing constraints are used to fix SMs and wires for the Hand-Crafted experi-

ment in 67 separate designs, while timing constraints are used to force different

routes from the Vivado PNR tool in the Tool-Crafted experiment.

3. TCL commands are used to create the DPR region, which is represented as a

pblock in Vivado. The locked static design is used to maintain the exact same

layout in all DPR designs created.

4. PNR is run to join the static and DPR designs.

5. The full bitstream is used to program the device, followed by any sequence of

partial bitstreams created by this tool flow.

3.2.2 Delay Post-Processing Algorithm

The data collected from the Hand-Crafted design is used to estimate the level of

within-die variations (entropy) introduced by routing wires and SMs. The data post-

processing algorithm is crafted to achieve this goal and is described in this section

using timing data from a set of 34 Zynq 7010 FPGAs. The algorithm consists of four

steps, and is illustrated in Fig. 3.5.

1. The programmable logic of the FPGAs is programmed with the full bitstream,

followed by a sequence of partial bitstream programming operations. The tim-

ing engine measures both rising and falling delays of paths implemented within

each of the partial bitstreams. The curves labeled 1) BaseRoute & RouteExt

Raw Delay in Fig. 3.5 show the rising path delays for the base route (black)

and route extensions (blue) measured from the 34 FPGAs (falling delays are

omitted). The acyonyms BR and RE refer to BaseRoute and RouteExtensions,

respectively. We use the term Raw to refer to both sets.

35



Chapter 3. FPGA Interconnect and Switch Matrices Analysis

Figure 3.5: Data post-processing algorithm applied to data from the Hand-Crafted
experiments. 1) BaseRoute & RouteExt Raw Delay: BR (black) and RE (blue) rising
path delays. 2) Compensate Raw Delays: GPEV applied to calibrate the BR and
RE delays to remove global process variations. 3) Subtract BaseRoute delay: BR
rising and falling delays subtracted from RE rising and falling delays. 4) Remove
DC bias: DC bias removed from the delay values showing only levels of entropy along
the y-axis.

2. The RE and BR delays are calibrated to remove global process variations using

a Global Process and Environmental Variation (GPEV) module. The GPEV

module applies a pair of linear transformations given by Eqs. ?? through ??.

The mean and standard deviation of the 134 Raw delays from each FPGA

are computed and the Raw delays are standardized using Eqs. ?? and ??. A

second linear transformation using 0.0 and 44.1 for µref , and σref (Eq. ??) is

then applied to convert the standardized values back to a form similar to the

original data (44.1 is the mean σ across all FPGAs). The same µref and σref

are used for all devices in the second transformation, which effectively removes

global performance differences while preserving within-die variations. Although

difficult to observe, the variations in the rising delays across all FPGAs in the
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plot labeled 2) Compensate Raw Delays from Fig. 3.5 are smaller than those

from Step 1. We use the symbol ’F’ for FPGA, ’i’ for FPGA instance, ’c’ for

calibrated and ’r’ for route in these equations. The GPEV calibrated delays

are referred to as BRc and REc.

3. The rising and falling path delays from the BaseRoute design are subtracted

from the corresponding rising and falling path delays of the RouteExt designs

in the graph labeled 3) Subtract BaseRoute delay of Fig. 3.5. We refer to these

delay differences as DVRc and DVFc (DV is an acronym for delay value). The

delays of the DVRc and DVFc vary from 80 picoseconds (ps) to 1.8 nanoseconds

(ns) across all 67 rise and fall delays.

4. The final transformation is shown in 4) Remove DC bias. The DVRc and DVFc

posses a DC bias that exists because the routes are not identically designed.

The process of removing bias is accomplished by computing the mean delay of

each DVRc and DVFc across all FPGAs and then subtracting this offset from

the compensated raw delays. We use the symbol ’R’ here to refer to individual

route extensions and ’x’ for the route extension number. Eq. ?? and ?? gives

expressions for computing the rise and fall compensated raw delays without

bias, annotated as DVR/Fco, with ’o’ referring to ’offset’.

3.2.3 Tool-Crafted Data Post-Processing

The goal in this Tool-Crafted experiment is to evaluate entropy and uniqueness-

related statistics of bitstrings generated using the delays of only wire and SB com-

ponents in the FPGAs. The sequence of graphs in Fig. 3.6 show the data post-

processing algorithm applied to the delays collected from one FPGA in this experi-

ment. The data post-processing algorithm is modified with two additional steps over

the process given for the Hand-Crafted experiments. Moreover, the addition of a
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differencing step to create DVD changes the step in which GPEV is applied.

Figure 3.6: Data post-processing algorithm applied to data from the Tool-Crafted
experiments. 1) Raw BaseRoute & RouteExt: The first 100 raw rising delays (left)
and the first 100 raw falling delays (right). 2) DVR and DVF : BR delays are sub-
tracted from RE delays. 3) DVD: DVR values are randomly paired and subtracted
from DVF values. 4) DVDc: The GPEV calibration process is applied to DVD. 5)
DVDco: The mean of DVDc is subtracted from each DVDc value. 6) SDVDco: A
scaling operation is applied to the DVDco values.

1. The Raw DVR and DVF are plotted in the upper left graph, where we show

the first 100 rising delays on the left and the first 100 falling delays on the right,

both from the larger sets of 4096 values in each group. The vertical shift in

the two data sets, with rising delays having smaller overall delays, illustrates a

common process-related characteristic that p-channel (pull-up) devices are not
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well correlated with n-channel (pull-down) devices on the same FPGA. This

pattern varies depending on the FPGA.

2. In contrast to the Hand-Crafted algorithm, the second step involves subtracting

the BaseRoute delays from the RouteExt delays. The first 100 DVR and DVF

are plotted in the 2) DVR and DVF graph.

3. In step 3, the 4096 DVR are randomly paired and subtracted from the 4096

DVF, as a means of doubling the level of entropy in the delay differences

(DVD). Note that additional DVD can be created by other random pairing

and differencing operations applied to the DVR and DVF groups, up to a total

of p4096q2 unique combinations.

4. The GPEV operation is applied to the DVD to create DVDc, using Eqs. ??

through ?? with 4096 replacing 134, DVD replacing Raw and 28.0 replacing

44.1 for σref .

5. Step 5 converts the DVDc to DVDco by subtracting the mean DVDc delay

from each of the individual DVDc, using Eq. ?? and ??.

6. The operation carried out in Step 6 is optional, and serves only to make the

number of strong bits in the generated bitstrings approximately the same for

each FPGA when a threshold is applied (described below). The scaling opera-

tion computes the average range of the variation in the DVDco of each FPGA i

and multiplies all DVDco by a ratio that makes the ranges approximately equal

for all devices. The ratios vary between 1.00 and 1.91 and illustrate that the

level of random variations (entropy) in each FPGA is not constant. We refer

to the delays shown in Step 6 as SDVDco (’S’ for scaled) in the following.
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Figure 3.7: Illustration of the bit-flip avoidance bitstring generation algorithm. The
space between the magenta lines represents the threshold region. Bits that fall out-
side of this region are considered strong bits, while those that fall within are classified
as weak bits.

3.2.4 Bitstring Generation Algorithm

The SDVDco data shown in Step 6 of Fig. 3.6 is used as input to the bitstring

generation algorithm. As indicated earlier, the GPEV transformation applied in

Step 4 calibrates for chip-to-chip (global) process variations and delay variations

introduced by adverse environmental conditions. The transformations carried out in

Steps 5 and 6 remove DC bias and scale the remaining within-die variations of each

device to make them similar across chips. All of these transformations are designed

to make it possible to apply a simple bit-flip avoidance algorithm during bitstring

generation that leverages the within-die random variations that remain, and produces

bitstrings nearly equivalent in size.

