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Abstract 
In recent years, artificial intelligence and machine learning (AI/ML) approaches have 
revolutionized the process of designing new therapeutics, enabling scientists to rapidly respond 
to emerging threats from various pathogens. A prime example is the SARS-CoV-2 main protease, 
a key target for the development of antiviral inhibitors. In this study, we employed a novel, 
integrated approach that combines AI-driven iterative design of inhibitor candidates, screening 
based on physio-chemical properties and toxicity, physics-based computational modeling of 
protein-inhibitor interactions, and AI-assisted analysis of Native MS biophysical assay and 
characterization of designed candidates. Our deep learning 3D-scaffold model, which uses an 
input scaffold as a starting point, generated tens of thousands of compounds while preserving the 
key scaffold. To optimize these candidates, we calculated a comprehensive set of 136 
descriptors, including both 2D and 3D molecular features, for compounds targeting the SARS-
CoV-2 Main protease (Mpro) and a neurodegenerative disease-associated protein, cyclophilin 
(Cyp). The generated compounds were initially filtered based on their properties and then ranked 
according to their predicted binding affinity using our automated modeling and ML methods. 
Experimental validation of the Mpro candidates showing inhibitory activity demonstrates that our 
workflow can expedite the therapeutic discovery.  
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Summary 
We developed a computational strategy that will transition from hit-finding based on explainable 
AI and computational methods to a deeper analysis and iterative design-make-test cycles to 
include a set of chemical modifications around a common core with clear structure-activity 
relationships (SAR) of various properties. These candidates were validated using PNNL’s 
screening and native MS to define molecular mechanisms for rapid iteration of AI design. The 
tight integration between data scientists, modelers, and experimentalists provided a closed loop 
machine intelligent model that learns from protein specific data and builds an ML algorithm to 
identify novel candidates and perform lead optimization with broad spectrum antiviral properties, 
which can possibly advance the therapeutic discovery.  
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Introduction 
 Artificial intelligence/machine learning (AI/ML) based drug discovery and development 
approaches have gained significant progress over the past few years. This technological 
progress can aid in reducing the cost and time for discovering novel small molecules with 
desired properties compared to conventional methods (Hughes et al., 2011). However, nearly 
90% of these new therapeutic molecules fail in the later stages of drug discovery (Sun, D. et al., 
2022). With the vast amount of structural, functional, and therapeutic data of the previously 
approved drugs and millions of chemical compounds from databases like Enamine (Shivanyuk 
et al., 2007), Mcule (Kiss et al., 2012), and ChEMBL (Gaulton et al., 2017), this allows for the 
leveraging of computational resources and expertise at PNNL to aid in understanding and 
searching the vast chemical space of the compounds as a starting point. Utilizing the AI-based 
models incorporated with several open-source in silico tools—including those developed at 
PNNL targeting various areas of drug design such as compound generation, high-throughput 
virtual screening, quantitative structure-activity relationship (QSAR) analysis, toxicity prediction, 
etc. (Duch, W. et al., 2007). We designed and experimentally validated several potential hits 
against different protein targets. We also utilized the above approaches to incorporate new 
applications like lead optimization and drug repurposing, where we modified the fragments of 
existing drugs to make them more potent or utilized available FDA-approved drugs for different 
target proteins. 

 We developed a closed-loop drug discovery and lead optimization (LO) workflow (Figure 1) 
utilizing various tools, one such PNNL-developed tool, 3D-Scaffold (Joshi et al., 2021) that 
utilizes deep learning with a fragment-based or functional group method, which generates 
molecules based on the input scaffold, retaining the key scaffold. A benefit of this approach is 
that scaffolds can be chosen from experimentally validated active compounds. 
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Results and Discussions  

Computational modeling and AI/ML methods:  We utilized our 3D-Scaffold model, high 
throughput virtual screening (HTVS) techniques, and advanced hit identification and optimization 
methods in our computational workflow (Figure 1). We did the extensive literature search and key 
fragments were extracted from experimentally validated potential ligands found in the 
cyclophilin(s) PDB crystal structures (Kajitani, K., et al. 2007, Mikol, V., et al. 1994). For Mpro, we 
used the scaffolds from the top 4 compounds from our initial iteration of compounds (Varikoti, R. 
A., et al. 2023), which were then inputted into our 3D-scaffold model to generate a library of 
compounds covering extensive chemical space. The generated novel compounds were screened 
and sorted based on similarity patterns with their parent compounds, as well as on 
cheminformatics, physiochemical properties, and toxicity. The compounds were ranked based on 
the interpreted results and using molecular docking simulations to predict binding affinity. Further 
screening was done by visually inspecting the binding orientations and observing key interactions 
of the compounds with the target proteins. Additionally, we performed LO using 3D-QSAR and 
MPO analysis to obtain potent compounds with target-specific properties. The screened hits were 
further optimized before testing them using experimental validation (Table 1). We searched for 
the compounds from various vendors like Mcule, Enamine, etc., ordered them, and tested and 
characterized the final set of compounds with experimental methods using Native MS and FRET-
based functional assays (Clyde et al., 2021, Joshi, R. P. et al., 2023, Varikoti, R. A., et al., 2023). 
The capabilities and insights developed with this project will be ultimately applicable to a wide 
range of protein targets and biological systems of interest. 
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Figure 1. Our research follows a procedure for identifying therapeutic candidates and optimizing 

