¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-TH-868930

IMPLEMENTATION OF OPERATIONAL AND
COMPUTATIONAL SAFETY MODEL TO
MITIGATE AND REDUCE INCIDENCE OF
HIGHER SEVERITY EVENTS AT LAWRENCE
LIVERMORE NATIONAL LABORATORY

R. Lara

September 2, 2024



This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



( RAESTANTIA PER SCIENT/A )

¥

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

IMPLEMENTATION OF OPERATIONAL
AND COMPUTATIONAL SAFETY MODEL TO MITIGATE
AND REDUCE INCIDENCE OF HIGHER SEVERITY EVENTS
AT LAWRENCE LIVERMORE NATIONAL LABORATORY

by
Raul B. Lara Jr.
September 2024

Thesis Advisor: Matthew R. Crook
Co-Advisor: Steve Nakasaki,
Lawrence Livermore National Laboratory

Distribution Statement A. Approved for public release: Distribution is unlimited.

Lawrence Livermore National Laboratories, the sponsoring agency for this research,
approved release of this document (LLNL-TH-868930).



THIS PAGE INTENTIONALLY LEFT BLANK



Form Approved OMB

REPORT DOCUMENTATION PAGE No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2024

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
IMPLEMENTATION OF OPERATIONAL AND COMPUTATIONAL SAFETY
MODEL TO MITIGATE AND REDUCE INCIDENCE OF HIGHER
SEVERITY EVENTS AT LAWRENCE LIVERMORE NATIONAL

LABORATORY
6. AUTHOR(S) Raul B. Lara Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING
ADDRESS(ES) AGENCY REPORT NUMBER

Lawrence Livermore National Laboratory, Livermore, CA 94550 LLNL-TH-868930

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Distribution Statement A. Approved for public A
release: Distribution is unlimited.

13. ABSTRACT (maximum 200 words)

High-severity events, such as serious injuries or fatalities, pose significant risks to workers, the environment,
national security, and the reputation of national research laboratories, such as Lawrence Livermore National Laboratory
(LLNL). A case study of 1,081 injury and illness cases was performed to assess the feasibility of implementing a
framework to mitigate potential serious injuries or fatalities (pSIF) at LLNL. Review of the cases data quality showed
that >86% of incidents had sufficient information to adopt the framework at LLNL.

Additionally, the case study reviewed institutional responses to the incidents. A computational model was
developed to simulate pSIF incident distributions to deal with limitations from the case study, as well as to simulate
institutional response. The findings concluded that while pSIF incidents were rare (<1% of total cases), the framework
can improve organizational risk management by providing a consistent approach to incident response. It also suggests
that resource allocation should focus on the highest risk areas, including noise exposure, overexertion, and repetitive
motion. The computational model and framework offers a structured approach to reduce pSIF incidents, ultimately
contributing to a safer research environment at LLNL. Although implementing the framework can enhance risk
management, it requires commitment to quality data collection, incident classification, and integrated management
systems for maximum efficacy.

15. NUMBER OF
PAGES

14. SUBJECT TERMS
Lawrence Livermore National Laboratory, LLNL, safety, data modeling, Department of

Energy, DOE, nuclear safety, health and safety, injury, illness, occupational health and 119

safety, occupational health and safety management systems, OHSMS, industrial safety,
nuclear, health, nuclear operations, research and development, potential serious injuries or
fatalities, pSIF, fatalities

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

uu

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18



THIS PAGE INTENTIONALLY LEFT BLANK

1



Distribution Statement A. Approved for public release: Distribution is unlimited.

IMPLEMENTATION OF OPERATIONAL AND COMPUTATIONAL SAFETY
MODEL TO MITIGATE AND REDUCE INCIDENCE OF HIGHER SEVERITY
EVENTS AT LAWRENCE LIVERMORE NATIONAL LABORATORY

Raul B. Lara Jr.
Civilian,
BS, University of California, Santa Cruz, 2018
CERT OF COMPL, Air Force Institute of Technology, 2023

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN NUCLEAR OPERATIONS
from the

NAVAL POSTGRADUATE SCHOOL
September 2024

Approved by:  Matthew R. Crook
Advisor

Steve Nakasaki
Co-Advisor

James H. Newman
Chair, Department of Provost

i1



THIS PAGE INTENTIONALLY LEFT BLANK

v



ABSTRACT

High-severity events, such as serious injuries or fatalities, pose significant risks to
workers, the environment, national security, and the reputation of national research
laboratories, such as Lawrence Livermore National Laboratory (LLNL). A case study of
1,081 injury and illness cases was performed to assess the feasibility of implementing a
framework to mitigate potential serious injuries or fatalities (pSIF) at LLNL. Review of
the cases data quality showed that >86% of incidents had sufficient information to adopt

the framework at LLNL.

Additionally, the case study reviewed institutional responses to the incidents. A
computational model was developed to simulate pSIF incident distributions to deal with
limitations from the case study, as well as to simulate institutional response. The findings
concluded that while pSIF incidents were rare (<1% of total cases), the framework can
improve organizational risk management by providing a consistent approach to incident
response. It also suggests that resource allocation should focus on the highest risk areas,
including noise exposure, overexertion, and repetitive motion. The computational model
and framework offers a structured approach to reduce pSIF incidents, ultimately
contributing to a safer research environment at LLNL. Although implementing the
framework can enhance risk management, it requires commitment to quality data
collection, incident classification, and integrated management systems for maximum

efficacy.
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I. INTRODUCTION

The Department of Energy (DOE) plays a critical role in ensuring security of the
United States by addressing “energy, environmental, and nuclear challenges through
science and technology solutions” [1]. Work of this nature involves cutting edge science
and experimentation with often highly hazardous or catastrophic consequences if not
performed safely. Given the proximity of LLNL to the community of Livermore,
California, these consequences are magnified in the minds of residents and local officials
out of concern for public safety and environmental protection. Consequently, it is
imperative for LLNL to operate with utmost safety and aggressively implement controls
to ensure workers are protected and public confidence is maintained. This thesis explores
the efforts at Lawrence Livermore National Laboratory (LLNL) to mitigate high-severity

incidents that pose risks to worker safety, the environment, and national security.

The focus of this thesis is on an operational framework designed to categorize the
potential severity of occupational injuries and illnesses following incidents. Chapter I
outlines the parameters of a case study that was conducted and highlights key

occupational health and safety theories that have shaped safety management systems.

Subsequently, Chapter II details the methods and research associated with the
case study. An evaluation of the data quality regarding incidents was conducted to
determine the feasibility of a model focused on potential serious injuries or fatalities
(pSIF) at LLNL. Chapter III discusses any noteworthy results from the case study as well

as the limitations relevant to the creation of a computational model of the framework.

Chapter IV provides an overview of a computational model developed to simulate
incident distributions from the case study, addressing limitations of the representative
sample to better understand the pSIF model and its operational impact. Additionally, the
institution’s responses to the incidents were modeled to identify opportunities for
improvement in the case of framework implementation. The overarching framework
proposed implements pSIF classification of incidents and considers their potential

severity to inform institutional response based on those classifications.



Finally, Chapter V concludes with remarks on framework implementation and
further research needed to address limitations of both the case study and the overarching
framework. Understanding these constraints through the lens of the case study’s context
is crucial for interpreting relevant findings. Figure 1 illustrates how evaluation of the
pSIF model feasibility at LLNL, evaluation of incident response, and the opportunity for

performance improvement are used to inform framework evaluation at LLNL.

Evaluate pSIF
model

Evaluate
Institutional

Incident feasibility at
Response LLNL

Determine
Opportunity
for
Performance
Improvement

Framework Evaluation

Figure 1.  Steps Required for Framework Evaluation

A. IMPORTANCE OF INCIDENT MITIGATION

Public perception could quickly change in the event of an accident that

permanently maims a worker. One notable incident involves Cecil Kelly, a chemical

2



operator who was irradiated after a tank containing plutonium-239 dissolved in a
chemical reagent. This lead to the release of nuclear energy, irradiating the operator and
resulting in death within 35 hours of the incident [3]. Incidents involving criticality or
other nuclear operations would not be tolerated by the public, especially if it were found
to be completely preventable. The framework proposed is aimed to mitigate pSIF
incidents through post-incident evaluation of hazards, controls, and likelihood of less
severe incidents. Understanding the mission of LLNL allows a better understanding of

why this framework is both useful and challenging to implement.

The mission of LLNL is broad and requires a multidisciplinary approach to its
science and technology development, which involves taking on risk. As such, LLNL has
core competencies in various fields of studies such as chemical, explosives, laser,
nuclear, and emerging technologies [5]. Each core competency introduces a spectrum of
hazards that necessitates a commitment from the laboratory to protect the environment,
workers, and the public, requiring an integrated safety management system capable of
identifying hazards and risks. Additionally, it entails various other management systems

to aid in the completion of work, such as quality, environmental, and security.

A lapse in any of these areas could lead to a high severity incident affecting the
health and safety of workers and the surrounding community. Such incidents can cause
irreparable harm to individuals and their well-being, which in turn can undermine public
trust in the responsibilities of the DOE and other national laboratories. This challenge is
not unique; the DOE, like many organizations, must balance its operational needs with

ensuring safe conduct of work.

Private industry and government agencies have a vested interest in not only
mitigating adverse incidents, but also preventing pSIF incidents from occurring
altogether. A risk management model can be particularly useful in this context. For
example, the Navy regularly performs detailed analyses of flight mishaps, and the Naval
Postgraduate School has conducted thesis work on correlation analysis of aviation
mishaps as recently as 2023 to track and trend precursors or indicators [6]. Industries
across the U.S. have invested tremendous resources in mitigating and preventing

operational mishaps. The FAA has touted a 95% decrease in commercial aviation
3



fatalities using a comprehensive and risk-based safety oversight process involving many
facets of safety management and compliance [7]. Therefore, it is imperative that LLNL
implement a framework focusing on pSIF to supplement its current methods. By doing
so, LLNL may prevent pSIF incidents from occurring and continuously improve the

performance of its safety management system.

B. BACKGROUND ON HEINRICH’S SAFETY TRIANGLE

There are various analytical approaches that have been proposed over the years,
but one that still holds value in the health and safety community is the work that was
done by Herbert William Heinrich in the 1930s. The foundational concept now known as
Heinrich’s Safety Triangle was quintessential in relating the occurrence of serious
injuries and fatalities (SIF) proportional to a larger number of minor accidents, near
misses, and unsafe acts [8]. Figure 2 illustrates a simplified Heinrich safety triangle with
three categories, and although it was originally developed to relate the number of
incidents at various severity levels, these distributions cannot be generalized to a
particular industry and are often adjusted by industry [9], [10]. For this reason, the model
is now largely used to describe the phenomenon that there is generally a larger amount of
lower severity incidents and a much smaller amount of SIF incidents with no set ratio
between severity. This theory still forms the conceptual basis of many organizations’
safety management systems, although each level of the triangle may be interpreted

differently.



Major

Injury
or Fatality

Minor Injuries

Accidents with no Injuries or Near

Misses

Figure 2. Heinrich’s Safety Triangle Displaying Three Major Categories.
Adapted from [8].

There has been a general decline in workplace injuries and illnesses over the years
as efforts have been made to reduce unsafe acts, near misses, and minor injuries [11].
However, the same cannot be said about the rate of occupational fatalities illustrated in
Figure 3 [11]. This is contrary to the Heinrich principle, suggesting that other factors or
variables may be causing the SIFs to occur. For this reason, improvements in safety
management systems based on this theory are necessary to better understand those other
factors or variables in order to achieve the objective of preventing SIF incidents from

occurring.
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Figure 3.  Occupational Injury and Illness Rates and Fatal Work Injuries.
Adapted from [11].

C. PSIF MODELS IN PRIVATE INDUSTRY

Recently, there has been interest in private industry entities looking to mitigate
SIF incidents. The Cambell Institute found that incidents had unique precursors to
determine an incident’s potential to become a SIF incident [4]. Additionally, the
importance of implementing a method of reporting and analysis has been discussed as a
topic of laboratory safety reforms in journals [12]. The case study highlighted in this

thesis leveraged aspects of several models and is the majority focus of this work.

An important distinction between a model that looks at potential severity of
events and Heinrich’s Safety Triangle is that not all near misses or unsafe acts have equal
correlation to a SIF. This distinction highlights the need to differentiate between events
based on a pSIF classification model. However, this pSIF model must be accompanied by

an adequate institutional response to create an effective framework.



Resources must be adequately allocated, as implementation of high-cost
mitigation strategies may not reduce the number of SIF events. The importance extends
beyond chemical laboratories and extends to the oil and gas industry. ExxonMobil’s
“Mining the Diamond” initiative examines the well-known safety triangle to focus on
critical events based on its potential as opposed to the actual hurt level of the incident
[13], [14]. To account for potential outcome of an incident, the safety management
system must incorporate additional information for tracking and trending purposes.
Figure 4 illustrates the shift in focus from medical treatment to identifying precursors that
could result in a pSIF. Those incidents with SIF precursors should then be the focus of

any institutional response.

Lost Time

Recordable

Injury
Near Miss/First Aid

SIF Precursor

Non-SIF Non-SIF

Unsafe Acts/Risky Precursors Precursors

Behavior

Medical Treatment Hurt Level

Figure 4.  Shift from the Heinrich Safety Triangle to a Potential Severity
Model. Source: [15].

The Edison Electric Institute (EEI) Safety Classification and Learning (SCL)
model is used as a tool to define safety incidents to redirect attention from lower-severity
events to those that could have been life threatening [16]. The EEI SCL model uses a
decision-tree based approach to define and categorize safety incidents being predicated

on the presence of high energy, application of controls, and the incident’s outcome.

