7

Pacific
Northwest

NATIONAL LABORATORY

PNNL-36621

Automated Al-driven
Molecular Design for
Therapeutic Discovery

September 2024

1. Rohith Anand Varikoti
2. Chathuri Kombala

3. Stephanie M Thibert
4. Deseree J Tennyson
5. Zhou Mowei

5. Agustin Kruel

6. Neeraj Kumar

U.S. DEPARTMENT OF

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062
www.osti.gov
ph: (865) 576-8401
fox: (865) 576-5728
email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
or (703) 605-6000

email: info@ntis.gov
Online ordering: http://www.ntis.gov


http://www.osti.gov/
mailto:reports@osti.gov
mailto:info@ntis.gov
http://www.ntis.gov/

PNNL-36621

Automated Al-driven Molecular Design for
Therapeutic Discovery

September 2024

. Rohith Anand Varikoti
. Chathuri Kombala

. Stephanie M Thibert

. Deseree J Tennyson
. Zhou Mowei

. Agustin Kruel

. Neeraj Kumar

OO, WN -

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354



PNNL-36621

Abstract

In recent vyears, artificial intelligence and machine learning (AI/ML) approaches have
revolutionized the process of designing new therapeutics, enabling scientists to rapidly respond
to emerging threats from various pathogens. A prime example is the SARS-CoV-2 main protease,
a key target for the development of antiviral inhibitors. In this study, we employed a novel,
integrated approach that combines Al-driven iterative design of inhibitor candidates, screening
based on physio-chemical properties and toxicity, physics-based computational modeling of
protein-inhibitor interactions, and Al-assisted analysis of Native MS biophysical assay and
characterization of designed candidates. Our deep learning 3D-scaffold model, which uses an
input scaffold as a starting point, generated tens of thousands of compounds while preserving the
key scaffold. To optimize these candidates, we calculated a comprehensive set of 136
descriptors, including both 2D and 3D molecular features, for compounds targeting the SARS-
CoV-2 Main protease (Mpro) and a neurodegenerative disease-associated protein, cyclophilin
(Cyp). The generated compounds were initially filtered based on their properties and then ranked
according to their predicted binding affinity using our automated modeling and ML methods.
Experimental validation of the Mpro candidates showing inhibitory activity demonstrates that our
workflow can expedite the therapeutic discovery.

Abstract ii
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Summary

We developed a computational strategy that will transition from hit-finding based on explainable
Al and computational methods to a deeper analysis and iterative design-make-test cycles to
include a set of chemical modifications around a common core with clear structure-activity
relationships (SAR) of various properties. These candidates were validated using PNNL’s
screening and native MS to define molecular mechanisms for rapid iteration of Al design. The
tight integration between data scientists, modelers, and experimentalists provided a closed loop
machine intelligent model that learns from protein specific data and builds an ML algorithm to
identify novel candidates and perform lead optimization with broad spectrum antiviral properties,
which can possibly advance the therapeutic discovery.

Summary
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Introduction

Artificial intelligence/machine learning (Al/ML) based drug discovery and development
approaches have gained significant progress over the past few years. This technological
progress can aid in reducing the cost and time for discovering novel small molecules with
desired properties compared to conventional methods (Hughes et al., 2011). However, nearly
90% of these new therapeutic molecules fail in the later stages of drug discovery (Sun, D. et al.,
2022). With the vast amount of structural, functional, and therapeutic data of the previously
approved drugs and millions of chemical compounds from databases like Enamine (Shivanyuk
et al., 2007), Mcule (Kiss et al., 2012), and ChEMBL (Gaulton et al., 2017), this allows for the
leveraging of computational resources and expertise at PNNL to aid in understanding and
searching the vast chemical space of the compounds as a starting point. Utilizing the Al-based
models incorporated with several open-source in silico tools—including those developed at
PNNL targeting various areas of drug design such as compound generation, high-throughput
virtual screening, quantitative structure-activity relationship (QSAR) analysis, toxicity prediction,
etc. (Duch, W. et al., 2007). We designed and experimentally validated several potential hits
against different protein targets. We also utilized the above approaches to incorporate new
applications like lead optimization and drug repurposing, where we modified the fragments of
existing drugs to make them more potent or utilized available FDA-approved drugs for different
target proteins.