leads. (a) The process begins by inputting a scaffold (*) into (b) our 3D-scaffold model, 
which generates several ligands. (c) High Throughput Virtual Screening (HTVS) uses 
molecular docking and QSAR to identify lead compounds. (d) The generated 
compounds are screened based on various physiochemical properties to (e) identify 
hits. (f) Machine Learning/Deep Learning is used for activity prediction of lead 
compounds. (g) Fragments/scaffolds from the final compounds are then input into the 
3D-scaffold model for lead optimization 
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Table 1. Top high throughput virtually screened compounds targeting proteins with their 
respective molecular properties that we finalized based on extensive computational 
studies. 

Target 
Protein # Compound Name MW LP TPSA HA HD Docking 

Score 
Synthetic 
Accessibility 

SARS-
CoV-2 
Mpro 

1 Z4887119528 501.551 4.8689 100.21 8 2 17.0599 3.87 

2 Z4509080715 471.445 5.2496 62.3 5 1 13.29 3.53 

3 Z4605133164 465.944 5.1882 62.3 5 1 13.668 3.64 

4 Z4509080683 505.889 5.903 62.3 5 1 13.7844 3.62 

5 Z4912275806 459.554 5.5283 62.3 5 1 15.5122 3.85 

Cyclophilin
s (D and A)  

6 B54_1257 663.576 -2.67694 288.67 12 7 -9.7 (-8.9) 5.55 

7 B54_1842 651.609 -3.20673 269.43 11 9 -9.3 (-9.5) 5.33 

8 B54_1126 664.584 -2.77533 286.17 12 8 -9.1 (-9) 5.26 

9 B54_1929 650.601 -2.96824 269.43 11 9 -9.1 (-8.7) 5.43 

10 B54_939 665.592 -2.93471 291.4 13 8 -9.1 (-8.7) 5.65 

 
MW = Molecular weight; LP = partition coefficient (LogP); TPSA = topological polar surface area; HA and HD = 
number of hydrogen bond acceptors and donors; Docking score in kcal/mol; Synthetic Accessibility score 
between 1 (easy to synthesize) and 10 (very difficult to synthesize); Cyp D (A): Cyclophilin D (Cyclophilin A) 
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Compound Library Generation 
Utilizing our model 3D-Scaffold, a deep learning approach which generates the 3D coordinates 
of molecules built around a desired molecular scaffold provided as an input and training data sets. 
The identification of scaffolds is a critical step in the process, as it defines candidate generation. 
The input scaffolds were selected from a curated library of experimentally validated potent drug 
candidates with IC50 and/or EC50 values (measurements of binding affinity) from various sources 
such as Protein Data Bank (RCSB PDB) (Burley et al., 2021), PostEra, and published literature 
(Qin et al., 2022, Ghahremanpour et al., 2020, Narayanan et al., 2022) targeting protein of 
interest. For generating compounds targeting cyclophilin, we used core fragments from a well-
studied drug cyclosporin (CsA) and two experimentally validated compounds. For Mpro we used 
the fragments from our previous iteration of compounds which were experimentally tested to be 
active. Finally, we generated a broad compound library consisting of non-covalent inhibitors 
targeting Cyp(s) and both covalent and non-covalent inhibitors targeting Mpro. For each scaffold, 
our 3D-scaffold model generated between 500-4000 molecules not only sharing fingerprint 
similarity with the parent compounds set but also constraining the properties. The generated 
molecules were then checked for validity, uniqueness, and novelty as described in Joshi et al. 
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Ligand-based Compound Screening 
Ligand-based screening techniques were used to screen the 3D-scaffold generated compounds 
for druglike characteristics. The initial screening involved computing properties such as similarity 
to the parent compound, synthetic accessibility (SA) score, and quantitative estimation of 
druglikeness (QED). As a next step, various physicochemical properties were considered 
including: (i) logP, the partition coefficient, which indicates the lipophilicity of the compound 
(lipophilic if the value is positive or hydrophilic if the value is negative) and measures its 
permeability; (ii) topological polar surface area (TPSA), which estimates polarity and is one of the 
important parameter to measure absorption and blood-brain barrier permeability of the 
compounds; (iii) molecular weight (MW), selecting a range between 150-500 Da; and (iv) toxicity 
prediction. A total of 58 properties were used for screening, resulting in fewer than 500 
compounds being considered for the next stage: molecular docking simulations.  
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Experimental Validation 
Automated Native MS Experiments and Analysis:  A key contribution of this work is the 
development of a novel AI/ML frameworks to automated mass-spectra analysis which allowed for 
high throughput binary classification to identify target compounds that bound to the active site of 
Mpro taking in m/z intensity pairings for peak identification. Two models were designed based off 
the datatype chosen for use. If similar runs with Ammonium Acetate are used, the model takes a 
vector of relative intensities from the runs, between 4000 & 4400 m/z, however an alternate 
structure was also designed for if there are frameshifts in m/z exceeding 200 m/z, as seen with 
the EDTA/TCEP samples. This model was trained on 40 test sets including 20 (+) bound samples 
of MPRO + the Pfizer compound as well as 20 (-) samples consisting of only MPRO. From the 
final Mpro compounds (Table 1) Z4887119528 showed no affinity, Z4605133164 showed low 
affinity, and the remaining compounds each displayed significant populations of both singly and 
doubly bound ligand with moderate to high affinity (Figure 2). The lack of observed binding for 
compound Z4887119528 during Native MS screening may be the result of potential non-covalent 
interactions that do not survive in the gas phase under MS conditions. 