A 2021 white paper from DEKRA also described two approaches for defining an
incident’s potential severity. The first approach is a judgement-based narrative review

which relies on safety practitioners to identify and analyze incidents. The second
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approach is an event-based decision tree classification approach that recognizes some
activities produce higher proportions of precursor events [17]. Another study [18]
investigated major accidents to find the most frequent contributing causes but was also
industry-specific. Because various case studies and frameworks rely on industry-specific
information, no definitive model is used across industries and firms for a pSIF
classification tool. However, each model relied on several data elements from the
incidents to make the determination [14], [16], [17], [18]. These elements included causal
information, environmental factors, hazards present, and safety controls. For this reason,
a custom model was developed for Lawrence Livermore National Laboratory that can be

implemented and refined while aligning with the organization’s collective philosophy.

D. EXISTING PROCESS AT LLNL

Currently at LLNL, there is capability to identify and address incidents through
the occupational injury and illness (I&I) program as well as the institutional Near Miss
program. However, there is currently no system that is specifically designed to address
pSIF identification, tracking, and mitigation. The 1&I program works in conjunction with
an on-site clinic which includes both work-related and non-work-related cases. This will
be relevant in evaluating the separation between occupational hazards and those related to
recreational activities. The program investigates each incident to understand root causes,
contributing factors, and determine corrective actions. Generally, corrective actions are
implemented to prevent similar incidents in the future. During the investigation, if an
incident uncovers issues, the investigator may prioritize corrective actions, including
escalation to the organization’s assurance manager for inclusion in an internal issue
tracking system. This provides a documented institution’s response to an incident.
However, there are no standardized criteria for pSIF classification of an incident, and the

evaluation relies heavily on the medical treatment resulting from the incident.

Near misses follow a separate workflow. Academia and other institutions often
have near miss reporting systems that leverage self-reported incidents that did not result
in an injury and are thought to be an important aspect of any safety management system

[19]. According to LLNL’s event notification and reporting document, workers involved



in or witness a near miss are required to report the incident to their supervisor. If there is
continuing potential for more serious consequences from the condition causing the near
miss, the supervisor must contact the Environment Safety and Health (ES&H) Team, the
Traffic Safety programs, facility owners or point of contacts, or the Infrastructure and
Operations directorate to mitigate and correct the hazards. Conditions causing near
misses and necessary corrective actions may escalate into the institution’s issue tracking

system.

Furthermore, the near miss may also meet the occurrence reporting threshold
described in “Reporting Occurrences to DOE,” where the Livermore Field Office—under
the U.S. Department of Energy, Office of Inspector General—would oversee a contract
response to severe incidents and provide concrete opportunities to reform the safety and
health programs [20]. The involvement of government oversight offices to assist in
government-owned, contract-operated institutions further highlight the importance of
identifying those precursors that would cause the most harm to the environment,
workforce, and government property. Additionally, government oversight may provide

insights into opportunities for improving other management systems.
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II. METHODS AND RESEARCH

The following chapter has sections and information that is adopted from
previously published in the journal American Chemical Society (ACS) Chemical Health
and Safety [15]. Lawrence Livermore National Laboratory (LLNL) has an Injury and
Illness (I&I) program that collects information on adverse incidents to ensure timely
reporting and notification to federal oversight agencies, including the Department of
Energy (DOE) Office of Environment, Health, Safety, and Security Occurrence
Reporting and Processing System (ORPS) [24]. For the case study, an incident is defined
as an event resulting in injury, illness, property loss, or environmental damage. The
recorded data elements of the incident included those required by DOE form 5484.3 and
the Department of Energy Injury and Illness Reporting Guide [25], such as the nature of
the incident, description of the activity, corrective actions, and other relevant information.
Additionally, LLNL information systems must comply with 10 C.F.R. 851 and the
reporting requirements in Title 29 C.F.R. Part 1960 Subpart I, as well as DOE Order
231.1B Environment, Safety, and Health Reporting [26]. Adhering to these statutes and
regulations ensures that there is uniform reporting for incidents at LLNL, facilitating
analysis and testing of various safety models and frameworks with a standardized set of
data. Figure 5 shows a generalized process for incidents where the data elements are

recorded, and corrective actions are based on the severity of the incident.
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Treatment or
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Figure 5. Current Generalized Process for Incidents

A. DATA SET TO TEST THE PSIF FRAMEWORK

An important focus for the case study was to assess the feasibility of adapting a
pSIF framework to the current process at LLNL. Minimizing the impact to the current
incident process would increase the feasibility of adopting the framework to the current
process. Additionally, going through a sample of case studies through the proposed
framework may highlight potential deficiencies in current process methodology. Figure 6
shows the proposed framework, with the changes in methodology highlighted compared

to the current process seen in Figure 5.
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Figure 6. Proposed Change in Process for Incidents

The case study focused on 1&I data from the calendar years 2007 to 2022. The
case study attempted to look at incidents from prior to 2007, but only data from 2007 and
on were found to be formatted in the same manner. Having a consistent dataset was
crucial to understand whether a new process could be adopted to the current process and
determine its feasibility. Between 2007 to 2022, approximately 5,700 incidents were
recorded to the I&I system. Approximately 20% of the incidents were determined to be
non-work related, as they occurred during recreational activities both on and off-site and

during non-working hours.

With non-work-related incidents excluded, there was a sample size of 4,900
incidents [15]. This was done to ensure the framework was evaluated against
occupational related incidents and to prevent unintentionally biasing the data by
including hazards related to recreational activities. Because the focus is to mitigate
occupational hazards, it seemed inappropriate to include recreational hazards that are

accepted by the public.

The original dataset included a data element to describe the accident type, which

comprised of 60 different types of accidents. However, many of these categories
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overlapped in terms of identified hazards. This is important in order to identify precursors
associated with incidents. For example, one of the largest categories was found to be
overexertion. It could be categorized as “overexertion by pulling or pushing objects,” or
“overexertion by lifting” [15]. But grouping the incidents also helped understand the
types of hazards that are associated with injuries. The 60 accident types were further
grouped by their categories where the population of those incidents was less than one
percent of the total. However, incidents where there may be under sampling or unique

hazards, such as radiation, were kept as their own category.

Due to the impracticality of running the model through each individual incident, a
random representative sample of the incidents were selected for evaluation. To create a
representative sample for the case study, the 60 different accident types for each incident
were qualitatively grouped into 21 accident categories. Although the categories were
grouped by hazard similarities or population size, not all categories could be grouped due
to significant differences in hazard identification. Nevertheless, the differences between
the grouped accident types were believed to accurately represent the total sample

population.

Because the framework relies on looking at all incidents, regardless of medical
treatment, there was no attempt to sample based on medical treatment. For example, an
incident with the accident type of vehicular accident that leads to days away from work

was weighted the same as a vehicular accident that lead to restricted workdays.

It is useful to understand the distribution of certain types of accidents and how it
compares to other national laboratories. In doing so, one can evaluate if there are
particular hazards or that particularly effect one site over another. For this reason, it is
important to note that the distribution of accident types was not significantly different
from other national research laboratories, such as the Los Alamos National Laboratory
Plutonium Facility (TA-55) [27]. The distribution of incidents also did not differ from the
DOE yearly Operating Experience Summary [28]. To avoid bias towards accident types
that are more prevalent in the sample set, the accident type was used to distinguish the
variance in the dataset. Accident types were also used because they may encompass

incidents with similar hazards applicable to LLNL. To determine the sample needed from
14



each category, the population variance of each grouped accident type was calculated
using Equation 1 [29]. A 95% confidence level with a 5% margin of error was used to

balance the precision and practicality of analyzing the sample data.

n =Z2M
ME? (1)
Where:
o n is the number of incidents needed in the random sample to represent the
entire population.
o Z is the standard score with a value of 1.96 for a confidence level of 95%

to convert the score in a normal distribution to a standard normal

distribution.

o ME is the Margin of Error to describe the amount of random sampling

error in a survey, in this case five percent.
o P is related to the proportion of a category to the sample set.

Because the population size is finite, an additional correction factor must be

applied as seen in Equation 2 [29].

Moy == g
n
I+—
N
Where:
o n is the number of incidents from Equation 1
J N is the total population size of the whole sample set

Equation 1 and Equation 2 were then used in a Python script to calculate the
variance of the finite population. The results are seen in Table 1, where each incident was

put in a list and N number of incidents were chosen at random. The list of N number of
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incidents for each accident category is also shown in Table 1 and is the random sample

population for the case study.

B. MEASURING QUALITY OF RANDOM SAMPLE SET

With the data set sample chosen for the case study, the data quality of each
incident needed to be assessed. Therefore, a method to measure the quality was
developed to ensure that the sample data was not only representative, but sufficient to use
in the case study. This would also highlight any opportunities for improving in the

current process at LLNL for framework implementation.

Table 1. Incident Sample Size by Grouped Accident Types. Source: [15].

Grouped Accident Category Total Random
Incidents Sample

Overexertion 684 145
Fall (all types) 657 140
Repetitive Motion 634 135
Struck by Object 479 106
Ingestion of substance 459 101
Rub or Abrasion 273 62
Contact 266 60
Noise Exposure 252 57
Bodily Reaction 250 57
Not Specific 190 43
Assault or Injury by Animal 185 42
Vehicular Accident 179 41
Caught in Equipment, materials, or 114 26
machinery
Inhalation of substance 89 20
Walking/Running 64 15
Self-inflicted injury 28 6
Environmental or Object Temperature 27 6
Stationary Injury 26 6
Stepped on object 24 6
Radiation 20 4
Other* 13 3
Total 4,900 1,081

*Other includes the following grouped accident types: Reaction when
surprised, frightened, startled; Air pressure changes exposure;
Explosion; Fire -- unintended or uncontrolled; Welding Light
Exposure
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The variation in qualitative data would provide the context necessary in assessing
the framework, a method was created to evaluate the qualitative data. The manual
processing of qualitative data analysis and aggregates has been used in several studies
with data collection methods including questionnaire data [30]. By measuring the quality
of the random sample set a determination could be made if the current injury and illness
program had sufficient information to run an incident through the pSIF model as well as
evaluate the adequacy of the sample size. Each incident was assessed and given what will
be noted as a sufficient information (SI) score, derived from four distinct criteria. Each
criterion was assessed using a Boolean value with the intent to simply assess whether the
information was present and valuable in the data elements. This provided a way to
aggregate individual scores to allow for a quantitative assessment of data quality to
facilitate comparisons between criteria. A data element was considered insufficient if the

pSIF model practitioner must make assumptions or speculate without objective evidence.
The four distinct criteria were as follows and adapted from [15]:

o Environmental Factors (EF): Details regarding the location, time of

occurrence, and work environment.

o Hazards Identification (HI): Details concerning the hazards present at

time of incident.

o Controls in Place (CIP): Identification and details of measures
implemented, to include engineering controls, administrative protocols,

personnel protective equipment, etc.

o Causal Information (CI): Details pertaining to the factors contributing to

the incident’s occurrence, including both direct and indirect causes.

Each criterion was evaluated separately, and the summation of the individual

scores became the SI score as seen in Equation 3.

SIincident = Z (EF;'ncident + H]inc + C]Bncident + C]incident) (3)
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Data elements for the incidents, such as accident type, part of body, nature of
injury or illness, at risk behavior, description of the activity, sequence of events, causal
factors, immediate actions taken, corrective actions, and applicability of the integrated
safety management system [31] — were all evaluated to determine whether the incident
had sufficient information to inform each criterion. The SI score was used to determine a
qualitative confidence level for each incident. The higher the score, the more likely a

practitioner was able to determine whether the incident was a pSIF.

Table 2. SI Score and Confidence Levels
SI Confidence Level
Score
4 The practitioner has a high confidence in making a pSIF
determination.
3 The practitioner has a medium confidence in making a

pSIF determination.
<2 The practitioner has a low confidence in making a pSIF
determination

The incidents that had an SI score of less than two resulted in a low confidence to
no confidence determination of information sufficiency for the incident to be used in the
pSIF model. If the majority of the incidents had key data elements missing, it would
prevent meaningful analysis of relevant precursors. However, the statistics of the sample
population, summarized in Table 3, showed that of the incidents from the sample,
approximately 87%, had an SI score of 4, meaning that sufficient information was

available for all four criteria.

Table 3. SI Score Statistics Summary. Source: [15].
Sufficient Number of Relative Percentage to
Information Score Incidents Sample
Sum
0-2 48 4.4%
3 97 9.0%
4 936 86.6%
Total 1081 100%
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Because the aim of the framework is to improve the ability to identify
opportunities to minimize potential serious injuries or fatalities, it was crucial to analyze
the distribution of the SI categories to highlight any potential gaps in the data collection
process. The total of the score for each criterion across the sample set determines the
percentage of incidents that had met the criteria for each of categories. Table 4 shows the
breakdown with Hazards Identification and Causal Information being within a tenth of a
percentage point of each other. Although no category scored significantly lower than the
others, and because greater than 95% of the incidents had an SI score of three or greater,

the representative sample is determined to be adequate to test the framework.

Table 4. SI Score Category Summary. Source: [15].
Sufficient Information Sum of Score  Relative Percentage to Sample
Category Size
Hazards Identification 995 92.0%
Causal Information 996 92.1%
Controls in Place 1040 96.2%
Environmental Factors 1062 98.2%

C. THE OPERATIONAL PSIF MODEL

An operational pSIF model was developed as a tool in part of a broader
framework to identify pSIF incidents and inform institutional response. For the purpose

of the model, a pSIF score was derived from a 5-step process as illustrated in Figure 8.

1. Determine the potential worst-case outcome of an incident.

2. Determine the primary variable that would cause the potential worst-case

outcome, considering the likelihood.
3. Determine the effectiveness of controls during the incident.

