SAND2024-12753R

SANDIA REPORT

SAND2024-12753R Sandia
Printed September 2024 National
Laboratories

Bringing randomized algorithms to mainstream
numerical linear algebra

Riley Murray

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

Security A ation

ABSTRACT

Numerical linear algebra (NLA) underpins huge swaths of computational science and engineering. For
scientists and engineers to make the most of the DOE’s computing resources, it is essential that they have
access to high-performance implementations of algorithms with best-in-class scalability and reliability.
Despite this, prevailing NLA libraries have little to no support for breakthrough algorithms from the field of
randomized numerical linear algebra (RandNLA) that have been developed over the past twenty years.

The goal of this LDRD was to break a log-jam that had prevented broad adoption of RandNLA. Our
work had two thrusts. The first was to develop RandBLAS: a trustworthy and high-performance C++
library for randomized dimension reduction (an operation widely known as sketching). The second was the
development of a novel randomized algorithm for computing a challenging type of matrix decomposition
known as Householder QR with column pivoting (Householder QRCP).

In this one-year late-start LDRD we successfully delivered RandBLAS 1.0 and new CPU and GPU codes
for Householder QRCP. RandBLAS has extensive documentation at

https://randblas.readthedocs.io/en/stable/.
Papers on RandBLAS and and our high-performance QRCP codes are forthcoming.

This page intentionally left blank.

CONTENTS

1. SUMIMIAIY . .. 11
L1, RandBL AS . . 11

1.2. Householder QRCP e e e et e e 13

1.3. Products of this LDRD o 15
1.4. Assessment and outlook 16

2. Discussion of technical work on RandBLAS 17
2,10 Preliminari€sttt ettt e e e e 17
2.1.1. Short and long axes of sketching operators.ccoiiiiiiineeen... 17

2.1.2. Counter-based random number ZENeratorsoeeeuuneeeunnneeennn. 18

2.2. Distributions, and how we sample fromthem i... 18
2.2.1. Dense sketching Operatorsuoetuuuneetunn e, 19

2.2.2. Sparse sketChing Operatorsc.uueurietrn et ieeeenennn. 19

2.3, Basic StatistiCal teStSo\ttt e 22
2.3.1. Background: Kolmogorov-Smirnovc.ccuiuiiineineinnnnnnnnn.. 22

2.3.2. Sampling from index Setsuuui it e 23

2.3.3. Continuous distributions onthereals i, 23

2.4. Oblivious subspace embedding properties, and how to test forthem 25
2.5. Sparse matrixX datastrUCtUIESttt ettt et et e et e et e e e 26
2.6. Multiplying sparse and dense MatriCes vvuvtnetn ettt ettt ie et eee s 27
2.6.1. Routing for Spmm e 27

2.6.2. Routing for sketch_general with SparseSkOp objects 28

2.6.3. Routing for sketch_sparse ... i 28

3. Discussion of technical workon QRCP 29
3.1. Problem statement and background. e 29
3.2. The high-level algorithm e 30
3.2.1. A fast QRCP, suitable for wide sketches, 31

3.2.2. Column permutationsueun e une ettt 31
APPENAICES e 35

This page intentionally left blank.

LIST OF FIGURES

Figure 1-1.

Figure 1-2.

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 2-4.

Figure 2-5.

Figure 2-6.

Runtime data for Algorithm 1 on sparse matrices in the SuiteSparse matrix collection,
using an M2 Max MacBook Pro (12 cores, 48 MB L3 cache, 96 GB RAM) and running
one OpenMP thread per core. Matrix dimensions are indicated with superimposed text.
The black, blue, and red curves show data when £ = 0, £ = 1, and ¢ = 2, respectively.
Plots in the lower row show that algorithm runtime is dominated by BLAS and LAPACK
functions rather than RandBLAS functions, and this becomes more pronounced as k
IICTEASES. .« .ottt t ettt ettt e e e et e e e e et e e
Standardized flop rates for QR algorithms applied to large square matrices on two archi-
tectures (computed by taking the flop count of unpivoted Householder QR and dividing
by algorithm runtime). The x-axis shows different choices of block size for randomized
algorithms. Left: CPU algorithms for square matrices of order 65536. Right: GPU
algorithms for square matrices of order 32768 (NVIDIA H100). Only two algorithms
were run on the H100 because cuSOLVER does not implement a QRCP algorithm.

Sparsity patterns of short-axis-sparse and long-axis-sparse operators (“SASOs” and “LA-
SOs”). Note that transposition does not affect whether an operator is a SASO or LASO.
Example function for sampling k elements from the length-n array “indices” uniformly
without replacement, using k steps of Fisher-Yates shuffling. The first for-loop performs
the sampling, using a black-box function called random_unit that accepts integers “lo”
and “hi,” and a CBRNG counter and key, and returns an unsigned integer sampled
uniformly at random from lo to hi - 1. The second for-loop restores indices to the
state it had on entry. RandBLAS does not use this exactcode.
Example function for making r independent samples of & elements from [n] uniformly
without replacement. The function’s total runtime is ©(kr + n). RandBLAS does not
USe this €XaCt COAE.ttt et e e e
vals and locs are length-%k buffers; the former contains independent samples from a
mean-zero variance-one sub-gaussian distribution (like the Rademacher distribution) and
the latter contains integers sampled uniformly with replacement from some index set. On
exit, the first num_unique_locs entries of 1ocs have been overwritten with the unique
values that 1ocs had on entry, and vals[j] is multiplied by the square root of the number
of times that locs[j] occurred in 1locs. RandBLAS does not use this exact code.
Example showing how the Kolmogorov-Smirnov test statistic can be evaluated for con-
tinuous distributions in standard in C++. RandBLAS does not use this exact code..
Visualizations of sketch quality for a wide d xm SASO for two types of m x n data matrices,
where (d, m,n) = (6000, 100000, 2000). The “Gaussian” matrix has iid standard-normal
entries, while the “spiked” matrix is formed by stacking copies of the identity matrix and
randomly scaling n rows by 10000. Plots show mean quantities computed with 10 different
SASO:s for a fixed matrix. Vertical lines in the right plot show sample standard deviations.
The plots have two major messages. First, some data is “easier to sketch” than others.
Second, even very small values of vec_nnz suffice to reduce distortion to very low levels.

22

25

This page intentionally left blank.

LIST OF TABLES

Table 1-1. System specifications for benchmarks in the left panel of Figure 1-2. 14

This page intentionally left blank.

10

1. SUMMARY

Numerical linear algebra (NLA) underpins huge swaths of computational science and engineering. For
scientists and engineers to make the most of the DOE’s computing resources, it is essential that they have
access to high-performance implementations of algorithms with best-in-class scalability and reliability.
Despite this, prevailing NLA libraries have little to no support for breakthrough algorithms from the field of
randomized numerical linear algebra (RandNLA) that have been developed over the past twenty years.

The goal of this LDRD was to break the log-jam that had prevented broad adoption of RandNLA. Our
work had two thrusts. The first was to develop RandBLAS: a trustworthy and high-performance library
for randomized dimension reduction (hereafter referred to as sketching). The second was the development
of a novel randomized algorithm for computing a challenging type of matrix decomposition known as
Householder QR with column pivoting (Householder QRCP).

