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Abstract

Many time-dependent problems and simulations are often modeled using Partial Differential Equa-
tions. Traditional modeling approaches that use sequential time-stepping are reaching a bottleneck
in optimizing efficiency. The Center of Applied Science and Computing at Lawrence Livermore
National Laboratory extensively works on parallelizing these algorithms to leverage the increasing
computational power from the growing number of processors in computer hardware. In particular,
they aim to design non-intrusive algorithms that can generalize to a variety of problems and sizes
without requiring additional information from or modifications on the original problems. Multigrid
Reduction in Time (MGRIT) is a parallel-in-time algorithm that is designed to be non-intrusive.
This project focuses on increasing the efficiency of MGRIT by approximating the coarse-grid op-
erator using machine learning approaches as a means to find the most non-intrusive, or general,
solution.
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Chapter 1

Introduction

1.1 Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory (LLNL), a federally funded research institution in Cal-
ifornia, is one of three national laboratories under the National Nuclear Security Administration
and it is operated in partnership by Lawrence Livermore National Security.

For over 70 years, LLNL has leveraged science and technology to make the world a safer place.
The institution conducts mission driven research in the areas of nuclear and multi-domain de-
terrence, and seeks to assure the safety and reliability of the national nuclear stockpile, threat
preparedness, climate and energy security.

The laboratory’s expertise in science and engineering, along with its leading experimental ca-
pabilities and world-class research, are achieving milestones to address some of society’s greatest
challenges. Later this year, LLNL will deploy “El Capitan”, a parallel supercomputer capable of
performing 2 exaFLOPS (10'® floating point operations per second), making it the fastest super-
computer in the world.

This project is overseen by the Center of Applied Scientific Computing (CASC) branch at
LLNL. Within the branch, they have various groups conducting scientific research in computational
physics, computer science and applied mathematics on problems critical to national security.

CASC applies the power of high performance computing (HPC) and the efficiency of modern
computational methods to the realms of stockpile stewardship, cyber and energy security, and
knowledge discovery for intelligence applications. Moreover, CASC focuses on increasing the simu-
lation fidelity and resolution of multi-physics and multi-scale models through the usage of advanced
numerical methods and efficient algorithms. Furthermore, they create computing tools and pro-
gramming environments that support extreme-scale computing.

1.2 Motivation

Over the past two decades, there has been a trend that depicts the current hardware design overview.
While the number of transistors and logical cores per processor has continued to increase, clock
speeds have remained stagnant, in other words, adding more cores no longer boosts processor
speed as shown in Figure 1.1. As a consequence, sequential time marching algorithms have reached
a bottleneck that fail to fully utilize the potential of modern computers.

This limitation motivates the need for algorithmic research aimed on enhancing concurrency
to improve the convergence of iterative solutions. In particular, the development of non-intrusive

13
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Figure 1.1: Since 2005, we have seen a continuous growth in the number of logical cores in processors.
However, the processors clock speed have not been improved at all since then. This exemplifies the current
situtation of hardware limitations. Original data up to the year 2010 collected and plotted by M. Horowitz,
F. Labonte, O. Shacham, K.

algorithms is a priority. Non-intrusive algorithms can generalize to a wide array of problems and
various problem sizes without requiring additional information from or modifications on the original
problems. An intrusive algorithm, unlike its counterpart, demands significant effort and explicit
changes to the code. While it offers greater efficiency and faster convergence, it requires experts on
the code team. By taking a non-intrusive approach, we aim to generalize the time stepping routine
the algorithm employs, so it is problem agnostic.

1.3 Report Overview

The remainder of this report consists of chapter 2 detailing mathematical concepts relevant to this
project, then chapter 3 providing a comprehensive overview of our algorithmic developments on
the neural network focusing on our loss functions. Next, we illustrate our observations and testing
results in chapter 4. Finally, we conclude with chapter 5 by summarizing our advancements and
recommendations for future directions of this problem.

14



Chapter 2

Mathematical Background

2.1 Discretization with finite difference

Finite difference methods (FDM) are numerical techniques used to approximate derivatives by using
differences between function values at discrete points. We will describe this method of discretization
in detail for the 1D steady-state diffusion equation.

—Upy = f (2.1)

where u = u(z) for 0 <z <1 is unknown, f = f(z) is given, and uy, = %-

To solve this differential equation numerically, we employ discretization methods which convert
continuous models into a discrete counterpart by dividing the domain into a finite set of points.
Let N be the number of partitions in space. For any i = 0,..., N, let x; = hi, dx = % and

u; ~ u(z;). Note that for z € [0,1] we have

o (1) = lim w(x; +p) — u(w) - w(x; + 0z) — ulx;)
¢ n—0 Hu ox

for sufficiently small éz. Then from averaging forward and backward difference, we have

) o
u(z;) ~ wilwi+ ) —wilwi - %).
! ox
Applying the approximation for v’ we get

u(w; + o) — 2u(w;) + u(x; — o)

" .
—u(w) & dx?
_ —u(xiq1) + 2u(x;) — u(wiz1)
dx?
Uil + 2u —ui—
ox?
We can rewrite this as a linear system Au = f:
2 -1 0 0
-1 2 -1 S Jo
1 uy fi
5210 -1 0 A
: =1 \uy INn
0 0 -1 2



Next we can consider the application of this method for the advection-diffusion equation, a
linear partial differential equation (PDE) that is used to describe the behaviour of a scalar field
such as the concentration of a pollutant or solvent in a liquid, that varies with both space and time.