Bitstring generation is the final step (Step 7) of the proposed data post-processing

algorithm, and is illustrated in Fig. 3.7 using the first 15 SDVDco from the Tool-
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Crafted experiment. Here, the data for all 34 devices is superimposed, with the

delays for only the first two device line-connected, and highlighted in red and blue,

to illustrate the randomized behavior of the points above and below zero. The black

points are associated with the remaining 32 devices. The y-axis is given in units

returned by the TDC, where each unit value is equal to 18 ps of delay. The range of

˘6 corresponds to ˘108 ps.

The two horizontal lines represent thresholds that are used to improve reliability,

i.e., points within the region between the threshold are not used during bitstring

generation [41]. Given the focus of this paper is on the analysis of entropy within

the constituent components of paths in FPGAs, we utilize room temperature only

to analyze entropy and evaluate uniqueness in the generated bitstrings. Moreover,

the bitstrings are generated using only those points above and below the thresholds,

called strong bits, as a means of emulating the actual bitstring generation algorithm.

Points above the upper threshold are assigned a bit value of 1, while those below the

lower threshold are assigned 0.

3.3 Experimental Results

The experimental results for the Hand-Crafted and Tool-Crafted designs are pre-

sented separately in the following sections. As indicated, the analysis for the Hand-

Crafted experiment is focused on determining the level of entropy that wires and

SMs provide for delay-based PUFs implemented on FPGAs. The entropy contribu-

tion introduced by a third constituent element of FPGAs, namely, LUTs, as presented

in [29], is discussed for completeness. The analysis presented for the Tool-Crafted

experiments is focused on entropy and uniqueness statistical characteristics of bit-

strings generated using wires and SMs as the only source of entropy.
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3.3.1 Experimental Results: Hand-Crafted Design

The vertical range of the delays plotted for each Route # in the 4) Remove DC

bias graph of Fig. 3.5 portrays within-die variations for each of the hand-crafted

routes. In our analysis, we correlate the width of the vertical ranges, measured

as 3 ˚ σ delay variations, with the physical layout characteristics of the routes. In

particular, the number unit-sized wires and SMs are tabulated for each route as the

metric proposed for the physical characteristics. The number of unit-sized wires is

the number of equivalent single wires that define the route. In particular, double

wires count as 2 single wires, quad wires count as 4, while long wires count as 6.

The number of unit-sized wires and SMs are plotted in Fig. 3.8 as a stacked

bar graph with the number of SMs shown along the bottom of each bar and the

number of unit-sized wires shown along the top. Two degenerate cases occur for

routes 14 and 66, where the changes between the BaseRoute and RouteExt involve

only ’bounces’ within a single switch matrix, i.e., the remaining components of the

route are identical. For route 14, multiple bounces in the RouteExt replace a single

bounce in the BaseRoute, while for route 66, a single bounce replaces a different

single bounce in the same SM. Fig. 3.9 shows Vivado implementation views for the

BaseRoute and RouteExt SM within the route 66 designs.

The scatter plot shown in Fig. 3.10 plots the proposed physical characterization

metric of the routes along the x-axis against the measured 3 ˚ σ delay variations

along the y-axis. The relationship between unit-size wires and SBs is factored in by

adding a constant of 14.2 to the values in the bar graph for the number of unit-sized

wires. The red points correspond to the rising delay variations while the blue points

correspond to the falling delay variations. A linear regression analysis is performed

on each group of points separately in support of determining the relationship between

levels of entropy and physical characteristics of the wires and SMs. A least-squares
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Figure 3.8: Physical characteristics of the Hand-Crafted routes, showing the number
of SMs in the lower portion of the bars and the number of unit-sized wires in the
upper portion. The sum of the SMs and unit-sized wires that make up each bar
graph is strongly correlated with the range of variation shown in Fig. 3.5, step 4:
Remove DC bias.

estimate (LSE) of the regression line is plotted through both groups of points.

The LSE of the regression line is computed using a python function from the

linear algebra library call lstsq. The numerical values from the bar graph in Fig. 3.8,

namely the number of unit-size wires and SMs, are used as our model and serve as

input to this function. The function returns two coefficients and a y-intercept, with

the former two values representing the weighted contribution of the wires and SMs,

respectively, to the total measured entropy of the route.

The coefficients generated for the rising delays are 2.06 and 27.75 for wires and

SMs, respectively, while those for the falling delays are 2.17 and 12.35. Here, we

see the main contribution to entropy is due to the SMs, and the contribution by

SMs is more than double for rising delays than it is for falling delays. Moreover, the

close matching of the magnitudes for the wire coefficients support that fact that wire
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Figure 3.9: Vivado implementation view of the BaseRoute SM (left) and RouteExt
SM (right) for Hand-Crafted route 66, showing the only change in the entire route
is a change to the ’bounce’ which occurs within the SM.

variation should be independent of a rising or falling transition. Last, the fact that

both regression lines are nearly superimposed supports our modeling of the variation

as two constituent components of the measured variations.

The 3 ˚ σ value at x “ 1 in Fig. 3.10 is approximately 17ps on average, and

represents the delay variation introduced by a single wire-SM combination. For

comparison, the result presented in [29] indicates that the 3 ˚ σ (range) of delay

variation associated with the LUT in Zynq 7010 FPGAs is approximately 30 ps.

Therefore, the variation introduced by a wire-SM combination is somewhat smaller

than the variation introduced by a LUT.

3.3.2 Experimental Results: Tool-Crafted Design

The delays measured in the Tool-Crafted experiments is used to generate 128-bit

bitstrings for each of the 34 FPGAs. The bitstrings are subjected to several statistical

tests including inter-chip hamming distance (HD), NIST statistical tests, entropy and

min-entropy tests to evaluate their statistical quality.
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Figure 3.10: Correlation analysis of physical path characteristics against the level of
entropy measured in the path composed of SMs and wires. The Pearson’s correlation
coefficient is 96% for the rise and 89% for the fall.

Inter-chip hamming distance measures the uniqueness of the bitstrings by count-

ing the number of bits that are different in pairings of the bitstrings from different

chips. The ideal value is 50%, which indicates that half of the bits are different in

each pairing. Eq. 4.4 is used to compute inter-chip hamming distance, with bsi and

bsj representing the size of the bitstrings from FPGAs i and j. The number of bits

compared is given by k, which is a subset of the bits in both bitstrings of the pair.

Only strong bits corresponding to the same DVDco within the two bitstrings of the

pair are considered in the HD calculation, which is given by k. The distribution of

the inter-chip HDs is shown in Fig. 3.11. The distribution varies from approximately

43% to 56% and possesses a mean value close to ideal at 50.04%.

InterChipHDi,j “

minp|bsi|,|bsj |q
ř

k“1

bsi,k ‘ bsj,k

minp|bsi|, |bsj|q
(3.1)

The results of the NIST statistical tests applied to the bitstrings of length 128

bits is shown in Fig. 3.12. Only six of the NIST tests are applicable given the limited
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Figure 3.11: Distribution of inter-chip hamming distances computed using all possi-
ble pairing of bitstrings from the 34 FPGAs.

size of the bitstrings. All tests are passed with 34 FPGAs passing 5 of the tests and

with 33 FPGAs passing the Runs test. The entropy and min-entropy of the bitstrings

is computed as 0.9957 and 0.9084, respectively. These results indicate the bitstrings

are of cryptographic quality.