1.1. RandBLAS

Our RandBLAS work built on a C++ prototype developed over two years in close coordination with main-
tainers of widely used NLA libraries. At the start of this LDRD, the prototype already offered performance
and reproducibility that was unmatched within the ecosystem of RandNLA software. This LDRD resolved
limitations of this prototype that impeded its deployment in DOE mission activities. Specifically, it added
support for sparse data and created a statistical testing framework. These new features resulted in the first
formal release of RandBLAS (version 0.2, in June 2024) and the first stable release of RandBLAS (version
1.0, in September 2024).

A case study: low-rank approximation of sparse matrices with truncated QRCP

RandBLAS’s GitHub repository has several examples showing how it can be used to build high-level
algorithms. Here we summarize one of those examples: low-rank approximation of sparse matrices via
truncated QRCP. We choose this example to highlight two key points.

* RandBLAS provides implementations of the standard “SPMM” kernel for sparse-times-dense (or
dense-times-sparse) matrix multiplication. This makes it possible to build high-level RandNLA
algorithms for sparse matrix computations using only RandBLAS and an LAPACK-like library for
classical dense matrix computations. See Algorithm 1 for details.

* RandBLAS’ sparse matrix multiplication kernels are fast enough that they are not the bottleneck
operation in the larger algorithm (see Figure 1-1). Therefore, while these kernels could be optimized
even further, it makes more sense to focus future development work on integration with hardware
accelerators and linear algebra libraries used in DOE HPC workflows.

11

Algorithm 1 Pseudo-code for a practical RandBLAS-powered randomized algorithm for truncated QRCP
of sparse matrices. The basic idea of the randomized truncated QRCP algorithm is to make pivot decisions
by looking at a small sketch of the data matrix. The origins of and variations on this approach to low-rank
approximation can be found in [10, 19-21]. The same idea is at the heart of randomized algorithms for
Householder QRCP [8,12,13,22]. The end of each line shows the library functions needed for the stated
operation.

1:

10:

12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:

AN AN R

Read-only arguments. Sparse A € R™*" in CSC format.
Read-write arguments. Buffers for Q € R™** R € R**” and p € N™.

function truncated_sparse_qrcp(A,Q,R,p,¢ =0)
Laone = 0
if / is even then
overwrite Q with a k£ x m iid Gaussian matrix
else
overwrite R with a k£ x n iid Gaussian matrix
overwrite Q = RA
orthogonalize the rows of Q
Laone+ =1
while (¢ — l4one > 0) do
overwrite R = QA
orthogonalize the rows of R
overwrite @ = RA*
orthogonalize the rows of Q
Laonet+ = 2
overwrite R = QA
decompose R(:, p) = QR in-place
overwrite Q by A(:, p1), ..., A(:, pg)-

orthogonalize the columns of Q with preconditioned Cholesky QR.
« overwrite Q = Q(R(1:k, 1:k)) !

» overwrite the first k2 entries of R by the matrix G = Q*Q

* decompose G = LL™ in-place

e overwrite Q = Q(L*)~!

overwrite R = QA
pivot R = R(:, p) in-place

return

use RandBLAS::fill_dense

use RandBLAS::fill_dense
use RandBLAS: : spmm_right

use lapack: :gelgf and unglq

use RandBLAS: : spmm_right
use lapack::gelqgf and unglq
use RandBLAS: : spmm_right
use lapack::gelgf and unglq

use RandBLAS: : spmm_right

use lapack: :geqp3

use blas::trsm
use blas: :syrk
use blas: :potrf
use blas::trsm

use RandBLAS: : spmm_right

12

coauthorsDBLP IMDB marinel

3009 1 & 299,000 1m ~ 428,000 1 m ~ 400,000
n=m n =~ 896,000 n=m
total time 200 1] 1
in seconds
100 4 . .
0 - - -
rank k rank k rank k
0.25 - . .
0.20 - . .
RandBLAS time
total time 0151 1 1
0.10 - . .
0.05 - . .
0.00 L : . ; . : ; ; .
0 500 1000 0 500 1000 0 500 1000
rank k rank k rank k

Figure 1-1. Runtime data for Algorithm 1 on sparse matrices in the SuiteSparse matrix collection, using an M2
Max MacBook Pro (12 cores, 48 MB L3 cache, 96 GB RAM) and running one OpenMP thread per core. Matrix
dimensions are indicated with superimposed text. The black, blue, and red curves show data when ¢ = 0,
¢ =1, and ¢ = 2, respectively. Plots in the lower row show that algorithm runtime is dominated by BLAS and
LAPACK functions rather than RandBLAS functions, and this becomes more pronounced as k increases.

1.2. Householder QRCP

Remark 1.2.1. In what follows, “QRCP” always means ‘“Householder QRCP.”

Our work on a faster QRCP algorithm was chosen because QRCP is a major pain-point in NLA computations;
QRCP is a fundamental decomposition that nominally has the same complexity as unpivoted QR, and yet
on larger matrices the standard algorithm can run 100 times slower than complexity analysis would predict.
Our approach was to combine a recently developed algorithm for QRCP of very tall matrices with earlier
ideas for randomized QRCP of general matrices. Our implementations of this algorithm show exceptional
performance — on both CPUs and NVIDIA GPUs, they come within a factor 2 of the speed of unpivoted QR
on large matrices.

13

1.8+

1.6

1.4+

1.2+

Tera FLOPS

0
256 512 1024
pivot block size

0 L L
2048 32 280 512 1024

20

18F
16l —Unpivoted QR

-¥-Randomized QRCP - new
14} Randomized QRCP - new (cautious)
-&-Randomized QRCP - old (cautious)
12+ —~Classical QRCP

2048
pivot block size

Figure 1-2. Standardized flop rates for QR algorithms applied to large square matrices on two architectures
(computed by taking the flop count of unpivoted Householder QR and dividing by algorithm runtime). The
x-axis shows different choices of block size for randomized algorithms. Left: CPU algorithms for square
matrices of order 65536. Right: GPU algorithms for square matrices of order 32768 (NVIDIA H100). Only two
algorithms were run on the H100 because cuSOLVER does not implement a QRCP algorithm.

Intel Xeon Gold 6248R (2x)
Cores per socket 24
Clock Speed Base 3.00 GHz
Boost 4.00 GHz
L1 1536 KB
Cache sizes per socket L2 24 MB
L3 35.75 MB
RAM Type DDR4-2933
Size 192 GB
BLAS & LAPACK MKL 2024.2
GCC & G++ 10.2.0
CMake 3.232
oS Red Hat Enterprise Linux 8.7

Table 1-1. System specifications for benchmarks in the left panel of Figure 1-2.

14

1.3. Products of this LDRD

This LDRD led to several papers, software products, and presentations, as outlined below. In addition to these
“standard” products, the LDRD PI consulted extensively on an educational YouTube video on RandNLA,
which now has over 292,000 views only five months after release.!

Indirect follow-on funding has been provided by Dr. Michael Mahoney (with UC Berkeley, LBNL, and the
International Computer Science Institute), who hired a one-year post-bac to contribute to the RandNLA
software developed in this LDRD.

Papers

Fast multiplication of random dense matrices with sparse matrices. IPDPS, 2024. T. Liang, R. Murray, J.
Demmel, and A. Bulug.

