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ABSTRACT 

 High-severity events, such as serious injuries or fatalities, pose significant risks to 

workers, the environment, national security, and the reputation of national research 

laboratories, such as Lawrence Livermore National Laboratory (LLNL). A case study of 

1,081 injury and illness cases was performed to assess the feasibility of implementing a 

framework to mitigate potential serious injuries or fatalities (pSIF) at LLNL. Review of 

the cases data quality showed that >86% of incidents had sufficient information to adopt 

the framework at LLNL. 

 Additionally, the case study reviewed institutional responses to the incidents. A 

computational model was developed to simulate pSIF incident distributions to deal with 

limitations from the case study, as well as to simulate institutional response. The findings 

concluded that while pSIF incidents were rare (<1% of total cases), the framework can 

improve organizational risk management by providing a consistent approach to incident 

response. It also suggests that resource allocation should focus on the highest risk areas, 

including noise exposure, overexertion, and repetitive motion. The computational model 

and framework offers a structured approach to reduce pSIF incidents, ultimately 

contributing to a safer research environment at LLNL. Although implementing the 

framework can enhance risk management, it requires commitment to quality data 

collection, incident classification, and integrated management systems for maximum 

efficacy. 
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I. INTRODUCTION 

The Department of Energy (DOE) plays a critical role in ensuring security of the 

United States by addressing “energy, environmental, and nuclear challenges through 

science and technology solutions” [1]. Work of this nature involves cutting edge science 

and experimentation with often highly hazardous or catastrophic consequences if not 

performed safely. Given the proximity of LLNL to the community of Livermore, 

California, these consequences are magnified in the minds of residents and local officials 

out of concern for public safety and environmental protection. Consequently, it is 

imperative for LLNL to operate with utmost safety and aggressively implement controls 

to ensure workers are protected and public confidence is maintained. This thesis explores 

the efforts at Lawrence Livermore National Laboratory (LLNL) to mitigate high-severity 

incidents that pose risks to worker safety, the environment, and national security.  

The focus of this thesis is on an operational framework designed to categorize the 

potential severity of occupational injuries and illnesses following incidents. Chapter I 

outlines the parameters of a case study that was conducted and highlights key 

occupational health and safety theories that have shaped safety management systems.  

Subsequently, Chapter II details the methods and research associated with the 

case study. An evaluation of the data quality regarding incidents was conducted to 

determine the feasibility of a model focused on potential serious injuries or fatalities 

(pSIF) at LLNL. Chapter III discusses any noteworthy results from the case study as well 

as the limitations relevant to the creation of a computational model of the framework.  

Chapter IV provides an overview of a computational model developed to simulate 

incident distributions from the case study, addressing limitations of the representative 

sample to better understand the pSIF model and its operational impact. Additionally, the 

institution’s responses to the incidents were modeled to identify opportunities for 

improvement in the case of framework implementation. The overarching framework 

proposed implements pSIF classification of incidents and considers their potential 

severity to inform institutional response based on those classifications. 
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Finally, Chapter V concludes with remarks on framework implementation and 

further research needed to address limitations of both the case study and the overarching 

framework. Understanding these constraints through the lens of the case study’s context 

is crucial for interpreting relevant findings. Figure 1 illustrates how evaluation of the 

pSIF model feasibility at LLNL, evaluation of incident response, and the opportunity for 

performance improvement are used to inform framework evaluation at LLNL.  

 
Figure 1. Steps Required for Framework Evaluation 

A. IMPORTANCE OF INCIDENT MITIGATION 

Public perception could quickly change in the event of an accident that 

permanently maims a worker. One notable incident involves Cecil Kelly, a chemical 
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operator who was irradiated after a tank containing plutonium-239 dissolved in a 

chemical reagent. This lead to the release of nuclear energy, irradiating the operator and 

resulting in death within 35 hours of the incident [3]. Incidents involving criticality or 

other nuclear operations would not be tolerated by the public, especially if it were found 

to be completely preventable. The framework proposed is aimed to mitigate pSIF 

incidents through post-incident evaluation of hazards, controls, and likelihood of less 

severe incidents. Understanding the mission of LLNL allows a better understanding of 

why this framework is both useful and challenging to implement. 

The mission of LLNL is broad and requires a multidisciplinary approach to its 

science and technology development, which involves taking on risk. As such, LLNL has 

core competencies in various fields of studies such as chemical, explosives, laser, 

nuclear, and emerging technologies [5]. Each core competency introduces a spectrum of 

hazards that necessitates a commitment from the laboratory to protect the environment, 

workers, and the public, requiring an integrated safety management system capable of 

identifying hazards and risks. Additionally, it entails various other management systems 

to aid in the completion of work, such as quality, environmental, and security. 

A lapse in any of these areas could lead to a high severity incident affecting the 

health and safety of workers and the surrounding community. Such incidents can cause 

irreparable harm to individuals and their well-being, which in turn can undermine public 

trust in the responsibilities of the DOE and other national laboratories. This challenge is 

not unique; the DOE, like many organizations, must balance its operational needs with 

ensuring safe conduct of work.  

Private industry and government agencies have a vested interest in not only 

mitigating adverse incidents, but also preventing pSIF incidents from occurring 

altogether. A risk management model can be particularly useful in this context. For 

example, the Navy regularly performs detailed analyses of flight mishaps, and the Naval 

Postgraduate School has conducted thesis work on correlation analysis of aviation 

mishaps as recently as 2023 to track and trend precursors or indicators [6]. Industries 

across the U.S. have invested tremendous resources in mitigating and preventing 

operational mishaps. The FAA has touted a 95% decrease in commercial aviation 
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fatalities using a comprehensive and risk-based safety oversight process involving many 

facets of safety management and compliance [7]. Therefore, it is imperative that LLNL 

implement a framework focusing on pSIF to supplement its current methods. By doing 

so, LLNL may prevent pSIF incidents from occurring and continuously improve the 

performance of its safety management system. 