Figure 3.12: NIST statistical results for bitstrings of length 128 from the Tool-Crafted
Experiment.

3.4 Conclusions

An analysis of within-die variations (entropy) in the constituent elements of an

FPGA, namely, wires and switch matrices, is presented in this paper. Within-die

variations of these components is isolated by using a feature of FPGAs called dy-

namic partial reconfiguration (DPR) and a set of constraints. The constraints are

used to fix the locations of LUTs and components of the timing engine. Partial

bitstreams are created which vary the routing characteristics of two versions of the
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design, one which instantiates a set of base routes (called the BaseRoute design )

and a second which extends the base routes by adding wires and additional switch

matrices, called the RouteExt design.

The LUTs are fixed to the exact same positions in both designs, allowing compo-

nents of the path delays related only to the route extensions to be isolated through

a delay difference operation. We analyze the RouteExt delays from two sets of ex-

periments, one designed to allow variations in the constituent elements of the path

to be analyzed, called Hand-Crafted, and a second designed to allow an analysis of

the statistical properties of the bitstrings generated using only entropy contributed

by wires and SMs, called Tool-Crafted.

The results show the within-die variations in delay associated with a SM is ap-

proximately 17 ps, in contrast, the delay variations of a LUT, as reported in previous

work, is approximately 30 ps. This enables paths for PUF applications to be con-

structed with levels of entropy that meet target goals.

The results show that the statistical characteristics of the bitstrings generated in

the Tool-Crafted experiments are of high quality, achieving nearly 50% for inter-chip

hamming distance (the ideal value) and passing all applicable NIST statistical tests.

Future work will investigate path construction techniques that optimize entropy

by creating a diverse netlist of SMs, wires and LUTs. PUF architectures constructed

in this fashion will be more robust to adverse environmental conditions and machine

learning attacks.
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PUF-generated Bitstrings

Comparison on Three Device

Classes

In this experiment, we investigate the level of entropy available to the ShIft-register

Reconvergent-Fanout (SiRF) PUF when implemented on three different low-cost

FPGA-SoC device classes, namely, the Zynq 7010 SoC device manufactured by Xil-

inx, the CycloneV SoC device manufactured by Altera and the PolarFire SoC device

manufactured by Microsemi. Propagation delays through logic gates within SiRF’s

engineered netlist are measured using a high resolution time-to-digital converter

(TDC) instantiated in the programmable logic (PL) of each SoC device. Our anal-

ysis isolates delay components introduced by within-die variations by applying data

post-processing methods designed to remove global chip-to-chip and environmentally-

induced variations from the measured path delays. We present results that illustrate

the level of within-die variations using TDC-measured values of the actual delays,

as well as the stability of these delay variations across twenty-five instances of the

devices, and across a range of temperatures from ´40oC to 850C. We refer to the

48



Chapter 4. PUF-generated Bitstrings Comparison on Three Device Classes

delay variations introduced by changes in environmental conditions as temperature-

voltage noise (TV-noise), despite the fact that we did not vary supply voltage in our

experiments.

The SiRF PUF algorithm is used to post-process the TDC-measured delay val-

ues into reproducible bitstrings. Statistical tests are applied to measure the statis-

tical quality of the bitstrings, with assessments performed to determine the level of

uniqueness and reliability, as well as a suite of tests for measuring randomness. The

statistical tests utilize Hamming distance to measure uniqueness and reliability, and

the NIST statistical test suite for evaluating randomness [42]. Entropy and min-

entropy are also reported for completeness. The statistical quality of the generated

bitstrings for each of the device classes are compared to evaluate the impact of the

FPGA fabric primitives, interconnect components and manufacturing technology on

the level of entropy and noise. An entropy(signal)-to-(TV-)noise (SNR) ratio is de-

rived which reflects a critically important overall statistical quality metric for each

of the device classes.

The specific contributions of this work include:

‚ An analysis of entropy and TV-noise across multiple copies of SoC FPGAs

manufactured by three mainstream manufacturers using the SiRF PUF archi-

tecture, with the entropy source designed nearly identically within the pro-

grammable logic associated with each device class.

‚ An instantiation of a time-to-digital-converter (TDC) on each of the device

classes for obtaining high-resolution measurements of path delays, and a de-

scription of the implementation challenges and differences.

‚ A statistical quality assessment of the bitstrings produced by a set of devices

from each device class, a comparison of important statistical quality metrics,

namely uniqueness, reliability and randomness, and the formulation of a SNR
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metric that reflects that overall statistical quality of the PUF-generated bit-

strings.

The remainder of this paper is organized as follows. Section 4.1 discusses related

work. Section 4.2 describes the experimental designs, including differences in the

implementations within each device class. Section 4.3 presents experimental results,

while Section 4.4 presents our conclusions.

4.1 Related Work

The work presented in [43] report RO PUF bitstring statistics for Xilinx, Altera and

Microsemi devices as we do in this paper. However, the work was done on small

numbers of devices fabricated in older technology nodes, in particular, 13 Altera

Cyclone II, 5 Xilinx Spartan 3 and 5 Actel Fusion FPGAs, and across a limited

temperature range of 30 ˝C to 80 ˝C. Moreover, the paper does not carry out an

analysis of PUF soft data, e.g., actual RO counts, to determine the ratio of entropy-

to-TV-noise, nor does it provide a full statistical assessment of the bitstrings across

commercial-grade environmental conditions.

A more recent study uses the TERO-PUF on a Xilinx Spartan 6 in 45 nm tech-

nology and an Altera CycloneV in 28 nm [44]. Although larger sets of devices are

used (30 Spartan 6 and 18 CycloneV devices), the size of the bitstrings analyzed is

very small at 128-bits, and the reliability assessment is carried out over a limited

range between ´15 ˝C to 65 ˝C and for the Xilinx devices only. To their credit,

the authors did investigate supply voltage variations, which was not possible in our

study because of the large number of board modifications required, but did so only

at room temperature. Last, a tolerance of 10% is used for reliability, which restricts

the results of the analysis to fuzzy-match-based authentication, and not encryption
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keys, unless error correction is used.

An analysis of chip-to-chip, within-die and TV-noise variations in a set of 512

ring-oscillators (ROs) instantiated on 125 Xilinx Spartan 3E FPGAs is presented

in [45]. Although the study is focused on one device class, it presents an analysis

of RO frequency variation, a.k.a. an analysis of RO soft data. The authors of [46]

expand on the analysis performed in [45] by applying normality and similarity tests,

principle component analysis and entropy estimation to the RO data sets. In [47],

the author investigates an accurate reliability model for PUFs, which assumes error

probabilities are not uniform across all PUF cells, and derives a heterogeneous model

as an alternative to commonly used fixed error rate models.

A soft data-based thresholding scheme is proposed in [48] that utilizes an error

avoidance methodology, similar to the methodology proposed in [49]. The authors

of [50] describe a signal(entropy)-to-(TV-)noise ratio (SNR) similar to the one ap-

plied empirically in our work, but the analysis is applied to RO and Loop PUFs.

More recently in [51], a simulation-based framework is proposed that estimates the

reliability of response bits, and which can be used to filter unreliable bits.

Unlike previous work, the FPGA-SoCs used in this work possess the same fea-

ture size, which enables a better apples-to-apples comparison. In particular, the

Zynq 7010 is manufactured using TSMC’s 28HPL process [52] [53], the CycloneV

is manufactured on TSMC’s 28LP process [54] and the PolarFire is manufactured

on UMC’s 28 nm SONOS process [55]. The core power supply voltages are 1.0 V,

1.1 V and 1.0 V, respectively. A second important contribution of this work is the

derivation of a entropy(signal)-to-(TV)noise (SNR) ratio for each device class. The

SNR ratio is fundamental to predicting the overall quality of the PUF architecture

and its generated bitstrings, as we will show.
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4.2 System Overview

Figure 4.1: SiRF block diagram highlighting multiple, simultaneous signal path prop-
agations and an instance of reconvergent-fanout.