Anatomy of high-performance QR with column pivoting. In preparation, writing led by collaborators at UT
Knoxville.

Basic subroutines for randomized linear dimension reduction. In preparation, writing led by R. Murray.

Software

RandBLAS: https://github.com/BallisticLA/RandBLAS.

We made the first formal release of RandBLAS and its first stable release. In August 2024
we had our first organic contributor (that is, someone who volunteered to contribute despite no
connections to the project’s origins). GitHub stars increased from 5 to 73.2

RandLAPACK: https://github.com/BallisticLA/RandLAPACK.

We added our novel algorithm for QRCP, with both CPU and GPU implementations. GitHub
stars increased from 7 to 57.

We also added initial support for kernel methods, such as kernel ridge regression and kernel
PCA, in https://github.com/BallisticLA/RandLAPACK/pull/85.

spaND: https://github.com/leopoldcambier/spaND_public.

This is C++ code for solving sparse positive definite linear systems, originally developed with
SNL LDRD funding [1,3]. We modernized spaND and improved its portability while explor-
ing applications of our QRCP work; see https://github.com/leopoldcambier/spaND_
public/pull/1.

Thttps://www.youtube.com/watch?v=6htby Y 3rH 1w
?Stars are public bookmarks made by those in the software development community.

15

Presentations

The roles of sparse matrices in emerging standards for randomized dimension reduction. R. Murray. Sparse
BLAS Workshop. University of Tennessee, Knoxville. November 2023.

Novel randomized algorithms for QR with column pivoting, and their implementations in RandLAPACK.
M. Melnichenko. SIAM Conference on Parallel Processing. March 2024.

Fast low-rank QRCP of sparse matrices — with RandBLAS! R. Murray. SIAM Conference on Applied
Linear Algebra. May 2024.

Novel randomized algorithms for QR with column pivoting, and their implementations in RandLAPACK.
M. Melnichenko. SIAM Conference on Applied Linear Algebra. May 2024.

The frontier of randomization for scalable data analysis and matrix computations. R. Murray. Rice
University, Statistics Departmental Seminar. September 2024.

1.4. Assessment and outlook

While the papers describing this LDRD’s products have yet to be finished, this LDRD remains a significant
success. The technical goals for Householder QRCP were achieved to a greater extent than we thought
possible. Most technical goals for RandBLAS were also met — the exceptions being continued dependence
on BLAS++ as a portability layer and the absence of wrappers for C or Rust. Those specific goals were
not met because information learned very early in the LDRD indicated that good performance for sparse
matrices was imperative and focus on C++ was justified by its prominence in Sandia’ HPC software stack.

We’re optimistic that our work on Householder QRCP will be received favorably by the broader HPC
community, since it continues the tradition of dense linear algebra libraries emphasizing full matrix decom-
positions. Householder QRCP in particular is a valuable kernel for solving least squares problems, owing to
its exceptionally robust numerical stability.

16

2. DISCUSSION OF TECHNICAL WORK ON RANDBLAS

As a matter of notation, we use [k] to denote the index set {0,...,k — 1}.
2.1. Preliminaries
2.1.1. Short and long axes of sketching operators

Sketching operators are only “useful” for dimension reduction if they’re non-square. The larger dimension
of a sketching operator has a different semantic role than the smaller dimension. To put this distinction
front-and-center we use the term short-axis vectors in reference to the columns of a wide matrix or the rows
of a tall matrix, and we use long-axis vectors in reference to the rows of a wide matrix or the columns
of a tall matrix. The length of an operator’s short axis is equal to what’s commonly called “sketch size.”
(The literature has no common name for the length of a sketching operator’s long axis. Terms like “input
dimension” or “ambient dimension” might be appropriate.)

Remark 2.1.1. We refer to short and long axes programatically with RandBLLAS’ Axis enumeration, which
has values Axis: :Short and Axis: :Long.

The concepts of short-axis and long-axis vectors are very important for RandBLAS’ definitions of sparse
sketching operators. Depending on whether the sparse operator is defined with respect to one of these axes or
another will affect whether the operator acts as a linear hash function or as an average of coordinate sampling
operators. See Figure 2-1 and Section 2.2.2 for more information.

0 500 1000 1500

0 500 1000 1500

0 ; - Short
201 . — "
. axis
40
60 N
80 - :
Long dimension = 2000 0 20 40 60 80 Long dimension = 2000 0 20 40 60 80
Short dimension = 100 Short dimension = 100 0
Major axis = short Major axis = long
vec_nnz =3 vec_nnz =3
500
“SASO” “LASO”
1000
Long = Long »

axis axis

1500

Figure 2-1. Sparsity patterns of short-axis-sparse and long-axis-sparse operators (“SASOs” and “LASOs”).
Note that transposition does not affect whether an operator is a SASO or LASO.

17

2.1.2. Counter-based random number generators

A counter-based random number generator or CBRNG is a type of pseudo-random number generator based
on principles described in [18]. We need some definitions in order to explain these principles.

First, let U,, denote the ring of unsigned p-bit integers, equipped with addition, multiplication, and standard
(wrap-around) overflow rules. We identify (U,)¢ = U,, by reading in a block little-endian format. For
example, if ¢ = (c1, ..., c4) € (Up)? with ¢; € Uy, then

c=c1+20 - cp+2% .54+ 2% . ¢y. (2.1.1)

These definitions in mind, a CBRNG is a family of keyed bijections on L-tuples of B-bit integers. A specific
bijection &y : Urp — (U B)L generates a pseudo-random stream

[©£(0) Dp(1) -+ ®p(2PF —2) @281 —1)]. (2.1.2)

This stream gives us L25” integers in total; it’s extended to all ¢ € N by defining ®;(c) = ®%(c mod 25%).

The original CBRNGS (i.e., those defined in [18]) were all implemented in the Random123 library. In the
formal context of Random123’s API, a CBRNG is is not a specific keyed bijection &y, but rather a mapping
(k,c) — ®g(c). This is done so Random123’s CBRNGs are truly stateless functions.

2.2 Distributions, and how we sample from them

RandBLAS defines a type called RNGState that acts as a container for triplets (®, k, ¢) where ® is a CBRNG
and (k, ¢) are Random123-defined datatypes for a key and a counter. An RNGState is effectively a pointer
to a location in a sequence of vectors of the form (2.1.2), along with rules for how to proceed along the
stream. RandBLAS uses RNGState to facilitate lazily sampling of the data used in explicit representations
of a sketching operator.

We distinguish between distributions over random matrices and samples from those distributions. The
minimal properties of these formalisms are constrained by RandBLAS’ SketchingDistribution and
SketchingOperator C++20 concepts. A SketchingOperator is basically a pair of an RNGState and a
SketchingDistribution.

RandBLAS has two types to represent distributions over random matrices: DenseDist and SparseDist.
These types have members called major_axis, dim_major, and dim_minor that aren’t required by the
SketchingDistribution concept. The major_axis can be equal to Axis::Long or Axis::Short.
We call a distribution short-axis major or long-axis major depending on this value. Given this and
(n_rows,n_cols), we set

) . min{n_rows, n_cols} if major_axis = Axis::Short
dim_major = .] . .
max{n_rows, n_cols} if major_axis = Axis::Long

and we set dim_minor to whichever of (n_rows,n_cols) isn’t identified as dim_major.