B. BACKGROUND ON HEINRICH’S SAFETY TRIANGLE 

There are various analytical approaches that have been proposed over the years, 

but one that still holds value in the health and safety community is the work that was 

done by Herbert William Heinrich in the 1930s. The foundational concept now known as 

Heinrich’s Safety Triangle was quintessential in relating the occurrence of serious 

injuries and fatalities (SIF) proportional to a larger number of minor accidents, near 

misses, and unsafe acts [8]. Figure 2 illustrates a simplified Heinrich safety triangle with 

three categories, and although it was originally developed to relate the number of 

incidents at various severity levels, these distributions cannot be generalized to a 

particular industry and are often adjusted by industry [9], [10]. For this reason, the model 

is now largely used to describe the phenomenon that there is generally a larger amount of 

lower severity incidents and a much smaller amount of SIF incidents with no set ratio 

between severity. This theory still forms the conceptual basis of many organizations’ 

safety management systems, although each level of the triangle may be interpreted 

differently.  
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Figure 2. Heinrich’s Safety Triangle Displaying Three Major Categories. 

Adapted from [8].  

There has been a general decline in workplace injuries and illnesses over the years 

as efforts have been made to reduce unsafe acts, near misses, and minor injuries [11]. 

However, the same cannot be said about the rate of occupational fatalities illustrated in 

Figure 3 [11]. This is contrary to the Heinrich principle, suggesting that other factors or 

variables may be causing the SIFs to occur. For this reason, improvements in safety 

management systems based on this theory are necessary to better understand those other 

factors or variables in order to achieve the objective of preventing SIF incidents from 

occurring. 
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Figure 3. Occupational Injury and Illness Rates and Fatal Work Injuries. 

Adapted from [11].  

C. PSIF MODELS IN PRIVATE INDUSTRY  

Recently, there has been interest in private industry entities looking to mitigate 

SIF incidents. The Cambell Institute found that incidents had unique precursors to 

determine an incident’s potential to become a SIF incident [4]. Additionally, the 

importance of implementing a method of reporting and analysis has been discussed as a 

topic of laboratory safety reforms in journals [12]. The case study highlighted in this 

thesis leveraged aspects of several models and is the majority focus of this work.  

An important distinction between a model that looks at potential severity of 

events and Heinrich’s Safety Triangle is that not all near misses or unsafe acts have equal 

correlation to a SIF. This distinction highlights the need to differentiate between events 

based on a pSIF classification model. However, this pSIF model must be accompanied by 

an adequate institutional response to create an effective framework.  
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Resources must be adequately allocated, as implementation of high-cost 

mitigation strategies may not reduce the number of SIF events. The importance extends 

beyond chemical laboratories and extends to the oil and gas industry. ExxonMobil’s 

“Mining the Diamond” initiative examines the well-known safety triangle to focus on 

critical events based on its potential as opposed to the actual hurt level of the incident 

[13], [14]. To account for potential outcome of an incident, the safety management 

system must incorporate additional information for tracking and trending purposes. 

Figure 4 illustrates the shift in focus from medical treatment to identifying precursors that 

could result in a pSIF. Those incidents with SIF precursors should then be the focus of 

any institutional response. 

 
Figure 4. Shift from the Heinrich Safety Triangle to a Potential Severity 

Model. Source: [15]. 

The Edison Electric Institute (EEI) Safety Classification and Learning (SCL) 

model is used as a tool to define safety incidents to redirect attention from lower-severity 

events to those that could have been life threatening [16]. The EEI SCL model uses a 

decision-tree based approach to define and categorize safety incidents being predicated 

on the presence of high energy, application of controls, and the incident’s outcome.  

A 2021 white paper from DEKRA also described two approaches for defining an 

incident’s potential severity. The first approach is a judgement-based narrative review 

which relies on safety practitioners to identify and analyze incidents. The second 
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approach is an event-based decision tree classification approach that recognizes some 

activities produce higher proportions of precursor events [17]. Another study [18] 

investigated major accidents to find the most frequent contributing causes but was also 

industry-specific. Because various case studies and frameworks rely on industry-specific 

information, no definitive model is used across industries and firms for a pSIF 

classification tool. However, each model relied on several data elements from the 

incidents to make the determination [14], [16], [17], [18]. These elements included causal 

information, environmental factors, hazards present, and safety controls. For this reason, 

a custom model was developed for Lawrence Livermore National Laboratory that can be 

implemented and refined while aligning with the organization’s collective philosophy. 

D. EXISTING PROCESS AT LLNL 

Currently at LLNL, there is capability to identify and address incidents through 

the occupational injury and illness (I&I) program as well as the institutional Near Miss 

program. However, there is currently no system that is specifically designed to address 

pSIF identification, tracking, and mitigation. The I&I program works in conjunction with 

an on-site clinic which includes both work-related and non-work-related cases. This will 

be relevant in evaluating the separation between occupational hazards and those related to 

recreational activities. The program investigates each incident to understand root causes, 

contributing factors, and determine corrective actions. Generally, corrective actions are 

implemented to prevent similar incidents in the future. During the investigation, if an 

incident uncovers issues, the investigator may prioritize corrective actions, including 

escalation to the organization’s assurance manager for inclusion in an internal issue 

tracking system. This provides a documented institution’s response to an incident. 

However, there are no standardized criteria for pSIF classification of an incident, and the 

evaluation relies heavily on the medical treatment resulting from the incident.  

Near misses follow a separate workflow. Academia and other institutions often 

have near miss reporting systems that leverage self-reported incidents that did not result 

in an injury and are thought to be an important aspect of any safety management system 

[19]. According to LLNL’s event notification and reporting document, workers involved 
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in or witness a near miss are required to report the incident to their supervisor. If there is 

continuing potential for more serious consequences from the condition causing the near 

miss, the supervisor must contact the Environment Safety and Health (ES&H) Team, the 

Traffic Safety programs, facility owners or point of contacts, or the Infrastructure and 

Operations directorate to mitigate and correct the hazards. Conditions causing near 

misses and necessary corrective actions may escalate into the institution’s issue tracking 

system.  