4. Use both the primary variable and effectiveness of controls to determine

the V/C score.
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5. Final pSIF determination, noted by PHL{.

The primary variable was the variable that could have resulted if the presence of
the single variable were there and the likelihood of that variable occurring in light of
mitigative controls in place. Review of incidents found several instances where more than
one variable could have contributed to the reasonable worst-case outcome. Only one
variable was chosen as the single-most valuable variable that would have contributed to
the adverse effects of the event; this is recognized as a limitation and restriction of the
model as often several variables contribute to an adverse event. A job-aid was developed

for pSIF determination and is illustrated in Figure 7.

In order to simplify the model for use by practitioners in the field, a decision tree
was created. Although one primary practitioner reviewed the majority of the incidents, a
total of three practitioners reviewed incidents with higher pSIF scores in the sample
dataset using the decision tree of Figure 7, as well as the data elements described in
Section 2.B. Each of the practitioners held institutional knowledge of the specific work
and hazards relating to the work they support. However, they were advised to make no
assumptions of information from the incident that could not be verified using objective
evidence. The following sections will describe each step of the decision tree. An example

scenario of going through the decision tree is provided in Appendix A.
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Figure 7. Decision-Tree Job Aid. Source: [15].

D. DETERMING HURT LEVEL

It is important to understand that time away from work after an incident is not
indicative of the severity of an incident. For example, a person working in a laboratory

setting receives chemical exposure leading to a chronic disease with life-long
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implications, while another person slips and breaks their arm. In these two scenarios, it is
possible that both individuals may have similar time away from work and both produce a
recordable injury, but one has clear long-lasting implications. This highlights a deficiency
in focusing purely on medical treatment as opposed to the actual harm experienced by

individuals in incidents.

Clear definitions of the level of harm and long-term health implications are
needed to move away from a medical treatment focus. For this reason, the framework
required a definition of hurt severity, along with examples. This was adopted from the
EEI model that also gives examples of harm severity [16]. These definitions and
examples are provided in Table 5 and were used to determine the harm level of a worst-

case scenario.

Practitioners followed the framework outlined in the job aid seen in Figure 8 and
used it to define the potential hurt level worst-case (PHLwc) for the sample set. For the
sample set analysis, the PHLwc was the scenario that is most probable and produced the
highest hurt level without additional hazards that were not present at the time of the
incident. For example, if a scenario includes the use of oxidizers or flammables, but there
was no sparking or flame hazards typically involved in the work or area nor anticipated to
be present, a practitioner would not define a scenario where ignition occurs causing a

significant hurt level as probable.
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Table 5.

Hurl Level Definitions. Adapted from [15].

Hurt Duration  Definition Examples
Severity
Level
Fatality N/A Fatality - Fatality or Multiple Fatalities
(C))
Severe = Years to Injury or illness causing - Amputation
Hurt Lifetime severe physical body - Significant third-degree burns
A damage; probable long - Loss / Impairment of organ
term or significant life- functions
altering complications - Severe to complete loss of
hearing
- Severe or total blindness
Moderate Weeksto  Injury orillness causing - Fractures, loss of tooth/teeth
Hurt Months significant physical body - Significant lacerations
2) damage; reasonable to - Partial / single digit amputations
heal without life-altering - Significant second-degree burns
complications in a - Moderate hearing loss
moderate period
Minor  Minutes to Injury or illness causing - Minor lacerations that bleed
Hurt Days minor physical body freely
a1 damage; reasonable to - Minor chipping of tooth/teeth
heal without significant - Skin rash / burn from chemical /
life-altering non-aqueous fluids
complications in a brief - Confirmed slight to mild hearing
period loss
- Mild corneal abrasion
No Hurt N/A N/A N/A
0

Because multiple scenarios are often considered to derive the worst-case scenario

the practitioner has to qualitatively screen the scenarios to find the one where the value of

the product of the hurt level, based on the definitions in Table 5, and probability of the

event is the highest. Figure 8 shows a visualization of the mental model a practitioner

goes through when determining the worst-case scenario for an incident. The product of

the hurt level and likelihood of the scenario for each scenario generate various possible

outcomes. Therefore, the hurt level of this scenario is the scenario with the highest

potential hurt level for the worst-case scenario (PHLwc) and is used later in the pSIF

model.
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Figure 8. Hurt Level versus Scenario Probability: A Bubble Chart Analysis

E. PRIMARY VARIABLE

In conceptualizing the worst-case scenario, the practitioner identifies the primary
variable, that if changed, would result in the worst case outcome. Typically, a practitioner
assigned a qualitative value to the primary variable based on prior experience, any FMEA
[36], or a documented method and classify it under one of the following values from most
probable to least probable: Always, Often, Sometimes, Rarely, Not at All. The most
feasible method to implement was determined to be a qualitative determination as
performing a quantitative probability analysis on the incidents was not always possible
for incidents. The qualitative nature of assessing probability is also a clear limitation of

this pSIF model.

The model requires the practitioner to define the primary variable (V) that would
have led to the PHLwc. For example, in a scenario where a machinist is injured while
using a lathe, a primary variable that would have increased the hurt level could have been

body placement. Note that practitioners were advised to not increase hazards or introduce
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new hazards. Building off the lathe example, if the work typically includes working with
steel, the practitioner will not replace the material with depleted uranium, or other heavy
metals if it is not typical to the work in the shop. Therefore, V provides the variable in

which a worst-case scenario would occur but might not have due to random-chance.

It is also important to note that decreasing the primary variable would not reduce
the potential hurt level altogether. Which is why determining control effectiveness was

key for the pSIF model.

F. DETERMINING CONTROL EFFECTIVENESS

Typically, there are multiple layers of control in an incident as defined by the
Swiss Cheese model [32]. Therefore, removal of a variable does not remove hurt level
altogether. For example, latex gloves may prevent or mitigate hazardous chemical
exposure but may do little in preventing laceration if working with sharps. So,
practitioners must consider hazards that are present in the work environment of the
incident, such as de-energized equipment that may be otherwise energized due to a failure
in administrative controls, or a pressure system failure due to use of an incorrect rupture
disc. Such scenarios may come up in discussion of the work control process and the level
of rigor may depend on the hazards involved [35] or looking at the failure mode and
effects analysis but looking at the details of a scenario post-incident relied on methods
similar to the Haddon matrix [37]. Either way, it is a systems approach to safety that must

take into account various hazards and the controls in place that mitigate those risks.

Hazard controls in place contribute to the probability of a worst-case event. Even
in a criticality event, fissile material controls will influence a criticality event outcome
[32] and the severity of an incident. A simplified diagram illustrates the relationship
between incident severity and the primary variable as well as incident probability and
hazard controls, is shown in Figure 9. The relationship in hazard controls and incident
probability is not novel; James Reason developed what is now referred to as the Swiss
Cheese model in the late 1990s, theorizing that adverse events usually result from many
controls failing to prevent the incident, and that each layer of control acts as separate

barriers against the incident similar to attempting to pass through slices of Swiss cheese
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[33]. The Swiss Cheese model is also used in risk management, and flight mishap
analysis [6] as it is often the failure of multiple sub-systems within a system that leads to
the outcome. Additionally, nuclear operations will employ defense in depth in concepts

of security and in human error [34]. But the model must be simple enough to be deployed

institutionally.
Increase in likelihood Increase in Incident Increase in Hazard Increase in Severity
Primary Variable Severity Controls Effectiveness Probability

Y \ Y \
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Figure 9. Incident Severity and Event Probability Correlation

For over the last fifty years the National Institute for Occupational Safety and
Health (NIOSH) [38] and the Occupational Safety and Health Administration has
advocated the hierarchy of controls approach to emphasize that engineered and more
permanent controls are preferred as they are more effective in mitigating risk, a copy of
this illustration is seen in Figure 10 [39]. The controls in each incident were evaluated
based on overall effectiveness, using the hierarchy as a guide, in their effectiveness in

mitigating the worst-case outcome.

If the data element included details on controls such as personal protective
equipment (PPE), then it was understood that PPE was a control at the time of incident,
regardless of use. However, if PPE is the only control, then it was further scrutinized as it
is generally seen as the least effective control in the hierarchy of controls. Similarly to the

determination of the primary variable (V) a qualitative approach is used to categorize the
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effectiveness of the controls ranging from least effective to most effective: No Controls,
Some Ineffective/Inconsistent Controls, Controls Reduce Severity, Controls Likely
Prevents PHLwc, and Controls Always Effective. The score is known as the control

effectiveness score (C).

= Hierarchy of Controls

effective
Physically remove
the hazard
Isolate people
from the hazard

Replace
the hazard

r-
. o

Protect the worker with
Personal Protective Equipment

Change the way
people work

Least
effective

Image by NIOSH
https//www.cde.gov/niosh/topics/hierarchy/default.html

Figure 10. Hierarchy of Controls. Source: [38].

G. DETERMINING FINAL PSIF SCORE

Practitioners at the final stage of framework have determined the PHLwc, V, and
C. Armed with all the variables and the job-aid in Figure 7, there is now sufficient data to
determine the final score for the incident. Determining the V/C score is done through the
use of the matrix in Table 6. Output of the matrix, V/C score, is then used with the

PHLwc to produce the final potential hurt level (PHLf) score.
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Table 6. V/C Matrix. Source: [15].

Always Often Sometimes  Rarely Not at

all
No Controls |
Some Ineffective/ |
Inconsistent Controls

Controls reduce 1
severity

Controls Likely 1

Prevents PHLwc

Controls Always 1 1 1 1 1

Effective

Using Table 7, the PHLf is determined by looking at the PHLwc and V/C score.
Those with a PHLwec score of Severe (3) and a V/C score of at least three are treated as
pSIF. But also used a level of rigor approach such that those with a V/C score of 2 and
PHLwc of a Fatality (4) still generated a pSIF classification. Those with a PHLf score of
4 are treated as those with an even higher potential for a SIF incident. This is either
because the likelihood of it occurring is high, or because the controls in place to prevent
such an incident are either not effective or not in place. These incidents should be given a
higher priority in mitigating the pSIF scenario. Inherently, those incidents that are given a
higher priority would undergo a more rigorous investigation leading to the corrective
actions or institutional response. The institutional response was also categorized as part

of the case study and is discussed in the next section.
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Table 7. PHLf Score Matrix. Source: [15].

Fatality (4)  Severe (3) Moderate Minor (1) No Hurt

2
(5) 4 3 2 1 0
@) 4 3 2 1 0
3) 4 3 2 1 0
Q) 3 2 1 0 0
1) 2 1 0 0 0

H. CATEGORIZING INSTITUTIONAL RESPONSE

As part of the case study, the institutional response to the actual incidents were
evaluated to determine if there was any existing correlation between incidents with a
higher potential for serious injury or fatality and the institutional response. Organizations
will typically benefit from the prioritization of mitigation efforts to address risk that will
cause the most severe harm to the organization’s workforce [40]. At Lawrence Livermore
National Laboratory there are several ways to generate corrective actions to mitigate

institutional risk.

The responses to the organization were tied to the effect the action had at the
institutional level and how many participants were associated. It is a measure of resources
used in an incident response but is in no way definitive. The scores were broken down
into five separate categories, each increasing in rigor, and was called the preventative
action score (PAS) for simplicity. Table 8 explains the level of rigor of each PAS
category. Each of the incidents from the representative sample were given a score based
on the criteria. However, because PAS only looks at a specific type of institutional
response, it may not holistically review the resources allocated in a corrective action and

is a limitation of this type of categorization.
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Table 8. Preventative Action Scores and Definition

Preventative Institutional response Example of Response = Number of People
Action Score Affected
0 No Response No Corrective Actions  No Affected Parties
1 Individual Involved in Verbal counseling One person affected
Incident
2 Group or Team Level Lessons learned shared ~ Two to ten people
at group meeting affected
3 Organizational or Self-audit across one Ten to hundreds of
Facility Change or multiple facilities people affected
4 Institutional Change /  Institutional policy on  Hundreds of people to
Hazard Elimination work with specific total workforce
materials population
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III. RESULTS OF CASE STUDY

A. FINDINGS

The goal of the case study was to assess the feasibility of the pSIF framework
against the representative sample outlined in Chapter II. The SI score was only used to
indicate the feasibility of adapting the proposed framework to existing institutional
procedures. There were 48 incidents that had an SI score of less than or equal to 2, and
the random sample was meant to represent the variance in the dataset with a 95%
confidence level with a 5% margin of error. It was concluded that the current process
captures enough information to implement the framework. The only suggestion would be
to purposefully track causal information or additional information about the hazards as
those two categories were the least likely to be included in an incident report. This would
increase understanding of an incident to better understand the highest potential severity of

an incident outcome.

However, the relatively high percentage of samples that had information about the
controls in place and environmental factors suggest that the process is sufficient to create
incident information to implement the model during postmortems. Framework adoption
is not expected to greatly change the current process or methodology. However, from a
human performance perspective, framework adoption may encourage case managers and
investigators to note the cause and hazards of an incident, potentially improving data
quality. However, tracking of these data elements is necessary to see any long-term

impacts.

Several practitioners evaluated the incidents through the decision tree described in
Figure 7. The final distribution of the final potential serious injury or fatality (PHLf)
score, illustrated in Figure 10, indicates that only 8 incidents; less than 1% of the total —
had a high potential for a SIF. An in-depth statistical analysis of the distribution is done
in Chapter IV. and Appendix B. It is also worth noting that 33% of the cases had a very-
low potential, PHLf score of 0, while 52% of the cases had a low potential, PHLf score of
1.
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Figure 11. Distribution of PHLf Scores from the Case Study. Source: [15].

