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ABSTRACT
The degradation of antenna performance during hypersonic re-entry is a well known phenomenon
that can lead to complete radio blackout. Recent additions to the Empire code establish it as a
tool for the study and analysis of the problem. Coupling to the Sandia Parallel Aerodynamics
and Reentry Code (SPARC) enables the electromagnetic analysis of realistic re-entry plasma
profiles. The geometric flexibility afforded by both Empire and SPARC allow the consideration of
arbitrary vehicle and antenna configurations. We have used this tool to study antenna performance
during re-entry when the boundary layer becomes turbulent. A concise description of line-of-sight
transmissions, which employs advanced statistical methods, was developed. New insights into the
low altitude reflectometer readings of RAM-C2 are offered. Techniques for the reconstruction of
the re-entry plasma profile from reflectometer data were explored.
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1. INTRODUCTION

An aircraft or spacecraft, transiting through the atmosphere at a hypersonic velocity, may be
enveloped by a plasma layer due to extreme compressive and viscous heating of the air. It is well
known that re-entry plasma layers can disrupt the operation of any onboard antennas. The space
shuttle experienced communications blackout [1] between 265 and 162 kft altitude, lasting sixteen
minutes.

In the electromagnetic analysis of a re-entry plasma, the appropriate model is an isotropic, linear
cold plasma. The relative electric permittivity is,

𝜖𝑟 = 1 −
𝜔2

p

𝜔(𝜔 − 𝑖𝜈) , (1.1)

where 𝜔 is the electromagnetic signal angular frequency and 𝜈 is the electron collision frequency.
The plasma frequency,

𝜔p =

√︄
𝑛e𝑒

2

𝑚e𝜖0
, (1.2)

is proportional to the square root of the electron density 𝑛e. Here, 𝑒 is the elementary charge, 𝑚e
is the electron mass and 𝜖0 is the electric permittivity. This model, which is sometimes called the
Drude model, assumes the absence of strong, applied magnetic fields or very high electromagnetic
signal power which would introduce nonlinearity.

Given the electron density and collision frequency profile of the re-entry plasma, there is a hierarchy
of approaches for understanding the performance degradation that an antenna will experience. Let
us start with the simplest, which is to just compare the signal frequency, 𝜔, to the peak plasma
frequency in the plasma profile, 𝜔p. Electromagnetic waves in an unmagnetized, linear plasma
have the same [2] dispersion relation as O-waves. For 𝜔 ≫ 𝜔𝑝, there is little interaction with
the plasma; microwave signals will pass through the plasma unaffected. For signal frequencies
𝜔 ≲ 𝜔𝑝, the interaction with the plasma cannot be neglected and a higher fidelity approach is
required to better understand what impacts on antenna performance can be expected.

At the next level of fidelity, we can consider the homogeneous plasma slab model, where an
electromagnetic plane wave is normally incident on a slab of finite thickness. Solutions1 to the slab
model yield a transmission coefficient and a reflection coefficient. We can gain some intuition about
the problem by considering the solutions to some slabs with 𝜔𝑝 = 5 GHz, shown in Fig. 1-1. The
slab problem parameters are scanned to show the impact of different slab thicknessesΔ𝑥 and plasma
collision frequencies 𝜈 on the transmission coefficient. In all cases, the transmission coefficient
falls off at low frequencies below 𝜔𝑝. The falloff in transmission coefficient is smoothed about 𝜔𝑝
for a larger collision frequency 𝜈.

1The homogeneous plasma slab model has an analytic solution that is amenable to a pen-and-paper approach.
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Figure 1-1. The transmission coefficient for the homogeneous plasma slab problem, for various slab
thicknesses Δ𝑥. The electron collision frequency is zero in (a) and 10 GHz in (b) and in all cases the

plasma frequency is 5 GHz. Attenuation is greatly reduced for microwave frequencies above the plasma
frequency in all cases. The effect of varying the slab thickness or collision frequency is significant.

The next higher fidelity model would be the inhomogeneous plasma slab model. A solution to
this model can be obtained by considering the inhomogeneous slab to be an arrangement of thin
homogenous slabs. The coupling between adjacent slabs can be represented by the same linear
system as the homogeneous slab model; the usual solution technique is called the transmission
matrix method. A study by Statom [3] has provided some detailed characterization of (homogeneous
and inhomogenous) plasma slab responses.

In many cases, the humble plasma slab model provides an excellent approximation and more
sophisticated models may not be worth the effort. However, in this report, we will see many
situations where a simple slab model will not suffice for even a qualitative understanding of antenna
performance. For example, a one-dimensional model will, in general, yield a completely different
antenna reflection coefficient compared to a 3D model because it cannot account for surface wave
excitation. In the case that the boundary layer is turbulent, a 1D model will fail to account for the
depolarization of the signal which can be quite significant for realistic flows having an anisotropic
structure. An interpretation of the results in section 4 indicates that a one-dimensional model will
fail to recover the correct statistical properties of the signal amplitude fluctuations for the case of a
turbulent re-entry plasma.

Capabilities recently added to the Empire plasma code [4] allow for much higher fidelity models of
antenna/re-entry plasma layer interactions. Empire is a finite element time-domain code, allowing
a great deal of flexibility in the specification of the antenna, aircraft structure and plasma layer2.
Support for linear material models, including the isotropic linear plasma dielectric (Eq. 1.1) and
plasma-matched open boundary conditions have been added. Diagnostics for computing the
far fields and S-parameters are now provided. At least half of the effort in estimating re-entry
performance is in determining the plasma profile. In Empire, the plasma profile can now be loaded
from the Sandia Parallel Reentry Code (SPARC) output, or specified with an arbitrarily long analytic
expression. SPARC [5] is a cutting edge code for computing hypersonic flow solutions. In chapter

2Empire can, of course, solve homogeneous or inhomogeneous plasma slab problems as well

14



2, these new Empire capabilities are described in detail.

We used this new capability to conduct analyses of antenna performance in re-entry conditions,
especially for situations where the boundary layer is turbulent. All of the analyses are based on
the RAM-C2 experiment [6, 7, 8]. The RAM (Radio Attenuation Measurements) experiments,
conducted in the 1960s, gathered data on re-entry plasmas and their effect on antenna performance.
The RAM-C series ballistic vehicles were spherically blunted cones with nose diameter, 𝑑N =

12 in.

Section 3 presents an analysis showing how an antenna responds to the presence of a re-entry
plasma. A realistic model of the RAM-C aft X-band reflectometer, informed by the published
schematics, was considered. Changes in the far field pattern and shifts in the tuning (S-parameter
resonances) are presented and discussed.

When the boundary layer is turbulent, transmitted and reflected microwave signals are subject to
a parasitic modulation. The amplitude and phase fluctuate at high frequencies (tens to hundreds
of kilohertz). A great deal of information about this parasitic modulation of the signal can be
communicated concisely and quantitatively. This is the subject of section 4.

In the historical RAM-C2 flight, interesting measurements were recorded by the reflectometers at
low altitudes. Investigators connected the phenomenon to a transition to boundary layer turbu-
lence, and suggested [6] reflectometry as a diagnostic for detecting boundary layer transition. In
section 5, a picture which potentially explains these historical observations emerges from Empire
electromagnetic analysis of SPARC calculations.

Reflectometry is a diagnostic technique rarely used in space research, despite its prominent role
in the famous RAM-C experiments. The technology has been mostly developed by the magnetic
confinement fusion community. In section 6, we engage in a study of reflectometry techniques for
reconstructing re-entry plasma profiles.

15
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2. RE-ENTRY ANTENNA PERFORMANCE MODELING WITH
EMPIRE

Empire implements a finite element time-domain (FETD) method for electromagnetics. The
flexibility in problem geometry and mesh arrangement afforded by FETD allows for virtually
unconstrained specifications of vehicle geometries and antenna configurations. With the time-
domain approach, each simulation provides results for a range of frequencies, which is convenient
for our main topic: characterizing antenna performance when the boundary layer is turbulent.

Empire uses conforming finite element basis functions to facilitate the ∇ · 𝑩 = 0 constraint. In
particular, the electric field 𝑬 discretized on mesh edges using lowest order Nedéléc elements of the
first kind [9] and the magnetic field 𝑯 discretized on mesh faces using lowest order Raviart-Thomas
elements [10].

Several new capabilities were added to Empire for analyzing re-entry antenna performance. We
added support for linear material models in Empire electromagnetics. Arbitrary electron density
and collision frequency fields can be specified to inform the linear plasma model Eq. 1.1. Also, a
perfectly matched layer (PML) boundary condition, formulated as a linear material model, is now
available. PML matching to vacuum or to a specified linear plasma profile is supported. Details
regarding the linear plasma model formulation and implementation are given in Appendix A. The
development of these capabilities required a deep understanding of the Empire electromagnetic
solver formulation and organization, but this has not been communicated in significant detail
anywhere. A detailed account of the Empire electromagnetic method is given in Appendix B.
Some recent papers [11, 12] by Empire team members provide additional insight as well.

We also added the capability to load a plasma profile from the output of the SPARC hypersonic flow
code onto the Empire finite elements. Alternatively, the user can specify an analytic expression
for the plasma profile (say, a bigaussian function [13] or some series representation). Loading
from SPARC is achieved by Galerkin projection. A detailed account of the method is given in our
recent paper [14]. A key element is the use of the R3D library [15] to compute intersections of the
Empire hexahedral or tetrahedral elements with the CGNS mesh elements that come from SPARC.
Recursive octree partitioning of the domain is used to minimize the number of R3D intersection
calculations required, so loading takes only a small fraction of the total simulation time.

New Empire diagnostics providing both frequency-domain and time-domain near to far field trans-
formations (NTFFs) allow the user to estimate the far field response from a calculation of the near
field evolution. While frequency-domain NTFF diagnostics are quite common in electromagnetic
codes, a time-domain NTFF is somewhat more unusual, although it allows more efficient use of
Empire’s time-domain calculation in many cases. Some time-domain NTFF methods for finite dif-
ference time-domain (FDTD) codes have appeared in the literature [16, 17, 18, 19, 20]. However,
we could not find any published NTFF methods for conforming FETD codes. Therefore, we had to

17



Figure 2-1. Coupling SPARC and Empire: We use Galerkin projection of the SPARC solution onto the
Empire finite elements. The R3D library is utilized for computing the intersections between SPARC and

Empire grid cells after an octree decomposition of the domain.

formulate a new time-domain NTFF method for Empire. Our method addresses certain non-trivial
difficulties with computing the NTFF in a conforming finite element code.