The general form of the 1D advection-diffusion equation for u: [0, 1], x [0,1]; — R is given by

Up — EUgy + aUy = f, (2.2)

where ¢ € [0,00), a = a(z), f = f(z,t). Let x and t represent our space and time dimensions,
respectively. We divide the interval into evenly-spaced grid nodes with S 4+ 1 as the number of
spatial divisions and T" + 1 as the number of time divisions. A uniform discretization sets

1
r; = 0xi, dxr = g
and
. 1
tj = otj, ot =
for any 7 = 0,...,S and j = 0,...,7. We assume that 6t and dx are chosen such that the
Courant—Friedrichs—Lewy stability condition (CFL condition) holds [10]. Additionally, let u] ~

u(x;,t;). We can employ a finite difference scheme, assuming a is positive, to obtain the following
discretizations:

11 .
uj-+—J

U
~ i i
U ~ 751&
J J J
s A 2u; — uyy
—Ugy =~ (5%2
J J
o Wi T W
o ox

2.2 Relaxation Methods

Relaxation methods are iterative methods to solve linear systems of the form Ax = b, given A €
GL,(R) (invertible n x n square matrices) and b € R™. In the general form for relaxation using
splitting, we let A be the sum of two matrices as such:

A=M+ N.
Therefore our system Ax = b becomes
(M+ N)x=b,

and we define the recurrence
Mxpi1+ Nxp = b,

which after isolating x4 is
Xpp1 = M1 (b — Nxp).

By adding and subtracting Mx;, inside the parentheses, we get
Xpi1 = X + M~ (b — Axy)

and define the residual r = b — Axy,.

16



The specific relaxation methods used this project are Jacobi and Gauss-Seidel. For these
methods, let us consider A = L + D + U where L is strictly lower triangular, D is diagonal, and U
is strictly upper triangular.

In the Jacobi method, M = D and we have the recurrence

Xk+1 = Xi + Dil(b — Axy,).

In the Gauss-Seidel method, M = L + D and we have the recurrence

Xp+1 = Xk, + (L + D) H(b — Axy).

Jacobi and Gauss-Seidel methods do not converge for all systems. Generally, the convergence
of relaxation by splitting for a system can be determined through the following analysis.

Let x* = A~!b be the true solution, and we define the error e;, 1 to be the difference between
Zk11, the solution from the k+1 iteration, and z*, the true solution. Then we can get the following
expression for the error:

eyl = Xpp1 — X
=x, + M 1(b - Ax;) — x*
= x;, — X" 4+ M HAx* — Axy)
= (I — M 'A)(x — x*)
= (I - M 1A)ey
= (I — M~ tA)ktle.

Here, I — M~ A is also known as the error propagator. Under the assumption that the error
propagator I —M~1 A is diagonalizable, i.e. [-M~'A = PDP~! the term (I-M~'A)* = PDFpP~!
only converges to 0 if all eigenvalues of I — M~ A have magnitude less than 1. Therefore we have
that if all eigenvalues of I — M ~!A have magnitude less than 1, z;, — A~'b as k — oo.

However one drawback for relaxation methods is that while they are good at correcting oscil-
latory errors, they are not as effective at correcting smooth errors. This means they take more
iterations to correct smooth errors. This ultimately leads to the employment of Multigrid methods
which attacks this weakness of relaxation methods.

2.3 Multigrid Methods

Like mentioned previously, weighted Jacobi and Gauss-Seidel methods are good at eliminating
high-frequency components of error, but are significantly slower at eliminating low-frequency com-
ponents. In particular, these smooth, low-frequency, errors are characterized to have small eigen-
modes. Assuming A is symmetric and has zero row sum, i.e. a; = — Y i @ig if e is some smooth

17



error vector, then

el Ae = Z €¢<ai2‘€i + Z aijej)

: i#i

= Z:ei(;(—aij)(ei —e;))

— ; ei(iaij)(ei —ej) + Z: ei(—ai;)(ei — €j)
— éei(—aij)(ei —ej) — éej(_aji)(ei - €5)
= é_aij(ei —e;)? < 1. ]

Smooth error vary slowly in the direction of “large” matrix coefficient, and thus are not corrected
as efficiently in relaxation.

Multigrid methods employ a grid hierarchy in an attempt to convert low-frequency errors on
the fine grid into high-frequency errors on coarser grids. This allows relaxation to be more effective
than just operating on the fine grid.

Figure 2.1: Multigrid Hierarchy

For some linear system Au = f with v* = A7'f as true solution. Given a guess ug, we may
compute the residual r as
r=f— Aug = A(u* —up) = Ae,

where ey = u* — ug is the error. Next, we solve the equation Ax = r, where the true solution is eg.
Then, given some approximation x to eg, we can update our approximation to u* = ug + eg with
U1 = ug + .

Hereafter, we apply a restriction matrix to Ae that aims to downsample the residual error
to a coarser grid. Thanks to this restriction step we are able to transition from a fine grid to a
coarser one. We can restrict our linear system until we reach a defined coarsest level. The following
example restricts values from a fine grid to a coarser grid with a coarsening factor m = 2.

() 1

U 00 1 fo
Uy 00 1 1
UN-—2 0 0 1 In
UN 0 0 1
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After reaching the coarsest level, we start performing an interpolation process that seeks to
correct the error in the coarse grid. As we have restricted to coarser and coarser grids during
the solution process, now we need to interpolate back to the original problem space. Below is an
example of a matrix that interpolates from a coarse grid with m = 2 to a fine grid.