The distribution of PHLF scores does not follow the distributions seen in
Heinrich’s safety triangle [8]. This could also be due to the fact that the case study only
included recorded incidents. Limitations of the dataset include the exclusion of unsafe
acts or behaviors, incidents that did not result in an injury, and those not formally
reported in the institution’s near miss program. The distribution does mimic distributions
seen from some private industry models [14] which suggests that only a small percentage
of unsafe behaviors have the potential to cause serious injury. Table 9 presents the
distribution of incidents grouped by accident type and PHLf score. This data can be used

to inform relevant computational modeling.
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Table 9. Breakdown of Accident Type by PHLf Score

Accident Type (Group) PHL{ Score
2 3
Assault 1
Bodily Reaction 10
Caught in Equipment, Materials, or 3 1
Machinery
Contact 7 1
Fall (all types) 7
Ingestion of Substance 2
Inhalation of Substance 6
Noise Exposure 34 1
Not Specific 1 2
Overexertion 12 2
Radiation 1
Reaction when surprised, frightened, 1
startled
Repetitive Motion 43
Rub or Abrasion 1
Self-Inflicted Injury 1
Stationary Injury 2
Struck by Object 7
Vehicular Accident 3 1
Grand Total 142 8

Ideally, a review of the incidents with a high potential to cause life altering
ailments is of high interest to the organization. Additionally, any significant trend or
uptick in incidents of a specific accident type should be regularly reviewed. Although
incidents with a PHLf score of 3 were statistically insignificant, examining those with a
score of 2 is also valuable. The top three categories were then found to be noise exposure,

overexertion, and repetitive motion and at 89 incidents made up 62% of the incidents.

Because overexertion was already one of the leading accident types from the data
set, this suggests that randomly sampling the whole data set could have inadvertently

biased the data towards those incidents with higher incident numbers. The other top
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categories were evaluated to understand the long-term implication of the occupational

hazard.

Understanding the long-term implications of these incidents helps allocate
resources effectively within organizations. Studies showed that about 22 million workers
are exposed to hazardous noise at work on a yearly basis and that hearing loss and
tinnitus affects 1 in 8 people in the working population where occupational exposures
caused 25% of those incidents [41]. It is also important to note that noise exposure affects

industries from the military [42] to private industry [40].

The next categories — overexertion and repetitive motion — can lead to lifelong
musculoskeletal disorders such as chronic back pain, arthritis, and can result in disability
and work loss [43]. Since eighteen of the accident types make up less than 40% of the
rest of accidents, it is unlikely that it shows a statistically reliable way of predicting future
incidents in a computational model. Lastly, because the focus of the framework is
potential high severity events, the count of accident type may not be the best measure for

resource allocation.

Another important aspect of the case study was the Preventative Action Score
(PAS), which was used to determine an aspect of LLNL’s response to incidents.
Institutional response can influence future outcomes, similarly to how risk is mitigated in
an integrated safety management system by relying on feedback and continuous
improvement [22], [23], [35]. Research has shown that simulations can identify
corrective management actions that can reduce risk in the construction industry [44].
Unfortunately, the diverse range of hazards apparent in research and development
complicate implementing sociotechnical simulations. Additionally, the PAS definitions
were not tied to monetary value, which makes it a difficult measure of financial resources
allocated in incident response. A future approach would take into consideration the
numerous factors that is influenced by institutional response, such as resources used,

engineering methods implemented, and labor hours in addition to other actions.

Figure 12 illustrates the PAS distribution by PHLf score. Since both PAS and

PHLf are categorical, performing a linear regression would be inappropriate as it would
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require violating assumptions regarding the continuity and homoscedasticity of the data
which may cause unintentional bias or skewing [45]. Instead ordered logistics regression
can be used to see if there is any correlation between the PHLf and PAS [46]. The
analysis used the OrderedModel class from the Python module, statsmodels [47], and
pandas [48]. Additional models were also explored and are explained in greater detail in

later chapters.
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Figure 12. Distribution of Average Preventative Action Score by PHLf

Overall, the case study demonstrated that the current injury and illness incident
reporting process is adequate to support a potential severity framework. While some
incidents had a higher potential for sever outcomes, the majority of incidents were not
classified as pSIF incidents. Statistical evidence indicated that LLNL generally responded
more robustly to incidents with higher potential [15]. This is important to note as the goal
of implementing the framework would be to increase response of higher severity
incidents to better allocate resources. However, future research is needed to better
understand incidents with a PHLT of three or higher as the model may suffer from under

dispersion due to the limited number of incidents with a PHLf score of 3 or 4.
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B. LIMITATIONS OF THE CASE STUDY

If the case study is to be used as the basis for any computational modeling, it is
necessary to transparently acknowledge its limitations. Especially as these factors may
impact any operational implementation. Some pSIF models from private industry [13],
[14], [16] and Heinrich’s safety triangle [15] described in Section I. B. pSIF Models in
Private Industry considered near-miss and unsafe behaviors. However, the data set used
for the case study did not include near-miss information, such as that available at the
Department of Energy Office of Environment, Health, Safety & Security lessons learned
website DOE OPEXShare [50]. This information could have provided near-miss
opportunities that had a higher potential severity, helping calibrate the framework and

dealing with issues of underrepresented data with higher PHLf scores.

Additionally, the EEI pSIF model recognized the limitations in existing methods
of classifying safety incidents. This includes subjectivity in the assessment, generalized
conditions that may not indicate SIF potential, the broad use of an “other” category by
analyst, and no explicit consideration of physical controls [16]. The case study attempted
to mitigate the identified limitations by minimizing the use of an “other” category as part
of the injury and illness reporting process. Furthermore, the framework minimized the
ability to extrapolate generalized conditions. This was done to mitigate inadvertently
misclassifying an incident. For example, personnel working in a glovebox environment
with radioactive material does not imply that a fall in the same lab space poses a radiation

concern.

The practitioners also considered the presence and absence of controls. The case
study, due to the broad nature of research and development at the national laboratory,
could not eliminate subjectivity in the probabilistic determination of the primary variable
or controls effectiveness while assessing the incidents and remains a known limitation of
the framework. Providing quantitative measures for specific hazards would mitigate this
risk but requires comprehensive methods of quantifying incident outcomes across a

spectrum of work.
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Finally, the limited number of incidents with a high potential for a serious injury
or fatality resulted in a need to implement a computational model to assist in
understanding framework implementation. Despite these limitations, the case study
formed foundational insights that could have implications in the implementation to other

management systems.
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IV. A COMPUTATIONAL MODEL OF THE FRAMEWORK

A simple computational model was developed to simulate the potential serious
injury or fatality framework described in Section II. Subsection C. The objective was to
perform correlation analysis between the variables used in the pSIF model to ensure it
functioned as expected. Specifically, to see if the model informs incidents with high hurt
potential and high probability, combined with low hazard controls are effectively
classified as pSIF incidents. Simulated data from this computational model serves as a
control for the statistical modeling of institutional response to the events. Modeling
provides controlled parameters and the ability to simulate datasets where data may be
difficult or rare. Figure 13 illustrates how the pSIF statistical model will inform

institutional response and ultimately how these models will inform operational use of the

model.
Institutional
(“Perform correlation analysis ) ( ReSpC)nse Model (“Test various scenarios by )
between V/C Values, PHLwc, adjusting parameters.
and PHL to confirm pSIF model o -Inform operational use of pSIF
reflects interactions among the +Analyze current institutional model.
variables. response to incidents from case -Develop Metrics for
«Create simulated data with study. implementation to support
known parameters to test +Establish test parameters to pSIF model in operational
institutional response under evaluate various response context.
controlled conditions. scenarios.

\ pSIF Statistical
Model

\_ ) Scenario

Modeling

Figure 13.  Workflow for pSIF Statistical Model and Institutional Response
Analysis
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The computational model seeks to analyze institutional response, as done in the
case study, by performing a correlation analysis on the case study data. This model
simulated institutional response. Various scenarios were evaluated by adjusting the

parameters.

A scenario where...

o The potential severity of an incident is commensurate with the institutional

response effort, the assumed ideal scenario.

o The potential severity of an incident is based on the distribution found in

the case study, without framework implementation.

o The institutional response is completely random with no consideration for

incident severity.

In performing the various scenarios, the computational model was used to
evaluate potential improvement in resource allocation. The model also informed the
development of meaningful metrics necessary for tracking any long-term improvement
through implementation. The computational model, plots, and testing was built in Python
using several libraries such as Matplotlib [57], Numpy [58], Pandas [48], Seaborn [59],
Scikit-Learn [60], and Statsmodels [47]. The models and simulations were made in
Python to leverage open-source software and were saved in a Jupyter notebook [61] for

repeatability and sharing.

Several statistical models were tested with mixed results. The case study looked at
a generalized linear model (GLM) with a Poisson distribution and an ordinal logistic
regression model. Each model type has its own set of assumptions and limitations. The
results and detailed development of the GLM with a Poisson distribution and ordinal

logistic regression model tested is explained in Appendix B. pSIF Statistical Models.

A. SIMULATING THE CASE STUDY INCIDENT DISTRIBUTION

Injury and illness (I&I) data is typically very sparse and often require datasets

from other industries and organizations for meaningful analysis [56]. I&I data is also
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typically difficult to obtain due to concerns with Personal Identifiable Information (PII).
For the case study, the incidents spanned over a decade at LLNL in order to mitigate the
difficulty in gathering a large enough dataset. It was also important for the case study to

focus on hazards relevant to LLNL, which differ from those in industries like oil and gas.

Simulating data is useful for several reasons. It allows creation of incidents
without having to rely on actual occurrence. This is especially important for rare
incidents like SIFs. Additionally, this work aimed to evaluate resource allocation
differences in implementing the model. The simulated data also offers ways to emulate
institutional responses for a wide distribution of incidents and help aide operational

implementation.

First, the data from the case study was loaded from an Excel file and into a
Pandas DataFrame, including the values for PHLwc, V, C, V/C matrix, PAS, and PHLf
for each incident. The data contained categorical features that needed encoding for
statistical modeling. Because the data was ordinal with inherent order (e.g., increasing
control effectiveness), the values were assigned based on rank. Figure 14 shows the
value, category, and encoding for each variable. Table 11 presents the descriptive
statistics of the encoded data. The data indicated that the PHLf, PHLwc, C, and the PAS
are skewed towards the lower half of the ranking. Notably, the PHLf score only has a
maximum score of three, where the maximum rank for the variable is four. Simulating
the data allows the ability to create datasets where there is a PHLf score of four and what

might have been the possible PHLwc, V, and C values to produce the score.
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Increasing Rank

Variable Potential Hurt Level Worst-Case (PHLwc)
Category No Hurt Minor Hurt Moderate Hurt Severe Hurt Fatality
Encoded Value 0 1 2 3 4
Variable Primary Variable (V)
Category Not at All Rarely Sometimes Often Always
Encoded Value 0 1 2 3 4
Variable Controls Effectiveness (C)
Category No Hazards Some ineffective/ Controls reduce Sufficient controls ~ Thorough controls
Controls inconsistent controls severity, but not likely prevents always effective
prevent PHLwc PHLwc
Encoded Value 0 1 2 3 4

Figure 14. Encoded Ordinal Variables in Increasing Rank

Several models were tested to determine any statistically significant correlation
between the PHLf score and PHLwec, V, C, and V/C. Because higher PHLwc and V/C

scores created a higher PHLf outcome from the framework, the modeling aims to fit the

distribution of the data from the case study.

Table 10. Descriptive Statistics of Encoded Case Study Data

PHLwc A% C V/C PHLf
Mean 1.71 2.66 1.16 2.11 0.82
Standard 0.64 0.58 0.99 0.43 0.68
Deviation
Minimum
Value 0 0 0 0 0
Maximum

4 4 4 4

Value 3
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Figure 15. Distribution of Case Study Values

B. OVERVIEW OF STATISTICAL METHODS EVALUATED

Understanding the key assumptions and limitations of each method is crucial for
building robust and flexible computational models to simulate the necessary data. For this
reason, two statistical models were used for the work based on their use in evaluating

categorical data [45].

When selecting the appropriate statistical modeling technique, various
assumptions and limitations were considered. These factors influence model performance
and validity in operational use. Table 12 provides a summary of key assumptions,

limitations, and benefits of each model evaluated.

Table 11. Statistical Models Overview. Adapted from [45], [46].
Model Key Assumptions Limitations Benefits
Ord,l m,‘l Ordinal dependent  The relationship Specifically designed
Logistic . : . .
. variables (i.e., the  between each pair of nuanced analysis of
Regression . .. .
ratings have an outcome categories is ordered categories.

order as discussed  consistent across
in the framework). thresholds.
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GLM with

: The data is Assumes that the mean  Effective for modeling
Poisson . .
. e L. discrete (e.g., and variance of the count data.
Distribution .
number of data is always equal.
incidents).

Assumes that the
data follows a
Poisson
distribution.

The goodness of fit for each statistical model was evaluated to understanding the
relationship of the PHLf score and its distribution. Appendix B. pSIF Statistical Models
explains in detail how the ordinal logistic regression model and GLM with Poisson

distribution model were created and how they work.

C. COMPARING RESULTS OF THE PSIF MODELING

The Statsmodels [47] package from Python was used to create the pSIF statistical
model. There are several methods in evaluating how well the model’s goodness of fit.
Three variables were used to compare the goodness of fit, including the Log-Likelihood
Function (LLF), the Akaike Information Criterion (AIC), and the Bayesian Information
Criterion (BIC) [45]. Details of how the LLF, AIC, and BIC were calculated are
described in detail in Appendix B. Section C. Variables to Compare Goodness of Fit.