In this section, we describe the implementation details of the SiRF PUF for each

of the three device classes, as well as the differences that exist in the specific logic

gate primitives available in the device technology libraries.

The SiRF PUF architecture is shown as a block level diagram in Fig. 4.1. The

architecture is modular, constructed as a set of interconnected blocks arranged in

rows and columns. The example architecture shown in the figure, and used in the

experiments on the devices in each of the device classes, is composed of three rows,

row0 through row2, and eight columns, col0 through col7. The Launch FFs shown

along the top of the figure launch signal transitions into the netlist components

which traverse successive rows of shift-registers, logic gates and MUXes. Two signal

transition paths are illustrated in the figure, which show signals moving from top to
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bottom and left to right. Signal paths can also wrap around either edge of the module

using the rotate inputs rix and outputs roy, creating a complex, diverse network of

paths through the module. No place and route constraints are needed or used during

the implementation of the SiRF PUF, except as noted below for the implementation

of the TDCs on the three device architectures.

The netlist is engineered to remain glitch-free, ensuring that exactly one transition

propagates along any given signal path. The glitch-free characteristic of the netlist is

critical to obtaining reliable measurements of path delays, especially when operating

the PUF under extreme environmental conditions. Each row can be configured with

challenge bits to propagate either rising or falling edges, but not both. Therefore, the

entropy associated with both transitions can be combined using a challenge which

controls the transition direction bits (TDClngrxs) shown on the left side of the figure

with arbitrary assignments of ’0’ for falling and ’1’ for rising transitions. Glitch-free

operation is guaranteed by forcing all transitions to be either rising or falling within

any given row and by using only non-inverting logic gates within the network.

Other components of the challenge control which path is selected through the

shift-registers, labeled SRChlngrxs, and which paths through the 4-to-1 MUXes are

selected to drive the next row, labeled MChlngrys. Each module includes a set of

XNOR gates that invert falling transitions that may be generated by the previous

row to ensure that the shift-registers are capable of continuing signal propagation.

From the callout shown along the top of Fig. 4.1, the incoming signals to a module

drive the clock signal of the shift registers, where only rising transitions will cause

the shift registers to shift the bit sequence by one bit position to the right. The shift-

registers are initialized with an alternating sequence of ’0’s and ’1’s, which ensures

any 1-bit shift will create either a rising or falling transition on the output of the

shift-register.

The netlist is also engineered to create a large number of instances of reconvergent
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fanout. The left side of Fig. 4.1 illustrates the concept of reconvergent-fanout using

the rotate-in signal ri5. A rising transition propagating from upstream nodes drive

ri5, which fans out to the inputs labeled 3 on two of the 4-to-1 MUXs shown by

the red arrows. Assuming the challenge MChlnga is set such that both of these

inputs are selected, the MUX outputs reconverge on the inputs of the AND gate. If

a rising transition is propagating, then the signal that arrives last along one of the

two branches will dominate the timing on the AND gate output, i.e., the AND gate

output will not switch from low to high until both rising edges have arrived. Given

that proprietary vendor place & route tools create the implementation of the SiRF

netlist without constraints, it is unknown which branch has a physically longer path,

e.g., longer wire lengths, without inspecting the layout. It is also possible that both

branches of the reconvergent-fanout are nearly equal in delay. In either case, there is

uncertainty regarding which path dominates the timing, which complicates model-

building techniques that require physical layer models. Moreover, for the equal delay

case, it may happen that the branch which dominates the timing varies from one

device to another, further increasing the level of uncertainty.

All paths through the nelist eventually emerge and connect to a 32-to-1 MUX

shown along the bottom of Fig. 4.1. The timing engine state machine logic controls

the path select bits of the 32-to-1 MUX, enabling each of the signal paths to be

directed to a time-to-digital converter (TDC) (discussed below).

4.2.1 Xilinx, Altera and Microsemi Implementation Details

We describe differences in the logic element primitives amongst the three FPGA-SoC

device classes in this section. The TDC utilizes hardwired carry chain primitives,

which have different underlying structures in the programmable fabrics of each device

class. The shift register primitives are also implemented differently. Zynq devices

support a 32-bit shift register primitive while Cyclone and PolarFire, to the best
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of our knowledge, infer shift registers from RTL behavioral descriptions rather than

providing device primitives or hard macros.

TDC

Figure 4.2: Schematic diagrams showing the Major Phase Shift (MPS), Timing, and
Test Path elements of the TDC.

A block diagram of the TDC is shown in Fig. 4.2. The TDC is composed of

three submodules, called the Major Phase Shift Unit (MPS), the Timing Unit and

the Test Path Unit. The Timing Unit is constructed using hard-wired carry chain

components which makes it possible to measure path delays with a resolution in

the 10’s of picoseconds range. Carry chains are commonly embedded as primitives

in FPGA PL-side architectures to enable CAD tools to optimize timing during the

synthesis of RTL code. Addition and subtraction are very common functional unit
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operations in the control and/or data paths of RTL code and the embedded carry

chains are leveraged to improve their performance. For the TDC, the high speed

propagation capability along the carry chain, and the ability to connect the outputs

of the carry chain buffers to FFs, provides a mechanism to obtain timing resolution

of path delays that are on order of 10X better than what is possible using equivalent

LUT-based resources.

A timing measurement is performed using a launch-capture strategy, where the

system clock (Clk) driving the Launch FFs in Fig. 4.1, and the Launch FF in Fig.

4.2, is used to launch a rising transition into the SiRF PUF netlist and MPS Unit

simultaneously. The rising edge propagates through the SiRF PUF netlist to the

32-to-1 MUX and drives the SiRF_path input of the TDC, while the MPS Unit edge

propagates along the delay chain to a selected tap point. The simultaneous launching

of both signals creates a race condition, with the signal propagating through the MPS

Unit serving as a stop_clk signal that halts the race. The relative delays of both

signals determines how far the rising edge SiRF_path signal propagates along the

carry chain before the MPS Unit signal asserts the clock inputs to the Timing Unit

FFs. After the stop clock event, the Timing Unit FFs store a thermometer code, i.e.,

a sequence of 1’s followed by a sequence of 0’s. The number of 0’s in the thermometer

code (TC) represents a digital delay value (DV) for the tested path, which is then

stored by the SiRF PUF algorithm in a block RAM (BRAM).

The MPS Unit incorporates a MUXing structure to enable the selection of a tap

point. During testing of a path, a state machine repeats the launch-capture test with

incrementally larger tap point selections, where each increment increases the delay

of the stop_clk signal, until a valid TC, i.e., one with a non-zero number of 1’s, is

produced. Therefore, the actual delay of the tested path is the sum of the TC and

the selected tap point delay. To determine the delays corresponding to the set of tap

points (64 tap points are shown in Fig. 4.2), a calibration operation is carried out
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prior to any SiRF netlist testing operations. Calibration utilizes the Test Path Unit

to configure test paths of various lengths, which are used as the test path signal to

the Timing Unit, instead of the SiRF_path signal input. A sequence of calibration

tests are performed using test paths of different lengths to enable an accurate average

delay value to be computed for each tap point. The final DV stored in the BRAM

is the sum of a valid TC and the calibration-derived delay of the selected tap point.