1
11 fo
2 2
1 U ;1
1 1 2
7 3 u2 fs
1 U4
—| fa
11 ' :
5 5 UN—
202 N2 fn—2
1 UN
11 IN-1
2 2
: I

The general multigrid algorithm includes different types of cycles, such as V-cycle, F-cycle, and
W-cycle, that determine the order in which the restriction and interpolation steps are applied.

In the V-cycle we recursively solve the residual equation at each level and apply correction.
Starting from the finest grid (the green grid), we relax then restrict our estimate to the next finest
grid (the red grid). Then, we relax and restrict recursively until we hit the coarsest grid. At that
point, we recursively relax and then interpolate our estimate to the next finest grid until we are
back at the finest grid, at which point we have completed one multigrid V-cycle. The steps in the
V-cycle can be summarized in Figure 2.2.

relax
Figure 2.2: Multigrid V-Cycle

2.4 Multigrid reduction in time (MGRIT)

The multigrid reduction in time (MGRIT) algorithm is a parallel-in-time approach for solving time
dependent problems that is designed to be as non-intrusive as possible on existing codes [7].
Consider the 1D diffusion equation

ut_uxm:f
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with the following discretization using forward euler on a uniform space-time mesh with spacing
dx and 4t

J+1 J 2] J_ .3
up & Wi T o A w;_q + 2u; ()
ot o da?
J y
where u; &~ u(x;,t;). .
Let w ~ |u) w] --- w)| . We have the following update rule

w = w7t 4 ot

where ® = I — §tL and L is the discretization for —u,,

2 -1 0 0
-1 2 -1
1
L=s310 -1 0
-1
0 0o -1 2
and has the stencil )
L~—1|-1 2 -1|.
L |
Thus ®’s stencil can also be written as
ot 1
Cb'”[ﬁ (1_25) 5], 52?35- (2-3)

Performing a von Neumann stability analysis on this problem results in the constraint g < 1/2.
For the technical details of this analysis, see [10] §9.6.

Using the partition in Figure 2.3, we let t;, = két for the fine time grid and T} = mjét for the
coarse time grid with coarsening factor m. Then to update each coarse time grid, we solve the
following system

I uQ
—pm I U,
—-om T UN
1o T, T
I ! ! ! ! I ! ! ! ! I ! ! ! ! I ! ! ! ! I
lo t1 t2 t37" "ty In

Figure 2.3: Coarse and fine time grid

®™ is known as the ideal coarse grid operator. However, as we take a banded matrix to a
high power, the matrix gets denser as bandwidth increases. ®" becomes expensive to compute
with and offers no parallel speedup, as it is computationally equivalent to computing m fine time
steps. Therefore, we want to utilize machine learning techniques to find a practical (sparse) coarse
operator ¥ that approximates the action of the ideal operator.

20



Chapter 3

Machine Learning approach

In this project, we approached the problem of approximating the ideal coarse grid operator ®
using machine learning techniques. The main motivation behind the choice is the potential for
machine learning to provide the most general solutions, aligning well with our goal of developing
non-intrusive algorithms. In this section we will give a detailed overview of components of the
Neural Network model we have worked with.

3.1 Neural Network Architecture

We are using a Feedforward Neural Network (FNN). The input is a stencil ¢ € R? along with the
coarsening factor m € N (the exponent) for the matrix @, as in Equation (2.3), and the output is
a stencil 1 € R3 for the matrix ¥, which approximates ®™.

3.2 The Loss Functions

Our goal is to approximate the ideal coarse-grid timestepping operator

I
o™ ]
T =
—om |

with a sparser matrix

v I
where U is sparse (e.g. tridiagonal) and v are coefficients of A. For a good approximation, we want
A to be “spectrally equivalent” to T.

Definition 1 (Spectral Equivalence) Let Ay and By be sequences of symmetric matrices in

R™ ™, Then, we say A and By are spectrally equivalent if the spectrum of A;lBk are contained
within the interval (c1,cq), where c1,ca are constants close to 1 that do not depend on k.

21



We recall that the “spectral norm” of a matrix A € R™*™ is given by the two following equivalent
definitions:

1. The induced operator norm, considering the Fuclidean norm on both the domain and
codomain, given by the following formula

A
) = sup 14l
verr [olle
v#£0

2. The largest magnitude of eigenvalue of A, denoted p(A) = max{|\| | det(A — AI) = 0}.

Thus, A and By being spectrally equivalent is equivalent to ||[I — A, 'By|| being uniformly
bounded. And we have
[Ar = Byl o |4k — Byl
omindr || A&l

1T = A" Bell < | Ak = Bell A7) =

where 0., is the smallest singular value fo A. We can now see that a natural loss function to
minimize is based on this spectral norm. Given some vectors yi, we can then attempt to minimize

1Ty — A()yrl?
£1 = Wi (3.1)
2 E
where wi, ..., wy are the list of weights. We can simply this further,
Ty — A@well* _ X, (Tryk — Aw)rys)® _ 3 (Try — A(v)ryr)®
”TkaQ Zr(Tryk)z (Tryk)Q

r

where T)., A(v), denote row r of T and A(v) respectively. By focusing on one row, and letting y(7)
be the restriction of y; to the coarse time point 7, we obtain a simplified expression

K m .
El _ Z (((I) )Tyk - \Ilryk(zg)Q ) (3'2)

= (1= (2™)ryr(d))

Our second idea for a loss function comes from Ru Huang et. al. [8], where we first compute
the largest K (normalized) eigenvectors vy of the ideal operator @, and then construct the loss
function

K
Ly=)[[®"vy, — Doy, (3.3)
k=1
Our third idea for a loss function follows similarly from the second loss function. If (Ag,vg)

are normalized eigenpairs of the matrix W, arranged in descending order of eigenvelues, then we
construct the following loss function

(M = 1)[(¥ — @™okl

Lam = }; 1+ (M —1)[1— A2

(3.4)

where M is chosen to be a sufficiently large number or M = % + 1 where N is a large number and
m is the coarsening factor. For more information, see Appendix A.
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Chapter 4

Results

For further exploration and testing, we used the same Neural Network structure with the different
loss functions introduced in section 3.2. We observed various characteristics and evaluated their
performance at minimizing loss and achieving convergence in PyMGRIT. Ultimately, we want to
understand how well our loss functions capture operators that lead to convergence in PyMGRIT.