The LLF measures how well a statistical model explains observed data. It is the
log of the likelihood of the observed data given the parameters and a probability
distribution. The LLF is also calculated differently for each model because of how the
cumulative probabilities is calculated. For an ordinal logistic regression model, it
involves calculating cumulative probabilities for each PHLT score, with the LLF being
the sum of the log of these probabilities weighted by an indicator variable. For a GLM

with a Poisson distribution, the LLF is derived from the Poisson probability distribution.

Using the formulas detailed in Appendix B. Section C. Variables to Compare
Goodness of Fit, the LLF, AIC, and BIC were programmatically calculated in a Python
script. The results of the model are seen in Table 12. In comparing model goodness of fit,
the goal is to minimize each of the different criteria and there is a large discrepancy
between the values produced by the ordinal logistic regression model and the generalized

44



linear model with Poisson distribution. Therefore, the ordinal logistic regression model
seems to be better at modeling the data from the case study. However, to ensure that this
is the case, both models were tested to create a simulated data set. Ideally, the model

must be robust enough to change parameters to deal with changes in future incident

distributions.
Table 12. Descriptive Statistics of pSIF Statistical Models
Criteria Ordered Model GLM with Poisson
Distribution
LLF -1.4e-4 -881
AIC 14 1771
BIC 49 1796

Comparatively, the ordered model quantitatively had a better goodness of fit.
With this in mind, the result of the model was analyzed and both statistical models
showed a statistically significant correlation between the PHLf value and the PHLwc and
V/C value as seen in Table 14. However, a significant limitation of the ordered model
was in its ability to effectively predict values that would generate a PHLf score of 4, as
there were none that occurred during the case study. This severe limitation raises
concerns on the ability to generalize to new data and was determined to be ineffective in
simulating the incidents needed for testing. But both results confirm that the pSIF model
is behaving as expected, with a clear correlation between the PHLf value and dependent
variables. There is no reason to believe that the V or C score alone have any correlation

with the PHLTf score as both scores contribute to the V/C score.
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Table 13. Summary of pSIF Model Coefficients

Model
Coefficients Ordered GLM with
Model Poisson Distribution
PHLwc 393.7213 1.1627
v -157.4856 0.0995
C -151.3317 0.0018
V/C 60.6603 1.0341

D. SIMULATING PSIF DATA

Because the case study is based on a random sample of over ten years, it may be a
good indicator of what the distribution of injury and illness incidents may occur over
time. For the thesis, the goal was to also synthesize pSIF data to model institutional
response under various scenarios when implementing the framework operationally.
Creating metrics is important in tracking framework influence in the organization and can
indicate the efficacy of the framework [56]. The next section details simulating the pSIF
data used to model institutional response. The simulated data allows to model response to
incidents with a PHLf score of 4, which there were none in the case study data. Because
the ordered logistic regression model was fitted to the only available categorical values
available, the GLM with Poisson distribution was used as the basis to simulate data that
will be used for testing institutional response against a dataset where the parameters are

well characterized and known.

The model provided the statistical parameters to provide the distribution of PHLf
scores. Because the PHLf score was mostly influenced by the PHLwc and the V/C score,
those two variables will be used to generate the synthetic data. Figure16 is a screenshot of
the code that was used to generate synthetic pSIF data that will be used later on. The code
works by generating PHLwc and V/C scores based on the descriptive statistics of those
variables from the case study data. It then clips the data to ensure it meets the constraints
of the framework and generates the appropriate number of variables as defined by the
sample size desired. Next, the function calculates the A-value which defines the shape

parameter of the Poisson-distributed outcomes. The shape parameter takes the place of
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using thresholds in an ordinal logistic regression model and uses this to generate values
based on discrete probabilities. It then uses the A-value to generate the PHLf scores and is

converted to discrete values that meet the constraint of the framework.

In [112]: M # Function that generates simulated sample sizes based on the distribution of the model or given beta values
def simulate_data(sample_size, beta_PHLwc, beta VC_wvalue, mean_PHLwc, std_PHLwc, mean_VC_value, std_VC_value)
# Using the mean and standard deviation from the model
PHLwc_values = np.random.normal(loc=mean_PHLwc, scale=std PHLwc, size=sample size).round(@)
PHLwc_values = np.clip(PHLwc_values,@,4)
VC_value_values = np.random.normal(loc=mean_VC_value, scale=std_VC_value, size=sample_size).round(2)
VC_value values = np.clip(VC_value_ values,d,4)
# Calculate the lambda for the predictor values
lambda_values = np.exp(intercept + beta_PHLwc * PHLwc_values + beta_VC_value * VC_value_values)

# Generate Poisson-distributed outcomes
simulated_PHLf_values = np.random.poisson{lam=lambda_values)

# Apply constraints to ensure values do not exceed framework values

simulated_PHLf_values np.round(simulated_PHLf_values)
simulated_PHLf_values = np.clip(simulated_PHLf_values, @, 4)

return pd.DataFrame({
"PHLwc ' : PHLwc_values,
"VC_value’: VC_value_values,
"PHLf_value': simulated PHLf_values
1))

Figure 16. Code Used to Generate Simulated PHLf Values

Three separate sample sizes were created simulating 1,000, 1,100, and 1,200
incidents respectively. Figure 17 illustrates the results for three sample data sets that were

created to compare to the case study data and evaluate the fit of the model.
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Figure 17. Results of GLM with Poisson Distribution Simulation
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E. SIMULATING ORGANIZATION RESPONSE

Now that the data can be modeled to encompass the full range of PHLf scores, a
separate statistical model was created to simulate current institutional responses to the
incidents. This model was developed to understand the relationship between the PHLf
scores of the case study and the institutional response to the incident defined as the
Preventative Action Score (PAS). However, the model will need to be flexible in order to
change the parameters to represent the various scenarios outlined in the beginning of this

chapter to simulate different institutional responses.

In an ideal scenario, the institution would increase response to incidents with a
higher PHLf score. However, this may not always be ideal due to the definitions of the

PAS categories as outlined in Chapter II. Section G.

There are scenarios where a lower institutional response can mitigate incidents
with higher PHLf scores. For example, if an incident occurs relating to explosives occurs
in a facility with a high PHLf score, but does not affect the operations of other facilities,
the institutional response may be more localized and generate a PAS value that is
localized to the facility. In this way, adequate response was considered using an

appropriate graded approach.

Additionally, injury and illness incidents are highly variable, which is why a
comprehensive safety management system, and risk assessments are incredibly
important. The importance of acceptable risk and its industrial safety guidelines have
been outlined by various organizations, including the International Atomic Energy
Agency (IAEA) [70], [71] which outlines specifics industrial safety guidelines and risk
aggregation for nuclear facilities. The IAEA has also outlined a concept similar to the
pSIF model but calls those with a high-potential for harm (HiPo) incidents, also

generating near miss analysis for such instances [70].

1.Modeling the Relationship Between PHLf Score and PAS

The ordinal regression was thought to be appropriate because the preventative
action score is categorical with a natural order, but not with a known interval between

categories. In this case, the PHL{ is the predictor variable to estimate the probability of
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each preventative action score by maximizing the probability of observing the given data
as a function of model parameters in a likelihood function,L(6)[46]. The maximum
likelihood (ML) is an estimate that the parameter value maximizes this function and
using numerical optimization techniques, the fit method in the statsmodels library iterates
through various model parameters until the algorithm has reached convergence. For an
ordered logistic regression model, the likelihood function can be expressed as L(0) =

1Py | x;, 0) where P(y; | x, 0)is the probability of observing a preventative

action score, y;, given a PHLT, x;, and where n is the number of observations [46].

The log-likelihood function was used to ensure the predicted probabilities are
always between 0 and 1 and for any non-linear relationships that may have been found
between the PHLf and preventative action score and is expressed as InL(0) =

L, InP(y; | x5,0). The optimization method used was the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [49]. The code and results are in Figure 18, where severity is

the PHL{, and response was the preventative action score.
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# Create a DataFrame
df = pd.DataFrame(data)

" Define the independent variable (predictor/PHLT)
nd the dependent variable (Preventative Action Score}''’

= df[['severity']]

= df["response’]

Fit the ordinal logistic regression model
model = OrderedModel(y, X, distr="logit") #Logit function
result = model.fit{methed="bfgs"') #Use Broyden-Fletcher-Goldfarb-5hanno
print(result.summary()}) #print summary

Optimization terminated successfully.
Current function value: 1.283428
Iterations: 17
Function evaluations: 18
Gradisnt evaluations: 13
OrderadModel Results

Dep. Variable: response  Log-Likelihood: -1288.3
Model: OrderadModel AIC: 2587.
Method: Maximum Likelihood BIC: 2611.
Date: Wed, 24 Jul 2824
Time: 21:24:14
Mo. Observations: 1866
Df Residuals: 1861
Df Model: 1

coef std err z P>z [@.825 8.975]
severity B.4911 a.887 £.621 8.868 8.328 B8.662
e/l -8.9644 a.1a8 -9.682 8.868 -1.161 -8.768
1/2 B.36828 @.838 21.13% 8.688 a.728 a.877
2/3 B.5389 @.863 8.537 a.688 8.415 @.663
3/4 B.9737 a.149 6.527 8.868 8.681 1.266

Figure 18. Logistic Regression Results

The coefficient for the PHLf was estimated at 0.4911 with a standard error of
0.087, yielding a z-value of 5.31 and a p-value that is statistically significant at 0.001
(<0.05). The results suggest that the increase in PHLf score did have a statistically
significant correlation with higher preventative action scores. Future work is still needed
to understand those cases with a PHLf of three or higher and it is possible that the model
suffers from under dispersion due to the low amount of incidents reviewed with a PHLf

of 3 or 4.

The methods used to model the relationship between the PHLf score, and the PAS
are outlined in Appendix B. pSIF Statistical Models. However, in this case, the PHLf
score was used as the predictor value and the PAS was defined as the target variable.

Table 15 shows some descriptive statistics of the case study data for the PHLf score and
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PAS. Figure 11 also shows the distribution of the PAS for each PHLf category, which is

useful in understanding how the institution has responded to incidents of varying

severity.
Table 14. Descriptive Statistics of Case Study Data for PHLf and PAS
PHLf PAS
Mean 0.82 1.18
Standard Deviation 0.68 0.85
Minimum Value 0 0
Maximum Value 3 4

Additionally, Figure 19 shows the code that was used to create GLM with Poisson
distribution model along with summary of the results. The model is simpler in that only
one variable, the PHLf sore, is used as the predictor for the target, PAS. This was done to
more easily change the coefficient to model distributions outside of what was found in

the case study.
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In [173]:

M X
¥

case_study_data[['PHLf_value']]
case_study data[ 'PAS']

# Add a constant to the model (intercept)

X = sm.add constant(X)

# Fit the Poisson regression model

model = sm.GLM(y, X, family=sm.families.Poisson()).fit()

# Print the summary

print('GLM Results w/ PHLT value as the sole predictor’, end="\n\n")
print(model.summary(), end="\n\n")

GLM Results w/ PHLf value as the sole predictor

Generalized Linear Model Regression Results

Dep. Variable:

1064

PAS  No. Observations:

Model: GLM  Df Residuals: 1062
Model Family: Poisson  Df Model: 1
Link Function: Log Scale: 1.0000
Method: IRLS  Log-Likelihood: -1355.5
Date: Wed, ©7 Aug 2024  Deviance: 791.73
Time: 17:49:37  Pearson chi2: 648.
No. Iterations: 4 Pseudo R-squ. (CS): 9.91980
Covariance Type: nonrcbust

coef std err z P>|z| [e.025 9.975]
const 0.0002 2.046 9.085 9.996 -9.091 9.891
PHLT value 0.1876 0.040 4.647 6.0806 0.188 9.267

Figure 19. GLM with Poisson Distribution Results

The results of comparing the LLF, AIC, and BIC are seen in Table 16. Note that
the values of each are much closer to each other when compared to the model used for
simulating the PHLf case study data in Table 14. This suggests that each model

comparatively fits the data similarly. Providing additional predictor variables may have

improved the fit but was intentionally not done to avoid over fitting of the data.

Table 15. Results of Both Models
GLM w/ Ordinal
Poisson Logistic
Regression
LLF -1354 -1283
AIC 2715 2581
BIC 2730 2615
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Similar scores for the LLF, AIC, and BIC also suggest that an additional method
should be used to test how well the model may simulate the results. Therefore, each
model was used to predict the PAS value based on the PHLf score of the case study data
and the mean absolute error (MAE) was used as a measure for accuracy of the predictions

[73]. The MAE is defined by the following equation:

VAE = Xisa lyi — %l
n
Where:
. y; 1s the predicted value, in this case the PAS predicted from the statistical
model.
o x;1s the actual value, in this case the actual PAS from the case study data.
° n is the number of predictions, in this case 1,064 as those were the values

from the case study.

The MAE was calculated for both the GLM with Poisson distribution and the
ordered model. The results in Table 16 and Figure 20 illustrate the results for both models
with the kernel density estimation displayed to better distinguish between the case study

data and the simulated data.

Table 16. Results of Both Models
GLM w/ Poisson  Ordinal Logistic =~ Absolute value of
Regression difference
MAE 0.988 0.866 0.122
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Figure 20. Simulated PAS results for both of the statistical models.

Both Table 16 and Figure 20 show that the ordered model is able to inform the
PAS value more than the GLM with Poisson distribution. The GLM with Poison
distribution had lower accuracy for a lower PAS, while the ordered model did not
produce any incidents with PAS of four, it overall fit the case study data more accurately.
Therefore, we can use the ordered model to simulate what the institutional response could

have been based on simulated data.