Details of the calibration process are omitted here but can be found in [56].

Figure 4.3: Zynq 7010 LUT configuration that implements the initial portion of
TDC [1].

As mentioned, the carry chain component is very common in FPGA PL-side

architectures, and is used in the configuration of the TDCs in all three of the FPGA

device classes. The layout details differ from one device class to another, but nearly

the same level of resolution is achievable.

The Zynq 7 series device class provides a CARRY4 primitive (upgraded to a

CARRY8 for UltraScale+ architectures) for implementing fast carry chains. The

TDC in the Zynq 7010 device is configured to use 32 copies of the CARRY4 block

connected in series, to define a carry chain of length 128. The first copy of the
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CARRY4 chain is shown in Fig. 4.3, where the path-under-test (PUT) drives the

CYINIT input of the topmost CARRY4. A set of thermometer code FFs within the

SLICE are connected to the CO (carry-out) outputs of the CARRY4, and the carry-

out[3] signal is routed to the carry-in of the next CARRY4 block. The stop_clk

signal is derived from a global clock buffer, which drives the clock inputs of the

thermometer code (TC) FFs.

Figure 4.4: CycloneV ALM configuration that implements the initial portion of TDC
[2].

A carry chain is instantiated in the CycloneV devices using the cyclonev_lcell_comb

library component, as shown in Fig. 4.4 (thanks goes to [57] for the solution). A

sequence of Altera FPGA adaptive logic modules (ALMs) are shown, which define

the first two elements of the TDC. The top-most ALM is used to introduce the PUT

edge into the carry chain. Unlike the Zynq device, TC FFs are connected to the

SUM_OUT outputs of the LCELL primitive within the same ALM. The carry chain

is constructed with 256 elements, in contrast to the Zynq implementation, which

contains 128 elements. The carry chain length only impacts the speed of TDC cal-

ibration process, and does not effect the timing resolution of the TDC. Therefore,

differences in the length of the TDC are inconsequential to the analysis presented

herein.
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Figure 4.5: PolarFire LUT configuration that implements the initial portion of TDC
[3].

PolarFire defines an ARI1 primitive that can be used to implement a fast carry

chain, as shown in Fig. 4.5. Unlike the Zynq and Cyclone devices, the delay through

each of the carry chain elements, defined as a sequence of ARI1 primitives, is not

monotonically increasing, which creates ’holes’ in the TCs, i.e. ’0’s in the sequence

of ’1’s. However, from timing simulation, we found that sequences defined using

every third ARI1 element are monotonic. Therefore, a set of three 128-bit TC chains

are created by connecting every third element in a sequence as shown in the figure.

Moreover, we also determined that the first 5 elements of the TDC carry chain were

not well correlated with the remaining values, and are therefore skipped as shown in

the figure. The length of the carry chain is expanded to 391 elements to accommodate

these constraints.

The three TCVs obtained for a PUT in the PolarFire devices are averaged using

the expression in Eq. 4.1, which expands the range of the TDC from 128 to 192. As

we will see, this pseudo-averaging of three TCs per test reduces measurement noise

levels over the single-valued TDCs implemented on the Zynq and Cyclone devices.
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However, the SiRF PUF algorithm enables multiple TC samples of each PUT to be

collected and averaged, which is used in the Zynq and Cyclone analyses to make the

comparison of noise levels nearly equivalent.

TCVAve “ pTCV1 ` TCV2 ` TCV3q{2 (4.1)

Shift Registers

Figure 4.6: Implementation of a 32-bit shift registers on the Zynq 7010 (top) [1]
CycloneV (bottom-left), and a 4-bit shift register for the CycloneV (bottom-right).

Native device primitive support for shift registers exists only on the Zynq device,

as a unisim library component called the SRLC32E. The schematic for the SRLC32E

is shown along the top of Fig. 4.6, and its implementation uses one LUT. The Zynq
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primitive uses the LUT resources to implement both the shift register and selec-

tion MUX because the circuit structures required to implement the LUT are nearly

equivalent to the circuit structures required for the shift-register-MUX combination.

In contrast, we were not able to find a Cyclone and PolarFire dedicated shift

register-MUX primitive, and instead, construct the functionality using multiple look-

up table primitives. The lower left portion of Fig. 4.6 shows the layout of an equiv-

alent 32-bit shift-register-MUX combination on the Cyclone. The fabric resources

needed include 19 ALMs and 32 FFs. Although not shown, PolarFire requirements

are similar. In an attempt to match the number of resources used for the SiRF PUF

netlist across all device classes, the Cyclone and PolarFire shift-register-MUX im-

plementations are reduced from 32 bits to 4 bits, as shown on the right-bottom side

of Fig. 4.6. This ensures the path lengths are similar in all three implementations,

which in turn, improves the fairness of the comparisons of entropy, TV-noise and the

bitstring metrics.

4.2.2 Architecture

Portions of the implementation views of the SiRF PUF on the Zynq 7010, CycloneV

and PolarFire devices are shown in Fig. 4.7. The red-dotted rectangles highlight

the regions corresponding to the fixed components of the TDC implementations. As

indicated earlier, the carry chains of the TDCs in the Zynq, Cyclone and PolarFire

are 128, 256 and 390 elements in length, respectively. The PL fabric resources in all

three devices easily accommodate the integration of the TDCs.

All three designs were synthesized with a timing constraint of 50 MHz, and all

three produced SiRF netlist path delay values in the range of 5 ns to 20 ns. The

carry chains in the TDC implementations support path delay measurements in the

range of 2 to 4 ns. Therefore, the delay range expansion provided by the MPS Unit
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Figure 4.7: Implementation views of SiRF PUF on the three device classes, with
highlighted TDC components.

and the calibration process described earlier are essential to enabling SiRF netlist

path delays to be measured.

4.3 Experimental Results

The major objective of our analysis is to measure and compare the average level of

entropy and TV-noise present in the SiRF netlist path delays across the three device

classes. The evaluation is carried out using a set of 25 devices from each device

class. The same set of characterization vectors are applied to all 75 devices, and a

set of 64,000 high-resolution delay values (DVs) are collected from each device under

nominal conditions. We refer to this data as the enrollment data. Five additional
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Figure 4.8: Superimposed distributions of 2048 DVD, DVDc and DVDco from 25
Zynq, Cyclone and PolarFire devices illustrating the SiRF PUF group processing
operations.

regeneration experiments are carried out which repeat these experiments at tem-

peratures given by {´40 ˝C, 0 ˝C, 25 ˝C, 50 ˝C, 85 ˝C}. The combined enrollment

and regeneration data sets are used for the entropy and TV-noise analyses, while the

bitstring analyses uses the enrollment data and regeneration data in the traditional

way for evaluation of reliability and other statistical metrics.

As we have done in previous works [58], we post-process the DVs to compensate

for global process variations and changes in environmental conditions as a means

of extracting delay variations introduced by within-die process variations. The first

section of the results shows the effect of applying our proposed mathematical trans-
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formations to the raw DVs to accomplish this goal, which also reveals the levels of

TV-noise that remain. The SiRF PUF’s entropy-TV characterization process selects

a subset of the 64,000 DVs that are best described as compatible, where compatibility

is defined as path delays that scale approximately linearly with changes in temper-

ature conditions. We provide a brief description of the entropy-TV characterization

process in this paper, and refer readers to [58] for a detailed description of the pro-

cess. The values reported for the average level of entropy and TV-noise are derived

using only the DV-compatibility sets.