For implementation, we modified Equation (3.2) slightly by adding € in the denominator to
avoid dividing by zero,

K .
e (@M)ryk — Tryr(i)?
L= T @GP e “1)

Below are the five loss functions we tested closely on.

1.

L1, Equation (4.1), where y; are random vectors with an additional constant vector of all
1’s.

. L1, Equation (4.1), where y;, are largest eigenvectors of ®.

Ly, Equation (3.3), where y; are largest eigenvectors of ®.

L3 v, Equation (3.4), where yj, are largest eigenvectors of ®. We test with M = 5,10, 20, 100.

. L3 1ybrid, Equation (3.4), where y;, are largest eigenvectors of ®. We test with M = 1(7]”& +1

where m is the coarsening factor. We only consider this loss function for model training.

We also considered the following modifications of adding the constant vector of all 1’s to the
test vector list for £; with eigenvectors, L9 and Ls.

4.1 Loss Landscapes

To know whether our loss functions have a clear minimum to be reached, we want to look at the
loss landscapes of them, i.e. the loss of every stencil returned by the loss function for a specific ®
and m.

Consider the problem set up with



Note that this choice of dz and 4t will satisfy the CFL condition, as mentioned in Chapter 2.
The stencil for ¢ is ¢ = [0.0625 0.8750 0.0625]. And the re-discretization stencil, the current
approximation for ™ used in MGRIT obtained by discretizing again, is [0.2500 0.5000 0.2500] .

We restrict the approximation ¥ to have stencil of the form [a b a] and plot the loss at (b, a)
for each loss function. We also plot the re-discretization stencil, which we know converges well in
PyMGRIT, in each loss function to see how “good” the loss functions consider the re-discretization
stencil to be. This helps us gain an understanding of how good low loss corresponds to convergence
in PyMGRIT.

For Figures 4.1 and 4.2, (b,a) € [0,1] x [0, 1] with resolution 200 x 200, i.e. each interval is
divided into 200 points. We have b on the x-axis, a on the y-axis, and the red x marks the re-
discretization stencil. Each loss landscape evaluates the corresponding loss function with respect
to the stencil [a b a], and the darker the region is, the smaller the value of the loss function is
at that point.

Loss using random vecs for matrix [a, b, a] N Eigenvalue Loss 1 for matrix [a, b, a]

1 10° 10°
0.8 10? .8 1
1071
0.6 10! 6
© o
0.4 10° .4
1072
0.2 101 .2
0 1072 1073
0 0.2 0.4 0.6 0.8 1 0.4 0.6
b b
(a) L1, Equation (4.1), with Rand and Const vector, € = 0.01 (b) L1, Equation (4.1), with EVecs, ¢ = 0.01
N Eigenvalue Loss 2 for matrix [a, b, a] . lEigenvaIue Loss 3 for matrix [a, b, al for M = 5 .
10 10
0.8 0.8
10°
10°
0.6 0.6
© © 1071
0.4 0.4
10-!
1072
0.2 0.2
0 1072 0 1073
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
b b
(c¢) L2, Equation (3.3), with Evecs (d) L3,5, Equation (3.4), with Evecs

Figure 4.1: Loss Landscape of the loss functions
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Eigenvalue Loss 3 for matrix [a, b, a] for M = 10 lEigenvaIue Loss 3 for matrix [a, b, a] for M = 20

1 10! 10!
0.8
10° 10%
0.6
© 107! © 1071
0.4
1072 1072
0.2
0 1073 1073
0 0.2 0.4 0.6 0.8 1
b
(a) L£3,10, Equation (3.4), with Evecs (b) £3,20, Equation (3.4), with Evecs
Eigenvalue Loss 3 for matrix [a, b, a] for M = 100 . Eigenvalue Loss 3 for matrix [a, b, a] for Hybrid M X
1 10 1 10
0.8
100 10°
0.6
L 107! © 107!
0.4
1072 1072
0.2
0 1073 1072
0 0.2 0.4 0.6 0.8 1
b
(¢) £3,100, Equation (3.4), with Evecs (d) L3, Hybrid, Equation (3.4), with Evecs

Figure 4.2: Loss Landscape of the loss functions (cont)

In Figures 4.1 and 4.2, we can see the each loss function does have a single clear minimum,
which is the dark purple region, and that the landscape is convex. Note that the re-discretization
stencil falls near but not precisely on the minimum of the loss landscape for all loss function. For the
hybrid training, note that we only work on a fix coarsening factor so we have M = 1(11& + 1 =251.
We see that as we increase M, the strip gets streched out via the region 2a + b ~ 1.