Development of the NTFF method was driven by a novel benchmark verification problem. Histor-
ically, scattering problems (e.g. the Mie sphere problem) have been used to verify NTFF method
implementations. However, Empire is not equipped for scattering problems and so it was necessary
to formulate a novel benchmark problem. The benchmark is a magnetic quadrupole expansion
problem, formulated so that the NTFF operates on fields with a near zone character (where the
electric and magnetic fields are out of phase and have significant radial components) and the NTFF
result can be compared to an exact result that was obtained by an asymptotic matching procedure.
Our time-domain NTFF method for conforming FETD codes and the benchmark problem formu-
lation are currently under review for publication [21]. We note that the correctness and accuracy
of the NTFF diagnostics is essential for hypersonic antenna problems; the far fields are the primary
quantity of interest in many or perhaps most such analyses.

We developed postprocessing scripts which can compute the scattering parameters (S-parameters)
between different radio frequency (RF) ports. In this case, RF ports correspond to Empire port
boundary conditions (sometimes referred to as "TLBC" boundary conditions within the Empire
user community). Scattering parameters are of great interest in the study of antenna performance
in the hypersonic environment. The presence of a nearby plasma layer can generally be expected
to alter the tuning of an antenna.

The scripts ScatteringParametersFourier.py and ScatteringParametersDirect.py implement differ-
ent methods for computing the scattering parameters. The Fourier method requires the 1D output
from the port boundary condition at every time step1. The forwards and backwards moving waves
are deconvolved from this data using a 2D FFT. Then it reconstructs the dispersion relation 𝑘 (𝜔)
and port impedance 𝑍 (𝜔). The direct method requires the incident wave, dispersion relation and
port impedance to be given by the user. With this information, the forward and backwards power

1This amounts to hundreds of kilobytes of data for a typical run.
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Figure 2-2. Electric and magnetic fields for a solution of the near to far field transformation (NTFF)
benchmark verification problem. Development of this benchmark problem was necessary towards

formulating a correct and accurate NTFF diagnostic.

waves for each port 𝑖 can be computed,

𝑎𝑖 (𝜔) =
𝑈𝑖,f (𝜔)√︁
𝑍𝑖 (𝜔)

(2.1)

𝑏𝑖 (𝜔) =
𝑈𝑖,r(𝜔)√︁
𝑍𝑖 (𝜔)

(2.2)

where 𝑈𝑖,f and 𝑈𝑖,r are the forward and backwards traveling voltage waves, respectively. Then the
scattering parameters,

𝑆𝑖 𝑗 (𝜔) =
𝑏 𝑗

𝑎𝑖
. (2.3)

(2.4)

The result of a simple coaxial cable benchmark problem, which is used as a verification test, is
given in Fig. 2-3.

Besides the simple coaxial cable benchmark problem, we attempted some cross-code validation by
comparing our S-parameter results to results from Ansys HFSS for non-trivial antenna structures.
Our finding was that achieving good agreement with HFSS can be challenging and requires very
careful construction of the Empire computational mesh. This is due to the use of low order
electromagnetics in Empire (first order spatial discretization). We observed that Empire hexahedral
meshes give a much better result compared to unstructured tetrahedral meshes at a given level of
mesh refinement.
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Figure 2-3. Scattering parameters, for a simple coaxial benchmark problem, computed using the new
Empire postprocessing S-parameter script (Fourier method). The reference solution was computed with

Matlab RF.
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3. REALISTIC MODEL OF A RAM-C2 X-BAND REFLECTOMETER
ANTENNA

We can use the flexibility in problem geometry afforded by the Empire finite element method to
calculate the behavior of a realistic model for the RAM-C2 aft X-band antenna under re-entry
conditions. A detailed schematic of the antenna is documented by Grantham [8]: it was a conical
horn coupled to an impedance matched coaxial cable transition.

The Empire problem domain can be discussed in terms of four distinct regions. There is the
coax-to-horn transition region, horn antenna structure, the 1/3 in thick teflon heat shield and the
outside region which includes the re-entry plasma. They are depicted in Fig. 3-1 (a), along with an
indication of the plasma density in the outside region. Although it cannot be discerned in the figure,
a teflon plug extends roughly 3 cm into the horn structure from the teflon heat shield region.

The plasma profile at the aft X-band antenna, for several altitudes during the RAM-C2 re-entry, is
shown in Fig. 3-1 (b). For this analysis, we’ll consider the situation at 40 km. We used a uniform
electron collision frequency model.

The simulation procedure is to ring the antenna with a sine-modulated Gaussian pulse signal.
This is accomplished with the port boundary condition terminating the coax. The parameters of
the pulse are chosen to excite some frequency band of interest; a shorter pulse width will excite
a broader range of frequencies, with the central frequency determined by the sine modulation.
The simulation is then run until the energy is completely dissipated. With the diagnostics and
postprocessing techniques outlined in section 2, the frequency-dependent properties of the antenna
performance can be extracted from the raw solution result.

From the perspective of electromagnetic signal propagation, there are several critical transitions
that occur along the path of the signal. These transitions include the coax to horn transition, the
interface between the horn antenna and the heat shield and the interface between the heat shield and
the atmosphere. Each of these transitions introduces reflections associated with their impedance
mismatch [22]. Ultimately, some of the transmitted microwave energy is reflected back into the
coax.

The reflection coefficient, 𝑆11(𝜔), is the ratio of the backwards traveling wave in the coax to the
transmitted wave. The reflection coefficient is directly affected by the presence and characteristics
of the re-entry plasma. As the plasma properties vary with re-entry conditions, the amplitude and
phase of 𝑆11 evolves. That is, the re-entry plasma dynamically changes the tuning of the antenna
system.

We computed the reflection coefficient for the 40 km re-entry plasma as well as the vacuum situation
(no plasma) using the S-parameter extraction techniques from Section 2. The result is shown in
Fig. 3-2 (a). Especially at lower frequencies, near the profile peak plasma frequency of 9 GHz,
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(a) Plot of the Empire problem domain. The
plasma electron density in the outer region,

corresponding to RAM-C2 conditions at 40 km
altitude, is indicated by the coloring. The teflon
heat shield, horn antenna and coax transition
regions are indicated in the solid grey color.

(b) Plasma profile at the aft X-band reflectometer
for several altitudes during re-entry.

Figure 3-1. The geometry and plasma profile for the problem.
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(a) Reflection coefficient.

(b) Realized gain for 90 degrees, with and without
a re-entry plasma.

(c) Realized gain for 0 degrees, with and without a
re-entry plasma.

Figure 3-2. Computed effect of the re-entry plasma on the RAM-C2 aft X-band horn antenna. Performance
under vacuum conditions and for conditions resembling re-entry at 40 km, where a laminar plasma layer

is present, are shown. The peak plasma frequency at 40 km is 9 GHz.

𝑆11 is significantly altered by the plasma. Notice that the resonance at ∼ 10 GHz is shifted up by
several hundred megahertz.

Additionally, the far field radiation pattern is also affected by the re-entry plasma. We used the
Empire frequency domain NTFF to compute the far field patterns for the vacuum and 40 km plasma
cases. The results, for both polarizations, are shown in Fig. 3-2 (b) and (c). The plasma attenuates
the 10 GHz far fields by nearly 3 dB and causes significant narrowing of the main lobe. The
enhanced side lobes are an artifact of the far field calculation due to choice of Huygens surface.
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4. MICROWAVE SIGNAL FLUCTUATIONS DUE TO A TURBULENT
RE-ENTRY BOUNDARY LAYER

In general, re-entry plasmas cause attenuation and scattering of microwave signals. It stands to
reason that efforts to model microwave interactions with re-entry plasmas can benefit by drawing
from the well established field [23] of microwave signal propagation in attenuating and scattering
media. It’s useful to distinguish between two classes of problems: scattering problems and line-
of-sight problems, sketched in Fig. 4. Line of sight problems are concerned with the line-of-sight
propagation between a transmitter and receiver. Scattering problems are concerned with the
reception of some scattered signal.

Let’s look at the line-of-sight propagation from a hypothetical RAM-C2 antenna to a distant receiver,
perhaps a ground station. At 28 km altitude, RAM-C2 was at the deepest point of radio blackout
and the boundary layer is believed to have been turbulent. A detailed analysis of this problem can
be found in [14] and we give a brief account of the main results here. Note that in this line-of-
sight problem, we are essentially studying the properties of the electric far field, underscoring the
importance of an accurate near to far field transformation of the raw Empire solution.

The model is a rectangular aperture antenna which terminates on an infinite ground plane. In the
Empire electromagnetic simulations, the antenna is driven by a sine-modulated Gaussian pulse
signal with a wide spectrum between approximately 15 and 30 GHz. The plasma layer model has
a randomly fluctuating electron density which is prescribed according to an approach analogous
to that used by Trolinger and Rose [24], which has been used to estimate optical performance in
hypersonic environments.

(a) Scattering problem (b) Line-of-sight problem

Figure 4-1. The two basic classes of problems for microwave propagation through random media.
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(a) Attenuation (b) Depolarization

Figure 4-2. Attenuation and depolarization (XPD) of the signal which has been transmitted through a
turbulent re-entry boundary layer model.

4.1. Transmitted signal attenuation

A concise and detailed quantitative characterization of the transmitted signal is indeed possible.
First, consider the attenuation due to the re-entry plasma. Signal attenuation at the receiver for
the turbulent plasma layer model and for a time-averaged plasma model are shown in Fig. 4.2
(a). Attenuation for the turbulent plasma model was computed by averaging over an ensemble of
thousands of random plasma fluctuation states.