2.Simulated PAS Values for Several Scenarios

This section looks at simulating institutional response against several scenarios.
First the ideal scenario where the PHLf score perfectly informs the PAS, then the
simulated scenario based on the ordered model from before, a completely random
scenario, and an analysis of all three scenarios. From the case study data, it is known that
the average number of incidents in a given year were 291 incidents reported to the injury
and illness (I&I) program with the lowest being 184 incidents and the maximum being
491 in a given year. For this reason, 290 incidents were simulated using the pSIF model

to mimic the number of cases in a single random year.

a. Ideal Scenario: PHLf Perfectly Informs PAS

This scenario is not particularly interesting besides it being the ideal scenario. The

objective being that there is a perfect correlation between PHLf and PAS. Which is to say
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that a one-point increase in PHLf would result in a one-point increase in institutional
response. Figure 21 illustrates the scenario, and the following scenarios will follow

similar format in illustration.
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Figure 21. Ideal Scenario of PHLf and PAS

b. Modeled Response Scenario: Statistical Model Informs PAS

In the following scenario, the same PHLf data is used in the statistical modeling
of the case study data’s PAS values. Figure 22 illustrates the predicted PAS values, and
although it seems that the institutional response tends to have a higher response per PHLf
score, the difference between each incident PHLf and PAS shows the variance between
response. If a PHLf score is two and there is a PAS of three, the institution’s response
was higher than the PHLf score and it is possible that the response required more

resources. This is not necessarily a bad scenario, but if the difference between the PHLf
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score and PAS is negative, it is possible that the response was not impactful enough for

that specific incident.
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Figure 22. Modeled Scenario of PHLf and PAS

Table 18 shows the number of occurrences where the difference was a certain
value for the scenario. In incidents where the difference is three or greater could indicate
that the institutional has over responded to an incident that has a low PHLf score. This
presents an opportunity to focus resources on those incidents where the PAS score was
lower than the PHLf score. Especially since a difference of three would indicate a
response that affects several facilities or the whole institution for an incident with a PHLf

score of at most one. Inversely, incidents where a difference was lower than negative one
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present opportunity where the institution should have considered a higher response in an
attempt to mitigate the incident. This is especially true for those with score of negative
three, as this may suggest an exceptionally low institutional response for an incident that
at least had a moderate potential to have been a pSIF. Incidents where the difference is
negative ultimately present opportunities to mitigate pSIF and suggest instances where

the institutional PAS could have been higher to mitigate future instances of the incident.

Table 17. Difference of PAS and PHL{ for Modeled Scenario
Difference -4 -3 -2 -1 0 1 2 3 4
Number of 0 3 8 26 102 107 35 8 1

Occurrences

Percent of 0% 1% 2.8% 9.0% 35% 37% 12.1% 2.8% 0.3%
Total

c Random Response Scenario: Institutional Response is Random

The next scenario looks at the difference between PHLf and PAS if the PAS was
completely random. This scenario serves as a control to be able to compare the difference
between completely random institutional response and the ideal scenario. A random seed
was chosen to enhance the repeatability of this scenario. In this scenario, for each PHLf
score a random PAS value between 0 and 4 was assigned. Figure 23 illustrates this

scenario in similar fashion to the previous two scenarios.
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Figure 23. Random Scenario of PHLf and PAS

Table 18 shows the difference between PHLf and PAS for the random scenario.
Because the majority of PHLf values are zero, it is an expected result that the majority of
incidents in the random scenario led to a higher PAS score. Operationally, this scenario is
also not ideal as such extreme responses to incidents with minimal pSIF potential causes
a burden on allocated resources. However, in the random response there was a similar
number of occurrences where the PAS score was lower than the PHLf. The modeled
scenario showed 37 occurrences where the PAS score was below the PHLf whereas the
random scenario showed 31 occurrences. Operationally, these occurrences should be
minimized in order to mitigate incidents that had a pSIF potential. Next, an examination

of the case study in a similar fashion is done to see if any similar inferences can be made.
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Table 18. Difference of PAS and PHL{ for Modeled Scenario

Difference -4 -3 -2 -1 0 1 2 3 4

Number of 0 1 11 19 57 58 57 49 48
Occurrences

Percentof 0% 0.3% 3.8% 6.5% 19.7% 20% 19.7% 16.9% 13.1%
Total

d. Case Study Scenario

Figure 24 illustrates the PHLf, PAS, and difference from the case study. The case
study data shows that there were no instances where the difference between PAS and
PHLf were less than negative two. This shows that none of the incidents with a PHLf

score of three had a PAS of zero. Table 20 shows the difference between PAS and PHLf

for the case study.
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Figure 24. Case Study Scenario of PHLf and PAS
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Table 19. Difference of PAS and PHL{ for Modeled Scenario

Difference -4 -3 -2 -1 0 1 2 3 4

Number of 0 0 12 188 426 310 105 22 1
Occurrences

Percentof 0% 0% 1.1% 17.7% 40.0% 29.1% 99% 2.1% 0.1%
Total

F. LIMITATIONS OF PAS AND SCENARIOS

Three separate scenarios were created to model the PAS and the PHLf of those
scenarios. The ideal scenario was one in which the PHLf score matches the PAS.
Operationally, this scenario concludes that there is perfect correlation between the PHLf
of an incident and the PAS. The PAS is a measure of institutional response in the

scenario. However, there are some limitations to this approach.

The case study showed no instances of incidents with a PHLf score of four. This
is inherently a limitation of the sample that was taken. For this reason, a PHLf
distribution modeled after the case study data was used. There are instances where an
organization may want to mitigate risks that have a low probability to turn into a SIF
incident. This includes occupational hazards that affect the work population. For
example, facilities built with asbestos material may provide a minimal risk if there is
proper abatement and it would benefit any institution in mitigating those risks before
there is an increased potential for the material to deteriorate and become an increased
hazard risk. The abatement of this material is typically costly and could affect large work

populations.

Additionally, the scenario that is modeled from the case study data also showed
instances where the difference between the PAS and PHLf was negative three. Instances
where the difference was negative three were not found in the case study data. In fact, the
case study data suggests that there were 105 instances where the difference between the

PAS and PHLf were two. This suggests that there was a higher response to incidents that
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had a low potential to cause SIF. Although these situations can lead to mitigation of

occupational hazards, it is useful to keep in mind the allocation of resources.

Another limitation of the case study and these scenarios was that the actual
severity of the cases was not included. Ideally, actual severity should be reviewed to see
if the PAS correlates with the potential severity of the incidents. This may also explain
the higher response for some of the incidents from the case study. In instances where an
incident causes a SIF to occur, the model should be flexible enough to not penalize the

institution for a higher PAS.

Lastly, the PAS is only one aspect of response from an institution and does not
give a holistic view of the resources required for proper risk mitigation. Safety
management systems are integrated into the complete work process and implementation
of a general potential severity framework to other organizations should consider other
aspects of risk mitigation beyond the amount of people that are affected by the

mitigation.
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V. CONCLUSION AND RECOMMENDATIONS

One of the objectives for this thesis was to determine if the current injury and
illness (I&I) process at LLNL could be adapted to utilize a potential serious injury or
fatality (pSIF) framework. A case study was conducted to assess the feasibility using
historical LLNL data. The quality of a sample set of incidents was evaluated to assess
whether the current LLNL process captures the necessary data for a pSIF model. Since
over 86% of the incidents in a representative sample from 2007 to 2022 had sufficient
information in the case data elements, minimal changes would be needed to incorporate a

pSIF framework operationally.

The recommendations are to increase efforts in gathering information related to
both the root causes of incidents and hazard identification. Among the four criteria
reviewed for data quality, these two were found to be the lowest. LLNL has a rigorous
work planning process that would be best utilized in hazard identification. Efforts are
underway in looking at how to incorporate the work planning control in the &I process,

which would aid in hazards identification.

The case study included the creation of a job-aid for practitioners to utilize when
classifying incidents and determining the final potential hurt level (PHLf). Ideally,
practitioners would review a set of incidents to calibrate the largely qualitative
assessments needed for addressing the diverse range of hazards and controls present in a
research and development environment. From the over 1,000 cases reviewed for the case
study, only eight cases had a PHLf score of three and none were found to have a score of
four. Although this was expected, as serious injury or fatality (SIF) incidents are rare
occurrences, this provides a limited resource for performing tracking and trending of

these incident types.

Additionally, the case study also aimed to evaluate institutional responses by
qualitatively reviewing the impact of corrective actions recorded within the I&I process.
A review of incidents with a PHLf score of two identified 142 cases, accounting for

approximately 13% of the total incidents analyzed. The top three accident type
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categories—noise exposure, overexertion, and repetitive motion—comprised 62% of the
cases with a PHLf score of two. This finding highlights opportunities for improvement
and mitigation through engineered controls, such as noise suppression, and administrative

controls, like adjusting the frequency of work tasks to prevent repetitive motion injuries.

It is imperative to keep in mind that research institutions are constantly
repurposing equipment and lab space to meet changes in work scope. Preventative
actions in the form of work control are also essential for mitigating long-term
organizational risk. These considerations should inform institutional responses to
incidents, as significant policy changes can have lasting implications for work done in an

organization.

The institutional response, noted as the Preventative Action Score (PAS), to
injuries suggests that the higher the potential severity of the incident, the greater the
response, even without the implementation of the framework. However, the distribution
of PAS values was not consistently applied across the representative sample. This
suggests that a pSIF framework can improve organizational risk management by
providing a more consistent approach to incident response. Appendix C also highlights
how a pSIF framework could be generalized for other frameworks, offering organizations

a holistic view of their risk management.

The computational modeling of incidents and scenarios provides deeper insights
into improvements that a pSIF framework can facilitate as well as model scenarios not
scene in the representative sample. Three scenarios were modeled based on the average
number of injury and illness (I&I) incidents may occur in a given year. The
computational model found that scenarios where the difference between the PAS and
PHLf was less than negative one should be revisited to ensure that a proper institutional
response is provided. The model also provides an opportunity to further refine the PAS
and PHLf methodologies and to forecast institutional responses based on PHLf
distributions. The outcome of the computational model was compared to the results of the

case study and found that the modeled scenario underrepresented institutional response.
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The case study data showed that the PAS was typically higher than the PHLf
value for an incident. This meant that the institutional response to incidents typically used
more resources than initially expected. Although scenarios where the PAS exceeds the
PHLf are not necessarily adverse conditions, it may indicate instances where a less
resource intensive method of mitigation should be considered due to the probability of a
pSIF occurring. This approach may free up resources to address incidents with a PHLf

score of three or four, indicating a higher likelihood of causing a SIF.

A recommendation from the results is for organizations to use the classification of
incidents to inform resource allocation towards those with the greatest risk. When
developing metrics for pSIF implementation, one should consider the difference between
PAS and PHLf to identify opportunities for improving risk management. The modeled
scenario found that there were 31 instances where the PAS was less than the PHLS{,

indicating a possible suboptimal response from the institution.

Another recommendation is to view the pSIF framework as an integrated
approach to risk management that enhances organizational impact. This aids the
redistribution of resources across management systems, emphasizing integrated
improvement. With appropriate modifications, the pSIF framework can be implemented
to add value to integrated management systems. This approach would focus on a holistic

perspective to risk mitigation.

Modifications to the PAS are necessary to ensure alignment with organizational
resource allocation. Any significant changes within an organization present inherent risk
and implementing this framework is no exception. It requires an implementation plan,
additional training, and the comprehensive tracking and trending of incidents to inform
those with the highest organizational risk. Insufficient attention to lower severity
incidents may increase their frequency, potentially elevating overall organizational risk.
Additionally, there is a need for consensus on the thresholds for high severity incidents
and to agree on the use of incident classification to inform response and corrective

actions.
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For this reason, the scope of the thesis included the computational modeling of
relevant case studies, as well as modeling of the relationship between PHLf score and
PAS. The PAS is a generalized method for classifying institutional response. However,
the computational models developed were simplistic, which highlights opportunities for

greater improvement.

Further work is needed to validate the efficacy of the framework. Specifically,
addressing the limitation of the case study will require testing the model against various
DOE OPEX incidents [50]. This approach could prove an effective way to evaluate the
operational pSIF model against known incidents to ensure the thresholds for each
category are appropriate. This incident database includes environmental and security
incidents, providing an opportunity to test a generalized framework beyond safety as
described in Appendix C. The ability to test against larger datasets is crucial, especially
since higher severity incidents are rare occurrences across various management systems;

this was a clear limitation of the case study sample set.

Lastly, implementation of the framework and tracking of key performance
indicators are required to ensure maximum efficacy. This requires a clear understanding
of current institutional response to risk. Further research includes retrospective analysis
of incidents to create example scenarios for framework implementation. The scope of
national research laboratories are ever changing and the framework outlined can provide

an additional toolset in comprehensive risk management.
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APPENDIX A. EXAMPLE SCENARIO

The following is an example incident to show case how a proposed pSIF model
would work in operation. The scenario is not intended to represent any real events and
any resemblance to an actual incident or personal experience is purely coincidental. The
scenario is adapted from the case study performed but tailored more for a nuclear

operations research and development environment [15].

A. SCENARIO

“A laboratory technician working with inorganic compounds in a glovebox
noticed a strong odor during routine operations. The technician noticed a strong odor and
mucous membrane irritation during the operations, which regularly produces hydrogen
sulfide. The operations regularly produce hydrogen sulfide. The technician alerted others
in the area and warned them to leave immediately. A stop work was initiated after
informing the supervisor. The technician is transported to the on-site clinic and is tested
for chemical exposure. The safety team was notified to ensure safe reentry and to inspect
the glovebox. An industrial hygienist reviewed the work and assessed that the quantities
of material within the glovebox operations could have led to respiratory depression. After
inspection of the glovebox, it is noted that there was an improper seal from the gaskets
that had deteriorated over time, leading to the incident. Consequently, the gloveboxes in

the facility were inspected for leaks.”