To test further, we added the constant vector to the three loss functions using eigenvectors as
test vectors to see how that affected the loss landscape. The results are shown in Figure 4.3 for £;.
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Eigenvalue Loss 1 for matrix [a, b, a] igenvalue + constant Loss 1 for matrix [a, b, a]
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(a) L1, Equation (4.1), with Evecs, e = 0.01 (b) L1, Equation (4.1), with Evecs and Const, e = 0.1

E
1

Figure 4.3: Loss Landscape of £, Equation (4.1), with eigenvectors vs. eigenvectors and the constant vector

Note that ¢ = 0.1 for £ with both eigenvectors and constant vector, this is because turning
down € causes the loss to blow up and thus the model cannot be trained. So to keep the model
consistent for both observing properties and training, e = 0.1 for this set of test vectors for £; for
all tests.

Here we can observe that when we add the constant vector, the graph gets stretched out. The
minimum is no longer a circular area but resembles a line, and it traces the region where 2a+b ~ 1.
The addition of the constant vector allows the loss function to distinguish stencil with entries
which add up to one. Note that the re-discretization stencil also has entries which sum up to one,
so the property of summing up to one could be desirable to obtain stencils that converge well in
PyMGRIT.

By looking at Figures 4.4, 4.5, and 4.6, a similar effect can be observed for adding the constant
to Lo and L3 as well, although to a lesser extent.

Eigenvalue Loss 2 for matrix [a, b, a] Eigenvalue + constant Loss 2 for matrix [a, b, a]

1 10! 1
0.8 X 10!
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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(a) L2, Equation (3.3), with Evecs (b) L2, Equation (3.3), with Evecs and Const

Figure 4.4: Loss Landscape of L2, Equation (3.3), with eigenvectors vs. eigenvectors and the constant vector
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Eigenvalue Loss 3 for matrix [a, b, a] forM =5

1 10! Eigenvalue and constant Loss 3 for matrix [a, b, a] forM =5 X
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(a) L3,5, Equation (3.4), with Evecs (b) L3,5, Equation (3.4), with Evecs and Const

Eigenvalue Loss 3 for matrix [a, b, a] for M = 10

1 10! Eigenvalue and constant Loss 3 for matrix [a, b, a] for M = 101
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(c) L3,10, Equation (3.4), with Evecs (d) £3,10, Equation (3.4), with Evecs and Const

Figure 4.5: Loss Landscape of L35 and L319, (3.4), with eigenvectors vs. eigenvectors and the constant
vector
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Elgen\ralue Loss 3 for matrix [a, b, a] for M = 20
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(a) L£3,20, Equation (3.4), with Evecs (b) L3,20, Equation (3.4), with Evecs and Const

Elgenvalue Loss 3 for matrix [a, b, a] for M = 100
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10 Eigenvalue and constant Loss 3 for matrix [a, b, a] for M = 100
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(¢) £3,100, Equation (3.4), with Evecs (d) £3,100, Equation (3.4), with Evecs and Const

Figure 4.6: Loss Landscape of L3 29 and L3 100, Equation (3.4), with eigenvectors vs. eigenvectors and the
constant vector

4.2 Optimal Stencils

We want to test how well these loss functions actually correspond to MGRIT convergence. To do
this, we first compute the minimizers of these losses, which we also refer to as the optimal stencil,
and then use that stencil instead of the re-descritization stencil in a 2-level MGRIT solver.

To generate optimal stencils for our loss functions, we used the scipy package
scipy.optimize.minimize function, assuming a symmetric stencil.

Then, to test these, we run PyMGRIT on an inhomogenous heat equation on the domain
[0, 1] x [0,1] with periodic boundary conditions in space, given by

U — Ugy = — sin(t) sin?(rz) — 272 cos(t)(cos?(rx) — sin? (7))

u(0,1) =u(l,t) (4.2)
ug (0,8) = wugx(1,t)

u(z,0) = sin?(7z)
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We perform discretization with n, = 17, n; = 4097, and our 2-level MGRIT solver has a coarsening
factor of 4. Then, we ran 10 multigrid V-cycles using the optimal stencil for each loss function to
compute the coarse-grid operator, and recorded the residual after those 10 iterations, as well as
the convergence factor from the 9th to 10th iteration. Note that since we are fixing m, £3 fybriq is

L3251

Loss Function Optimal Stencil Residual Conv. Factor
L, Random [0.1814 0.6324 0.1814]  6.60e-5 4.04e-1
L, EVecs [0.1700 0.6221 0.1700]  2.13e-2 9.40e-1
L, EVecs, const. [0.1824 0.6341 0.1824]  6.60e-6 2.82¢-1
Loy [0.1705 0.6223 0.1705]  2.11e-2 9.59-1
L5 const. [0.1797 0.6346 0.1797] 1.55e-4 4.17e-1
Lss [0.1891 0.6071 0.1891]  6.82e-2 9.03e-1
L310 [0.2076 0.5789 0.2076]  3.93e-2 5.15e-1
L3920 [0.2028 0.5895 0.2028]  1.63e-2 4.48e-1
L3100 [0.2101 0.5783 0.2101]  1.71e-7 1.41e-1
L3 Hybrid [0.2119 0.5754 0.2191]  1.65e-8 9.94e-2
L3 5, const. [0.1977 0.5945 0.1977]  3.32e-2 7.62e-1
L3 10, const. [0.2003 0.5925 0.2003]  8.03e-3 5.79e-1
L399, const. [0.2061 0.5840 0.2061]  2.87e-3 3.47e-1
L3100, const. [0.2068 0.5848 0.2068]  2.37e-7 1.46e-1
L3 mybrid, const.  [0.2085 0.5820 0.2085]  4.22e-8 1.16e-1

Table 4.1: Loss function minimizers and PyMGRIT performance.