The next section of our results focuses on a quantitative evaluation of overall lev-

els of entropy and TV-noise for each device class. The applied data transformations

remove global biases from the raw DV from each device class to enable a compar-

ison of the signal(entropy)-to-TV-noise ratios. The last section presents results of

a statistical analysis of the bitstrings from each device class, including analysis of

randomness, uniqueness and reliability. Parameters to the SiRF PUF algorithm’s

reliability enhancement techniques are tuned for each device class to make the com-

parison as fair as possible.

4.3.1 DV Post-Processing

The SiRF PUF algorithm applies a sequence of transformations to a set of 2048 rising

DVs (DVR) and 2048 falling DVs (DVF). The superimposed distributions generated

by operations important to our analysis in this paper are shown in Fig. 4.8 for sets

of 25 devices from the Zynq, Cyclone and PolarFire device classes. The following

summarizes the operations that produce these distributions.

1. The DVDiffs module creates a one-to-one pairing relationship between the 2048

DVR and 2048 DVF stored in BRAM, and subtracts the DVF from the DVR

to produce DVD. The superimposed distributions from the 25 devices in each
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device class are shown in the left column of Fig. 4.8.

2. The global process and environmental variation (GPEV) module applies a pair

of linear transformations to the DVD to produce DVDc, as shown in the center

column of the figure. GPEV removes delay variations introduced by chip-to-

chip (global) process variations, and significantly reduces temperature-supply

voltage effects on the path delays.

3. The SpreadFactors module eliminates path length bias effects, which are present

because the paths through the SiRF netlist vary in length. This occurs because

no placement or routing constraints are used to fix the positions of the gates

and wires in the SiRF netlist. The right-most column in the figure depicts

distributions of DVDcs.

Several characteristics are revealed in the distributions. First, the DVD distri-

butions associated with the Zynq device class exhibit shifts left-and-right that are

not as dramatic in the Cyclone and PolarFire distributions. These shifts are intro-

duced by chip-to-chip (global) process variations. The PolarFire distributions are

nearly coincident, exhibiting very little global process variation effects. Unfortu-

nately, wafer-lot information is not available for the device sets, which might explain

the disparity observed across the device classes. Second, the compensation carried

out by GPEV yields wider distributions for the Zynq devices, which suggests that

larger differences exist in the rising and falling delays of these devices, especially

when compared with the narrow distributions associated with the PolarFire devices.

And third, the widths of the DVDcs distributions are nearly the same for the Zynq

and Cyclone device classes, while the PolarFire distributions are approximately 33%

wider. The DVDcs distributions portray the level of entropy available to the PUF,

and therefore, the PolarFire devices dominate this metric.

The level of entropy is critically important to all PUF architectures but cannot
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Figure 4.9: Example DVD, DVDc and DVDco from 25 Zynq, Cyclone and PolarFire
devices illustrating entropy and TV-noise assessment.

be assessed without considering the level of TV-noise present. Entropy below the

noise floor cannot be accessed by the PUF unless error correction methods are uti-

lized during bitstring generation. The SiRF PUF, however, utilizes error avoidance

methods which require the level of entropy to be above the TV-noise floor.

4.3.2 Analysis of Entropy and TV-Noise

A key component to the assessment of quality of the SiRF PUF on each of the three

device classes is to evaluate the ratio of entropy-to-TV-noise (SNR). The graphs in

Fig. 4.9 provide a visual aid to how the SNR is computed. The top-most row shows

the first five DVD, DVDc and DVDcs (of the 2048) from the 25 superimposed
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distributions in Fig. 4.8. Therefore, each group of points in a column contains

25 points, one for each device. The sequences of line-connected points show the

transformations from DVD through DVDcs, which translate the points vertically

toward 0.0 and reduce their vertical spread.

The second row of graphs labeled Entropy zooms in by a factor 10 and shows

only the DVDcs. Both of our metrics for entropy and TV-noise are computed using

these points. Entropy is computed for each group of points as the spread or range of

the points around 0.0, which is annotated by the magenta lines and arrows. As an

example, the level of entropy is labeled as 10, 8 and 19, respectively, for the left-most

set of points of each device class. The third row of graphs shows an equivalent metric

for TV-noise. Here, only the first device from the set of 25 in each device class is

shown, and the points correspond to the DVDcs computed across the enrollment

and 5 temperature (regeneration) corners. The vertical spread (range) of the points

in this case represents TV-noise that was not eliminated by GPEV. We refer to this

residual noise as uncompensated TV-noise or UC-TVN. As indicated, UC-TVN

defines the noise floor, and it must be smaller than the level of entropy in order for

the SiRF PUF’s error avoidance scheme to be effective. As an example, the range of

UC-TVN is annotated as 3, 4 and 4 respectively, for the left-most groups of points in

each graph, which shows the entropy-to-UC-TVN requirement is met, i.e., UC-TVN

is at least a factor of 2 smaller than entropy.

An overall assessment of entropy and UC-TVN for each of the three device classes

is shown graphically in Fig. 4.10 through Fig. 4.12. Entropy is referred to as

within-die variation or WID in these graphs because WID better describes what it

represents. Here, we plot the WID as a set of black points and UC-TVN as a set

of blue points. Each of the 2048 points in either case represent the range of the

DVDcs across the 25 devices as described in reference to Fig. 4.9. As indicated in

the figures, WID is computed using data collected at 25 ˝C.
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Figure 4.10: Zynq 7010: WID vs. UC-TVN using 2048 DVDcs from one challenge
set.

Figure 4.11: CycloneV: WID vs. UC-TVN using 2048 DVDcs from one challenge
set.

The mean values of WID and UC-TVN for all 2048 points are also shown in the

three figures, and are given for Zynq as 10.40 and 2.08, for Cyclone as 11.30 and

4.20 and for PolarFire as 17.00 and 3.29. The corresponding ratios of WID-to-UC-

TVN, i.e., SNR, are given as 5.0, 2.69 and 5.17, respectively, for Zynq, Cyclone and

PolarFire. As is true for SNR metrics in general, the larger the ratio the better, so

PolarFire is best, with Zynq as a close second, while Cyclone performs significantly

worse than PolarFire and Zynq. Another metric that reveals this fact is depicted

in the figures as WC-UC-TVN, which identifies the worst-case UC-TVN across all
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Figure 4.12: PolarFire: WID vs. UC-TVN using 2048 DVDcs from one challenge
set.

2048 points. While the WC-UC-TVN is smaller than than the (smallest) worst-case

WID for Zynq and PolarFire (a desirable characteristic), this is not the case for

Cyclone. In fact there is a fair amount of overlap in the black and blue points. As

we show later, the higher noise levels associated with the Cyclone device makes it

more difficult to obtain our target reliability metric of 1-bit-flip-per-million.

It is difficult to speculate on why the Cyclone device class possesses higher noise

levels than Zynq and PolarFire. One possibility is rooted in the layout characteristics

of the programmable fabric, while another stems from the CAD tools responsible for

the generation of the netlist and for placement and routing. A third possibility is

related to the manufacturing facility. An analysis of the test data collected during

calibration of the TDC (not included here) indicates the TDC itself is stable and

is not the source of the noise. Future experiments are planned in which the SiRF

netlist will be placed inside of a logic lock region in order to fix the logic placement

within the device, to determine if this improves the noise levels.

A second interesting artifact of this analysis is the different shapes of the DVDcs

distributions shown in the right-most column of Fig. 4.8. As indicated earlier, Zynq

and Cyclone are manufactured in a TSMC foundry, while PolarFire is manufactured

69



Chapter 4. PUF-generated Bitstrings Comparison on Three Device Classes

by UMC. The PolarFire distribution has a wider band in the heart of the distribution

(at Count = 50), while Zynq and Cyclone are narrower and very similar in shape.