18

2.2.1. Dense sketching operators

The entries of dense sketching operators in RandBLAS are sampled iid from one of two mean-zero variance-
one distributions: the standard normal distribution (indicated by RandBLAS: : ScalarDist: :Gaussian) or
the uniform distribution over [—+/3, v/3] (indicated by RandBLAS: : ScalarDist : : Uni form).

Our methods for sampling these operators effectively take in an RNGState and an integer n = dim_major,
use these to transform (2.1.2) into a stream of vectors in R™, and then stack m = dim_minor consecutive
random vectors from this stream as the rows or columns of a matrix. More formally ...

* We take in an RNGState s = (®, k, ¢). This defines a sequence of vectors

r(c), Dp(c+1), Dp(c+2), ... € (Up)k.

» We map (Up)’ to R using an appropriate distribution-specific transformation.
* We stack vectors from R’ to length > n, then truncate to first n components.

A sequence of m vectors constructed in this way is stacked to produce either an m X n matrix or an n X m
matrix, depending on the relative sizes of (m,n) and whether the distribution is short-axis or long-axis
major.

2.2.2. Sparse sketching operators

A SparseDist represents a distribution over sparse matrices with fixed dimensions, where either the rows or
the columns are sampled independently from a certain distribution over sparse vectors. The distribution is
determined by major_axis and a parameter called vec_nnz.

Let k = dim_major. The major-axis vectors of a SparseSkOp follow a distribution V over R*. The number
of nonzeros in each major-axis vector is bounded by 1 < vec_nnz < k.

All else equal, larger values of vec_nnz result in distributions that are "better" at preserving Euclidean
geometry when sketching. The value of vec_nnz that suffices for a given context will also depend on the
sketch size, d := min{n_rows,n_cols}. Larger sketch sizes make it possible to "get away with" smaller
values of vec_nnz.

2.2.2.1. SASOs: short-axis-sparse operators

A sample from V has exactly vec_nnz nonzeros. The locations of those nonzeros are chosen uniformly
without replacement from [k]. The values of the nonzeros are independent Rademachers.

Many sketching distributions from the literature fall into this category. vec_nnz = 1 corresponds to the

distribution over CountSketch operators. vec_nnz > 1 corresponds to distributions which have been studied
under many names, including OSNAPs [15], SJLTs [5], and hashing embeddings [4].

19

template <typename state_t>
inline void considerate_fisher_yates(
state_t &state, int k, int n, int *samples, int *indices, int *pivots

) {
for (int j = 0; j < k; ++j) {
int p = random_uint(j, n, state.counter, state.key);
pivots[j] = p;
swap(indices[p], indices[j]1);
samples[j] = indices[j];
state.counter.incr();
}
for (int j = 1; j <= k; ++j) {
int i =k - j;
int s = samples[i];
int p = pivots[i];
indices[i] = indices[p];
indices[p] = s;
}
return;
}

Figure 2-2. Example function for sampling k elements from the length-n array “indices” uniformly without
replacement, using & steps of Fisher-Yates shuffling. The first for-loop performs the sampling, using a
black-box function called random_unit that accepts integers “lo” and “hi,” and a CBRNG counter and key, and
returns an unsigned integer sampled uniformly at random from lo to hi - 1. The second for-loop restores
indices to the state it had on entry. RandBLAS does not use this exact code.

How to choose vec_nnz. The community has come to a consensus that very small values of vec_nnz
can suffice for good performance. For example, suppose we seek a constant-distortion embedding of an
unknown subspace of dimension n, where 1,000 < n < 10,000. If d = 2n, then many practitioners would
restrict their attention to vec_nnz < 8. There are no special performance benefits in RandBLAS to setting
vec_nnz = 1. Additionally, using vec_nnz > 1 makes it far more likely for a sketch to retain useful
geometric information from the data. Therefore, we recommend using vec_nnz > 2 in practice.

Efficient sampling. RandBLAS constructs SASOs with a specialized version of Fisher-Yates shuffling.

As background, Fisher-Yates shuftling is a method for uniformly sampling permutations of [d]. The method
is iterative, and can be stopped after ¢ steps to obtain a £ elements chosen uniformly without replacement
from [d], which is what we need for SASOs.

The bottleneck operation in an ¢-step Fisher-Yates shuffle of [d] is preparing an explicit (array) representation
of [d]. We usually need to make m > d successive calls to such a sampling algorithm. While this would
naively cost ©(md) operations, the cost of preparing the explicit representation of [d]] can be amortized.
RandBLAS’ method for amortizing the cost is to track additional information in the Fisher-Yates shuffle so
that the algorithm can be run in reverse and restore input workspace to the same state it had on entry. The
resulting method runs in time O(d 4+ m/); see Figures 2-2 and 2-3.

20

template <typename state_t>
static state_t repeated_fisher_yates(
const state_t &state, int k, int n, int r, int *samples

) {
int *pivots = new int[k];
int *indices = new int[n];
for (int j = 0; j < n; ++j)
indices[j] = j;
auto out = state;
for (int i = 0; i < r; ++i) {
considerate_fisher_yates(
out, k, n, samples + i*k, indices, pivots
)
}
delete [] pivots;
delete [] indices;
return out;
}

Figure 2-3. Example function for making » independent samples of k elements from [n] uniformly without
replacement. The function’s total runtime is ©(kr + n). RandBLAS does not use this exact code.

2.2.2.2. LASOs: long-axis-sparse operators

A sample x from V has at most vec_nnz nonzero entries. The locations of the nonzeros are determined by
sampling uniformly with replacement from [k]. If index j occurs in the sample ¢ times, then x; will equal
/€ with probability 1/2 and —+/¢ with probability 1/2.

In the literature, vec_nnz = 1 corresponds to operators for sampling uniformly with replacement from
the rows or columns of a data matrix (although the signs on the rows or columns may be flipped). Taking
vec_nnz > 1 gives a special case of LESS-uniform distributions [6], where the underlying scalar sub-
gaussian distribution is the Rademacher distribution.

It is important to use (much) larger values of vec_nnz with LASOs compared to with SASOs, at least for the
same sketch size d. There is less consensus in the community for what constitutes "big enough in practice,"
therefore we make no prescriptions on this front.

Sampling uniformly with replacement from an index set is very simple. If the sampling is performed
sequentially then it’s easy to scale the nonzero values in the way required by the definition of V. If the
sampling is performed in parallel (or via any black-box) then separate logic is needed to merge repeated
indices within each major-axis vector. See Figure 2-4 for a straightforward way of doing this.

21

template <typename T = double>
int laso_merge_long_axis_vector_repeats(
int k, T* vals, int* locs, std::unordered_map<int, T> &loc2count

) {
loc2count.clear();
for (int j = 0; j < k; ++j) {
int i = locs[j];
T val = vals[j];
if (loc2count.count(i)) {
loc2count[i] = loc2count[i] + 1;
} else {
loc2count[i] = 1.0;
}
}
int num_unique_locs = (int) loc2count.size();
if (num_unique_locs < k) {
// Then we have duplicates. We need to overwrite some of the values
// of locs and vals. Entries of these arrays at or past index
// "loc2count.size()" will be ignored by the calling function.
int i = 0;
for (const auto& [j,c] : loc2count) {
locs[i] = j;
vals[i] *= std::sqrt(c);
i += 1;
}
}
return num_unique_locs;
}

Figure 2-4. vals and locs are length-% buffers; the former contains independent samples from a mean-zero
variance-one sub-gaussian distribution (like the Rademacher distribution) and the latter contains integers
sampled uniformly with replacement from some index set. On exit, the first num_unique_locs entries of locs
have been overwritten with the unique values that locs had on entry, and vals[j] is multiplied by the square
root of the number of times that locs[j] occurred in locs. RandBLAS does not use this exact code.