We developed a closed-loop drug discovery and lead optimization (LO) workflow (Figure 1)
utilizing various tools, one such PNNL-developed tool, 3D-Scaffold (Joshi et al., 2021) that
utilizes deep learning with a fragment-based or functional group method, which generates
molecules based on the input scaffold, retaining the key scaffold. A benefit of this approach is
that scaffolds can be chosen from experimentally validated active compounds.
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Results and Discussions

Computational modeling and AI/ML methods: We utilized our 3D-Scaffold model, high
throughput virtual screening (HTVS) techniques, and advanced hit identification and optimization
methods in our computational workflow (Figure 1). We did the extensive literature search and key
fragments were extracted from experimentally validated potential ligands found in the
cyclophilin(s) PDB crystal structures (Kajitani, K., et al. 2007, Mikol, V., et al. 1994). For Mpro, we
used the scaffolds from the top 4 compounds from our initial iteration of compounds (Varikoti, R.
A., et al. 2023), which were then inputted into our 3D-scaffold model to generate a library of
compounds covering extensive chemical space. The generated novel compounds were screened
and sorted based on similarity patterns with their parent compounds, as well as on
cheminformatics, physiochemical properties, and toxicity. The compounds were ranked based on
the interpreted results and using molecular docking simulations to predict binding affinity. Further
screening was done by visually inspecting the binding orientations and observing key interactions
of the compounds with the target proteins. Additionally, we performed LO using 3D-QSAR and
MPO analysis to obtain potent compounds with target-specific properties. The screened hits were
further optimized before testing them using experimental validation (Table 1). We searched for
the compounds from various vendors like Mcule, Enamine, etc., ordered them, and tested and
characterized the final set of compounds with experimental methods using Native MS and FRET-
based functional assays (Clyde et al., 2021, Joshi, R. P. et al., 2023, Varikoti, R. A., et al., 2023).
The capabilities and insights developed with this project will be ultimately applicable to a wide
range of protein targets and biological systems of interest.
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Figure 1. Our research follows a procedure for identifying therapeutic candidates and optimizing
leads. (a) The process begins by inputting a scaffold (*) into (b) our 3D-scaffold model,
which generates several ligands. (c) High Throughput Virtual Screening (HTVS) uses
molecular docking and QSAR to identify lead compounds. (d) The generated
compounds are screened based on various physiochemical properties to (e) identify
hits. (f) Machine Learning/Deep Learning is used for activity prediction of lead
compounds. (g) Fragments/scaffolds from the final compounds are then input into the
3D-scaffold model for lead optimization
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Table 1. Top high throughput virtually screened compounds targeting proteins with their
respective molecular properties that we finalized based on extensive computational

studies.

Target o oooound Name MW LP TPSA HA Hp Docking  Synthetic
Protein Score Accessibility

1 74887119528 501.551 4.8689 10021 8 2  17.0599 3.87

2 74509080715 471.445 52496  62.3 5 1 1329 353
SARS-
ooV 3 74605133164 465.944 51882  62.3 5 1 13668  3.64
Mpro

4 74509080683 505.889 5903  62.3 5 1 137844 362

5 74912275806 459554 55283  62.3 5 1 155122 3.85

6 B54 1257 663576 -2.67694 28867 12 7  -9.7(-8.9) 555

7 B54 1842 651.609 -320673 26943 11 9  -93(-95) 533
Cyclophilin g gy 1126 664.584 277533 28617 12 8  -9.1(9) 526
s (D and A)