At higher frequencies the time-averaged plasma layer is less attenuating, on average, than the
fluctuating plasma fields. Then there is a cross over at around 22 GHz. Below the cross-over
frequency, the time-averaged plasma is more attenuating. Below 22 GHz, the signal is in "deep
blackout" and occasional windows of good transmission open up, leading to an increase in average
transmitted power. Above the cross over, scattering attenuation is significant compared to plasma
absorption.

4.2. Transmitted signal depolarization

Take a look at the polarization of the signal, shown in Fig. 4.2 (b). Under vacuum conditions or if
the plasma is laminar, the antenna transmits a linearly polarized signal. However, with a turbulent
re-entry plasma, the signal is partially depolarized. The strength of depolarization can be quantified
with the cross-polarization discriminate (XPD),

𝑋𝑃𝐷 (𝜔) = 10 log
( ⟨|ℰ𝑥,𝑖 |2⟩
⟨|ℰ𝑦,𝑖 |2⟩

)
, (4.1)

whereℰ𝑥,𝑖 andℰ𝑦,𝑖 are the transverse components of the frequency-domain electric far field.1

With the model based on the Trolinger and Rose model, the plasma electron density fluctuations are
isotropic. The fluctuations are a superposition of spherical perturbations. We’ll see in section 5 that

1This definition assumes that the far field signal is nominally polarized in the y-direction
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the depolarization due to a realistic (large eddy simulation model) plasma layer, with anisotropic
electron density fluctuations, causes a much stronger depolarization — by about an order of
magnitude.

4.3. Transmitted signal first order statistics

Next we attempt to characterize the co-polarized amplitude and phase fluctuations at the receiver. In
the established theory of electromagnetic scattering from random media [23] and also the theoretical
study of turbulence [25], the task of characterizing fluctuations is approached through the lens of
random functions.

Uncorrelated fluctuations, or white noise, can be described by a probability density function (PDF)
of a single random variable. The description of correlated fluctuations (colored noise) requires
a joint PDF of multiple random variables. In general, a random function requires an infinite
dimensional joint PDF although this is not practical. One can obtain an nth order joint PDF
describing a random function from its n+1th order description; the description of a random function
can be "closed" at some "order" for an approximate description. This closely parallels the use of
fluid models in approximating Boltzmann kinetic systems, where a fluid model is associated with
some number of moments (density, velocity, pressure, etc.) and the system’s dependence on higher
moments is approximated in its closure [26].

It is standard practice to use a second order description, particularly a Gaussian process description
because they are easy to work with. A Gaussian process [27] is completely described by its
covariance function or equivalently (for stationary processes) its power spectral density (PSD). We
will take this approach.

First, however, we will consider the first order statistics of the amplitude and phase fluctuations.
That is, we will consider their univariate PDFs. Estimates of the amplitude fluctuation PDFs
for several microwave frequencies are given in Fig. 4.3. The fluctuations have lognormal fading
below approximately 22 GHz. Between roughly 22 GHz and the peak plasma frequency, 23.7
GHz, there is a transition from lognormal to Rice amplitude fading. As the frequency increases
from approximately 23.7 GHz, the Rice shape parameter 𝐾 increases from zero. This represents
a transition from Rayleigh fading to Gaussian fading. The Wang-Strohbehn distribution [28] is
effective at modeling the amplitude fading at all microwave frequencies. The Wang-Strohbehn
distribution is a product distribution of a Rice distributed random variable with a lognormally
distributed random variable.

A strong physical intuition regarding the channel properties emerges, if we relate these observations
of the amplitude fading to the well known [29] physical interpretation of lognormal fading and
Rice fading. Lognormal fading arises from multiple scattering along a narrow path of propagation,
while Rice fading occurs when there is a much wider path of propagation which leads to many
uncorrelated single scattering events contributing to the transmitted signal. Recall, in Fig. 3-2, that
narrowing of the main lobe is observed in connection with attenuation by a re-entry plasma layer, so
intuitively we can expect this transition from Rice to lognormal statistics as the frequency decreases
below the plasma frequency. At more strongly attenuated frequencies, the path of propagation is
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Figure 4-3. First order statistics of the amplitude fluctuations. In each plot, either the Rice or lognormal fit
is shown, depending on which model has a higher likelihood for the data. The Wang-Strohbehn

distribution fits the data at all frequencies considered.
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narrower. The Wang-Strohbehn distribution is essentially a model that allows for a continuously
variable cone of propagation, recovering the lognormal and Rice distributions in the limits of
narrow cone and wide cone propagation through the scattering medium.

This interpretation of the fading statistics sets an expectation that a 1D simulation would never
recover a Rice amplitude fading, although we did not verify this by calculation. Indeed, the first
study to attempt a characterization of the signal fading for re-entry environments [30] used 1D
simulations and found lognormal amplitude fluctuations.

4.4. Transmitted signal second order statistics

Now consider a second order statistical description of the amplitude and phase fluctuations: a
Gaussian process model. We recognize that, any time the univariate PDF of a random function
is not a Gaussian, the function cannot be exactly described by a Gaussian process. And, in this
context, the amplitude fluctuations are mostly not Gaussian as we saw in Section 4.3. In practice,
however, this is often done as an approximation. As we pointed out in [14], it could be worthwhile
to explore better descriptions than the Gaussian process in future work.

We observed a strong anti-correlation between amplitude and phase at all microwave frequencies.
Thus information about the fluctuation in one quantity gives us information about the other. Model-
ing the fluctuations in amplitude and phase with a standard, single-output Gaussian process (SOGP)
misses an opportunity to account for this correlation. Therefore, we suggest using a multi-output
Gaussian process model. In the following, it is shown that an MOGP is highly effective for modeling
the amplitude and phase fluctuations due to plasma turbulence.

At a given microwave frequency, the auto and cross covariance functions for the amplitude and
phase fluctuations can be estimated,

𝐵̂𝑖 𝑗 (𝜏𝑘 ; 𝜔) = 𝑤(𝜏𝑘 )
𝑁 − |𝑘 |

𝑁∑︁
𝑙=1

(
𝑞𝑖 (𝑡𝑙+𝑘 ) − ⟨𝑞𝑖⟩

) (
𝑞 𝑗 (𝑡𝑙) − ⟨𝑞 𝑗 ⟩

)
, (4.2)

from the amplitude samples 𝑞1 and phase samples 𝑞2. The lag time, 𝜏𝑘 = 𝑘Δ𝑇 . The window
function 𝑤 is selected for improved estimates at large lags.

The covariance functions 𝐵̂𝑖 𝑗 can inform a multi-output Gaussian process (MOGP) model for the
phase and amplitude [31]. We demonstrate the efficacy of the MOGP model by reconstructing the
phase from measurements of the amplitude along with occasional measurements of phase, shown
in Fig. 4-4.

The MOGP provides an extremely compressed and accurate reduced order model (ROM) for
the amplitude and phase fluctuations. To communicate a precise description of fluctuations in
the transmitted amplitude and phase of a re-entering object, one needs only the cross-covariance
functions for those quantities. A more detailed discussion can be found in [14].
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Figure 4-4. The transmitted signal phase is reconstructed from occasional phase measurements
(indicated by the circle markers) and full knowledge of the amplitude (not plotted).
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5. INTERPRETATION OF THE LOW ALTITUDE RAM-C2
REFLECTOMETER MEASUREMENTS

In the RAM-C2 experiment, emphasis was on collecting data concerning antenna performance
characteristics and plasma profile information at high altitudes. The Langmuir probes, used to
measure the plasma profile within the aft flow field, provided accurate data down to around 73
km, with accuracy at lower altitudes compromised due to extreme heating or loss of signal [8, 7].
The reflectometry data was interpreted according to the slope technique, whereby a sharp rise in
reflection coefficient was taken to correspond to the peak plasma frequency reaching the O-wave
cutoff. This technique was not expected to work at low altitudes, due to the high electron collision
frequency. A high electron collision frequency softens the jump in reflection coefficient in the
neighborhood of the cutoff frequency. This is evident by inspection of Fig. 1-1.

Yet the reflectometers provided interesting observations at low altitudes. The four X-band reflec-
tometers saw a sudden drop in their reflection coefficients 𝑆11. However, these events are believed
not to have coincided with a drop in plasma electron density [6]. Rather, these events have been
connected to a transition to boundary layer turbulence, and it was proposed that reflectometry data
could be used as an instrument to detect the onset of turbulence in the boundary layer [7].

The connection to boundary layer transition follows from the observation that the 𝑆11 drops occurred
in a sequence that corresponds to the distance from the nose tip; the aft-most reflectometer was
the first to record a sudden drop in 𝑆11 and the forward-most was last. In their figure, Huber,
Schexnayder and Evans [7, 6] indicated that the moments of low-altitude 𝑆11 transition correspond
well to the acheivement of a local Reynolds number 3.5 × 105. They suggested that the 𝑆11 decay
may occur at the moment of transition due to the change in plasma profile shape.

We have used the newly developed capabilities in Empire and SPARC to gain further insight and to
validate Schexnayder’s hypothesis, that the 𝑆11 decay may occur at the moment of transition due to
the change in plasma profile shape. The following provides a summary and a detailed account is
given in [32].

We considered a hypothetical rectangular aperture antenna, with a 15 GHz cutoff frequency,
mounted on the conical RAM-C flight body. The antenna is located three nose diameters aft of the
nosecone tip. The antenna was rung with a sine-modulated Gaussian pulse in the K to Ka frequency
bands.

We considered several models for the plasma layer, all of which were computed with SPARC [5].
A non-equilibrium, 11-species reacting flow model, based on the Park model [33], was used to
obtain electron densities. The flow was assumed to be free of any impurities in these models. The
flight conditions correspond to those of RAM-C2 at 28 km altitude.
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(a) Plasma layer models using the isothermal wall
boundary condition. The RANS model plasma

layer differs substantially from the laminar,
non-turbulent model. In particular, the plasma is

shifted further from the vehicle body with the
RANS model.

(b) Plasma layer models using the adiabatic wall
boundary condition. The plasma densities are

much higher than for the isothermal wall model.

Figure 5-1. The steady flow plasma profiles at the antenna location.