2.3. Basic statistical tests

RandBLAS gets its CBRNGs from Random123. Our tests include known answer tests from Random123’s
test suite, and tests which verify that Random123’s counters behave in the way described in (2.1.1). Here we
outline some of RandBLAS’ distributional tests.

2.3.1. Background: Kolmogorov-Smirnov

Let F'x be the empirical CDF generated by iid samples X7,..., Xy from a distribution D on R. The
Kolmogorov-Smirnov (KS) test statistic comparing F'x to a model F' is

KSx = ||[Fx — F|lsup- 2.3.1)

The null hypothesis of the KS test is that F' is the CDF of D. We reject the null hypothesis up to some
significance level « if KS x exceeds a critical value C'y , obtained from precomputed statistical tables.

22

The KS test has two value propositions for our purposes. First, it’s nonparametric (hence broadly applicable).
Second, its interpretation is self-evident; the test statistic is simply a sup-norm distance between the expected
value and an observed value.

2.3.2. Sampling from index sets

The KS test is easy to implement for code that purports to sample from an index set [n] according to a prob-
ability mass function p € R™. We have separate tests for the uniform and nonuniform distributions, where
the sampling is handled by sample_indices_iid_uniform and sample_indices_iid, respectively. In
both cases we consider significance levels o € {1075, 1074, 1072} and three combinations of index set size
and sample size:

(n, N) € {(10%,10%), (10%,10%), (10°,10%)}.

For the nonuniform sampling we consider when p; = w;/ > ; Wy, after initializing w; = 1 /(14 4)? for an
exponent ¢ = 1 (in some tests) or ¢ = 3 (in others).

Our tests for nonuniform sampling also consider two generate distributions when n = 100.

* In one case, p is obtained by initializing a vector w = 0, setting w; = 1/(1 + 4) for even values of
i # 10, and then normalizing p = w/), w;. In addition to running Fisher—Yates as a statistical test,
we check that neither the number 10 and nor any odd numbers are produced by sample_indices_iid.

* In another case, p is a delta function: p;7 = 1. Here no KS test is necessary; we simply check that all
samples produced by sample_indices_iid are equal to 17.

Sampling uniformly from an index set without replacement (handled by repeated_fisher_yates) does
not lend itself to direct testing by KS. Still, we can construct a test for our main use-case of this function:
constructing the columns of a wide SASO S. The idea is that we can look at the off-diagonal entries of
G = S*S. It’s easy to see that the entries within a single row or column of G are independent. Furthermore,
an individual off-diagonal entry G;; is distributed as a Rademacher series of random length. The number of
terms in the Rademacher series is simply the number of shared nonzero index locations for columns 7 and j
of S. If S is d x m and has k nonzeros per column, then the number of nonzero index locations shared by
any distinct pair of columns should follow the hypergeometric distribution where k draws are taken from a
set with & distinguished elements and d — k ‘unremarkable’ elements.

2.3.3. Continuous distributions on the reals

We use KS to check RandBLAS’ functions for sampling from the uniform distribution over [—+/3, v/3] and
the standard normal distribution. There are complications in evaluating (2.3.1) here because the empirical
CDF will always be piecewise constant, while the model CDFs are continuous. Figure 2-5 shows how the
evaluation can be done correctly.

23

template <typename T = double>

static T continuous_ks_evaluator(std::vector<T> &X, ScalarDist sd) {
// First, define a function handle for the model CDF.
auto F_model = [sd](T t) {

if (sd == ScalarDist::Gaussian) {
return standard_normal_cdf(t);
} else {
return uniform_symmetric_interval_cdf(t, (T) sqrt(3));
}
};
auto N = (int) X.size(Q);
VAR
Let L(t) = |F_X(t) - F_model(t)|. The KS test testatistic is
ts = sup_{all t} L(t).
Now set s = sorted(X), and partition the real line into
I_0 = (-infty, s[0 1),
I_1 = [s[0 1, s[1 1),
I_2 = [s[1 1, s[2 1),
I_{N-1} = [s[N-2], s[N-11),
I_N = [s[N-1], +infty).
Then, provided F_model is continuous, we have
sup{ L(t) : t in I_j } = max{
| F_model (inf(I_j)) - j/N|, |F_model(sup(I_j)) - j/N]|
}
for j =0, ..., N.
-.':/

X.push_back(numeric_limits<T>::infinity(Q));
X.push_back(-numeric_limits<T>::infinity());
std::sort(X.begin(), X.end(), []J(T a, T b) {return (a < b);});
T test_statistic = 0.0;
for (int j = 0; j <= N; ++j) {

T empirical = (T)j / (T)N;

T vall = abs(F_model (X[j 1) - empirical);
T val2 = abs(F_model (X[j + 1]) - empirical);
T supLt_on_Ij = max(vall, val2);

test_statistic = max(test_statistic, suplLt_on_Ij);

}

return test_statistic;

Figure 2-5. Example showing how the Kolmogorov-Smirnov test statistic can be evaluated for continuous
distributions in standard in C++. RandBLAS does not use this exact code.

24

2.4.

Oblivious subspace embedding properties, and how to test for them

We call S a é-embedding for the range of an orthonormal matrix Q if

Note that being a §-embedding implies cond(SQ) < (1 +)/(1 — 6)

Lemma 2.4.1 (Explicit in [17] when k& = n; see also [7,19] and [14]). Let A be a rank-k matrix in R™*"
with m > n. Suppose S is a d X m matrix (d < m) and P is an n X k matrix where Q = SAP is
orthonormal.! The preconditioned matrix AP satisfies

cond(AP) = cond(SV)

where V is any orthonormal matrix with the same range as A.

% -4-- Gaussian A 1.0 '\\ -4-- Gaussian A
£ \ -4-- Spiked A < \ -4-- Spiked A
% 1034 v 5 | \
< \ v 0.9 1y
u— \ ()] \
o \ c \\
5 A 2 i
g 102 “\ 5 08 \
S v g %
= \ ' k.
c \ 5 0.7 AN
° \ S ~
% 104 ‘\\ g +\\‘~\
5 o~ __ 0.6 +“~~~ =
o L R i s S, eSS } @ ———@-———@-———@-———@——= t ey TELEE
2 4 6 8 4 6
nonzeros per column of S

8
nonzeros per column of S

Figure 2-6. Visualizations of sketch quality for a wide d x m SASO for two types of m x n data matrices, where
(d,m,n) = (6000, 100000, 2000). The “Gaussian” matrix has iid standard-normal entries, while the “spiked”
matrix is formed by stacking copies of the identity matrix and randomly scaling » rows by 10000. Plots show
mean quantities computed with 10 different SASOs for a fixed matrix. Vertical lines in the right plot show

sample standard deviations. The plots have two major messages. First, some data is “easier to sketch” than
others. Second, even very small values of vec_nnz suffice to reduce distortion to very low levels.