9 BS54 1929 650.601 -2.96824 26943 11 9  -9.1(-87) 543

10 B54_939 665502 -2.93471 2914 13 8  -9.1(87) 565

MW = Molecular weight; LP = partition coefficient (LogP); TPSA = topological polar surface area; HA and HD =
number of hydrogen bond acceptors and donors; Docking score in kcal/mol; Synthetic Accessibility score
between 1 (easy to synthesize) and 10 (very difficult to synthesize); Cyp D (A): Cyclophilin D (Cyclophilin A)
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Compound Library Generation

Utilizing our model 3D-Scaffold, a deep learning approach which generates the 3D coordinates
of molecules built around a desired molecular scaffold provided as an input and training data sets.
The identification of scaffolds is a critical step in the process, as it defines candidate generation.
The input scaffolds were selected from a curated library of experimentally validated potent drug
candidates with IC50 and/or EC50 values (measurements of binding affinity) from various sources
such as Protein Data Bank (RCSB PDB) (Burley et al., 2021), PostEra, and published literature
(Qin et al., 2022, Ghahremanpour et al., 2020, Narayanan et al., 2022) targeting protein of
interest. For generating compounds targeting cyclophilin, we used core fragments from a well-
studied drug cyclosporin (CsA) and two experimentally validated compounds. For Mpro we used
the fragments from our previous iteration of compounds which were experimentally tested to be
active. Finally, we generated a broad compound library consisting of non-covalent inhibitors
targeting Cyp(s) and both covalent and non-covalent inhibitors targeting Mpro. For each scaffold,
our 3D-scaffold model generated between 500-4000 molecules not only sharing fingerprint
similarity with the parent compounds set but also constraining the properties. The generated
molecules were then checked for validity, uniqueness, and novelty as described in Joshi et al.
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Ligand-based Compound Screening

Ligand-based screening techniques were used to screen the 3D-scaffold generated compounds
for druglike characteristics. The initial screening involved computing properties such as similarity
to the parent compound, synthetic accessibility (SA) score, and quantitative estimation of
druglikeness (QED). As a next step, various physicochemical properties were considered
including: (i) logP, the partition coefficient, which indicates the lipophilicity of the compound
(lipophilic if the value is positive or hydrophilic if the value is negative) and measures its
permeability; (ii) topological polar surface area (TPSA), which estimates polarity and is one of the
important parameter to measure absorption and blood-brain barrier permeability of the
compounds; (iii) molecular weight (MW), selecting a range between 150-500 Da; and (iv) toxicity
prediction. A total of 58 properties were used for screening, resulting in fewer than 500
compounds being considered for the next stage: molecular docking simulations.
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Experimental Validation

Automated Native MS Experiments and Analysis: A key contribution of this work is the
development of a novel Al/ML frameworks to automated mass-spectra analysis which allowed for
high throughput binary classification to identify target compounds that bound to the active site of
Mpro taking in m/z intensity pairings for peak identification. Two models were designed based off
the datatype chosen for use. If similar runs with Ammonium Acetate are used, the model takes a
vector of relative intensities from the runs, between 4000 & 4400 m/z, however an alternate
structure was also designed for if there are frameshifts in m/z exceeding 200 m/z, as seen with
the EDTA/TCEP samples. This model was trained on 40 test sets including 20 (+) bound samples
of MPRO + the Pfizer compound as well as 20 (-) samples consisting of only MPRO. From the
final Mpro compounds (Table 1) Z4887119528 showed no affinity, Z4605133164 showed low
affinity, and the remaining compounds each displayed significant populations of both singly and
doubly bound ligand with moderate to high affinity (Figure 2). The lack of observed binding for
compound Z4887119528 during Native MS screening may be the result of potential non-covalent
interactions that do not survive in the gas phase under MS conditions.