5.1. Steady flow plasma layer models

First, we consider steady flow, non-fluctuating plasma layer models. We computed the antenna
response for four models. Two models assume laminar, non-turbulent flow, while the other two
models used a two-equation Reynolds–averaged Navier-Stokes (RANS) model for the turbulence
closure. Two boundary conditions were considered: an isothermal wall with T=293 K and an
adiabatic wall. The four plasma profiles are shown in Fig. 5-1.

The result for the adiabatic wall plasma models is trivial and not unexpected: the signal is almost
entirely reflected, 𝑆11 ≈ 0 dB. However, a much more interesting story can be told regarding the
isothermal wall plasma layer models. The reflection coefficients for these plasma layers, and for the
no-plasma vacuum case, are plotted in Fig. 5-2. At low frequencies, under 23 GHz, 𝑆11 is similar
for both plasma profiles. However, as the frequency increases above 23 GHz, 𝑆11 for the RANS
profile quickly transitions to approximate the vacuum, no-plasma value.

Within a certain frequency range, then, our calculations indicate a drastically lower reflection
coefficient 𝑆11 for a turbulent plasma compared to a laminar plasma. But this is what was observed
experimentally for RAM-C2.

A clear picture emerges if we look at the frequency domain, 29 GHz electric field, shown in Fig. 5-
3. The 29 GHz field is considered because this is the frequency for which there is the greatest
difference in 𝑆11 between the laminar and turbulent plasma models. The turbulent plasma layer
supports a surface wave at this frequency and the laminar plasma model does not. When the plasma
layer is turbulent, most of the signal energy converts to the surface mode and propagates away from
the antenna. For the laminar plasma layer, most of the signal is reflected back into the antenna
aperture.

32



Figure 5-2. Computed reflection coefficients for the steady flow, isothermal boundary plasma layer
models, as well as the vacuum case for which there is no plasma.

(a) Laminar plasma layer model (b) RANS plasma layer model

Figure 5-3. Frequency domain electric field, for 29 GHz, for the laminar and RANS plasma profiles. For the
turbulent RANS plasma, a surface mode is excited. The surface mode allows energy to flow away from

the antenna aperture. For the laminar, non-turbulent plasma, there is no significant surface mode
behavior and most of the energy is reflected back into the antenna aperture.
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Figure 5-4. Comparison of the RANS, isothermal plasma profile with the ensemble averaged plasma
profile for the LES model.

The reflection coefficient 𝑆11 is substantially diminished for frequencies that exhibit robust surface
mode propagation. This is observed when the plasma standoff distance is greater than approximately
half a wavelength. We conclude that a sharp drop in reflection coefficient can be observed when the
boundary layer transitions to turbulence, if the plasma standoff distance suddenly increases due to
transition. This sudden increase in plasma standoff distance, when the boundary layer transitions,
is predicted by the present series of simulations.

5.2. Fluctuating flow plasma layer model

We obtained a time-fluctuating model of the plasma layer from a SPARC large eddy simulation
(LES) of the flow around RAM-C2 at 28 km altitude. The details of the LES setup are given in
[32]. In aggregating the following statistics, we considered 100 frames, spaced Δ𝑡 = 1 𝜇s apart.
Contrary to the results of section 5.1, it can be seen in Fig. 5-4 that, on average, plasma is shifted
inwards from the steady-state RANS result. The plasma standoff distances are therefore smaller
than for the RANS case. The exact cause of this difference between the steady-state model’s profile
and the profile resulting from averaging the time-varying model’s profiles is still unknown and
further investigation is warranted. As a result of the near-wall difference, we observed reflection
coefficients, 𝑆11, which were, on average, much higher than the vacuum or RANS 𝑆11 values even
for frequencies above 23 GHz.

Next, we consider the line-of-sight transmission properties of the LES plasma model, shown in
Fig. 5-5. It is not surprising that the ensemble-averaged attenuation for the LES plasma layer model
is substantially higher than for the RANS, isothermal model; the LES model averaged electron
density profile is thicker and with a slightly larger peak density. Note that the cross-polarization
(XPD) is significantly stronger for this model compared to the surrogate model considered in section
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(a)

Figure 5-5. Attenuation and depolarization (XPD) for the LES plasma model. Both of these quantities were
obtained by an ensemble average over all 100 frames.

4. This may be due to the anisotropic nature of the electron density fluctuations in the LES model.
In the Trolinger-and-Rose-inspired model, the density fluctuations are a superposition of spherical
perturbations hence there is no preferred direction (the density fluctuations are isotropic).
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6. PLASMA PROFILE RECONSTRUCTION FROM MICROWAVE
MEASUREMENTS

A number of diagnostic techniques can be used to infer information about the re-entry plasma
profile. RAM-C2 employed Langmuir probes, which are placed in the plasma to measure plasma
density and temperature. They produce signals, resulting from the plasma sheath response, that can
be interpreted to provide this information. But Langmuir probes present some serious drawbacks.
They will perturb both the plasma and the aerodynamic flow; it is an invasive measurement
technique. In the RAM-C2 experiment the probe measurements were valid only down to a certain
altitude due to heating of the probes. Optical techniques are compelling for measuring entry plasma
properties. For example, UV/visible spectroscopy is a popular approach [34]. The lengthier review
[35] discusses a number of approaches including invasive probes (including Langmuir probes) and
laser diagnostics (Thompson scattering, laser induced fluorescence, etc.) for diagnosing ionized,
hypersonic flows.

The RAM-C2 experiments were also equipped with reflectometers positioned along the vehicle
axis. They inferred the plasma density with the slope technique. At the moment a sharp rise in
reflection coefficient is detected, the peak plasma density at that sensor location is assumed to be
equal to the critical plasma density, 𝜔 = 𝜔p. They also used the phase of 𝑆11 to infer the plasma
standoff distance. In their model [8], the reflected phase is,

𝜃 = 𝜃𝑑 + 𝜃𝑟 (6.1)

𝜃𝑑 = 2𝜋
2𝑑
𝜆0

(6.2)

𝜃𝑟 = 𝜋, (6.3)

where the phase change due to reflection off the critical density contour in the plasma is 𝜃𝑟 and the
phase change due to propagation through the plasma is 𝜃𝑑 and 𝜆0 is the free space wavelength of
the probing signal.

There are a few issues with this early reflectometry technique. The model for the reflected phase
change 𝜃 does not take into account the effect of the plasma on the probing signal wavelength. Also
the slope technique is not reliable at low altitudes. The increase in electron collision frequency at
low altitudes smooths the transition at the cutoff frequency, as shown in Fig. 1-1. Furthermore,
as noted in section 5, sharp changes in 𝑆11, unrelated to changes in the peak plasma density, were
observed at low altitudes.

In the 1980s and beyond, significant advancements in reflectometry as a plasma diagnostic were
made by the magnetic confinement fusion plasma community. In that application, the plasma is
strongly magnetized and X-mode reflectometry is often preferred [36]. However, in the re-entry
problem the plasma is unmagnetized and we must use O-mode reflectometry.
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Inversion of the O-mode reflected phase, to obtain the plasma profile, can be achieved [37] by an
inverse Abel transform,

𝑥𝑐 (𝜔𝑝) = 𝑥0 +
𝑐

𝜋

∫ 𝜔𝑝

𝜔𝑝,0

𝑑𝜔√︃
𝜔2
𝑝 − 𝜔2

𝑑𝜙 (𝜔)
𝑑𝜔

, (6.4)

where 𝑥𝑐 (𝜔𝑝) and 𝑥0 are the cutoff positions associated with frequencies 𝜔𝑝 and 𝜔𝑝,0, respec-
tively.

In general, O-mode reflectometry can only be expected to provide information about the plasma
profile over the interval for which the plasma density increases monotonically with distance from
the reflectometer. This is a serious issue for re-entry plasmas. A commonly used parameterization
for re-entry plasmas is the bigaussian profile, which exhibits a monotonically increasing inboard
side, a peak and then a monotonically decreasing outboard side. Another drawback of the Abel
inversion is that it requires many frequency bands (one for each electron density contour).

We will explore techniques for plasma profile reconstruction which are better suited for re-entry
plasmas than the Abel transform. Sections 6.1, 6.2, 6.3 and 6.4 are concerned with 1D reflectometry
methods. The 1D transmission matrix model for inhomogeneous plasma slabs is introduced in
Section 6.1. Then the validity of the WKB approximation to estimate reflected phase for re-entry
plasmas is explored in Section 6.2. In section 6.3, a reconstruction technique, based on the WKB
approximation within a 1D inhomogeneous plasma slab, is developed. The technique is similar to
the Abel transform but accounts for additional dispersive effects.

In section 6.5, we’ll show that re-entry plasma profiles can be reliably reconstructed from dual-
band reflectometer measurements. We will show that O-mode reflectometry can gather significant
information about the outboard side of the plasma profile. When the spatial dimensions of the
plasma are small or comparable to the probing signal wavelength, evanescent wave activity returns
information about the outboard side of the profile to the reflectometer aperture. Also, the ambient air
pressure during re-entry plasma formation is typically much higher than the pressure in a tokamak.
The significant electron collision frequency 𝜈 in re-entry plasmas, due to high air pressure, allows
O-mode propagation past the cutoff 𝜔 = 𝜔p.