These characteristics might be leveraged, for example, to identify the foundry-of-

origin of the device. Future work is planned to investigate this further.

4.3.3 SiRF PUF Reliability Enhancement Techniques

Figure 4.13: Illustration of bit-flip avoidance via Thresholding. Enrollment results
are shown along the top row for the Zynq, Cyclone and PolarFire devices, respec-
tively. Only DVDcs data points classified as strong are shown. Regeneration is
shown along the bottom row, with DVDcs produced under different temperature
conditions superimposed on the enrollment data. Encroachment of the blue (cold
temperature) and red (hot temperature) data points within the threshold region il-
lustrates the effect of UC-TVN. Data points that cross the 0 line result in bit-flip
errors.

The SiRF PUF algorithm utilizes a bit-flip avoidance technique called Threshold-

ing, in contrast to error correction, to achieve high reliability standards. Thresholding

removes bits that have a high probability of flipping value during regeneration. An

illustration of Thresholding is shown in Fig. 4.13, as it is applied to the DVDcs data

points obtained from one each of the Zynq, Cyclone and PolarFire devices.
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Thresholding defines two symmetric thresholds around the 0 line, that are used

during device enrollment to identify and eliminate unreliable bits. The top row

of graphs shows thresholds of ˘3, ˘5 and ˘4 for the Zynq, Cyclone and PolarFire

devices, respectively, where DVDcs that fall within the threshold region are excluded

(and are not shown) during enrollment. We refer to DVDcs that fall above the upper

threshold and below the lower threshold (the points that are shown in the graphs)

as strong bits in the following.

As indicated earlier, a set of challenges are applied to generate a set of 2048

DVDcs for each device. The number of DVDcs that survive the Thresholding pro-

cess are given as 645, 142 and 616, for the Zynq, Cyclone, and Polarfire devices

respectively. A strong bitstring, a.k.a., an encryption key, is generated from the

DVDcs by assigning 1’s to DVDcs that fall above the upper threshold and 0’s to

those that fall below the lower threshold. During enrollment, the bitstring generation

algorithm also creates a helper data bitstring to record the positions of the strong

bits in the sequence of 2048 DVDcs, assigning 1 if a strong bit is generated, and

0 if a bit is skipped. The helper data does not leak information about the values

of the strong bits, and can therefore be stored in non-safeguarded, standard non-

volatile memory for use during regeneration. The regeneration algorithm reads and

interprets the helper data bitstring, generating strong bits when helper data bits are

1.

The threshold values are determined from characterization experiments, similar

to the experiments carried out here. The threshold of ˘5 for the Cyclone device class

is larger than the value for the Zynq and PolarFire device classes, indicating higher

levels of UC-TVN. The threshold is chosen to achieve a given reliability standard,

which is discussed in the next section. For a fixed level of entropy, a larger thresh-

old reduces the number of strong bits that can be generated from the set of 2048

DVDcs. For the example Cyclone device shown, the reduction is significant, where
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only 142 bits of the 2048 possible bits are classified as strong. In contrast, the Zynq

device produces a strong bitstring of length 645 while the PolarFire device produces

616 strong bits. The consequence of fewer bits is the requirement to run the SiRF

PUF algorithm a second time using a different set of challenges as a means of, e.g.,

generating a 256-bit encryption key for the Cyclone device, while only one iteration

is needed for Zynq and PolarFire devices.

The second row of graphs in Fig. 4.13 shows DVDcs produced by the same three

devices while subjecting them to different temperature conditions. The helper data

bitstrings produced during enrollment are used to select the same DVDcs for re-

generation of the strong bitstrings. The adverse impact of UC-TVN is depicted as

an encroachment of the regenerated DVDcs into the threshold region. The thresh-

old is selected to minimize the probability that a regenerated DVDcs appears on

the opposite side of the 0 line, when compared to the position of the corresponding

enrollment-generated DVDcs, which would result in a bit-flip error in the regener-

ated strong bitstring. Despite the larger threshold for the Cyclone device, several

regenerated DVDcs (colored blue and red) get very close to, and in one case cross,

the bit-flip line. The Zynq device performs best with respect to minimizing UC-

TVN because only a threshold of ˘3 is required to achieve zero bit-flip errors. The

PolarFire device ranks second with a requirement of ˘4 for the threshold, while the

Cyclone device ranks last.

Despite the reliability enhancements provided by DV-compatibility set selection,

GPEV and Thresholding, bit-flip errors can still occur. A third reliability enhance-

ment scheme, called XMR, can be layered on top of these methods to improve re-

liability even further. XMR uses redundancy to encode super-strong bits from a

sequence of strong bits, and adds protection against bit-flip errors by allowing, e.g.,

one strong bit in a sequence of three strong bits to flip value during regeneration.

A correct, error-free super-strong bit is generated in these cases because majority
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(a) Entropy

(b) MinEntropy

Figure 4.14: Entropy and min-entropy statistics for all device classes.

vote is used to determine the final value of the bit during regeneration. Similar to

Thresholding, the level of protection against bit-flip errors can be tuned using a pa-

rameter to XMR, where increasing the level of redundancy, e.g., from 3 to 5, 7, etc,

provides higher levels of reliability [58].
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(a) InterChip HD

(b) Aligned InterChip HD

Figure 4.15: InterChip Hamming distance statistics for all device classes.

4.3.4 Bitstring Statistical Analysis

In this section, we evaluate the super-strong bitstrings (SBS) generated by the 25

devices from each device class against statistical quality metrics including random-

ness, uniqueness and reliability. As indicated earlier, we regenerate the SBS using

the same challenges across a set of 5 temperature conditions, and use the regener-

ated SBS to evaluate reliability. Randomness and uniqueness are evaluated using

the enrollment-generated bitstrings only, which is possible when reliability statistics
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meet cryptographic standards of less than one bit flip in a million. To obtain statis-

tically significant results, multiple challenges are used to generate bitstrings of size

5800 to more than 1.4 million bits per device depending on the requirements of the

test.

The bar graphs in Fig. 4.14 show the entropy and min-entropy statistical results

for XMR values of 3 through 11 along the x-axis and for the three device classes

along the y-axis. Entropy and min-entropy are computed using Eqs. 4.2 and 4.3,

respectively, where p0 represents the fraction of bits that are ’0’, p1 represents the

fraction that are ’1’, and pmax is the larger of p0 and p1. The best possible value of

entropy and min-entropy is 1.0, which occurs when both fractions are 0.5.

The level of entropy across the device classes is nearly identical, where a slight

decreasing trend is observable, from approximately 0.999 to 0.987, as XMR is in-

creased from 3 to 11. Overall, the entropy results indicate very high levels exist

across all three device classes, and the level is insensitive to the XMR level. The

levels of min-entropy are again similar across the device classes but the sensitivity

to XMR level is more noticeable, decreasing from approximately 0.93 at XMR 3 to

0.86 at XMR 11. However, despite the reduced levels, these results are similar to

min-entropy levels published for other PUF architectures.

Hpxq “

1
ÿ

i“0

´ppi ˆ log2ppiqq (4.2)

H8pxq “ ´log2ppmaxq (4.3)

The results of inter-chip Hamming distance (InterChip-HD) are shown in Fig.

4.15, where we show the results using two different variants of the HD metric. Inter-

HD measures the level of uniqueness across the bitstrings generated from the set

of devices in each device class. Uniqueness is evaluated by pairing the enrollment
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(a) Probability of Failure

(b) Smallest Bitstring Size

Figure 4.16: Probability of failure and smallest bitstring size statistics for all device
classes.

bitstrings from each device class under all combinations (300 pairings with 25 devices)

and then counting the number of bits that differ in each pairing. The best possible

result occurs when the average number of bits that differ across all pairings is 50%.