100 apo Control 100- apo 74605133164 100 apo 74887119528
466 Da 502 Da
e holo K ~ 199 uM
= o : 463 2
£ £ £
U U U
£ = =
T % g % T %
= : = = |
£ ¥ E E \s
S AH [} Rl 5] i
z = = A = [
0 L 0 Y “WJ.‘ ) 0""“")‘*’#"
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Figure 2. Deconvolved mass spectra of MP™ control and MP™ with each of the five compounds
from the activity assay. The numbers above each dashed line are the mass shift in Da from the
apo MP°dimer mass. Note that some adducts are seen, even in the control sample. The blue
arrows indicate a mass shift corresponding to the mass of the compound. The Ky values were
based on the relative abundance of the apo and holo species. Spectra for MP™ with compounds
74509080683, 24509080715, and Z4912275806 each display two holo peaks, indicating singly
and doubly bound species
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A key contribution of this work is the development of a novel Al/ML frameworks to automated
mass-spectra analysis which allowed for high throughput binary classification to identify target
compounds that bound to the active site of Mpro taking in m/z intensity pairings for peak
identification. Two models were designed based off the datatype chosen for use. If similar runs
with Ammonium Acetate are used, the model takes a vector of relative intensities from the runs,
between 4000 & 4400 m/z, however an alternate structure was also designed for if there are
frameshifts in m/z exceeding 200 m/z, as seen with the EDTA/TCEP samples. This model was
trained on 40 test sets including 20 (+) bound samples of MPRO + the Pfizer compound as well
as 20 (-) samples consisting of only MPRO. From the final Mpro compounds (Table 1)
74887119528 showed no affinity, 24605133164 showed low affinity, and the remaining
compounds each displayed significant populations of both singly and doubly bound ligand with
moderate to high affinity (Figure 2). The lack of observed binding for compound Z4887119528
during Native MS screening may be the result of potential non-covalent interactions that do not
survive in the gas phase under MS conditions.

Functional potency of inhibitor compounds:

We experimentally assessed the inhibition of Mpro enzyme activity by the computational leads
using a well-established FRET based biochemical assay. Of the five compounds tested
compound Z4887119528 showed highest inhibitory activity (ICso =2.47 yM) compared with other
candidates. Compounds Z4509080715, Z4605133164, 24509080683, and Z4912275806 have
covalent acrylamide warhead in common whereas compound Z4887119528 lacks a strong
covalent warhead. Thus, compound 24887119528 could act as non-covalent inhibitor. Further,
native MS results showed no binding of compound Z4887119528 (Figure 3) with Mpro enzyme.
It is possible that some non-covalent interactions such as hydrophobic interactions become
weaker in gas phase under MS conditions (Bich, C., et al. 2010) and impossible to detect certain
ligand-protein assemblies with native MS (Boeri Erba, E., & Petosa, C., 2015).

(A) 1207 NSy (B) 120 (C) 120

4 . : ¢ 3 -
et ' EEararst I —s
2 80 2 80 & : 2 80 s
2 z 2
< 4 & * & y
= 404 . =404 = 40 3
. .
o T T 1 0 T T 1 0+ T —
0 2 4 6 0 2 4 ] 0 2 4 6
log4p Concentration (nM) log4p Concentration (nM) logyg Concentration (nM)
() 4z (B) 40-,
£ . 3
g 8 L CE B L ICso (WM)|  Emax (%)
g 58 B ° Z4509080715| 193.77 100
* w0l + = 0l ‘ 74605133164 | 165.69 <414
° . 24887119528 247 100
¢ 74509080683 5.36 47.71
0 T T | 0 T . . 74912275806 10.71 7245

0 2 4 6 0 2 4 6

log,o Concentration (nM) logsy Concentration (nM)
Figure 3 Inhibition screening of computational leads using FRET assay. IC50 curves with
representative structures of commercially available screened hit compounds A) Z4509080715 B)
74605133164 C) 24887119528 D) 24509080683 and E) Z4912275806. Enzyme reactions were
carried out incubating purified Mpro enzyme with increasing concentrations (0 to 250 uM) of
screen hit compounds. Enzyme activity was determined by measuring fluorescence after adding
Dabcyl-KTSAVLQSGFRKME-EDANS peptide substrate. Initial reaction rates were used to
determine the IC50 values. IC50 and Emax (Maximum possible inhibition) values are reported in
the table.
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