6.1. One-dimensional Planar Inhomogeneity

Re-entry plasmas typically have a rapidly varying electron density profile normal to the vehicle
surface, often approximated by a bigaussian function [13]. The density varies slower along the
direction of the flow and can often be locally well represented as a planarly layered media with
one-dimensional inhomogeneity. For this situation, the electromagnetic vector wave equations
simplify to two scalar wave equations, one for the transverse electric (TE) and one for the transverse
magnetic (TM) waves in the media [38]. If the electron densities and resulting permittivities vary
continuously, these wave equations can be solved using various numerical methods. However, if the
continuously varying profile is modeled as piecewise constant functions, then an analytical solution
can be written for each region and a unique solution found by matching the boundary conditions at
the discontinuities. A plane wave solution results. Applying this approach results in an analytical
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solution for the reflection and transmission coefficients of the finely discretized multilayered plasma.
For TE waves, the recursive relation for the generalized reflection and transmission coefficients for
a z-oriented inhomogeneity are

𝑅̃𝑖,𝑖+1 =
𝑅𝑖,𝑖+1 + 𝑅̃𝑖+1,𝑖+2𝑒

2𝑖𝑘𝑖+1,𝑧 (𝑑𝑖+1−𝑑𝑖)

1 + 𝑅𝑖,𝑖+1𝑅̃𝑖+1,𝑖+2𝑒2𝑖𝑘𝑖+1,𝑧 (𝑑𝑖+1−𝑑𝑖)
(6.5)

and

𝑇1,𝑁 =

𝑁−1∏
𝑗=1

𝑒𝑖𝑘 𝑗 ,𝑧 (𝑑 𝑗−𝑑 𝑗−1)𝑆 𝑗 , 𝑗+1 (6.6)

with
𝑆𝑖−1,𝑖 =

𝑇𝑖−1,𝑖

1 − 𝑅𝑖,𝑖−1𝑅̃𝑖,𝑖+1𝑒2𝑖𝑘𝑖,𝑧 (𝑑𝑖−𝑑𝑖−1)
, (6.7)

respectively. Where 𝑅̃ and 𝑇 are the generalized reflection and transmission coefficients, 𝑅 and 𝑇
are the reflection and transmission coefficients for a single interface, 𝑘 is the propagation constant,
and 𝑑 is the layer interface position.

Compared to full-wave electromagnetic approaches, the analytical solution is valuable since it can
be calculated quickly allowing for large numbers of plasma profile scenarios and frequencies to be
evaluated rapidly. This is particularly useful for optimization where large numbers of iterations
are often needed to achieve an optimized solution. The analytical approach provides intuition and
a good initial solution that can later be refined using more computationally expensive full-wave
simulation methods.

6.2. Reflectometry Solution Comparison: Exact and WKB Approximated
Reflection Coefficient Phases

Reflectometry methods often assume the plasma profile’s electron density is monotonically increas-
ing away from the reflectometer. This is a necessary assumption since waves reflecting at a cutoff
layer do not penetrate further into the profile, so the layers beyond are obscured. Reflectometry
methods also typically assume the WKB (Wentzel, Kramers, and Brillouin) approximation, which
is a high-frequency method that ignores the higher-order multiple reflections of the wave within the
stackup [38]. The WKB approximation is technically invalid where critical reflections occur, but
can still be used with good results in certain laboratory plasma reflectometry cases [37]. Since the
Abel transform reflectometry formulation relies on critical reflections within the plasma profile and
assumes the WKB approximation, understanding the validity of the WKB assumptions for reentry
plasma density and frequency regimes is valuable. To do so we consider a simplified, contrived
plasma profile with linearly increasing electron density from 𝑁𝑒,1𝐺𝐻𝑧 = 1.2407 × 1010/𝑐𝑚3 to
𝑁𝑒,9𝐺𝐻𝑧 = 1.0049× 1012/𝑐𝑚3 (plasma frequency from 1 to 9 GHz) over an 8cm span defined by

𝑁e =
𝑁e,9GHz − 𝑁e,1GHz

8 cm
𝑧 + 𝑁e,1GHz (6.8)
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Figure 6-1. Example linear electron density profile and associated plasma frequency.

with

𝜔2
𝑝 =

𝑁e𝑞
2
e

𝑚e𝜀𝑜
. (6.9)

𝑞e is the electron charge, 𝑚e is the electron mass, 𝜀𝑜 is the premittivity of free space, and 𝑧 is the
position in the profile. The resulting profile electron density and plasma frequency are illustrated
in Fig. 6-1.

The reflection coefficient phase for the profile is found at frequencies from 1 to 9 GHz. The
phase is first found using Eqn. 6.5, which is the exact solution. The phase is indicative of the
propagation delay of the signal within the profile and the reflecting boundary conditions. The
reflection coefficient phase is then found using the WKB approximation, which ignores higher
order reflections in the stackup. The reflection coefficient phase using the WKB approximation
is

𝜙(𝜔) = 2
∫ 𝑧𝑐 (𝜔)

𝑧𝑜

𝑘 (𝜔, 𝑧) 𝑑𝑧 − 𝜋

2
(6.10)

where 𝑘 is the propagation constant varying throughout the stackup, 𝑧𝑜 is the position of the start of
the profile, and 𝑧𝑐 (𝜔) is the point of cutoff and complete reflection within the profile for frequency
𝜔. Perfect reflection at the first overdense cutoff layer (𝜔𝑝 = 𝜔) is also assumed for this WKB
solution case.

The reconstructed profiles based on the exact reflection coefficient phase solution and the WKB
approximated phase solution compared to the truth solution are shown in Fig. 6-2. The standard
Abel transform reconstruction approach is fundamentally based on the WKB approximation in its
formulation. Therefore, we expect the reconstructed profile to match closer to the truth when the
algorithm is given reflection coefficient phases also calculated using the WKB approximation. This
is seen in the results. On the other hand, the reconstruction based on the exact phase solution
is affected by imperfect wave reflection and higher order reflections in the reflection coefficient
phase solution. These are unaccounted for in the fundamental reconstruction formulation. These
unaccounted-for effects lead to error in the reconstructed profile, but are representative of what a
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Figure 6-2. Comparison of the Abel transform profile reconstruction determined from the reflected phase
calculated from the exact and the WKB approximated reflection coefficient solutions. Realistic

reflectometer performance is represented by the exact calculated reflection phase solution.

reflectometer would measure in practice. This shows a potential limitation of the Abel transform
based reflectometry approach for the reentry problem. Futhermore, the lower electron density layers
near the base of the profile are ultimately reconstructed by the lower frequency signal content, since
higher frequency waves pass through these layers relatively unaffected. Since the WKB-based
reconstruction approach is ultimately a high frequency approach, the results are less accurate at
these lower frequencies. The accuracy of the reflectometry method will ultimately be situation
dependent. Reentry plasmas are also collisional, which means they do not have perfect reflection
at the collisionless cutoff layer.

6.3. New Profile Reconstruction Formulation

As seen in Fig. 6-2, the Abel transform based reflectometry implementation has a discrepancy
between the truth profile even when the WKB approximation is used in the generation of the
underlying phase data. To understand this discrepancy better, we pursue a new, intuitive derivation
of a reconstruction algorithm based strictly on the WKB approximation. The propagation paths
producing the reflection phases for different frequencies based on the WKB approximation are
illustrated in Fig. 6-3.

The lowest frequency wave 𝜔0 reflects off the initial profile layer producing a round trip phase of
𝜙0. The next incremental frequency higher 𝜔1 propagates through the initial layer with plasma
frequency 𝜔𝑝,0 since the frequency is slightly higher than the cutoff frequency and reflects off the
next layer with plasma frequency 𝜔𝑝,1. We can write the position of the 𝜔𝑝,1 layer as

𝑥1(𝜔𝑝,1) = 𝑥0(𝜔𝑝,0) +
𝜙1 − 𝜙0
𝜔1 − 𝜔0

1
𝑘 𝑝,0

Δ𝜔 (6.11)
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Figure 6-3. Propagation phases based on the WKB approximation for a monotonically increasing electron
density profile.

where 𝜙0 and 𝜙1 are the round-trip propagation phases for frequencies 𝜔0 and 𝜔1, respectively. Δ𝜔
is the frequency increment Δ𝜔 = 𝜔1 − 𝜔0 and 𝑘 𝑝,0 is the propagation constant of the initial layer
given generally for frequency 𝜔 as

𝑘 =
𝜔

𝑐

√
𝜀𝑟 =

𝜔

𝑐

√︄
1 −

𝜔2
𝑝

𝜔2 =
1
𝑐

√︃
𝜔2 − 𝜔2

𝑝 (6.12)

where 𝜀𝑟 is the relative permittivity.

This expression intuitively relates the measured phase change over an incremental frequency to
the position of a plasma frequency layer. As the frequency continues to increase to reconstruct
the remaining profile, the dispersive nature of the plasma must be accounted for. Each frequency
will propagate through the layers with different phase delays, so the phase contributed by the layer
between interfaces N-1 and N is

𝜙𝑁 − 𝜙𝑁−1 =

√︃
𝜔2
𝑁
− 𝜔2

𝑝

𝑐
𝑙𝑁 +

𝑁−1∑︁
𝑛=1

√︃
𝜔2
𝑁
− 𝜔2

𝑝

𝑐
𝑙𝑛 −

𝑁−1∑︁
𝑛=1

√︃
𝜔2
𝑁−1 − 𝜔

2
𝑝

𝑐
𝑙𝑛, (6.13)

where 𝑙𝑛 is the thickness of layer 𝑛 known from previous calculation iterations. The first term is the
phase imparted by layer 𝑁 in the plasma stackup. The second term is the propagation phase through
the lower layers of the stackup at the 𝜔𝑁 frequency of operation. The third term is the propagation
phase through the lower layers of the stackup at the lower 𝜔𝑁−1 frequency of operation.

Using this approach, we can write a general expression for the profile reconstruction as

𝑥𝑐 (𝜔𝑀) = 𝑥0(𝜔0) + 𝑐
𝑀∑︁
𝑚=1

(𝜙𝑚 − 𝜙𝑚−1) − (∑𝑚−1
𝑛=1

√
𝜔𝑚

2−𝜔2
𝑝,𝑛

𝑐
𝑙𝑛 −

∑𝑚−1
𝑛=1

√︃
𝜔2
𝑚−1−𝜔

2
𝑝,𝑛

𝑐
𝑙𝑛)√︃

𝜔2
𝑚 − 𝜔2

𝑚−1

(6.14)
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Figure 6-4. Comparing the new reconstruction formulation to the traditional Abel transform based
reconstruction method.

where 𝑥𝑐 is the position of the cutoff layer where the signal reflects for frequency 𝜔𝑀 . This
formulation particularly accounts for the dispersive effects of the plasma. The Abel transform based
formulation reported in the literature and given in Eqn. 6.4 discretized for numerical implementation
is given by

𝑥𝑐 (𝜔𝑀) = 𝑥0(𝜔0) +
𝑐

𝜋

𝑀∑︁
𝑚=1

𝜙𝑚 − 𝜙𝑚−1√︃
𝜔2
𝑀
− 𝜔2

𝑚−1

. (6.15)

Comparing the results of the two formulations given by Eqns. 6.14 and 6.15, we can see that the
expression arrived at via the Abel transform is very similar but does not account for all dispersive
effects in the plasma.