4.3 Neural Network integrated into PyMGRIT

We are also interested in how effectively we are able to train the model to return outputs which
have small loss. For this, we built a training set consisting of 16 elements, generated by the stencils
with g = 1/8,1/12,1/16,1/24 with coarsening factors m = 1,2,3,4. We trained the same neural
network structure on this training dataset for each loss function with minor modifications on the
test vector set. Our neural network consisted of 3 hidden layers of 50 neurons each with the
LeakyReLU activation function.

Our testing setup uses once again Equation (4.2) with domain [0, 1] x [0, 1], with the discretiza-
tion mesh given by n, = 17,n; = 2561. This gives us f = 1/10 (note that this is not in the training
set).

We compare the loss of the neural network’s output for m = 2 to the loss of the re-discretization
for each loss function to see how well the neural network trains. Additionally, we compare the
PyMGRIT performance of these trained neural networks, along with re-discretization as a baseline.
The PyMGRIT experiment was run with the problem as stated above, with 2-level V-cycle using
a coarsening factor of m = 2.
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PyTorch Output PyMGRIT Results

Loss Function Output Stencil Output Loss Re-disc. Loss Residual Conv. Factor
L, Random [0.131 0.743 0.131] 0.177 0.143 2.28 5.74e-1
L, Evecs [0.127 0.726 0.121] 6.75e-3 6.15e-3  1.85e-2 9.42e-1
L Evecs, const. [0.159 0.693 0.150] 1.21e-3 4.83e-3  2.07e-4 4.03e-1
Lo [0.128 0.733 0.120] 4.03e-2 3.48e-2  1.13e-2 9.03e-1
Lo const. [0.130 0.738 0.125] 4.15e-2 3.48e-2  1.69e-3 6.30e-1
L35 [0.209 0.509 0.255] 9.64e-3 8.07e-4  9.25e-2 9.86e-1
L3 10 [0.223 0.505 0.256] 7.26e-3 5.67e-4  7.84e-2 9.57e-1
L3 20 [0.239 0.485 0.266] 5.97e-3 3.40e-4  5.08e-2 8.64e-1
L3100 [0.258 0.430 0.308] 3.45e-3 5.67e-4  9.68e-4 4.29e-1
L3 fybrid [0.246 0.473 0.275] 5.14e-3 2.48e-4  1.43e-2 6.57e-1
L35 const. [0.159 0.664 0.165] 1.11e-3 3.62e-3  6.40e-2 9.13e-1
L3 19 const. [0.168 0.666 0.166] 1.53e-3 2.76e-3  2.19e-8 1.67e-1
L399 const. [0.196 0.619 0.199] 5.97e-3 3.40e-4 lel2 1.75
L3100 const. [0.241 0.514 0.254] 9.46e-3 8.26e-4 le7 1.02
L3 ypria const.  [0.243 0.420 0.334] 5.05e-2 1.47e-3  1.54e-2 6.81e-1
Re-disc. [0.200 0.600 0.200] — —  7.60e-8 6.77e-2

Table 4.2: Comparison between neural network output loss to re-discretization and PyMGRIT performance

4.4 Commentary on Data

As we may observe in Table 4.1, only one minimizer did achieve better convergence than re-
discretization in our PyMGRIT tests, such is the loss function £3 with M = 10 and a constant
vector (L3100 const.) leading to 2.19e-8 residual and 1.67e-1 as convergence factor, achieving the
lowest convergence among the rest of loss functions.

For our experimentation, the same neural network structure was trained on different loss func-
tions. By analyzing Table 4.2, we can note how each NN seems to do good regarding the stencil loss,
returning outputs which have low loss. However, these stencils with roughly the same or lower loss
than the re-discretization stencil does not lead to better convergence in PyMGRIT. This indicates
to us that low loss does not directly translate to good performance in PyMGRIT, and our loss
functions are not able to capture stencils which lead to convergence very accurately. Nevertheless,
some level of convergence was observed for every loss function in this example.

After reviewing the results on both Table 4.1 and Table 4.2, we infer that L3 10 const., is the
best performing loss function. Some possible inferences for this is (1) it employs large eigenvectors
of ® (small eigenvectors of T') as test vectors, and (2) it uses the constant vector which appears
to allow the loss function to recognize stencils with entries summing up to 1 to be better. The
property of sum of entries = 1 being significant in a good stencils can be observed from results
of testing with and without the constant vectors for £1, L5 and L3 with other M values as well.
We also see that as M gets larger, the residual for the third loss function decreases. Nevertheless,
as we consider the constant vector, the residual from the output of L399 and L3 100 increase to a
very large number. If we decrease the learning rate, the residual will decrease for the 2 upper loss
functions.

A drawback to this loss function lies on the calculation of eigenvectors, as the matrix & gets
more denser, it gets expensive to compute the largest eigenvector.
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We also noticed that symmetric stencils tend to lead to better PyYMGRIT performance. It is
possible to force the neural network to return symmetric stencils by having it only output the
middle value (b of [a b a]) and calculate a = 15, While this approach may produce better results
for the diffusion problem we have been testing, it has a more intrusive focus that misaligns with
the purpose of the project.
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Chapter 5

Summary and Further Research

5.1 Conclusion

Our ultimate goal in this project was to find a non-intrusive method to approximate the ideal
coarse-time-stepping operator. The approach of using machine learning methods was chosen in
hopes to ensure non-intrusiveness in the solution. We explored the relation between theorized good
approximations (spectral equivalence) and empirical convergence in PyMGRIT through investigat-
ing multiple loss functions derived from the same definition. All loss functions we explored seems to
have a clear minimum, and we are able to train the models to return outputs which minimized loss.
In spite of that, optimal stencils given by the loss function did not correspond to best convergence
in PyMGRIT.