Definition 2.4.1. Let €2 be a set of linear spaces of R”* and let D be a distribution over d X m matrices. We
say that D is an oblivious (9, p)-embedding for) if

Pr{S ~ Dis ad-embedding for U} > 1 —p forall

U in Q. 2.4.1)

Definition 2.4.2. A distribution D on R¥*™ has the (n, 6, p)-oblivious subspace embedding (OSE) property
if it’s an oblivious (J, p)-embedding for the set of all n-dimensional linear subspaces in R"™.

Itis desirable to test the subspace embedding properties of sketching operators supported by RandBLAS. This

is difficult for two reasons. First, the theory available for sketching distributions is typically asymptotic, often
"For example, P = R™* from a QR decomposition of SA.

25

suppressing constant factors and sometimes suppressing polylogarithmic factors. Second, it is expensive to
estimate the probability that a sample from a sketching distribution will provide a §-embedding for even one
subspace of some modest dimension, let alone compute that probability for all subspaces of that dimension.
However, these challenges are less severe for the Gaussian distribution, where theoretical results are known
to be sharp (even in their constant factors) and where rotational invariance can be used to restrict our attention
to coordinate subspaces.

Corollary 2.4.2 ([9]). Let Gg,, denote the distribution over d X m matrices with i.i.d. N'(0,1/d) entries.
Fix d,pin (0,1). If n and d satisfy the following bounds for some T > 0:

. <\/210g(1/p) + 1)2

1+7 2
d>
—"(5)

then G4, is an (n, 6, p)-OSE for any m > n.

By using Corollary 2.4.2, we can sweep over parameters § and 7 for any probability p of our choosing,
and test only the lowest-dimensional subspaces for which the Gaussian distribution’s OSE property should
hold. Restricting the size of the test also has a major benefit of reducing complexity (both in the sense
of “computational complexity” and “how complicated something is) of tests for the subspace embedding
property. In particular, at small scales we can get away with the using the power method on G = (SQ)*(SQ)
and on G~! to compute the extreme singular values of SQ. This is valuable because it helps RandBLAS
avoid a heavy dependency on a library like LAPACK in order to run its test suite. Our implementation sets
the tolerance and number of iterations in the power method based on the following result.

Corollary 2.4.3 (Adaptation of Theorem 4.2, [11]). Let H denote a nonzero positive semidefinite matrix of
order n and let x(denote a vector sampled uniformly at random from the unit sphere in R™. With probability
one, the sequence of values N\, = x;Hzy, generated by x), = Hxp_1/|Hxy_1|2 is well-defined for all
k > 1, and it converges to |H||2. Furthermore, for any € and p in (0, 1), setting k according to

o e+ v (). e ()} s ()

ensures the probability bound Pr{\; > (1 — ¢)||H||2} > 1 — p.

2.5. Sparse matrix datastructures

We have minimalist implementations of CSC, CSR, and COO-format sparse matrices, via the CSCMatrix,
CSRMatrix, and COOMatrix types. These types have no built-in support for accessing individual elements or
for extracting submatrices. We expect that those who want to use RandBLAS for sparse matrix computations
will already have a preferred library for working with sparse matrices, like Eigen, Armadillo, Kokkos, or
MKUL. The purpose of RandBLLAS’ sparse matrix classes is to provide lightweight views in the three major
formats, around which we build our high-performance parallel implementations of sparse-times-dense (or
dense-times-sparse) matrix multiplication.

26

Remark?2.5.1. SparseSkOp objects can own representations of their data in COO format. Our implementation
of sparse sketching ultimately works by creating a COOMatrix view of an explicitly sampled SparseSkOp.

2.6. Multiplying sparse and dense matrices

There are three function names in RandBLAS’ public API that involve multiplying sparse matrices: spmm,
sketch_general (when used with sparse sketching operators), and sketch_sparse. These names are
overloaded to handle when an operator of one type or another appears on the left or the right of the matrix-
matrix product. Each overloaded function is marked as inline and dispatches a function with a (usually)
more opaque name and less sophisticated templating.

2.6.1. Routing for spmm

The spmm overloads immediately route to left_spmm or right_spmm. Implementations of functions with
any of these three names are contained in

RandBLAS/sparse_data/spmm_dispatch.hh.

right_spmm is implemented by falling back on 1eft_spmm with transformed values for layout and for the
transposition flags opA and opB. Here’s what happens if 1eft_spmm is called with a sparse matrix A, a dense
input matrix B, and a dense output matrix C.

1. If needed, transposition of A is resolved by creating a lightweight object for the transpose called At.
This object is just a tool for us to change how we interpret the buffers that underlie A.

e If Ais COQO, then At will also be COO.
e If Ais CSR, then At will be CSC.
e If Ais CSC, then At will be CSR.

We make a recursive call to 1eft_spmm once we have our hands on At, so the rest of left_spmm’s
logic only needs to handle un-transposed A.

2. A memory layout is determined for how we’ll read B in the low-level sparse matrix multiplication
kernels.

* If B is un-transposed then we’ll use the same layout as C.

 If B is transposed then we’ll swap its declared dimensions (i.e., we’ll swap its reported numbers
of rows and columns) and and we’ll tell the kernel to apply it as an untransposed matrix stored
in the opposite layout as C.

3. We dispatch a kernel from coo_spmm_impl.hh, or csc_spmm_impl.hh, or csr_spmm_impl.hh.
The precise kernel we dispatch depends on the type of A, and the inferred layout for B, and the declared
layout for C.

27

2.6.2. Routing for sketch_general with SparseSkOp objects

The sketch_general functions are defined in skge . hh. If we call one of these functions with a SparseSkOp
object, S, we’d immediately get routed to either 1skges or rskges. Here’s what would happen after we
entered one of those functions:

1. If the defining data S has yet to be sampled, then we create a shallow memory-owning copy of S and
call fill_sparse on that shallow copy; the shallow copy frees its memory at destruction time.

2. We’d obtain a lightweight view of S as a COOMatrix, and we’d pass that matrix to left_spmm (if
inside 1skges) or right_spmm (if inside rskges).

2.6.3. Routing for sketch_sparse

If we call sketch_sparse with a DenseSkOp, S, and a sparse matrix, A, then we’ll get routed to either
1sksp3 or rsksp3. From there, we’ll do the following.

1. If the defining data S has yet to be sampled, then we instantiate an explicit representation of the
relevant submatrix of S as a BLASFriendlyOperator (a type that’s not in the public API) using
f£ill_dense_unpacked. The memory required for this representation is freed at destruction time.
We return after a recursive call to the current function with the BLASFriendlyOperator.

2. Remaining function logic assumes that the argument is either a DenseSkOp whose buffer representation
is available or a BLASFriendlyOperator (which, by definition, has an explicit buffer representation).
Using this buffer representation, we call ...

e right_spmm if we’re inside 1sksp3.
e left_spmm if we're inside rsksp3.

Note that 1 and r in the names [1/r]sksp3 get matched to opposite sides for [left/right]_spmm!
This is because all the fancy abstractions in S have been stripped away by this point in the call sequence,
so the "side" that we emphasize in function names changes from emphasizing S to emphasizing A.