The new reconstruction equation given by Eqn. 6.14 is applied to the linear electron density profile
example given in Section 6.2. The results are shown in Fig. 6-4 and compared to the Abel transform
approach given by Eqn 6.15. The new formulation reconstructs the truth profile very closely when
the WKB approximation is entirely valid. However, we see that in reality the WKB approximation
is not entirely valid leading to error in the reconstructed profile in practice.

6.4. Profile Reconstruction Using Optimization and the Analytical Solution

The analytical solution for a one-dimensional inhomogeneous plasma profile described in Section
6.1 provides a computationally efficient means to calculate the reflection from and transmission
through a plasma profile. Although three-dimensional effects cannot be accounted for in the solution
(e.g. three-dimensionally varying plasmas or multiple antenna apertures), the one-dimensional
model can often capture the physical scenario well. The analytical approach is useful for profile
reconstruction using model optimization, since a large number of optimization iterations can be
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Frequency range 1 to 3 GHz, 10 MHz step
Weights [𝑤1, 𝑤2, 𝑤3, 𝑤4] [5,1,5,1]

Initial conditions [𝛼1, 𝛼2, 𝛼3, 𝛼4] [0.2 0.2 0 14]
Optimized result [𝛼1, 𝛼2, 𝛼3, 𝛼4] [4.4823 10.5597 3.4631 17.1134]

Iterations 98
Obj. function evals. 568

Total time 26s

Table 6-1. Optimization parameters and results.

calculated in a relatively short amount of time compared to full-wave solvers. The forward solve can
initially be performed using an analytical calculation approach, then the optimization can later be
refined using more computationally expensive full-wave approaches. As an example, we consider
the 80km plasma electron density profile measured during the RAM-C2 flight experiment [6]. The
reflection and transmission coefficient magnitudes and phases over a frequency range of 1 to 3
GHz are calculated for this truth profile using Eqns. 6.5 and 6.6. Although the profile electron-
densities are known for this example, only the reflection and transmission coefficients are used in
the reconstruction, since these are the only quantities a reflectometer would measure in practice.
The plasma profile is assumed to be well-represented by a four-parameter bigaussian model given
by

𝑛e(𝑧) =


10𝛼4+6 exp

(
−(100𝑧 − 𝛼3)2

𝛼1

)
𝑧 < 𝑧3

10𝛼4+6 exp
(
−(100𝑧 − 𝛼3)2

𝛼2

)
𝑧 ≥ 𝑧3.

(6.16)

The parameters of the bigaussian model are optimized using a least squares objective function that is
minimized using a constrained interior point method implemented in MATLAB. The reflection 𝑟 and
transmission 𝑡 coefficients are a function of the four bigaussian model parameters (𝛼1, 𝛼2, 𝛼3, 𝛼4)
and the frequency 𝜔. The objective function is given by

min
𝛼1,𝛼2,𝛼3,𝛼4

𝑁∑︁
1
𝑤1 | |𝑟 |− |𝑟meas | |2+𝑤2 | arg(𝑟)−arg(𝑟meas) |2+𝑤3 | |𝑡 |− |𝑡meas | |2+𝑤4 | arg(𝑡)−arg(𝑡meas) |2,

(6.17)
where 𝑁 is the number of frequency points and 𝑟meas and 𝑡meas are the reflectometer measured
reflection and transmission coefficients. For this example the weights were chosen heuristically
based on comparison of the reconstructed profile to the known electron densities. However, a
rigorous weighting scheme will be described in later sections. The parameters given in Table 6-1
were used to produce the optimized reconstructed profile shown in Fig. 6-5. The reflection and
transmission coefficients compared to the truth are also shown in Fig. 6-5.

The reconstructed profile using the analytical expression in the forward solve visually represents
the RAM-C2 80km altitude profile very well. Further tuning of the optimization allowed for a
better match of the reflection and transmission coefficient magnitudes, but with the reconstructed
bigaussian peak density well exceeding that of the truth profile. Although a good visual fit, the
bigaussian model is not a perfect representation of the truth profile.
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Figure 6-5. Bigaussian reconstructed electron density profile compared to the RAM-C2 80km altitude
measured, truth profile.

6.5. Dakota/Empire plasma profile reconstructions

A different approach is to use a 3D forward model. As seen in the preceding sections, especially
Section 5, a 3D reflectometer model may significantly differ from a 1D model for the same plasma
profile — even for a 1D slab profile. We will attempt reconstruction of plasma profiles which
resemble the RAM-C2 re-entry plasma, at the aft sensors, for various altitudes. The aft sensors
were located 𝑥 = 3.5𝑑N from the nosecone tip, where 𝑑N is the RAM-C nose diameter. At this
lateral position, the vehicle circumference is much larger than any of the microwave wavelengths
under consideration. Therefore, we approximate the vehicle surface as a flat metallic plate. The
plasma is represented with a 1D electron density profile 𝑛e(𝑧) and a uniform electron collision
frequency 𝜈. The 1D density approximation is reasonable because, at 𝑥 = 3.5𝑑N, the normal
gradient of the profile is much larger than its lateral gradient.

We consider a reflectometer antenna which is an array of three identical rectangular waveguides
(elements) that terminate on the ground plane at normal incidence. The major and minor dimensions
of the waveguide cross sections are 𝑎 = 𝜆0 and 𝑏 = 𝜆0/2, respectively, where 𝜆0 = 𝑐/ 𝑓0 for tuning
frequency 𝑓0 = 4 GHz. The central waveguide (element 1) is driven by a TE10 sine-modulated
Gaussian pulse, which excites the band from 2 GHz (waveguide cutoff) up to 7 GHz. Element 2
is offset from element 1 a distance 𝜆0 along the minor cross section axis and element 3 offset 𝜆0
along the major axis.

From the Empire time-domain solution we estimate the scattering parameters 𝑆11, 𝑆21 and 𝑆31.
Twelve classes of signals (six types of measurements in in two frequency bands) are defined for use
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Parameter Min. value Max. value Units Interpretation
𝛼1 0.1 10 [cm] Inverse of inboard slope
𝛼2 1 10 [cm] Inverse of outboard slope
𝛼3 0 5 [cm] Peak density standoff distance
𝛼4 10 12.5 (dimensionless) Log10 of peak density

in inverse centimeters cubed

Table 6-2. List of the bigaussian plasma profile parameters.

in the reconstruction problem:

𝑠1(𝜔) = |𝑆11 | 𝜔 ∈ Band 1 (6.18)
𝑠2(𝜔) = arg (𝑆11) 𝜔 ∈ Band 1 (6.19)
𝑠3(𝜔) = |𝑆21 | 𝜔 ∈ Band 1 (6.20)
𝑠4(𝜔) = arg (𝑆21) 𝜔 ∈ Band 1 (6.21)
𝑠5(𝜔) = |𝑆31 | 𝜔 ∈ Band 1 (6.22)
𝑠6(𝜔) = arg (𝑆31) 𝜔 ∈ Band 1 (6.23)
𝑠7(𝜔) = |𝑆11 | 𝜔 ∈ Band 2 (6.24)
𝑠8(𝜔) = arg (𝑆11) 𝜔 ∈ Band 2 (6.25)
𝑠9(𝜔) = |𝑆21 | 𝜔 ∈ Band 2 (6.26)
𝑠10(𝜔) = arg (𝑆21) 𝜔 ∈ Band 2 (6.27)
𝑠11(𝜔) = |𝑆31 | 𝜔 ∈ Band 2 (6.28)
𝑠12(𝜔) = arg (𝑆31) 𝜔 ∈ Band 2 (6.29)

Frequency band 1 is Δ 𝑓1 = 240 MHz centered at 𝑓1 = 3 GHz and band 2 is Δ 𝑓2 = 480 MHz
centered at 𝑓2 = 6 GHz.

The forward 3D problem is solved with Empire. The plasma profile in the forward problem is
represented with a bigaussian profile [13] so there are four parameters,

𝑛e(𝑧) =


10𝛼4+6 exp

(
−(100𝑧 − 𝛼3)2

𝛼1

)
𝑧 < 𝑧3

10𝛼4+6 exp
(
−(100𝑧 − 𝛼3)2

𝛼2

)
𝑧 ≥ 𝑧3,

(6.30)

where 𝑧 is the normal coordinate with units of meters. Interpretations and units for the bigaussian
profile parameters are given in Table 6-2. Bounds for each parameter were chosen according to
the microwave frequencies used in the theoretical reflectometer system and normal extent of the
simulation domain (𝑧 ∈ [0, 10 cm]).

Dakota [39] drives the optimization to identify the parameterized plasma profile having a response
that best fits the signal measurements. This approach to reconstructing the plasma profile is,
in principle, similar to that of the V3FIT code which enjoys widespread use in the magnetic
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confinement fusion community [40]. We seek the plasma profile parameters which minimize the
objective function,

𝑔 = 𝝐𝑇Λ𝝐 , (6.31)

where 𝜖 is the difference between the observed signals and the model signals,

𝝐 = 𝒔o − 𝒔m. (6.32)

In a Bayesian approach, 𝑔 corresponds to the log of the likelihood; this reconstruction technique
can be interpreted as a maximum likelihood optimization. The signal vectors 𝒔 are organized in
blocks, which each block corresponding to one of the twelve classes of signals,

𝒔 =


𝒔1
𝒔2
...

 . (6.33)

In this work, the covariance matrix Λ−1 is taken to be a blocked diagonal matrix,

Λ−1 =


𝜎2

1 0 · · ·
0 𝜎2

2 · · ·
...

...
. . .

 , (6.34)

where 𝜎2
𝑖

is the variance associated with the ith class of signal. With Λ diagonal, 𝑔 is just a sum of
squares. The variances effectively weight the contribution of each class of signal in the assembly
of 𝑔.