5.2 Future Directions

5.2.1 Generalization

The application of this method to the 1D diffusion equation is only a proof-of-concept. Future
direction can be to generalize this method to other types of equations, such as advection.

For other problems, a tridiagonal stencil for ¥ may not work well. For example, for the case of
1D advection, using a tridiagonal stencil for ¥ will eventually violate the CFL condition for large
enough m. More explicitly, considering the 1D advection equation u; +u, = 0 with initial condition
u(z,0) = g(z), we see that g(z — t) is an analytical solution to this PDE. Thus we can see that the
analytical domain of dependence of this PDE at point (x,t) is simply the set {x — t}.

However, considering the discretization scheme for w; and wu, in section 2.1, we see that if
AT = mdt > dx, the numerical domain of dependence for any tridiagonal coarse grid operator does
not include the anlaytical domain of dependence, violating CFL conditions.

One potential solution is using a second neural network to select the nonzero entries of W,
following [%], although this would require modifying the structure of our output vector.

5.2.2 Increasing the number of entries in stencil

For the diffusion problem we worked with, ¥ was hard-coded to be tridiagonal. However, for larger
coarsening factors, @™ gets much denser, so larger stencils may result in better convergence. One
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possible approach is to use a second neural network to select nonzero entries of ¥, following Ru
Huang et als’ [3] paper.

5.2.3 Using bootstrapping techniques

We have focused on improving the loss function by choosing important vectors such as eigenvec-
tors as test vectors which results in a more effective loss function than random vectors. However,
computing eigenvectors may become expensive for larger problem sizes which motivates the boot-
strapping method. For bootstrapping, we start with a set of random vectors as y; (test vectors),
then we test the result of the network by running MGRIT (with the trained neural net) to solve
the homogeneous equation, whose solutions coincide with the error function. Then we correct the
previous yi by forming a new set {yx }new = {yr + €x} to train the model with.

The bootstrap method is promising because it uncovers error components the current method
is not correcting. When methods don’t converge well, it is often that they are not correcting near
null space components of A. Consider the general error propagator for linear methods I — M ' A.
Slow convergence means

(I—M'Ae~e

for some error e. Hence M~1Ae ~ 0. So these components are always in the near null space of
M~ A which are often components also in the near nullspace of A. So if we add these components
to the loss function, we hope new W operators returned by the model after training will be good at
dealing with both original vectors and the new ones.

5.2.4 Implementing periodic boundary condition

The diffusion problem in PyMGRIT has periodic boundary conditions. However, for all loss func-
tions we implemented with eigenvectors, the eigenvectors were computed with matrix of Dirichlet
boundary condition. So one possible adjustment to potentially lead to improvement is by imple-
menting the loss functions with periodic boundary condition. We have explored this a little and
computed the loss landscape Figure 5.1 of £y, Equation (4.1), with periodic boundary condition
and the corresponding optimal stencil: [0.1700 0.6220 0.1700]. From the results we received, there

Eigenvalue + periodic Loss 1 for matrix [a, b, al
1
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0.4 1
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Figure 5.1: L1, Equation (4.1), with periodic boundary condition, ¢ = 0.01
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does not appear to be any significant difference from Dirichlet boundary condition. But additional
in-depth testing cuold present different results. Some further testing such as implementing on other
loss functions, observing the convergence of optimal stencil in PyMGRIT, and integrating trained
models with periodic boundary condition with PyMGRIT could lead to better understanding.
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Appendix A

Analyses of Loss Functions

The first loss function is derived by looking at a singular row of the matrix 7" and A(v) as the row
of U is generated by a simple stencil. Note that from Section 3.2,

Tr - A'I‘ 2
ITye — Aw)gl2, 2T = Ari) 5 (s A

_ <
1 Tykl7, X (Tryw)* T4 (Tryk)?

r

where T, A, are the r-th rows of T" and A(v) respectively. Hence, we could minimize a loss

functional based on a representative r instead.
For some row 1 < r < Mn, let r = gn + d, where 0 < d < n and ¢,d € N>g. Then for any
r > n, the r-th row of T'(m) is

00 ... 0 —@gn 0 0... 0 1 0 0... 0 M
T = | ~Y~——— ~—— —_—— ~ —_—— | e RM™,
n(g—1) Os d-th row of —®™ d—10s at postition 7 Mn — R 0Os

Similarly for A(v), for any r > n,

00 ... 0 -0y 0 0... 0 1 0 0... 0 M
A), = | —— ~ —— ~ —— | e RM".
n(g — 1) Os d-th row of —W d—10s at postition ™ pr, R 0s
Yk,i
For each pair of index ¢ < j, define yi[i][j] = Ykiit+1 .Hence, we want to minimize
Yk,j

mmz ((®™)ayk[n(q — 1) + 1][ng] — ayx[n(q — 1) + 1][ng])*
vr (ye[r][r] — @7 yk[n(q — 1) + 1][ng])?

For each vector yj, we define y;. = yi[n(q¢ — 1) + 1][ng] € R™ and wy = yg, € R. Then we want
to optimize

™y — Yayp)?
Hﬁnz (w, — (2™)qy}.)?

where wj, is some real number. In this loss function, we need to choose wj to optimize the loss
function. However, the distribution of the 1’s entry varies between rows so we can expect to choose
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¢

a set of vectors {y],y5,...,y,} and some “weights” {w1,ws,...,wr}. One of the idea for getting
the first loss function is to assign all wys to be 1, ensuring the condition that the sum of the entries
should be approximately 1.