Both of the InterChip-HD and Aligned InterChip-HD metrics are computed using

Eq. 4.4. The difference is rooted in the selection of bit pairings that are used in the

summation. For the traditional InterChip-HD results shown by the left bar graph,

all bit pairings are used up to the length of the shorter bitstring. For the aligned
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analysis, a bit pairing is included only if the paths tested by the devices that generate

the two bits in the pairing are the same. Although the InterChip-HD metric for the

Aligned analysis more accurately reflects the uniqueness characteristics of the SiRF

PUF, the super-strong bit selection processes associated with the Thresholding and

XMR methods significantly reduce the number of bits that qualify. For example,

only 45 bits on average are used per bitstring pairing for XMR 3, which decreases

to only 3 bits on average for XMR 11. Therefore, the sample size for the Aligned

analysis is much smaller.

The bar graphs for both analyses show the average InterChip HD computed

across all device bitstring pairings, where nearly ideal results of 50% are achieved

under the traditional analysis, and slightly larger values (approximately 52%) are

achieved under the Aligned analysis. There exists little or no distinction in the

results for each of the device classes.

InterChip-HDi,j “

minp|bsi|,|bsj |q
ř

k“1

bsi,k ‘ bsj,k

minp|bsi|, |bsj|q
(4.4)

The Probability of Failure (POF) results are shown in the left bar graph of

Fig. 4.16, where failure refers to the occurrence of a bit-flip error(s). The re-

liability of the SiRF PUF in reproducing bitstrings without errors is measured

in our experiments using data collected under 5 different temperatures, given by

{´40 ˝C, 0 ˝C, 25 ˝C, 50 ˝C, 85 ˝C}.

The POF results are derived from the intra-chip Hamming distance (IntraChip

HD) metric given by Eq. 4.5, which counts the number of differences between a

bitstring generated under nominal conditions and each of the bitstrings generated by

the same device using the same challenges under different temperatures. The tuple

(i, n, j) designates a bitstring pairing using the nominal bitstring n and a bitstring

generated under TV corner j for device i. The total number of bit flip errors counted

77



Chapter 4. PUF-generated Bitstrings Comparison on Three Device Classes

is converted to a POF by dividing the total number of bit flip errors by the total

number of bits considered in the analysis. If no bit flip errors are detected in any

device at any TV corner, we use the ratio of 1 over the number of bits evaluated as

an upper bound approximation of reliability, which assumes one bit-flip occurred.

Intra-HDi,n,j “

|bsi|q
ÿ

k“1

bsi,n,k ‘ bsi,j,k (4.5)

The negative integer values shown along the z-axis of the bar graph in Fig. 4.16

are the exponents of a value with base 10, so -6 corresponds to 10´6 or 1-in-a-million

as the probability of failure. Bit-flip errors are counted separately for each of the

25 devices and then an overall metric is computed by taking the sum of bit-flip

errors across all devices and dividing by the total number of bits inspected across all

devices. In order to increase the significance of the results, a large set of challenges

are applied to the devices. For example, the XMR 3 analysis inspected more than

37 million bits across all 25 devices in each device class, so the smallest value of any

exponent is -7.58.

Bit-flip errors occur in all device classes at XMR 3, where we see the reliability of

the Zynq device class just meets the industry standard of 10´6, while for the Cyclone

and PolarFire device classes, reliability is worse, and in the range of 10´5. However,

for XMR 5, only 1 bit-flip is present in the Zynq and Cyclone analyses, and 2 in the

PolarFire analysis with more than 17 million bits inspected. Although the reliability

appears to degrade for XMRs 7, 9 and 11, it is due to the smaller numbers of bits

inspected and is not due to bit-flip errors, in fact, none were observed at any of these

XMR levels. These results indicate very high levels of reliability can be achieved for

XMR values of 5 or above.

The right bar graph in Fig. 4.16 shows the minimum number of bits generated

using one iteration of the SiRF PUF algorithm, averaged across all devices in the

class. The size of the SBS bitstring decreases as XMR is increased, as expected,
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(a) Zynq 7010 NIST statistical results

(b) CycloneV NIST statistical results

Figure 4.17: NIST statistical test results for Zynq and Cyclone devices.

because the number of bits used in the XMR redundancy scheme increases for larger

XMR values. From the analysis presented in Section 4.3.2, which shows higher levels

of UC-TVN exist in the Cyclone device class, the primary penalty is shown here

where the number of usable bits is smaller at each XMR level when compared with

the Zynq and PolarFire device classes. Assuming XMR 5 is used due of reliability

constraints, the average minimum number of bits for Zynq, Cyclone and PolarFire

are 168, 137 and 158, respectively. Therefore, in all cases, two iterations of the SiRF

PUF algorithm are needed to generate a 256-bit AES key at a XMR level of 5.
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The NIST results for each of the device classes are shown in Fig. 4.17 and

4.18 [42]. The size of the SBS subjected to NIST testing varies from 5800 for XMR

11 to nearly 30,000 for XMR 3, which enabled seven of the NIST statistical tests to

be run. With a population of 25 devices, NIST requires that at least 23 of the devices

pass each of the tests in order for the test to be considered passed overall. Therefore,

bar heights below 0.92 indicate that 22 or fewer devices passed the test. The bar

graphs indicate nearly all of the tests are passed for Zynq, except for one failure

at XMR 7 for Approx. Entropy, where only 19 devices passed. For Cyclone, two

additional fail cases are observed for the Approx. Entropy test, at XMR 3 and 5 with

22 and 21 devices passing, respectively. The worst case is again for XMR 7 with only

16 of the devices passing. PolarFire’s results show three additional fail-by-1 cases

for XMR 3 (Frequency, Cum. Sums and Approx. Entr.), but are otherwise similar

to Zynq’s results. Overall, despite the fail cases, the NIST results are generally very

good, showing all three device classes are able to produce high quality bitstrings.

Figure 4.18: PolarFire NIST statistcal results.
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4.4 Conclusions

In this experiment, we implement, test and compare the SiRF PUF architecture and

the quality of the generated bitstrings on 25 copies of devices from Xilinx, Altera and

Microsemi. The SiRF algorithm is run at room temperature to generate enrollment

bitstrings, and then again with the devices placed in a temperature chamber and

subjected to temperatures over the range from ´40 ˝Cto85 ˝C, to regenerate the

bitstrings. Statistical tests including entropy, min-entropy, inter-chip Hamming dis-

tance (HD), intra-chip HD, and tests from the NIST statistical test suite are used to

evaluate the randomness, reliability and uniqueness characteristics of the bitstrings.

The results of our analysis show that all three devices produce high quality bit-

strings suitable for cryptographic applications. Overall, the SiRF PUF implemented

on the Zynq platform performs slightly better than the Cyclone and PolarFire imple-

mentations, when assessed from a Entropy(signal)-to-(TV)noise perspective. More-

over, devices from the Cyclone class possess the highest level of TV-noise. However,

the Zynq implementation is also the most mature and improvements are likely possi-

ble for the newer Cyclone and PolarFire implementations, which will be investigated

in future work. High levels of statistical quality are reported for the bitstrings from

all device classes, again, with Zynq performing slightly better. Another interesting

artifact of the analysis, and a topic for future work, is the presence of distinguishing

features in the delay distributions of devices fabricated in TSMC and UMC foundries.
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