Furthermore, the near miss may also meet the occurrence reporting threshold 

described in “Reporting Occurrences to DOE,” where the Livermore Field Office—under 

the U.S. Department of Energy, Office of Inspector General—would oversee a contract 

response to severe incidents and provide concrete opportunities to reform the safety and 

health programs [20]. The involvement of government oversight offices to assist in 

government-owned, contract-operated institutions further highlight the importance of 

identifying those precursors that would cause the most harm to the environment, 

workforce, and government property. Additionally, government oversight may provide 

insights into opportunities for improving other management systems.  
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II. METHODS AND RESEARCH 

The following chapter has sections and information that is adopted from 

previously published in the journal American Chemical Society (ACS) Chemical Health 

and Safety [15]. Lawrence Livermore National Laboratory (LLNL) has an Injury and 

Illness (I&I) program that collects information on adverse incidents to ensure timely 

reporting and notification to federal oversight agencies, including the Department of 

Energy (DOE) Office of Environment, Health, Safety, and Security Occurrence 

Reporting and Processing System (ORPS) [24]. For the case study, an incident is defined 

as an event resulting in injury, illness, property loss, or environmental damage. The 

recorded data elements of the incident included those required by DOE form 5484.3 and 

the Department of Energy Injury and Illness Reporting Guide [25], such as the nature of 

the incident, description of the activity, corrective actions, and other relevant information. 

Additionally, LLNL information systems must comply with 10 C.F.R. 851 and the 

reporting requirements in Title 29 C.F.R. Part 1960 Subpart I, as well as DOE Order 

231.1B Environment, Safety, and Health Reporting [26]. Adhering to these statutes and 

regulations ensures that there is uniform reporting for incidents at LLNL, facilitating 

analysis and testing of various safety models and frameworks with a standardized set of 

data. Figure 5 shows a generalized process for incidents where the data elements are 

recorded, and corrective actions are based on the severity of the incident. 
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Figure 5. Current Generalized Process for Incidents 

A. DATA SET TO TEST THE PSIF FRAMEWORK 

An important focus for the case study was to assess the feasibility of adapting a 

pSIF framework to the current process at LLNL. Minimizing the impact to the current 

incident process would increase the feasibility of adopting the framework to the current 

process. Additionally, going through a sample of case studies through the proposed 

framework may highlight potential deficiencies in current process methodology. Figure 6 

shows the proposed framework, with the changes in methodology highlighted compared 

to the current process seen in Figure 5.  
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Figure 6. Proposed Change in Process for Incidents 

The case study focused on I&I data from the calendar years 2007 to 2022. The 

case study attempted to look at incidents from prior to 2007, but only data from 2007 and 

on were found to be formatted in the same manner. Having a consistent dataset was 

crucial to understand whether a new process could be adopted to the current process and 

determine its feasibility. Between 2007 to 2022, approximately 5,700 incidents were 

recorded to the I&I system. Approximately 20% of the incidents were determined to be 

non-work related, as they occurred during recreational activities both on and off-site and 

during non-working hours.  

With non-work-related incidents excluded, there was a sample size of 4,900 

incidents [15]. This was done to ensure the framework was evaluated against 

occupational related incidents and to prevent unintentionally biasing the data by 

including hazards related to recreational activities. Because the focus is to mitigate 

occupational hazards, it seemed inappropriate to include recreational hazards that are 

accepted by the public.  

The original dataset included a data element to describe the accident type, which 

comprised of 60 different types of accidents. However, many of these categories 
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overlapped in terms of identified hazards. This is important in order to identify precursors 

associated with incidents. For example, one of the largest categories was found to be 

overexertion. It could be categorized as “overexertion by pulling or pushing objects,” or 

“overexertion by lifting” [15]. But grouping the incidents also helped understand the 

types of hazards that are associated with injuries. The 60 accident types were further 

grouped by their categories where the population of those incidents was less than one 

percent of the total. However, incidents where there may be under sampling or unique 

hazards, such as radiation, were kept as their own category. 

Due to the impracticality of running the model through each individual incident, a 

random representative sample of the incidents were selected for evaluation. To create a 

representative sample for the case study, the 60 different accident types for each incident 

were qualitatively grouped into 21 accident categories. Although the categories were 

grouped by hazard similarities or population size, not all categories could be grouped due 

to significant differences in hazard identification. Nevertheless, the differences between 

the grouped accident types were believed to accurately represent the total sample 

population.  

Because the framework relies on looking at all incidents, regardless of medical 

treatment, there was no attempt to sample based on medical treatment. For example, an 

incident with the accident type of vehicular accident that leads to days away from work 

was weighted the same as a vehicular accident that lead to restricted workdays.  

It is useful to understand the distribution of certain types of accidents and how it 

compares to other national laboratories. In doing so, one can evaluate if there are 

particular hazards or that particularly effect one site over another. For this reason, it is 

important to note that the distribution of accident types was not significantly different 

from other national research laboratories, such as the Los Alamos National Laboratory 

Plutonium Facility (TA-55) [27]. The distribution of incidents also did not differ from the 

DOE yearly Operating Experience Summary [28]. To avoid bias towards accident types 

that are more prevalent in the sample set, the accident type was used to distinguish the 

variance in the dataset. Accident types were also used because they may encompass 

incidents with similar hazards applicable to LLNL. To determine the sample needed from 
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each category, the population variance of each grouped accident type was calculated 

using Equation 1 [29]. A 95% confidence level with a 5% margin of error was used to 

balance the precision and practicality of analyzing the sample data.  

  (1) 

Where: 

• n is the number of incidents needed in the random sample to represent the 

entire population. 

• Z is the standard score with a value of 1.96 for a confidence level of 95% 

to convert the score in a normal distribution to a standard normal 

distribution. 

• ME is the Margin of Error to describe the amount of random sampling 

error in a survey, in this case five percent. 

• P is related to the proportion of a category to the sample set. 

Because the population size is finite, an additional correction factor must be 

applied as seen in Equation 2 [29].  

 
1

cor
nn n
N

=
+

 (2) 

Where: 

• n is the number of incidents from Equation 1 

• N is the total population size of the whole sample set 

Equation 1 and Equation 2 were then used in a Python script to calculate the 

variance of the finite population. The results are seen in Table 1, where each incident was 

put in a list and N number of incidents were chosen at random. The list of N number of 
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incidents for each accident category is also shown in Table 1 and is the random sample 

population for the case study.  