The third loss function is derived from expanding the fo-norm of a vector. Let m be the
coarsening factor and there are N + 1 time gridpoints. From equation (3.1), suppose we have
®, U € R™ ™ and in each matrix 7" and A(v), there are r rows of [-®™, I] and [—-¥", I] respectively
(where r = %+1), then T, A(v) € R™*™. Welet y1,y2,...,yx € R™ such that foreach 1 < k < K,

Uk,1
| Uk
Y =
Uk,r
where each of the Uy; is a block of size n. Then
Uk71 Uk,l
Uio— ®™MU Uko — YU,
Ty, = k,2 k1 Ay, = k,2 k1
Ukm — @"Ug 1 Ugr —WUgr—1
and we have
0 2
U — "™y
Ty~ Ayl = ||| YT
(\If — (I)m)Uk,r_1 0
We see that for any vector z € R", HzH%2 = >".22. Hence, by generalizing it to block vectors
(yx for example), one can show that
M
lyellz, = > 10kl
i=1
Hence,
0 ? )
U — O™y, <
1T - Al = | | 7T = o+ 30 1w - el
i=1
(U — &™) Up 1/ ||, ’
2
Uk’l r—1
Ugo — MUy
I Tykll7, = 5 ! = Ukall?, + D NUkisr — 2" Ukill7,.-
i=1
Ukt = @"Ukr1/ ||, '
Therefore,
-1
1Ty — A(v)yell7, _ Soist (@ — @™ Uy 4|7,
1 Tyxll7, Uk 112, + 2020 Uk ir — 2™ Ukill?,-
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Wk

Wk

Given a set of testing vectors wi, ws, ..., wxg € R™ if we define y = € R™, then we

Wi
have the loss function be

& DI = e
LB, T, m, (wi,...,wy)) = Z < uwellZ, + (r — D[ — @™ yeogl 2,

As the number of time-grid points is large, we expect r to be large enough. Hence, either we
fix r to be a large number, i.e. r = 20, or we fix the number of time-grid points to be large, i.e.
N = 1000 and update r = % + 1 during the training.

Note that if Ay, Aa,..., A\, are the eigenvalues of ®, then 1 — A", 1 — AJ*, ..., 1 — A" are the
eigenvalues of I — @ with the same set of eigenvectors. Then if all of the components of y; are
the normalized eigenvector with respect to some eigenvalue A\, then

I Tyr — A@yil7, _ (r = DIIY = &™) Upil[7,.
ITykll7, T4+ (r =1t = APP

Hence, we derive the third loss function

(r = DI(¥ - <I>m)wkHz2
1+ (r—=1)[1 =22

K
L(P, ¥, m,(wy,..., w Z
k=1

and if we use a constant vector of all 1 (let it be 1), then

(= DI = eMwillz, (= DT — ™1,

L(D T = .
( , ¥, N, (U)l; 7wk)) 1+(7,_1)‘1_)\2L|2 n—l—(r—l)H(I—CI)m)lHé

k=1

From Theorem 3.3 in [5], we want the eigenvalues of ®™ and ¥ to be close to each other with
a similar set of eigenvectors. Let {A1, \2,..., Ay} be the eigenvalues of ®. Then for any m € N,
{AT, A5, ..., A"} are the eigenvalues of ®. We want to study the convergence rate of ™ for some
large value m. We expect that the closer the eigenvalue A is to 1, the longer it takes to approximate
A", However, the distributions of |\;| vary between different types of partial differential equations.

For example, consider the diffusion equation u; = ug,, where w : [0,1] x [0,1] — R is some
function. After using discretization and use the formula for Toeplitz matrix, one can find explicitly

find the eigenvalues are
Ai=1-28 <1—cos <nz+7r1>> ,1<i<n.

This can be generalized to diffusion-dominated equations, where we expect to have many of
the eigenvalues Ay such that |A\;| < 1, while there are a few eigenvalues Ay that ||Agx|| =~ 1. Hence,
as {A\[, A\J", ..., A"} are the eigenvalues of @™, the eigenvalues that are much smaller than 1 will
decay with a high speed so we only need to work on those with higher magnitude.

On the other hand, consider the advection equation u; + cu,; = 0. By using Forward-In-Time
Forward-In-Space, the eigenvalues are given by

cot

Aizﬁ/—kl,ﬁ’:E,lgign.

39



We see that the eigenvalues are closer to 1 than to 0 so approximation for ™ will be harder
as we deal with eigenvalues that converge slowly. For that reason, the problem of finding the
exact eigenvalues and eigenvectors can be computationally expensive so we want to approximate
them within some error bound. We can also use the vectors “near” the normalized eigenvectors for
training since the matrix W is a linear operator. Therefore, the way ¥ behaves near the eigenvectors
must also lie in some small error within the correct answer.
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Appendix B

Abbreviations

IPAM. Institute for Pure and Applied Mathematics. An institute of the National Science Founda-
tion, located at UCLA.

RIPS. Research in Industrial Projects for Students. A regular summer program at ITPAM, in
which teams of undergraduate (or fresh graduate) students participate in sponsored team research
projects.

UCLA. The University of California at Los Angeles.
MGRIT. Multigrid Reduction-in-Time.

LLNL. Lawrence Livermore National Laboratory.
CASC. Center of Applied Scientific Computing
HPC. High Performance Computing

NN. Neural Network

FNN. Feedforward Neural Network

ReLU. Rectified Linear Unit
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