28

3. DISCUSSION OF TECHNICAL WORK ON QRCP

Work summarized here was conducted in collaboration with Maksim Melnichenko and Mark Gates (Uni-
versity of Tennessee, Knoxville), James Demmel and Michael Mahoney (UC Berkeley and LBNL), Piotr
Luszczek (MIT Lincoln Lab), and William Killian (Voltron Data; previously faculty at Millersville Univer-
sity). Details on this work will be shared in a forthcoming paper.

In this chapter, [n] = {1,...,n}.

3.1. Problem statement and background

Let M be a matrix of size m x n with at least as many rows as columns (m > n). QRCP is concerned with
finding a permutation of [n] —call it J — along with a QR decomposition of the pivoted matrix M(:, J) = QR,
such that leading and trailing singular values of M can be inferred from the spectra of leading and trailing
blocks in 2 x 2 partitions of R.!

QRCP is considerably more expensive than unpivoted QR from a communication standpoint, even with
straightforward pivoting strategies. For example, Householder QR with Businger and Golub’s max-norm
pivoting requires updating column norms of every partial decomposition of M as the algorithm progresses
from left to right across the columns [2]. These column-norm updates entail BLAS 2 operations, which
are less suitable for modern hardware than the matrix-matrix (i.e., BLAS 3) operations abundant in classic
algorithms for unpivoted QR. The significance of this problem has been known for decades [16].

Remark 3.1.1. The standard LAPACK function for Householder QR is GEQRF; the standard function for
Householder QRCP (with max-norm pivoting) is GEQP3.

A significant amount of effort was devoted to improving QRCP’s efficiency with randomization in the mid
2010’s, beginning with independent works by Martinsson [12] and Duersch and Gu [8], and with subsequent
extensions by Martinsson et al. [13] and Xiao, Gu, and Langou [22]. These randomized methods showed
compelling performance at the time, but they were never adopted into standard linear algebra libraries. (This
includes LAPACK, ScalLAPACK, SLATE, Eigen, Armadillo, Intel MKL, AMD AOCL, Arm Performance
Libraries, IBM ESSL, Apple Accelerate, cuSOLVER, and MAGMA..)

One explanation for the lack of uptake of randomized QRCP is that available high-performance implemen-
tations of these methods did not adapt well to improvements in hardware. For example, experiments with
the “HQRRP” code from [13] used an Intel CPU with the Sandy Bridge architecture (launched Q1°12), on
which there was a 10x speed difference between GEQRF and GEQP3. However, when we compared GEQRF and
GEQP3 on Intel CPUs with the Cascade Lake architecture (launched Q1°20) we observed speed differences
of 100x. While HQRRP did exhibit a nontrivial speedup over GEQP3 on the newer architecture, it did not
even come close to the performance of GEQRF.

"We use the term spectrum in reference to singular values, not eigenvalues. Eigenvalues are of interest to us only insofar as they
coincide with singular values for positive semidefinite matrices.

29

This purpose of this LDRD’s work on QRCP was to develop improved versions of these randomized
algorithms along with high-performance implementations, with the aim of showing that RandNLA has
major benefits to offer to the celebrated decompositional approach to matrix computations.

3.2 The high-level algorithm

The pseudocode Algorithm 2 represents the simplest formulation of our proposed algorithm. It’s deliberately
presented very similarly to [8, Algorithm 4].

Algorithm 2 Iterative CholeskyQR with randomization and pivoting

Required inputs. An m x n matrix M. An integer block size parameter b.
Optional inputs. A scalar y that sets the size of the sketch relative to b (y > 1).
Outputs. Orthogonal Q € R™** upper-triangular R € R**™, and a permutation matrix P € R™*",

: function icqrrp(M, b, v = 1.25)

Sample a Gaussian matrix S of dimensions [vb] x m
Allocate Q,R, P

1

2

3

4 Sketch M** = SM
5 fori=1:n/bdo

6 Decompose [~, R, P] = qrep(M*F)

#/ P e R™ ™ is a permutation matrix

7: Determine k = rank(R)
” Performed by finding the last nonzero element in the diagonal of R
8: Permute R(: (i — 1)b, (i — 1)b:) = R(: (i — 1)b, (i — 1)b :)P
7 Only the rectangular portion of the computed rows is permuted
9: Truncate and precondition MP™ = MP(:, 1 : k)(R(1:k, 1:k)) ™"
10: Decompose [Q°“", RP™] = cholqr(MP™)
#2 Q%" ism x kand R” is k x k
11: Reconstruct [@™", D] = householder_reconstruct(Q°°")
#2 D is a sign vector
12: Compute R = RP™diag(D)R (1 k,1:k)
13: Compute R'? = QM (:,: b)*MP(;, (b+ 1) ?)
14: Update M = Q™ (:, (b +1))*MP(;, (b+1) 2)
15: Update R((i — 1)b : ib, (i — 1)b:) = [R* R'?
16: Update Q = QQfllll
17: Update P = PP
18: if i == n/bor k # b then
break;

R _ IA?ll(Rll)*lRm
19: Update M** = A2

20: return Q, R, P

30

Algorithm 2 stands out from its predecessors through employing Cholesky QR at step 10, followed by the
use of householder_reconstruct function to restore the full representation of the Q-factor, defined at a
given iteration. On its own, this is a very minor innovation. The contribution of this LDRD research is to
elucidate design patterns for high-performance implementation of randomized QRCP algorithms.

3.2.1. A fast QRCP, suitable for wide sketches

Step 6 in pseudocode Algorithm 2 uses a black-box qrcp function, applied to a wide matrix M. By
default, one could choose to use the standard LAPACK QRCP function, GEQP3, for the lack of an immediate
alternative. In Algorithm 3, we show a much faster approach that utilizes LAPACK’s row-pivoted LU
function, GETRF to retrieve the pivot vector J (an alternative data view to the pivot matrix P in step 6) and
then unpivoted QR with GEQRF to find the matrix R (a portion of which will be used for preconditioning).

Algorithm 3 : qrcp_practical

Input: A matrix M € R4X" where d < n
1: function grcp_practical(M)
2: Allocate M™#"® + transposition(M)
3: Compute [~, ~, Ji,] = lu(M**"%)

” Done via standard row-pivoted LU factorization, GETRF

4: Convert J,, = piv_transform(.J,)
5: Compute [~, R] = qr(M(:, J))

~ Done via standard unpivoted QR factorization, GEQRF
6: return R, J

Step 2 in Algorithm 3 does not use an in-place transpose. Since the matrix M°®* that is to be input into qrcp
function in step 3 is substantially smaller than M, allocating a d x n buffer for M"™#" is more reasonable
than performing an additional in-place transpose to restore MSX at the end of the algorithm.

Step 4 in Algorithm 3 is crucial, since the format in which a pivoted LU represents the permutation vector .J
is different from the pivoted QR format. In the context of pivoted LU factorization, row ¢ of the input matrix
was interchanged with row Jy, [i]. With that, the conversion procedure consists of first creating a vector Jq,
of length n with entries from 1 to n and then serially swapping elements in it in accordance with the entries
in Ji,. Simply put, for element at index i = 1,...n, element at J[i] is to swap positions with the element
at Jqr[Jiu[7]]. It is important to remember that pivot vectors in LAPACK usually store entries in a one-based
index format.