B. MEASURING QUALITY OF RANDOM SAMPLE SET 

With the data set sample chosen for the case study, the data quality of each 

incident needed to be assessed. Therefore, a method to measure the quality was 

developed to ensure that the sample data was not only representative, but sufficient to use 

in the case study. This would also highlight any opportunities for improving in the 

current process at LLNL for framework implementation. 

Table 1. Incident Sample Size by Grouped Accident Types. Source: [15]. 

Grouped Accident Category Total 
Incidents 

Random 
Sample 

Overexertion 684 145 
Fall (all types) 657 140 
Repetitive Motion 634 135 
Struck by Object 479 106 
Ingestion of substance 459 101 
Rub or Abrasion 273 62 
Contact 266 60 
Noise Exposure 252 57 
Bodily Reaction 250 57 
Not Specific 190 43 
Assault or Injury by Animal 185 42 
Vehicular Accident 179 41 
Caught in Equipment, materials, or 
machinery 

114 26 

Inhalation of substance 89 20 
Walking/Running 64 15 
Self-inflicted injury 28 6 
Environmental or Object Temperature 27 6 
Stationary Injury 26 6 
Stepped on object 24 6 
Radiation 20 4 
Other* 13 3 
Total 4,900 1,081 
*Other includes the following grouped accident types: Reaction when 
surprised, frightened, startled; Air pressure changes exposure; 
Explosion; Fire -- unintended or uncontrolled; Welding Light 
Exposure 
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The variation in qualitative data would provide the context necessary in assessing 

the framework, a method was created to evaluate the qualitative data. The manual 

processing of qualitative data analysis and aggregates has been used in several studies 

with data collection methods including questionnaire data [30]. By measuring the quality 

of the random sample set a determination could be made if the current injury and illness 

program had sufficient information to run an incident through the pSIF model as well as 

evaluate the adequacy of the sample size. Each incident was assessed and given what will 

be noted as a sufficient information (SI) score, derived from four distinct criteria. Each 

criterion was assessed using a Boolean value with the intent to simply assess whether the 

information was present and valuable in the data elements. This provided a way to 

aggregate individual scores to allow for a quantitative assessment of data quality to 

facilitate comparisons between criteria. A data element was considered insufficient if the 

pSIF model practitioner must make assumptions or speculate without objective evidence. 

The four distinct criteria were as follows and adapted from [15]: 

• Environmental Factors (EF): Details regarding the location, time of 

occurrence, and work environment. 

• Hazards Identification (HI): Details concerning the hazards present at 

time of incident. 

• Controls in Place (CIP): Identification and details of measures 

implemented, to include engineering controls, administrative protocols, 

personnel protective equipment, etc. 

• Causal Information (CI): Details pertaining to the factors contributing to 

the incident’s occurrence, including both direct and indirect causes. 

Each criterion was evaluated separately, and the summation of the individual 

scores became the SI score as seen in Equation 3.  

 ( )incident incident inc incident incidentSI EF HI CIP CI= + + +∑  (3) 
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Data elements for the incidents, such as accident type, part of body, nature of 

injury or illness, at risk behavior, description of the activity, sequence of events, causal 

factors, immediate actions taken, corrective actions, and applicability of the integrated 

safety management system [31] – were all evaluated to determine whether the incident 

had sufficient information to inform each criterion. The SI score was used to determine a 

qualitative confidence level for each incident. The higher the score, the more likely a 

practitioner was able to determine whether the incident was a pSIF.  

Table 2. SI Score and Confidence Levels 

SI 
Score 

Confidence Level 

4 The practitioner has a high confidence in making a pSIF 
determination. 

3 The practitioner has a medium confidence in making a 
pSIF determination. 

<2 The practitioner has a low confidence in making a pSIF 
determination 

 

The incidents that had an SI score of less than two resulted in a low confidence to 

no confidence determination of information sufficiency for the incident to be used in the 

pSIF model. If the majority of the incidents had key data elements missing, it would 

prevent meaningful analysis of relevant precursors. However, the statistics of the sample 

population, summarized in Table 3, showed that of the incidents from the sample, 

approximately 87%, had an SI score of 4, meaning that sufficient information was 

available for all four criteria. 

Table 3. SI Score Statistics Summary. Source: [15]. 

Sufficient 
Information Score 

Sum 

Number of 
Incidents 

Relative Percentage to 
Sample 

0 – 2  48 4.4% 
3 97 9.0% 
4 936 86.6% 
Total 1081 100% 
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Because the aim of the framework is to improve the ability to identify 

opportunities to minimize potential serious injuries or fatalities, it was crucial to analyze 

the distribution of the SI categories to highlight any potential gaps in the data collection 

process. The total of the score for each criterion across the sample set determines the 

percentage of incidents that had met the criteria for each of categories. Table 4 shows the 

breakdown with Hazards Identification and Causal Information being within a tenth of a 

percentage point of each other. Although no category scored significantly lower than the 

others, and because greater than 95% of the incidents had an SI score of three or greater, 

the representative sample is determined to be adequate to test the framework.  

Table 4. SI Score Category Summary. Source: [15]. 

Sufficient Information 
Category 

Sum of Score Relative Percentage to Sample 
Size 

Hazards Identification 995 92.0% 
Causal Information 996 92.1% 

Controls in Place 1040 96.2% 
Environmental Factors 1062 98.2% 

 

C. THE OPERATIONAL PSIF MODEL 

An operational pSIF model was developed as a tool in part of a broader 

framework to identify pSIF incidents and inform institutional response. For the purpose 

of the model, a pSIF score was derived from a 5-step process as illustrated in Figure 8. 

1. Determine the potential worst-case outcome of an incident. 

2. Determine the primary variable that would cause the potential worst-case 

outcome, considering the likelihood. 

3. Determine the effectiveness of controls during the incident. 

4. Use both the primary variable and effectiveness of controls to determine 

the V/C score. 
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5. Final pSIF determination, noted by PHLf. 