One may ask, how are values for the variances chosen? One approach is to compute signals for a
sufficiently large ensemble of reasonable parameter values. The covariance matrix can be inferred
from this data [41]. In this problem, however, the signals can vary greatly for different values of
model parameters. We compute 𝜎𝑖 from the observed signals,

𝜎2
𝑖 =

∑𝑁
𝑘=1

(
𝑠o
𝑖
(𝜔𝑘 ) − 𝑠o

𝑖

)2

𝑁
+ 𝜎2

𝑖,noise (6.35)

where 𝑠o
𝑖

is the average value of signal class 𝑖. The contribution of white noise to the variance,
𝜎2
𝑖,noise, is to ensure a reasonable condition number for the covariance matrix. We take this to be

5% of the sample variance of the signal over the entire 5 GHz simulation result.

Because 𝑔 is characterized by local minima over the allowed range of parameters, reconstruction
starts with the global method DIviding RECTangles (DIRECT). In DIRECT, the global balance
parameter sets how exploration of the allowed parameter range is balanced with exploitation of
promising regions. We use 0.2 for the global balance parameter. After DIRECT runs for 700
iterations, the top five candidates are used as the initial point in a Newton method local optimizer.
The best solution from the five local optimization runs is taken as the reconstruction result.
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Figure 6-6. Results of the reconstructions. Reconstructions for different sets of signals are indicated, as
well as straightforward bigaussian profile fits to the digitized profiles.

6.5.1. Results

We attempted to reconstruct plasma profiles based on digitizations from Schexnayder et al. [6],
Fig. 14. These profiles represent the RAM-C2 re-entry plasma at different altitudes: 21.3, 53.3
and 80.2 km. We did not consider profiles at altitudes between 30 and 40 km, as the peak plasma
frequencies are far above the hypothetical reflectometer maximum frequency band at 6 GHz. A
reflectometer operating at higher frequencies would be required to provide diagnostics in this
regime.

Four different series of reconstructions utilized different signal sets, as displayed in Table 6-3.

Series 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 𝑠11 𝑠12
Series A ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Series B ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Series C ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Series D ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Table 6-3. The signals used in each series of reconstructions.

The reconstruction results are displayed in Fig. 6-6. Bigaussian fits to the digitized electron density
profiles are also shown, to demonstrate how well a bigaussian models the profiles: reasonably well
for all three altitudes.
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During re-entry, the boundary layer becomes turbulent when the Reynolds number exceeds some
value which is dependent on the vehicle geometry. Generally, then, we expect an onset of turbulence
below some altitude for a given trajectory. In our calculations, we have assumed that the boundary
layer flow is laminar in all cases. However, it is known that the RAM-C2 boundary layer was
turbulent below 30 km altitude. Turbulent boundary layer flow will significantly affect reflectometer
S-parameters [32]. The treatment of turbulent plasma layer reflectometry is deferred to future
work.

Given that we are considering the reconstruction of 1D plasma profiles over a flat plate, one may
question the need for 3D electromagnetic simulations to compute the response if only a single
aperture reflectometer antenna is used. A 1D calculation, however, can yield a substantially
different 𝑆11 than 3D, depending on the plasma profile. Particularly if the plasma standoff distance
is larger than or comparable to a free space wavelength [32].

As Empire is a time domain code, a single simulation yields results for all resolved frequencies
within the excitation pulse. However, for the reflectometry problem we require only informa-
tion for each band of the reflectometer system. Further study would benefit from the use of a
frequency-domain code. However the code must provide accurate open boundary conditions for
the inhomogeneous plasma-filled region. Without a plasma-matched open boundary condition,
significant artificial reflections will be driven for profiles exhibiting surface wave propagation.

Future work may consider a more sophisticated parameterization than a bigaussian profile. Note
that in the present case, the bigaussian profile does not fit the RAM-C2 profile at 30 km.
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APPENDIX A. Empire linear plasma model

The linear plasma model is an auxiliary differential equation, that describes a plasma that is
accelerated by the electric field and slowed down by collisions. The differential equation is

¤j = 𝜀𝜔2
𝑝E − 𝜈j, (A.1)

where j is the current produced by the plasma, 𝜀 is the permittivity of free space, 𝜔𝑝 is the plasma
frequency, E is the electric field, and 𝜈 is the momentum transfer frequency. The permittivity,
plasma frequency, and momentum transfer frequency are all user provided data. The plasma
frequency is can be computed from the electron number density with the expression

𝜔2
𝑝 =

𝑞2𝑁

𝑚𝜀
, (A.2)

where 𝑞 is the electron charge, 𝑁 is the electron number density, and 𝑚 is the electron mass.
The plasma frequency and momentum transfer frequency can vary in space but are assumed to be
constant in time for the duration of the EMPIRE simulation.

The full system solved by EMPIRE is given by the linear model coupled to Ampere’s and Faraday’s
laws,

𝜀 ¤E − 𝜇−1∇ × B = −j (A.3)
¤B + ∇ × E = 0 (A.4)
¤j = 𝜀𝜔2

𝑝E − 𝜈j (A.5)
Ampere’s and Faraday’s laws are discretized in space using compatible finite elements. The electric
field, E is an edge function, and the magnetic field, B is a face field. The current from the linear
plasma model exists at every volumetric quadrature point in the finite element mesh. In other
words the current differential equation is evolved in time at the set of points needed to evaluate the
integrated current contribution to Ampere’s law.

After discretization in space the resulting system of ordinary differential equations can be integrated
in time. EMPIRE integrates this system in time with the Crank-Nicolson method. The Crank-
Nicolson method has several nice properties. The Crank-Nicolson method is energy conservative,
which means it doesn’t introduce numerical dissipation or growth into the electromagnetic waves
or the plasma oscillation. It is also implicit over the plasma frequency and speed of light, which
allows for timesteps larger than the plasma frequency or the speed of light CFL condition to be
chosen if desired. Lastly the Crank-Nicolson method is a second order method, which means it is
more accurate than a simpler first order method. The Crank-Nicolson method can be written down
for the previous system as follows,

𝜀

Δ𝑡

(
E𝑛+1 − E𝑛

)
− 1

2𝜇
∇ ×

(
B𝑛+1 + B𝑛

)
= −1

2

(
j𝑛+1 + j𝑛

)
(A.6)
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1
Δ𝑡

(
B𝑛+1 − B𝑛

)
+ 1

2
∇ ×

(
E𝑛+1 + E𝑛

)
= 0 (A.7)

1
Δ𝑡

(
j𝑛+1 − j𝑛

)
=
𝜀

2
𝜔2
𝑝

(
E𝑛+1 + E𝑛

)
− 𝜈

2

(
j𝑛+1 + j𝑛

)
, (A.8)

where 𝑓 𝑛 is the appropriate field at the previous time step and 𝑓 𝑛+1 is the field at the next time step.
This is a global edge, face, and quadrature point linear system which needs to be solved. In general
this system can become extremely large and difficult to solve. Fortunately EMPIRE has an efficient
linear solver strategy for the edge and face system created Ampere’s and Faraday’s law, that can be
useful for this larger system. The base linear solver strategy involves taking the Schur complement
of the block system and applying a sophisticated preconditioner. The new larger system can use
this linear solver if a two level Newton method is applied. A two level Newton method splits the
system into two parts. In this case an initial guess for the electric field at the next time step, E𝑛+1

0
is constructed. Generally E𝑛+1

0 = E𝑛 is used. With this initial guess a local solve for j𝑛+1 can be
computed,

1
Δ𝑡

(
j𝑛+1
0 − j𝑛

)
=
𝜀

2
𝜔2
𝑝

(
E𝑛+1

0 + E𝑛
)
− 𝜈

2

(
j𝑛+1
0 + j𝑛

)
. (A.9)

Now with an approximate value for the current of the plasma at the next time step, the other part of
the linear system can be solved using the existing linear solver,

𝜀

Δ𝑡

(
E𝑛+1

1 − E𝑛
)
− 1

2𝜇
∇ ×

(
B𝑛+1 + B𝑛

)
= −1

2

(
j𝑛+1
0 + j𝑛

)
(A.10)

1
Δ𝑡

(
B𝑛+1 − B𝑛

)
+ 1

2
∇ ×

(
E𝑛+1

1 + E𝑛
)
= 0. (A.11)

Since the system is linear the value E𝑛+1
1 will be the solution to the larger fully-coupled system. So

the final step is to re-solve for the current at the next time step using this value,

1
Δ𝑡

(
j𝑛+1
1 − j𝑛

)
=
𝜀

2
𝜔2
𝑝

(
E𝑛+1

1 + E𝑛
)
− 𝜈

2

(
j𝑛+1
1 + j𝑛

)
. (A.12)

The values E𝑛+1
1 , B𝑛+1, and j𝑛+1

1 is the solution to the original unsplit system. The two level Newton
method changes a single much larger global linear solve into two local solves and a smaller global
linear solve.
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APPENDIX B. Notes on the Empire electromagnetic formulation and
implementation

Here we provide a comprehensive look at Empire electromagnetics. This information is required
in order to make any significant additions or modifications to Empire electromagnetics. Much of
the language used throughout is meant to be consistent with the language used within the Empire
team. An effort to concretely connect the theory to the C++ implementation is made, although it
should be recognized that the implementation may or may not have been significantly refactored
after the writing of these notes.

In Empire, the electric and magnetic fields are represented by basis function expansions. The
electric field is represented by curl-conforming Nedelec elements,

𝑬 (𝒙, 𝑡) =
𝑁∑︁
𝑖

𝑁𝑛𝑒𝑑∑︁
𝑗

𝐸𝑖 𝑗𝜓𝑖 𝑗 . (B.1)

The magnetic field is represented with divergence-conforming Raviart-Thomas elements,

𝑩(𝒙, 𝑡) =
𝑁∑︁
𝑖

𝑁𝑟𝑎𝑣∑︁
𝑗

𝐵𝑖 𝑗𝜙𝑖 𝑗 . (B.2)

The number of mesh cells in the computational domain is 𝑁 . The cardinality of the Nedelec and
Raviart-Thomas bases are 𝑁𝑛𝑒𝑑 and 𝑁𝑟𝑎𝑣 respectively. By cardinality, I mean the number of basis
functions corresponding to a single mesh cell. These basis function families have certain properties
which are useful and this will come up later. 𝐶0 continuity across mesh cells is enforced for the
tangential field components (for edge fields) or the normal component (for face fields). Therefore,
coefficients 𝐸𝑖 𝑗 and 𝐵𝑖 𝑗 , for values of 𝑗 which correspond to "global modes", are not independent
although coefficient values for 𝑗 corresponding to "interior modes" are independent. See a standard
book on finite elements such as Karniadakis and Sherwin [42] for details on "global assembly"
which enforces 𝐶0 continuity. In the Empire code, indexers provide the information about the
global assembly:

𝐴𝑖 𝑗 = coefficientArray𝐴 [ indexer𝐴 (𝑖, 𝑗) ] (B.3)

Note that these indexers are obtained from the "DOF manager" (aka "unique global indexer" /
"UGI") which is a main function of the panzer library in trilinos.