 

 

 
Figure 2. Deconvolved mass spectra of Mpro control and Mpro with each of the five compounds 
from the activity assay. The numbers above each dashed line are the mass shift in Da from the 
apo Mpro dimer mass. Note that some adducts are seen, even in the control sample. The blue 
arrows indicate a mass shift corresponding to the mass of the compound. The Kd values were 
based on the relative abundance of the apo and holo species. Spectra for Mpro with compounds 
Z4509080683, Z4509080715, and Z4912275806 each display two holo peaks, indicating singly 
and doubly bound species 
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A key contribution of this work is the development of a novel AI/ML frameworks to automated 
mass-spectra analysis which allowed for high throughput binary classification to identify target 
compounds that bound to the active site of Mpro taking in m/z intensity pairings for peak 
identification. Two models were designed based off the datatype chosen for use. If similar runs 
with Ammonium Acetate are used, the model takes a vector of relative intensities from the runs, 
between 4000 & 4400 m/z, however an alternate structure was also designed for if there are 
frameshifts in m/z exceeding 200 m/z, as seen with the EDTA/TCEP samples. This model was 
trained on 40 test sets including 20 (+) bound samples of MPRO + the Pfizer compound as well 
as 20 (-) samples consisting of only MPRO. From the final Mpro compounds (Table 1) 
Z4887119528 showed no affinity, Z4605133164 showed low affinity, and the remaining 
compounds each displayed significant populations of both singly and doubly bound ligand with 
moderate to high affinity (Figure 2). The lack of observed binding for compound Z4887119528 
during Native MS screening may be the result of potential non-covalent interactions that do not 
survive in the gas phase under MS conditions. 

Functional potency of inhibitor compounds: 

We experimentally assessed the inhibition of Mpro enzyme activity by the computational leads 
using a well-established FRET based biochemical assay. Of the five compounds tested 
compound Z4887119528 showed highest inhibitory activity (IC50 =2.47 µM) compared with other 
candidates. Compounds Z4509080715, Z4605133164, Z4509080683, and Z4912275806 have 
covalent acrylamide warhead in common whereas compound Z4887119528 lacks a strong 
covalent warhead. Thus, compound Z4887119528 could act as non-covalent inhibitor. Further, 
native MS results showed no binding of compound Z4887119528 (Figure 3) with Mpro enzyme. 
It is possible that some non-covalent interactions such as hydrophobic interactions become 
weaker in gas phase under MS conditions (Bich, C., et al. 2010) and impossible to detect certain 
ligand-protein assemblies with native MS (Boeri Erba, E., & Petosa, C., 2015). 

 
Figure 3 Inhibition screening of computational leads using FRET assay. IC50 curves with 
representative structures of commercially available screened hit compounds A) Z4509080715 B) 
Z4605133164 C) Z4887119528 D) Z4509080683 and E) Z4912275806. Enzyme reactions were 
carried out incubating purified Mpro enzyme with increasing concentrations (0 to 250 µM) of 
screen hit compounds. Enzyme activity was determined by measuring fluorescence after adding 
Dabcyl-KTSAVLQSGFRKME-EDANS peptide substrate. Initial reaction rates were used to 
determine the IC50 values. IC50 and Emax (Maximum possible inhibition) values are reported in 
the table.    
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