The primary variable was the variable that could have resulted if the presence of 

the single variable were there and the likelihood of that variable occurring in light of 

mitigative controls in place. Review of incidents found several instances where more than 

one variable could have contributed to the reasonable worst-case outcome. Only one 

variable was chosen as the single-most valuable variable that would have contributed to 

the adverse effects of the event; this is recognized as a limitation and restriction of the 

model as often several variables contribute to an adverse event. A job-aid was developed 

for pSIF determination and is illustrated in Figure 7. 

In order to simplify the model for use by practitioners in the field, a decision tree 

was created. Although one primary practitioner reviewed the majority of the incidents, a 

total of three practitioners reviewed incidents with higher pSIF scores in the sample 

dataset using the decision tree of Figure 7, as well as the data elements described in 

Section 2.B. Each of the practitioners held institutional knowledge of the specific work 

and hazards relating to the work they support. However, they were advised to make no 

assumptions of information from the incident that could not be verified using objective 

evidence. The following sections will describe each step of the decision tree. An example 

scenario of going through the decision tree is provided in Appendix A. 
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Figure 7. Decision-Tree Job Aid. Source: [15]. 

D. DETERMING HURT LEVEL 

It is important to understand that time away from work after an incident is not 

indicative of the severity of an incident. For example, a person working in a laboratory 

setting receives chemical exposure leading to a chronic disease with life-long 
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implications, while another person slips and breaks their arm. In these two scenarios, it is 

possible that both individuals may have similar time away from work and both produce a 

recordable injury, but one has clear long-lasting implications. This highlights a deficiency 

in focusing purely on medical treatment as opposed to the actual harm experienced by 

individuals in incidents.  

Clear definitions of the level of harm and long-term health implications are 

needed to move away from a medical treatment focus. For this reason, the framework 

required a definition of hurt severity, along with examples. This was adopted from the 

EEI model that also gives examples of harm severity [16]. These definitions and 

examples are provided in Table 5 and were used to determine the harm level of a worst-

case scenario. 

Practitioners followed the framework outlined in the job aid seen in Figure 8 and 

used it to define the potential hurt level worst-case (PHLwc) for the sample set. For the 

sample set analysis, the PHLwc was the scenario that is most probable and produced the 

highest hurt level without additional hazards that were not present at the time of the 

incident. For example, if a scenario includes the use of oxidizers or flammables, but there 

was no sparking or flame hazards typically involved in the work or area nor anticipated to 

be present, a practitioner would not define a scenario where ignition occurs causing a 

significant hurt level as probable. 
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Table 5. Hurl Level Definitions. Adapted from [15]. 

Hurt 
Severity 

Level 

Duration Definition Examples 

Fatality 
(4) 

N/A Fatality - Fatality or Multiple Fatalities 

Severe 
Hurt  
(3) 

Years to 
Lifetime 

Injury or illness causing 
severe physical body 
damage; probable long 
term or significant life-
altering complications 

- Amputation 
- Significant third-degree burns 
- Loss / Impairment of organ 
functions 
- Severe to complete loss of 
hearing 
- Severe or total blindness 

Moderate 
Hurt  
(2) 

Weeks to 
Months 

Injury or illness causing 
significant physical body 
damage; reasonable to 
heal without life-altering 
complications in a 
moderate period 

- Fractures, loss of tooth/teeth 
- Significant lacerations 
- Partial / single digit amputations 
- Significant second-degree burns 
- Moderate hearing loss 

Minor 
Hurt  
(1) 

Minutes to 
Days 

Injury or illness causing 
minor physical body 
damage; reasonable to 
heal without significant 
life-altering 
complications in a brief 
period 

- Minor lacerations that bleed 
freely 
- Minor chipping of tooth/teeth 
- Skin rash / burn from chemical / 
non-aqueous fluids 
- Confirmed slight to mild hearing 
loss 
- Mild corneal abrasion 

No Hurt 
(0) 

N/A N/A N/A 

 

Because multiple scenarios are often considered to derive the worst-case scenario 

the practitioner has to qualitatively screen the scenarios to find the one where the value of 

the product of the hurt level, based on the definitions in Table 5, and probability of the 

event is the highest. Figure 8 shows a visualization of the mental model a practitioner 

goes through when determining the worst-case scenario for an incident. The product of 

the hurt level and likelihood of the scenario for each scenario generate various possible 

outcomes. Therefore, the hurt level of this scenario is the scenario with the highest 

potential hurt level for the worst-case scenario (PHLwc) and is used later in the pSIF 

model. 
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Figure 8. Hurt Level versus Scenario Probability: A Bubble Chart Analysis 

E. PRIMARY VARIABLE 

In conceptualizing the worst-case scenario, the practitioner identifies the primary 

variable, that if changed, would result in the worst case outcome. Typically, a practitioner 

assigned a qualitative value to the primary variable based on prior experience, any FMEA 

[36], or a documented method and classify it under one of the following values from most 

probable to least probable: Always, Often, Sometimes, Rarely, Not at All. The most 

feasible method to implement was determined to be a qualitative determination as 

performing a quantitative probability analysis on the incidents was not always possible 

for incidents. The qualitative nature of assessing probability is also a clear limitation of 

this pSIF model. 

The model requires the practitioner to define the primary variable (V) that would 

have led to the PHLwc. For example, in a scenario where a machinist is injured while 

using a lathe, a primary variable that would have increased the hurt level could have been 

body placement. Note that practitioners were advised to not increase hazards or introduce 
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new hazards. Building off the lathe example, if the work typically includes working with 

steel, the practitioner will not replace the material with depleted uranium, or other heavy 

metals if it is not typical to the work in the shop. Therefore, V provides the variable in 

which a worst-case scenario would occur but might not have due to random-chance. 

It is also important to note that decreasing the primary variable would not reduce 

the potential hurt level altogether. Which is why determining control effectiveness was 

key for the pSIF model.  