B. DETERMINING FRAMEWORK VARIABLES

Using the job-aid in Figure 8, the first step is to determine what could have been
the potential hurt level worst-case (PHLwc) for the incident. A reasonable worst-case
includes a review of the quantity of hazardous materials and types of hazards. Given an
example of quantities where inadvertent chemical exposure could have led to some type
of respiratory depression or damage to the central nervous system may be possible. If the
main hazards from within the glovebox are sparking hazards and the chemical hazards

are secondary, this would also be reviewed at this stage. In this example an industrial
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hygienist that is comfortable and knowledgeable of the work occurring in the laboratory

assessed the hazards and assigns a PHLwc score of 3 (severe hurt) based on Table 5.

Next, the primary variable (V) is identified. This is where a review of possible
variables that would have contributed to the PHLwc score is considered. Possible
contributing variables include the amount of material used, body placement, training, or
ventilation system failure. The investigator concludes that the material used was the
primary variable, with a likelihood of the material being used leading to the worst-case

being around 50% of the time. This leads to a primary variable of “sometimes.”

The second variable required is the controls effectiveness (C), a qualitative
measure of hazard mitigation through controls. It is a holistic approach to all controls in
place at time of the incident, even if they were ineffective. In this case, this would include
items such as administrative controls like procedures, training, glovebox specifications,
alarms, and personal protective equipment. In this case, the glovebox as an engineered
control was ineffective. Using the V/C score matrix in Table 6, the value is determined to

be three.

With the V/C score and PHLwc determined, Table 7 is used to determine the final
potential hurt level (PHLf). The PHLf was then determined to be three, indicating that
there was a high potential for a serious injury or fatality and would warrant an elevated

response from the institution.

C. INSTITUTIONAL RESPONSE

For the framework to be effective, it is not only pertinent to evaluate incidents for
their PHLf score, but to respond effectively to the mitigation of such incidents with
higher scores. Because the example incident leads to a PHLf determination of three, it is

recommended that there is an institutional response of three or more in risk mitigation.

The response would most likely include a root cause to determine mitigation. In
the example, it is possible that there were modifications to the glovebox or perhaps the

frequency of testing glovebox for those operations needs to be reevaluated. In the
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incident report, it is stated that the gloveboxes in the facility were inspected, which would

be classified as a PAS of three based on Table 8.

If the operations occurring within the glove box lead to the failure in engineered
control and if warranted could be escalated to a score of 4. This response may look like
changes to policy affecting current and future operations. The proactive risk mitigation

approach considers the precursors that led to the event.
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APPENDIX B. ALTERNATE STATISTICAL METHODS TESTED

The following appendix explains the other two methods of statistical modeling
that engaged in testing throughout the thesis, along with the results. The evaluation and
testing of these statistical models were important in informing the most ideal statistical

modeling method for the computational model.

A. GENERALIZED LINEAR MODEL WITH A POISSON DISTRIBUTION

GLM with a Poisson distribution is used where the response to a predictor
variable is the count of incidents that occurred within a certain amount of time. Poisson
distributions can be used to calculate the number of rare events, such as radioactive
decay, uncertainty analysis, and safety. Understanding these incidents made it a clear
choice to attempt to model the number of events in each category over a period of time,
perfect for simulating decades worth of data. However, Poisson distributions have an
assumption that the mean and the variance of the data is equal. For the case study, this
would mean that if over the course of five years the average number of incidents with a
PHLT score of four was five, there would be a variance of five over the same period.
Because fatalities at LLNL have been so rare and the case study found no incidents with a
PHLT score of four, it is possible that under dispersion may occur. The model is defined

with the following equation:

log(E[YPHLf | Xprrwe Xv, XC'XVCD =

BrurwcXpuiwe + BvXv + BcXc + BvcXve + Bi [46], [47].
Where:

. log(E[ Ypure | Xpurwe Xv» X, Xve 1) is the log of the expected count of

the responses given the predictor variables.

o BruLweXpaLwe T BvXv + BcXc + BvcXvyc represents the product of the
coefficients, f-value, and the predictor value, X, that defines the threshold

for a one-unit change for the PHLf score.
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o B; is the constant that defines when the PHLf score, Ypyys, is zero.

Similarly to the ordinal logistic regression model, the generalized linear model
with a Poisson distribution uses MLE to find the best fit. An explanation of how MLE is
used and how it is different from the method of ordinary least squares in linear regression
is explained in the previous section, Section A. 1. Ordinal Logistic Regression Model. An
important distinction of generalized linear models is that it allows the response variable
to have distributions different from typical normal distributions [46]. The fact that
typically injury and illness incidents occur at a time independently of other incidents is
also an assumption of the Poisson distribution. Poisson is also a discrete probability
distribution, which means in this case there are no instances of the negative or partial
incident. An incident either occurred or did not. The Poisson distribution of the predictor

variables is defined by the following equation:

MXe=h
p(X; ) =25 [46], [62].
Where:
o X, is the predictor variables in the model such as Xpyrwe Xv, Xc, Xvc-
J A represents the shape parameter indicating the average number of events
and the variance of that value.
o x is a non-negative integer and the count of PHLf scores in each category.

The Poisson equation above explains the probability that the random variables
from above take on a certain value. The shape parameter, A, is useful in understanding
how the data is skewed and has been used to explain injuries in military operations [63]
and has been cited as being dependable for analysis of traffic accidents [64]. Making it an

ideal distribution to simulate incidents.

B. ORDINAL LOGISTIC REGRESSION MODEL

The ordinal logistic regression technique is common for data sets where the data

is categorical and follows an order, such as the Likert scales type questions seen on
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satisfaction surveys. Another important assumption about this method is that the ranking
of each level does not mean that the intervals between the ranks are equal. For example, a
PHLwc of one may indicate a broken arm, but a PHLwc of thee may indicate an
amputation. An amputation is not compared by proportions of broken arms. The
regression method uses the predictor variables V, C, and V/C, to predict the probability
that the PHLf falls into a specific category. The model is defined with the following

equation:

P(YpyLr<j
log ( _( L P-HLf) ) = BruiwcXpHiwe T BvXv + BcXc + BvcXve + a; [47]
1-P(YpuLs<jpHLf)

Where:

. log ( P(VprLrsipiine) ) is the log of the probability that the PHLf score,

1-P(YpHLFSIPHLE)
YpuLs, 18 a score of jpyrs or lower and is also known as the logit function

[47].

o BruLweXpHLwe T BvXv + BcXc + BvcXvc represents the product of the
coefficients, f-value, and the predictor value, X, which defines the

threshold for a one-unit change, and the predictor variables, X.

° a; 1s a constant that will be used to define the threshold between

categorical scores of PHLT.

Similar to how linear regression uses a method of ordinary least squares, logistic
regression uses the maximum likelihood estimation to find the best fit. The model works
by adjusting the coefficients until the likelihood that the series of predictor variables
results in the target outcome is maximized. There are several methods that can be used to
iteratively optimize the algorithm to solve the equation. Among these, the BFGS [49]
method was used and is commonly used for optimization problems. BFGS optimization
works by approximating the second-order partial derivatives of the function to get a
Hessian matrix. The matrix is refined at each iteration until the local extrema of the

function is found. The outcome of the regression model is therefore the probabilities of
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the output for each value of the predictor variables [47]. However, another regression

model was explored to simulate the data.

Now that there are two models, they can be leveraged to create simulations of the
case study data. Because the case study is based on a random sample of over ten years, it
may be a good indicator of what the distribution of injury and illness cases look like and
can be used to synthesize data of various distributions. For the thesis, the goal is also to
synthesize the case study data to model institutional response for the development of
useful metrics in the case of framework implementation. Creating these metrics is
important in tracking framework influence in the organization [56]. The next section will

go into detail on simulating the case study data for modeling implementation.

The models provide the statistical parameters to provide the distribution of PHLf
scores. The results showed that PHLf, regardless of model, is mostly influenced by the
PHLwec and the V/C value. Which is to say that there is no statistical correlation between
the V and C score. For this reason, the PHLf and V/C value will be used to generate the
synthetic data in question. Figure 25 shows the code that was used to simulate the data

from the ordinal logistic regression model.

Simulating results using the OrderedModel

In [48]: M def simulate data(sample size, beta PHLwc, beta VC_walue, thresholds, mean_PHLwc, std_PHLwc, mean VC_value, std_VC_value):
# Using the mean and standard deviation from the model
PHLwc_values = np.random.normal({loc=mean_PHLwc, scale=std_PHLwc, sizessample_size)
VC_value_values = np.random.normal(loc=mean_VC_value, scale=std_VC_value, size=sample_size)

# Calculate the linear predictor values
linear_predictor = beta PHLwc * PHLwc_values + beta VC wvalue * VC_value values

# Calculate the cumulative probabilities for each threshold
cumulative_probs = np.array([expit(linear_predictor - threshold) for threshold in thresholds])

# Calculate the probabilities for each category

probs = np.diff(np.vstack([np.zeros(linear_predictor.shape), cumulative_probs, np.ones(linear_predictor.shape)]), axis=8)
probs = np.clip(probs, @, 1)

probs = probs / probs.sum(axis=0)

# Generate values based on the probabilities
simulated PHLf_values = np.array([np.random.choice(len(thresholds) + 1, p=prob) for prob in probs.T])

# Apply constraints to ensure values do not exceed framework values
PHLwc_values = np.round(PHLwc_values).astype(int)
VC_value_values = np.round(VC_value_values).astype(int)
return pd.DataFrame({
"PHLwc': PHLwc_values,
'VC_value': VC_value_values,
"PHL value': simulated PHLT values
b9}

Figure 25. Code Snippet to Generate Synthetic Data for the Ordinal Logistic
Regression Model
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The function takes the various f-value of the two coefficients that had the most
influence in determining the PHLf score, its thresholds, the mean, and standard deviation
of the coefficients. The sample size variable is used to know the amount of simulated
values, or PHLf scores, to generate. The thresholds are used to categorize the generated
values. An ordinal logistic regression does not have an assumption of the distribution of
the values. Because a Poisson distribution was not assumed, a normal distribution was
used. The normal distribution is defined by the means and standard deviations from the

model in order to generate the characteristics of the predictor variables in the model.

The linear predictor is used to create a weighted sum of generated predictor
values. In this manner, the function computes the relationship between these values and
the outcome. However, these linear predictor values must be transformed into a

cumulative probability to be deterministic. This is done using the logistic sigmoid

function, defined as o (x) =f used as SciPy’s Expit function [69]. Using the

ex ’
probabilities for each category, the code then ensures that the probability will be within
zero and one. This is to ensure that the probability is possible. Then the values are
generated based on the probabilities and the PHLwc scores and V/C scores are converted
from continuous values to discrete integers. The simulated values were then saved in a
Pandas data frame and the results for simulated values of 900, 1,000, and 1,100 cases can

be seen in Figure 26. An important thing to note is that a set value for the random seed

was used to get repeatable results.

An important feature to note is that although the PHLwc and V/C distribution is
similar to that of the original case study, the distribution in PHLf is biased on the lower
and upper bounds of the values from the case study. This is clearly problematic in terms
of simulating the PHLTf distribution for modeling changes in distribution. For this reason,
an attempt was made to use the GLM with Poisson distribution to see if a more similar
distribution could be simulated. It is possible that there were several issues with the
model. One of which was that the ordinal logistic regression model could be overfitting
the data. This also explains why there is no coefficient for where the PHLf value was
four. However, because the Poisson distribution is specifically for counts of events, it

may be able to better simulate various distributions of injury and illness data.
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Figure 26. Results of Ordered Model PHLf Simulation

The results of the GLM with Poisson distribution show that there is a positive
correlation between PHLf and both the PHLwc and V/C score. Similarly to the ordinal
logistic regression model, it seemed that the values of V and C showed less of a

statistically significant correlation. Although the LLF, AIC, and BIC of both models were
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significantly different, it is possible that the Poisson distribution may be more robust
when simulating the data. Figure 24 shows the code that was used to generate simulated
results. Like the function that was created to simulate data from the ordinal logistic
regression model, the GLM with Poisson distribution uses the f-values, mean, and

standard deviation of the predictor variables.

Created simulated results based off the Poission GLM model

Next the distribution results are used as a way to create simulated data

In [11]: M # Function that generates simulated sample sizes based on the distribution of the model or given beta values
def simulate_data(sample_size, beta_PHLwc, beta_wC_value, mean_PHLwc, std_PHLwc, mean_VC_value, std_vC_value):
# Using the mean and standard deviation from the model
PHLwc_values = np.random.normal(loc=mean_PHLwc, scale=std_PHLwc, size=sample size)
VC_value values = np.random.normal(loc=mean_VC_value, scale=std VC_value, size=sample_size)

# Calculate the Lambda for the predictor values
lambda_values = np.exp(intercept + beta_PHLwc * PHLwc_values + beta_vC_value * vC_value_values)

# Generate Poisson-distributed outcomes
simulated_PHLf_values = np.random.poisson(lam=1lambda_values)

# # Apply constraints to ensure values do not exceed framework values
# VC value values = np.clip(vC value values,e,4)
# PHLwc_values = np.clip(PHLwc values,@,4)

PHLwc_values = np.round(PHLwc_values).astype(int)

VC_value values = np.round(VC_value_values).astype(int)

simulated PHLf_values = np.round(simulated PHLf values).astype(int)
#Apply constraints only to simulated PHLf values
simulated PHLf values = np.clip(simulated PHLf values, @, 4)

return pd.DataFrame({
"PHLWc": PHLwc_values,
'VC_value': VC_value_values,
"PHLT_value': simulated_PHLf_values

b

Figure 27. Code Snippet to Generate Synthetic Data for the Ordinal Logistic
Regression Model

However, an important distinction is that the GLM with Poisson distribution
generates a A-value which defines the shape parameter of the Poisson-distributed
outcomes. An explanation of the equation A; = exp(B0 + BpurweXpuLwei T BrXy i +
BeXci + BVCXVC_i) is derived in Appendix A. Section A. The shape parameter takes the
place of the use of the thresholds of the ordinal logistic regression model and the function
then proceeds to generate the values based on the discrete probability. Additionally,
because the shape parameter is exponentiated, the lambda value is always positive. Not
only is this a requirement of the Poisson distribution, but this also reflects an important
assumption that there are no such thing as negative incidents. The values of PHLwc and

V/C score at this point are floats because they are generated randomly based on the mean
77



and standard deviation of the original model. For this reason, they are binned into their
nearest integer and the simulated PHLf values are limited to only produce cases with a
value between zero and four to meet the constraints of the framework. Again, the random
values are generated using a known seed for repeatability. The simulated values were
then saved in a Pandas data frame and the results for simulated values of 900, 1,000, and

1,100 incidents can be seen in Figure 28.