It is important to note that using Algorithm 3 has additional implications for the process of sketching. First,
when Algorithm 3 is in use, there is no reason to set -y to anything other than 1, since GETRF’s first k
pivots for an input matrix only depend on the first k£ rows of that matrix. Second, using a sparse sketching
operator in combination with Algorithm 3 may result in a failure on due to the pivoting rule in a pivoted
LU function. This, however, is not an issue, as there is no performance benefit to be had by using a sparse
sketching operator instead of a Gaussian operator in our context.

3.2.2. Column permutations

As part of developing a high-performance QRCP algorithm, we needed to write a conceptually trivial, yet
crucially important kernel - a function for permuting columns of a given matrix in accordance with the output

31

of qrep at step 6 of Algorithm 2. In the context of pivoted QR factorization that outputs a pivot vector Jg, if
Jqe|j] = 4, then the 51 column of A(:, Jo,) was the k*® column of A; this representation of the pivot vector
can be referred to as “permutation format.” A simple method for applying the column permutation is given
in Algorithm 4.

Algorithm 4 : col_perm_sequential

Input: A matrix M € R?*"™, where d < n, a pivot vector Jqr output by a black-box grcp function, and integer
¢ < n describing the number of columns to be swapped.
1: function col_perm_sequential(M, Jy,,¢)
2 fori=1:/4do
3: J = Jarli]
4 swap(M[:,], M[:, j])
N Swap entire columns in M
5: idx = find(Jq, 7)
/ Find the index of an element with value ¢

6: Jqelidz] = j

There are two important things to note about Algorithm 4. First, as seen from step 6, the pivot vector Jg; is
updated at every iteration of the main loop. In the context of a practical algorithm, we want to preserve Jg,
after column permutation is done, hence a copy is required. Second, the idea behind how the permutations
are performed implies that the same column can be moved several times, which prevents us from parallelizing
the main loop in this algorithm (hence the keyword “sequential” in its name).

The fact that Algorithm 4 is strictly sequential can cause performance bottlenecks on GPUs. Luckily, there
is a way to introduce parallelism with some additional workspace.

32

REFERENCES

(1]

[2

—

3

—

[4

—

(5

—

[6

—_

[7

—

(8]

[9

—

(10]

(11]

[12]

[13]

(14]

(15]

(16]

(17]

(18]

Erik Gunnar Boman, Eric Darve, Richard B. Lehoucq, Sivasankaran Rajamanickam, Raymond S. Tuminaro, and Ichitaro
Yamazaki, Fast and robust linear solvers based on hierarchical matrices (ldrd final report), 2019.

Peter Businger and Gene H. Golub, Linear least squares solutions by Householder transformations, Numerische Mathematik
7 (June 1965), no. 3, 269-276.

Léopold Cambier, Chao Chen, Erik G. Boman, Sivasankaran Rajamanickam, Raymond S. Tuminaro, and Eric Darve, An
algebraic sparsified nested dissection algorithm using low-rank approximations, SIAM Journal on Matrix Analysis and
Applications 41 (January 2020), no. 2, 715-746.

Coralia Cartis, Jan Fiala, and Zhen Shao, Hashing embeddings of optimal dimension, with applications to linear least squares,
arXiv, 2021.

Michael B. Cohen, Nearly tight oblivious subspace embeddings by trace inequalities, Proceedings of the twenty-seventh annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), December 2016.

Michat Derezinski, Jonathan Lacotte, Mert Pilanci, and Michael W Mahoney, Newton-LESS: Sparsification without trade-offs
for the sketched Newton update, Advances in Neural Information Processing Systems 34 (2021).

P. Drineas, M. W. Mahoney, and S. Muthukrishnan, Sampling algorithms for {2 regression and applications, Proceedings of
the 17th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006, pp. 1127-1136.

Jed A. Duersch and Ming Gu, Randomized QR with column pivoting, SIAM Journal on Scientific Computing 39 (January
2017), no. 4, C263-C291.

Y. Gordon, On milman’s inequality and random subspaces which escape through a mesh in R™, Geometric aspects of functional
analysis, 1988, pp. 84-106.

N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions, SIAM Review 53 (January 2011), no. 2, 217-288.

J. Kuczynski and H. Wozniakowski, Estimating the largest eigenvalue by the power and Lanczos algorithms with a random
start, SIAM Journal on Matrix Analysis and Applications 13 (1992), no. 4, 1094-1122.

P. G. Martinsson, Blocked rank-revealing QR factorizations: How randomized sampling can be used to avoid single-vector
pivoting, 2015.

Per-Gunnar Martinsson, Gregorio Quintana Orti, Nathan Heavner, and Robert van de Geijn, Householder QR factorization with
randomization for column pivoting (HQRRP), SIAM Journal on Scientific Computing 39 (January 2017), no. 2, C96-C115.

Riley Murray, James Demmel, Michael W. Mahoney, N. Benjamin Erichson, Maksim Melnichenko, Osman Asif Malik, Laura
Grigori, Piotr Luszczek, Michat Derezifiski, Miles E. Lopes, Tianyu Liang, Hengrui Luo, and Jack Dongarra, Randomized
numerical linear algebra : A perspective on the field with an eye to software, 2023.

Jelani Nelson and Huy L. Nguyen, OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings,
2013 IEEE 54th annual symposium on foundations of computer science, October 2013.

G. Quintana-Orti, X. Sun, and C.H. Bischof, A BLAS-3 version of the QR factorization with column pivoting, SIAM Journal
on Scientific Computing 19 (1998), no. 5, 1486-1494. Posted in preprint form as LAWN 114 in 1996.

V Rokhlin and M Tygert, A fast randomized algorithm for overdetermined linear least-squares regression, Proceedings of the
National Academy of Sciences 105 (September 2008), no. 36, 13212-13217.

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw, Parallel random numbers: As easy as 1, 2, 3, Sc
’11: Proceedings of 2011 international conference for high performance computing, networking, storage and analysis, 2011,
pp- 1-12.

33

[19] Tamas Sarlos, Improved approximation algorithms for large matrices via random projections, Proceedings of the 47th annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2006, pp. 143-152.

[20] Sergey Voronin and Per-Gunnar Martinsson, Efficient algorithms for CUR and interpolative matrix decompositions, Advances
in Computational Mathematics 43 (November 2016), no. 3, 495-516.

[21] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert, A fast randomized algorithm for the approximation of
matrices, Applied and Computational Harmonic Analysis 25 (2008), no. 3, 335-366.

[22] Jianwei Xiao, Ming Gu, and Julien Langou, Fast parallel randomized QR with column pivoting algorithms for reliable low-rank
matrix approximations, 2017 IEEE 24th international conference on high performance computing (HiPC), 2017, pp. 233-242.

34

DISTRIBUTION

Email—Internal

Name

Org.

Sandia Email Address

Technical Library

1911

sanddocs@sandia.gov

Hardcopy—External

Number of

Company Name and

Copies RELEE) Company Mailing Address
Riley Murray
1 Riley Murray 230 Upland Road
Unit 2

Cambridge, MA 02140

35

This page intentionally left blank.

36

This page intentionally left blank.

37

Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