F. DETERMINING CONTROL EFFECTIVENESS 

Typically, there are multiple layers of control in an incident as defined by the 

Swiss Cheese model [32]. Therefore, removal of a variable does not remove hurt level 

altogether. For example, latex gloves may prevent or mitigate hazardous chemical 

exposure but may do little in preventing laceration if working with sharps. So, 

practitioners must consider hazards that are present in the work environment of the 

incident, such as de-energized equipment that may be otherwise energized due to a failure 

in administrative controls, or a pressure system failure due to use of an incorrect rupture 

disc. Such scenarios may come up in discussion of the work control process and the level 

of rigor may depend on the hazards involved [35] or looking at the failure mode and 

effects analysis but looking at the details of a scenario post-incident relied on methods 

similar to the Haddon matrix [37]. Either way, it is a systems approach to safety that must 

take into account various hazards and the controls in place that mitigate those risks.  

Hazard controls in place contribute to the probability of a worst-case event. Even 

in a criticality event, fissile material controls will influence a criticality event outcome 

[32] and the severity of an incident. A simplified diagram illustrates the relationship 

between incident severity and the primary variable as well as incident probability and 

hazard controls, is shown in Figure 9. The relationship in hazard controls and incident 

probability is not novel; James Reason developed what is now referred to as the Swiss 

Cheese model in the late 1990s, theorizing that adverse events usually result from many 

controls failing to prevent the incident, and that each layer of control acts as separate 

barriers against the incident similar to attempting to pass through slices of Swiss cheese 
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[33]. The Swiss Cheese model is also used in risk management, and flight mishap 

analysis [6] as it is often the failure of multiple sub-systems within a system that leads to 

the outcome. Additionally, nuclear operations will employ defense in depth in concepts 

of security and in human error [34]. But the model must be simple enough to be deployed 

institutionally. 

 
Figure 9. Incident Severity and Event Probability Correlation 

For over the last fifty years the National Institute for Occupational Safety and 

Health (NIOSH) [38] and the Occupational Safety and Health Administration has 

advocated the hierarchy of controls approach to emphasize that engineered and more 

permanent controls are preferred as they are more effective in mitigating risk, a copy of 

this illustration is seen in Figure 10 [39]. The controls in each incident were evaluated 

based on overall effectiveness, using the hierarchy as a guide, in their effectiveness in 

mitigating the worst-case outcome.  

If the data element included details on controls such as personal protective 

equipment (PPE), then it was understood that PPE was a control at the time of incident, 

regardless of use. However, if PPE is the only control, then it was further scrutinized as it 

is generally seen as the least effective control in the hierarchy of controls. Similarly to the 

determination of the primary variable (V) a qualitative approach is used to categorize the 
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effectiveness of the controls ranging from least effective to most effective: No Controls, 

Some Ineffective/Inconsistent Controls, Controls Reduce Severity, Controls Likely 

Prevents PHLwc, and Controls Always Effective. The score is known as the control 

effectiveness score (C).  

 
Figure 10. Hierarchy of Controls. Source: [38]. 

G. DETERMINING FINAL PSIF SCORE 

Practitioners at the final stage of framework have determined the PHLwc, V, and 

C. Armed with all the variables and the job-aid in Figure 7, there is now sufficient data to 

determine the final score for the incident. Determining the V/C score is done through the 

use of the matrix in Table 6. Output of the matrix, V/C score, is then used with the 

PHLwc to produce the final potential hurt level (PHLf) score.  
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Table 6. V/C Matrix. Source: [15]. 

 Likelihood of Primary Variable (V) 

Effectiveness of 

Hazard Controls (C) 

Always Often Sometimes Rarely Not at 

all 

No Controls 5 4 3 2 1 

Some Ineffective/ 

Inconsistent Controls 
4 4 3 2 1 

Controls reduce 

severity 
3 3 2 2 1 

Controls Likely 

Prevents PHLwc 
2 2 2 1 1 

Controls Always 

Effective 
1 1 1 1 1 

 

Using Table 7, the PHLf is determined by looking at the PHLwc and V/C score. 

Those with a PHLwc score of Severe (3) and a V/C score of at least three are treated as 

pSIF. But also used a level of rigor approach such that those with a V/C score of 2 and 

PHLwc of a Fatality (4) still generated a pSIF classification. Those with a PHLf score of 

4 are treated as those with an even higher potential for a SIF incident. This is either 

because the likelihood of it occurring is high, or because the controls in place to prevent 

such an incident are either not effective or not in place. These incidents should be given a 

higher priority in mitigating the pSIF scenario. Inherently, those incidents that are given a 

higher priority would undergo a more rigorous investigation leading to the corrective 

actions or institutional response. The institutional response was also categorized as part 

of the case study and is discussed in the next section. 
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Table 7. PHLf Score Matrix. Source: [15]. 

 PHLwc 
V/C Score Fatality (4) Severe (3) Moderate 

(2) 
Minor (1) No Hurt 

(5) 4 3 2 1 0 
(4) 4 3 2 1 0 
(3) 4 3 2 1 0 
(2) 3 2 1 0 0 
(1) 2 1 0 0 0 

 

H. CATEGORIZING INSTITUTIONAL RESPONSE 

As part of the case study, the institutional response to the actual incidents were 

evaluated to determine if there was any existing correlation between incidents with a 

higher potential for serious injury or fatality and the institutional response. Organizations 

will typically benefit from the prioritization of mitigation efforts to address risk that will 

cause the most severe harm to the organization’s workforce [40]. At Lawrence Livermore 

National Laboratory there are several ways to generate corrective actions to mitigate 

institutional risk.  

The responses to the organization were tied to the effect the action had at the 

institutional level and how many participants were associated. It is a measure of resources 

used in an incident response but is in no way definitive. The scores were broken down 

into five separate categories, each increasing in rigor, and was called the preventative 

action score (PAS) for simplicity. Table 8 explains the level of rigor of each PAS 

category. Each of the incidents from the representative sample were given a score based 

on the criteria. However, because PAS only looks at a specific type of institutional 

response, it may not holistically review the resources allocated in a corrective action and 

is a limitation of this type of categorization.  
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Table 8. Preventative Action Scores and Definition 

Preventative 
Action Score 

Institutional response Example of Response Number of People 
Affected 

0 No Response No Corrective Actions No Affected Parties 
1 Individual Involved in 

Incident 
Verbal counseling One person affected 

2 Group or Team Level Lessons learned shared 
at group meeting  

Two to ten people 
affected 

3 Organizational or 
Facility Change 

Self-audit across one 
or multiple facilities  

Ten to hundreds of 
people affected 

4 Institutional Change / 
Hazard Elimination 

Institutional policy on 
work with specific 

materials 

Hundreds of people to 
total workforce 

population 
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III. RESULTS OF CASE STUDY 

A. FINDINGS 

The goal of the case study was to assess the feasibility of the pSIF framework 

against the representative sample outlined in Chapter II. The SI score was only used to 

indicate the feasibility of adapting the proposed framework to existing institutional 

procedures. There were 48 incidents that had an SI score of less than or equal to 2, and 

the random sample was meant to represent the variance in the dataset with a 95% 

confidence level with a 5% margin of error. It was concluded that the current process 

captures enough information to implement the framework. The only suggestion would be 

to purposefully track causal information or additional information about the hazards as 

those two categories were the least likely to be included in an incident report. This would 

increase understanding of an incident to better understand the highest potential severity of 

an incident outcome.  