The results of the GLM with Poisson distribution were much more favorable than
the simulated values generated from the ordinal logistic regression model. Both in terms
of fitting against the case study data and in terms of the ability to adjust parameters to
simulate different parameters. For this reason, the GLM with Poisson distribution was
chosen and should be considered when simulating various distributions of the data. Next
the focus will be on simulating institutional response to generate metrics for use in an

operational setting.
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Figure 28. Results of the GLM with Poisson Distribution PHLf Simulation
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APPENDIX C. MANAGEMENT SYSTEMS

The Livermore site has environmental and occupational health and safety
management systems in place to provide support for protecting its workers, the public,
and environmental stewardship [21]. It is imperative that the proposed model live within
this management system to be effective. It achieves this through an integrated
management system approach that considers the International Organization for
Standardization’s (ISO) 14001: Environmental Management Systems [22], and ISO
45001: Occupational Health and Safety Management System (OHSMS) [23]. Both ISO
standards require and emphasize continuous improvement, evaluation, and risk mitigation

to minimize adverse environmental and occupational health and safety risks.

The framework of the case study is meant to demonstrate how to encompass a
continuous improvement philosophy in a way that can mitigate high-severity adverse
incidents across management systems. A look at the framework and it’s fit for purpose
against other management systems is discussed in later chapters. The overlap between
ISO standards also provides additional structure for the framework to be applicable
outside of environment and health. Such conceptual overlap may benefit concerns in

quality or security management systems.

A. IMPLICATIONS OF THE CASE STUDY BEYOND HEALTH AND
SAFETY

Frameworks that are system agnostic provide a flexible, scalable, and general
solution that can be adopted across an organization. For instance, LLNL integrates the
ISO 45001 [23] and ISO 14001 [22] standards to simultaneously manage occupational
health and safety alongside environmental management. The integration raises insights
on how lessons learned from a pSIF framework may be applied beyond occupational
health and safety. For this reason, the following sections highlight possible implications

across various management systems.

81



B. IMPLICATIONS FOR ENVIRONMENTAL MANAGEMENT

LLNL follows ISO 14001 [22] for guidance on managing its environmental
management system. One of the guiding principles of any environmental management
system is its commitment to continuous improvement. Especially doing so in manner that
mitigates any negative impact to the environment. DOE national research laboratories are
required to follow strict federal, state, and local regulations ranging from executive orders
to voluntary obligations. This is all in part of ensuring federal agencies consider the
potential environmental impacts in accordance with the National Environmental Policy

Act.

In order to correlate a pSIF framework to another type of system, an
understanding of what constitutes a high severity incident for that system must be

understood.

Environmental incidents can impact organizations in several ways. This includes
monetary fines and penalties for non-compliance. Unlike private entities, national
research laboratories cannot recuperate losses due to environmental non-compliance.
Severe environmental incidents may lead to a degradation in public perception and

community relations. As well as leading to increased scrutiny from federal oversight.

For example, Lawrence Livermore National Laboratory is surrounded by a lively
community and several wineries. An incident related to the release of toxic material into
the water could create irreparable damage to the laboratory’s reputation. Understanding
the implications of various incident types can facilitate a crosswalk between occupational

health and safety and environmental management, as illustrated in Figure 29.
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Figure 29. Incident Overlap in Occupational Health and Safety and
Environmental

The framework can then be used to evaluate incidents based on overlapping
repercussions, while still recognizing some of the unique implications of environmental
incidents and their varying severity. A key difference between injury and illness incidents
and environmental incidents is that while many minor incidents may not increase the
severity of impact to an individual, the same cannot be said of environmental incidents.
For example, the release of smaller quantities of hazardous materials to the environment

can eventually lead to larger environmental impact.

In contrast, multiple minor injuries would not necessarily lead to a severe
outcome. Although multiple strains on muscle may cause irreparable damage it is
unlikely that strains would lead to amputation of a limb, except under extreme
circumstance. The pSIF model also assumes that a percentage of near misses could
contribute to more significant events. This has not been verified for smaller
environmental impacts leading to more significant environmental impacts and may
require a similar case study to be done. Although at least one study focused on China’s

chemical industry looked at a general safety triangle in terms of occupational health and
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safety, environmental, and even quality [72]. This may imply that the overlap and

framework may apply to other management systems.

C. IMPLICATIONS FOR QUALITY MANAGEMENT

In addition to ISO 14001 [22] and ISO 45001 [23], LLNL also adheres to ISO
9001 for guidance on managing its Quality Management System (QMS). Similarly to the
other management system standards, ISO 9001 emphasizes the principle of continuous
improvement. A QMS is responsible for having a system in place to documents
processes, procedures, and responsibilities necessary to achieve operational objectives.
Given LLNL’s mission to support national security research; ranging from stockpile
stewardship to fundamental science discovery — the implementation of a QMS can
streamline operations, reduce costs, and drive long-term success in meeting contractual

agreements.

Understanding the implications of incidents regarding quality can enhance how a
pSIF framework impacts QMS and mission objectives. A common consequence of
adverse quality incidents is the Cost of Poor Quality (COPQ). COPQ refers to the cost
associated when processes are inefficient or produce subpar results [53]. From a mission
perspective, catastrophic failures can impact product and service quality leading to far-
reaching impacts across the complex. This is especially important as LLNL is the only
DOE national research facility that relies on other facilities within the complex to meet
research objectives. Such failures may also result in occupational health and safety

incidents as well as not meeting mission or contractual obligations.

National research laboratories, such as LLNL, have strong brand recognition that
could influence federal and public perception institutional performance. As illustrated in
Figure 30, there is an overlap between negative outcomes related to occupational health

and safety and quality.
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Figure 30. Incident Overlap in Occupational Health and Safety and Quality

Quality management encompasses broad operational processes and for this
reason, it is crucial to understand how quality affects both Occupational Health and
Safety Management Systems (OHSMS) and Environmental Management Systems
(EMS). For example, in review of an incident that lead to an inadvertent dose in radiation
could stem from a failure in the management of the quality of a process that lead to
inadequate engineered control to prevent it. Thus, systems quality has far-reaching

relevancy across all management systems, not just in the production of widgets.

D. IMPLICATIONS FOR SECURITY

Lastly, there was interest in seeing if the pSIF framework could apply to security.
A system typically not associated with OHSMS and EMS. Although security is a broad
topic that can encompass information security, physical security, and national security.
Understanding the implications of high severity incidents in a comprehensive manner can
facilitate the implementation of a pSIF framework across these areas. This includes the

overlap as a consequence of the incidents from each system.
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Security management systems typically integrate people, processes, hardware,
and software to apply a risk management strategy to mitigate incidents with a negative
outcome. The DOE considers quality, environmental, health and safety, and security in its
operational excellence lessons learned [50]. The interconnectedness in Figure 31
illustrates the overlapping consequences between these systems. Security has similarities
to OHSMS and EMS in that both management systems must mitigate operational risk,
perform incident response, and ensure compliance with federal, state, and local
regulations. For these reasons, a pSIF framework may have success in being adapted to
various security management frameworks. However, in this instance, security is a general
field of study, where operationally, security may encompass physical security, cyber

security, and other aspects that each have specific ways to gauge organizational risk.
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Figure 31. Incident Overlap in Occupational Health and Safety and Broad
Security Management

E. OVERARCHING SIMILARITIES IN MANAGEMENT SYSTEMS

By examining the lasting implications of high-severity incidents across different

management systems, LLNL can enhance system integration and performance. The
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International Organization for Standardization (ISO) released a handbook in 2018 on the
integrated use of management system standards, [54] which influenced the expansion of
the pSIF framework to encompass multiple management systems. LLNL has already
started efforts in creating an integrated management system that combines OHSMS and
EMS. There has also been institutional interest in understanding how the

interconnectedness of these management systems can enhance operational excellence.

For clarity, Figure 32 synthesizes Figures 13—15 and illustrates overlap in incident
outcome between the management systems discussed in Subsections 1-3. Effective post-
incident classification based on their overall severity can aid in continuous improvement

of these systems.

Lastly, integrated management systems present opportunities for increased
efficiency within organizations. For example, a nuclear power plant in East China sighted
that implementing an integrated management system assisted in passing multiple
certifications and cited reduction in bureaucracies, management reviews, and corrective
and preventative actions [55]. The pSIF framework aims in improving corrective and
preventative actions, and its adoption across management systems may shift focus from
isolated deficiencies to comprehensive system improvements. Siloed management

systems can therefore have a holistic approach to risk management.
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Figure 32. Overlap Between Several Management Systems and Incident
Severity

The concept of the “worst-case scenario” that institutes the highest level of hurt
level can then be reframed by the “highest level of incident severity,” dependent on the
management system involved. Table 20 presents various examples of proposed incident
severity level definitions, while maintaining the structure of the original pSIF frameworks
used in the LLNL case study [15]. Additionally, Figure 33 shows a modified job aid for a

general approach to a potential severity incident framework.

While a generalized approach to the potential severity framework brings a holistic
approach to risk mitigation in an organization, it presents opportunities for confusion in
terms of institutional response. But it is still important to recognize that incidents in other
management systems may have contributing factors that could escalate their potential
severity. This is an underlying assumption of the pSIF framework. For example, if an

organization breaks up its management systems across the institution to various
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directorates or departments, the roles and responsibilities may create an issue of

fragmented responsibilities. This has the potential to lead to diminished accountability in

incident response [52].

Incident
Occurs

Worst-Case Most
Probable
Scenario

v

Moderate Severity Minor Severity
(2) (1)

Primary Variable
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Often Sometimes Rarely

Controls
Effectiveness (C)

Controls may Some controls in
reduce severity, place ineffective
but not prevent or inconsistently

worst-case applied

Sufficient controls
likely prevents
worst-case

Thorough controls
always effective

VIC Score

Score

e Incident Severity

Figure 33. Modified Job Aid for High Severity Incidents
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To address this challenge, it requires consistency in decision making,
organizational priorities, and resource utilization. A holistic approach to an integrated
approach is also a benefit of integrated management systems [54]. However, there are
limitations in adopting a graded approach to the response to high-severity events

discussed in the conclusion and recommendation section of the thesis.

Additionally, redundancy in incident response can lead to a lack of accountability.
To mitigate this, it is recommended to establish cross-functional teams for decision
making [54]. From an operational perspective, this may include having an incident
severity response team in which various management systems are represented. The team
would evaluate incidents to determine potential severity of an incident. While this
collaborative approach allows each management system to implement its own mitigation
strategies, it still requires top management to approve final decisions. This is especially

important in overlap in preventative action determinations.

Top
Management

1 Division in
I Res ponsibilities

Potential Severity
of Incident

Occupational |
Health and Safety

Environmental | Quality | Security

Cross Functional
Incident Response
Team

Figure 34. Cross Functional Incident Response Team
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A holistic approach to risk management is often necessary due to the overlap in
risk to the organization [56]. Siloing of the risk may continue to create fragmented
responsibilities. Implementing consistent methodology across management systems
reduces the likelihood of unforeseen risks emerging. Figure 18 illustrates individual
potential severity impacts within the cross functional team. However, achieving
consistency could also be a challenge in a newly formed cross-functional incident
severity response team. Consistent and effective risk assessment is always a concern and
especially when qualitative measures are employed in risk management [56]. These
topics are revisited in the conclusion, although overarching themes expand beyond the

theme of this thesis.
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Table 20.

Example of Potential Severity by Management Systems

Incident  Definition Occupational Environmental Quality Examples  Security
Severity Health and Safety ~ Examples Examples
Level Examples
Highest Permanent - Fatality or Multiple - Large scale - Inability to - Theft of
Severity reputational damage. Fatalities dispersal of complete mission nuclear
“4) Significant disruption hazardous materials critical procedures materials
to operations.
High Significant damage to - Amputation - Release of - Critical process - Breach of
Severity reputation. Major - Loss / impairment  hazardous gas failure affecting sensitive
A disruption to of organ functions above regulatory multiple systems information
operations. - Severe to complete  limits
loss of hearing
Moderate Noticeable damage to - Fractures, loss of - Temporary - Procurement of - Intentional
Severity reputation with tooth/teeth increase in low-quality breach of
2) impacted operational - Partial / single digit emission within materials security
capabilities available.  amputations regulatory limits protocols
- Moderate hearing
loss
Minor Minimal reputational - Minor lacerations - Minor spill of - Process deviation - Misplaced ID
Severity damage with little to that bleed freely non-hazardous that lowers quality ~ badge without
(1) no disruption to - Confirmed slight to material of measurements unauthorized
operational mild hearing loss access attempt
capabilities. - Mild corneal
abrasion
No No risk to reputation N/A N/A N/A
Severity or disrupt operations.
0)
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