Before diving into the EM solver formulation, we have to cover important preliminaries. The Schur
complement is a tool for solving linear systems where it makes sense to partition the solution vector
into two or more chunks. In this case, we will be partitioning the electromagnetic solution into
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an electric chunk and a magnetic chunk, since the electric and magnetic fields evolve according to
different equations and are represented in different bases but are coupled. Given a "blocked" linear
system,

𝑋 =

[
𝐴 𝐵

𝐶 𝐷

]
(B.4)[

𝐴 𝐵

𝐶 𝐷

] [
𝑥

𝑦

]
=

[
𝑏1
𝑏2

]
(B.5)

The Schur complement of D in X is,

𝑆 = 𝐴 − 𝐵𝐷−1𝐶 (B.6)

if 𝑑𝑒𝑡 (𝐷) ≠ 0. The Schur complement of A in X is defined similarly in the case that 𝑑𝑒𝑡 (𝐴) ≠ 0,
but we won’t use that one in the following. If D is trivial to invert, the matrix inverion lemma is a
very powerful to solve the equations B.5. The solution is,

𝑥 = 𝑆−1
(
𝑏1 − 𝐵𝐷−1𝑏2

)
(B.7)

𝑦 = 𝐷−1𝑏2 − 𝐷−1𝐶𝑋 (B.8)

Now for the electromagnetic solver formulation. The formulation uses the solution quantities 𝑬
and 𝑩 (instead of, for example, the vector and scalar potentials). The evolution of the solution
is described by Faraday’s law and Ampere’s law (instead of, for example, the second order wave
equations for those quantities). If the initial conditions for 𝑬 and 𝑩 satisfy Gauss’s law and
∇ ·𝑩 = 0, then those conditions will always hold if 𝑬 and 𝑩 evolve (exactly) according to Faraday’s
law and Ampere’s law. Within the Empire team, this fact is sometimes called an involution. For
convenience, Faraday’s law and Ampere’s law are, in SI units,

∇ × 𝑬 = −𝜕𝑩
𝜕𝑡

(B.9)

∇ × 𝑩 = 𝜇0𝑱 + 𝜖0𝜇0
𝜕𝑬

𝜕𝑡
. (B.10)

The multidimensional Newton method is used to solve these equations. The reason for this approach
is because it readily extends to nonlinear systems. Thus, in principle, the addition of a nonlinear
material model to Empire would be trivial. To proceed with a Newton method formulation, we
define the residuals,

0 = 𝑭1(𝑬, 𝑩) = 𝜖0 ¤𝑬 − 1
𝜇0

∇ × 𝑩 + 𝐽 (B.11)

0 = 𝑭2(𝑬, 𝑩) = ∇ × 𝑬 + ¤𝑩 (B.12)

Then we do a Taylor series expansion of the residual,

𝑭1(𝑬𝑛 + Δ𝑬, 𝑩𝑛 + Δ𝑩) = 𝑭1(𝑬𝑛, 𝑩𝑛) +
𝜕𝑭1
𝜕𝑬

Δ𝑬 + 𝜕𝑭1
𝜕𝑩

Δ𝑩 (B.13)

𝑭2(𝑬𝑛 + Δ𝑬, 𝑩𝑛 + Δ𝑩) = 𝑭2(𝑬𝑛, 𝑩𝑛) +
𝜕𝑭2
𝜕𝑬

Δ𝑬 + 𝜕𝑭2
𝜕𝑩

Δ𝑩 (B.14)
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The equations B.13 and B.14 are arranged into a blocked matrix form,
𝜕𝑭1
𝜕𝑬

𝜕𝑭1
𝜕𝑩

𝜕𝑭2
𝜕𝑬

𝜕𝑭2
𝜕𝑩

︸           ︷︷           ︸
Jacobian matrix

[
−Δ𝑬
−Δ𝑩

]
︸  ︷︷  ︸

solution/increment

=

[
𝐹1(𝑬𝑛, 𝑩𝑛)
𝐹2(𝑬𝑛, 𝑩𝑛)

]
︸           ︷︷           ︸

residual/RHS

(B.15)

so we can utilize the Schur complement which will allow us to solve a smaller linear system with
the Krylov space solver. Solving this linear system is one step of the Newton method and only one
step is needed since it is a linear system. However, it clearly follows from equation B.12 that the
lower-right block of the Jacobian matrix is the identity matrix. Therefore, we should use the Schur
complement matrix inversion lemma to invert this system since inversion of the lower-right block
is trivial.

We now need explicit expressions for the Jacobian matrix element values. This requires fully
discretizing equations B.9 and B.10. Let’s start with spatially discretizing Ampere’s law. Obtain
the weak form (spatially discretized) version of Ampere’s law by multiplying by a test function 𝜓𝑖
and integrating, ∫

𝜓𝑖 · (𝜖 ¤𝑬) 𝑑𝑉 −
∫

𝜓𝑖 ·
1
𝜇0

∇ × 𝑩 𝑑𝑉 +
∫

𝜓𝑖 · 𝑱 𝑑𝑉︸         ︷︷         ︸
integrated current

= 0 (B.16)

Note that the third term is referred to, throughout the Empire code, as the "integrated current".
Since we choose the test functions to be the electric field expansion functions 𝜓𝑖 this is a Galerkin
method. We now write equation B.16 in terms of the mass matrices,

𝑀𝐷
¤𝑬 − 𝐶𝑇𝑀𝐻︸ ︷︷ ︸

weak curl

𝑩 + 𝑀𝐸 𝑱︸︷︷︸
integrated current

= 0 (B.17)

where 𝑀𝐷 is the edge mass matrix times 𝜖0, 𝑀𝐻 is the face mass matrix times 1/𝜇0, 𝑀𝐸 is the edge
mass matrix and C is the strong curl operator. 𝐶𝑇𝑀𝐻 is referred to as the "weak curl". The strong
curl operating on an edge field will give the curl of that field, while a weak curl operating on a face
field will give the integrated curl of that field.

Now let’s spatially discretize Faraday’s law. Because of the choice of basis functions for representing
𝑬 and 𝑩, the discretized Faraday’s law is in strong form (not weak form as for Ampere’s law
above):

𝐶𝑬 + ¤𝑩 = 0 (B.18)

Now temporally discretize Faraday’s and Ampere’s laws.

𝛼𝑀𝐷 (𝑬𝑛+1 − 𝑬𝑛) − 𝐶𝑇𝑀𝐻

(
𝛽𝑩𝑛+1 + (1 − 𝛽)𝑩𝑛

)
+ 𝑀𝐸 𝑱

𝑛 = 𝑭1 (B.19)

𝐶 (𝛽𝑬𝑛+1 + (1 − 𝛽)𝑬𝑛) + 𝛼(𝑩𝑛+1 − 𝑩𝑛) = 𝑭2 (B.20)
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where 𝛼 = 1/Δ𝑡 and 𝛽 is a parameter which presumably varies at each time step according to the
chosen Runge-Kutta scheme. With these expressions for the fully discretized residual, the Jacobian
matrix in equation B.15 can be written,

J =

[
𝛼𝑀𝐷 −𝛽𝐶𝑇𝑀𝐻

𝛽𝐶 𝛼I𝐵

]
(B.21)

where I𝐵 is the face-field identity matrix. Note that anywhere in the Empire code, the operators I𝐵,
𝑀𝐻 , 𝑀𝐸 , C, 𝐶𝑇𝑀𝐻 , 𝑀𝐷 and other useful linear operators are available, from the "Linear Operator
Manager".

In the code, the Jacobian matrix is stored in x_matrix and x_dot_matrix:

J = 𝛽𝑋 + 𝛼 ¤𝑋 (B.22)

The x_matrix and x_dot_matrix are defined,

𝑋 =

[
0 −𝐶𝑇𝑀𝐻

𝐶 0

]
(B.23)

¤𝑋 =

[
𝑀𝐷 0
0 I𝐵.

]
(B.24)

These definitions are useful because they can also be used to compute the residual. Indeed, the
code computes the residual in the following way,

𝑋

[
𝑬
𝑩

]
+ ¤𝑋

[ ¤𝑬
¤𝑩

]
=

[
𝑭1 − 𝑱
𝑭2

]
(B.25)

The current is added in a separate step. Rows associated with boundary conditions are, of course,
treated differently. In the code, these matrices are constructed in the setupMatrices function of the
ElectromagneticSolverInterface, which is called during initialization. The mass matrices and curl
operators are also constructed and registered with the linear operator manager in setupMatrices.

In this scheme for solving for Δ𝑬 and Δ𝑩, there are two residuals to speak of. On one hand, we
have the residual,

𝑅 =

[
𝑭1
𝑭2

]
. (B.26)

This residual is assembled in the ElectroMagneticSolverInterface::evaluateResidual method. There
is also the residual associated with the Schur complement matrix inversion trick. From Eqs. B.5,
B.7, B.11, B.12 and B.5, this residual is,

R = 𝑏1 − 𝐵𝐷−1𝑏2 (B.27)
= 𝐹1 − (−𝛽𝐶𝑇𝑀𝐻) (𝛼I𝐵)−1𝐹2 (B.28)

= 𝐹1 +
𝛽

𝛼
𝐶𝑇𝑀𝐻I

−1
𝐵 𝐹2 (B.29)

This "Schur complement trick residual" is assembled in ElectroMagneticSolverInterface::forwardSolveResidual_
method.
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