However, the relatively high percentage of samples that had information about the 

controls in place and environmental factors suggest that the process is sufficient to create 

incident information to implement the model during postmortems. Framework adoption 

is not expected to greatly change the current process or methodology. However, from a 

human performance perspective, framework adoption may encourage case managers and 

investigators to note the cause and hazards of an incident, potentially improving data 

quality. However, tracking of these data elements is necessary to see any long-term 

impacts.  

Several practitioners evaluated the incidents through the decision tree described in 

Figure 7. The final distribution of the final potential serious injury or fatality (PHLf) 

score, illustrated in Figure 10, indicates that only 8 incidents; less than 1% of the total – 

had a high potential for a SIF. An in-depth statistical analysis of the distribution is done 

in Chapter IV. and Appendix B. It is also worth noting that 33% of the cases had a very-

low potential, PHLf score of 0, while 52% of the cases had a low potential, PHLf score of 

1.  
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Figure 11. Distribution of PHLf Scores from the Case Study. Source: [15]. 

The distribution of PHLF scores does not follow the distributions seen in 

Heinrich’s safety triangle [8]. This could also be due to the fact that the case study only 

included recorded incidents. Limitations of the dataset include the exclusion of unsafe 

acts or behaviors, incidents that did not result in an injury, and those not formally 

reported in the institution’s near miss program. The distribution does mimic distributions 

seen from some private industry models [14] which suggests that only a small percentage 

of unsafe behaviors have the potential to cause serious injury. Table 9 presents the 

distribution of incidents grouped by accident type and PHLf score. This data can be used 

to inform relevant computational modeling.  
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Table 9. Breakdown of Accident Type by PHLf Score 

Accident Type (Group) PHLf Score 
2 3 

Assault 1 
 

Bodily Reaction 10 
 

Caught in Equipment, Materials, or 
Machinery 

3 1 

Contact 7 1 
Fall (all types) 7 

 

Ingestion of Substance 2 
 

Inhalation of Substance 6 
 

Noise Exposure 34 1 

Not Specific 1 2 

Overexertion 12 2 

Radiation 1 
 

Reaction when surprised, frightened, 
startled 

1 
 

Repetitive Motion 43 
 

Rub or Abrasion 1 
 

Self-Inflicted Injury 1 
 

Stationary Injury 2 
 

Struck by Object 7 
 

Vehicular Accident 3 1 

Grand Total 142 8 

 

Ideally, a review of the incidents with a high potential to cause life altering 

ailments is of high interest to the organization. Additionally, any significant trend or 

uptick in incidents of a specific accident type should be regularly reviewed. Although 

incidents with a PHLf score of 3 were statistically insignificant, examining those with a 

score of 2 is also valuable. The top three categories were then found to be noise exposure, 

overexertion, and repetitive motion and at 89 incidents made up 62% of the incidents.  

Because overexertion was already one of the leading accident types from the data 

set, this suggests that randomly sampling the whole data set could have inadvertently 

biased the data towards those incidents with higher incident numbers. The other top 
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categories were evaluated to understand the long-term implication of the occupational 

hazard. 

Understanding the long-term implications of these incidents helps allocate 

resources effectively within organizations. Studies showed that about 22 million workers 

are exposed to hazardous noise at work on a yearly basis and that hearing loss and 

tinnitus affects 1 in 8 people in the working population where occupational exposures 

caused 25% of those incidents [41]. It is also important to note that noise exposure affects 

industries from the military [42] to private industry [40].  

The next categories – overexertion and repetitive motion – can lead to lifelong 

musculoskeletal disorders such as chronic back pain, arthritis, and can result in disability 

and work loss [43]. Since eighteen of the accident types make up less than 40% of the 

rest of accidents, it is unlikely that it shows a statistically reliable way of predicting future 

incidents in a computational model. Lastly, because the focus of the framework is 

potential high severity events, the count of accident type may not be the best measure for 

resource allocation.  

Another important aspect of the case study was the Preventative Action Score 

(PAS), which was used to determine an aspect of LLNL’s response to incidents. 

Institutional response can influence future outcomes, similarly to how risk is mitigated in 

an integrated safety management system by relying on feedback and continuous 

improvement [22], [23], [35]. Research has shown that simulations can identify 

corrective management actions that can reduce risk in the construction industry [44]. 

Unfortunately, the diverse range of hazards apparent in research and development 

complicate implementing sociotechnical simulations. Additionally, the PAS definitions 

were not tied to monetary value, which makes it a difficult measure of financial resources 

allocated in incident response. A future approach would take into consideration the 

numerous factors that is influenced by institutional response, such as resources used, 

engineering methods implemented, and labor hours in addition to other actions.  

Figure 12 illustrates the PAS distribution by PHLf score. Since both PAS and 

PHLf are categorical, performing a linear regression would be inappropriate as it would 
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require violating assumptions regarding the continuity and homoscedasticity of the data 

which may cause unintentional bias or skewing [45]. Instead ordered logistics regression 

can be used to see if there is any correlation between the PHLf and PAS [46]. The 

analysis used the OrderedModel class from the Python module, statsmodels [47], and 

pandas [48]. Additional models were also explored and are explained in greater detail in 

later chapters. 

 
Figure 12. Distribution of Average Preventative Action Score by PHLf 

Overall, the case study demonstrated that the current injury and illness incident 

reporting process is adequate to support a potential severity framework. While some 

incidents had a higher potential for sever outcomes, the majority of incidents were not 

classified as pSIF incidents. Statistical evidence indicated that LLNL generally responded 

more robustly to incidents with higher potential [15]. This is important to note as the goal 

of implementing the framework would be to increase response of higher severity 

incidents to better allocate resources. However, future research is needed to better 

understand incidents with a PHLf of three or higher as the model may suffer from under 

dispersion due to the limited number of incidents with a PHLf score of 3 or 4. 
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B. LIMITATIONS OF THE CASE STUDY 

If the case study is to be used as the basis for any computational modeling, it is 

necessary to transparently acknowledge its limitations. Especially as these factors may 

impact any operational implementation. Some pSIF models from private industry [13], 

[14], [16] and Heinrich’s safety triangle [15] described in Section I. B. pSIF Models in 

Private Industry considered near-miss and unsafe behaviors. However, the data set used 

for the case study did not include near-miss information, such as that available at the 

Department of Energy Office of Environment, Health, Safety & Security lessons learned 

website DOE OPEXShare [50]. This information could have provided near-miss 

opportunities that had a higher potential severity, helping calibrate the framework and 

dealing with issues of underrepresented data with higher PHLf scores. 

Additionally, the EEI pSIF model recognized the limitations in existing methods 

of classifying safety incidents. This includes subjectivity in the assessment, generalized 

conditions that may not indicate SIF potential, the broad use of an “other” category by 

analyst, and no explicit consideration of physical controls [16]. The case study attempted 

to mitigate the identified limitations by minimizing the use of an “other” category as part 

of the injury and illness reporting process. Furthermore, the framework minimized the 

ability to extrapolate generalized conditions. This was done to mitigate inadvertently 

misclassifying an incident. For example, personnel working in a glovebox environment 

with radioactive material does not imply that a fall in the same lab space poses a radiation 

concern.  

The practitioners also considered the presence and absence of controls. The case 

study, due to the broad nature of research and development at the national laboratory, 

could not eliminate subjectivity in the probabilistic determination of the primary variable 

or controls effectiveness while assessing the incidents and remains a known limitation of 

the framework. Providing quantitative measures for specific hazards would mitigate this 

risk but requires comprehensive methods of quantifying incident outcomes across a 

spectrum of work. 
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Finally, the limited number of incidents with a high potential for a serious injury 

or fatality resulted in a need to implement a computational model to assist in 

understanding framework implementation. Despite these limitations, the case study 

formed foundational insights that could have implications in the implementation to other 

management systems. 
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IV. A COMPUTATIONAL MODEL OF THE FRAMEWORK 

A simple computational model was developed to simulate the potential serious 

injury or fatality framework described in Section II. Subsection C. The objective was to 

perform correlation analysis between the variables used in the pSIF model to ensure it 

functioned as expected. Specifically, to see if the model informs incidents with high hurt 

potential and high probability, combined with low hazard controls are effectively 

classified as pSIF incidents. Simulated data from this computational model serves as a 

control for the statistical modeling of institutional response to the events. Modeling 

provides controlled parameters and the ability to simulate datasets where data may be 

difficult or rare. Figure 13 illustrates how the pSIF statistical model will inform 

institutional response and ultimately how these models will inform operational use of the 

model. 

 
Figure 13. Workflow for pSIF Statistical Model and Institutional Response 

Analysis 
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The computational model seeks to analyze institutional response, as done in the 

case study, by performing a correlation analysis on the case study data. This model 

simulated institutional response. Various scenarios were evaluated by adjusting the 

parameters. 

A scenario where… 

• The potential severity of an incident is commensurate with the institutional 

response effort, the assumed ideal scenario. 

• The potential severity of an incident is based on the distribution found in 

the case study, without framework implementation. 

• The institutional response is completely random with no consideration for 

incident severity. 

In performing the various scenarios, the computational model was used to 

evaluate potential improvement in resource allocation. The model also informed the 

development of meaningful metrics necessary for tracking any long-term improvement 

through implementation. The computational model, plots, and testing was built in Python 

using several libraries such as Matplotlib [57], Numpy [58], Pandas [48], Seaborn [59], 

Scikit-Learn [60], and Statsmodels [47]. The models and simulations were made in 

Python to leverage open-source software and were saved in a Jupyter notebook [61] for 

repeatability and sharing.  

Several statistical models were tested with mixed results. The case study looked at 

a generalized linear model (GLM) with a Poisson distribution and an ordinal logistic 

regression model. Each model type has its own set of assumptions and limitations. The 

results and detailed development of the GLM with a Poisson distribution and ordinal 

logistic regression model tested is explained in Appendix B. pSIF Statistical Models.  

A. SIMULATING THE CASE STUDY INCIDENT DISTRIBUTION 

Injury and illness (I&I) data is typically very sparse and often require datasets 

from other industries and organizations for meaningful analysis [56]. I&I data is also 
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typically difficult to obtain due to concerns with Personal Identifiable Information (PII). 

For the case study, the incidents spanned over a decade at LLNL in order to mitigate the 

difficulty in gathering a large enough dataset. It was also important for the case study to 

focus on hazards relevant to LLNL, which differ from those in industries like oil and gas.  

Simulating data is useful for several reasons. It allows creation of incidents 

without having to rely on actual occurrence. This is especially important for rare 

incidents like SIFs. Additionally, this work aimed to evaluate resource allocation 

differences in implementing the model. The simulated data also offers ways to emulate 

institutional responses for a wide distribution of incidents and help aide operational 

implementation.  

First, the data from the case study was loaded from an Excel file and into a 

Pandas DataFrame, including the values for PHLwc, V, C, V/C matrix, PAS, and PHLf 

for each incident. The data contained categorical features that needed encoding for 

statistical modeling. Because the data was ordinal with inherent order (e.g., increasing 

control effectiveness), the values were assigned based on rank. Figure 14 shows the 

value, category, and encoding for each variable. Table 11 presents the descriptive 

statistics of the encoded data. The data indicated that the PHLf, PHLwc, C, and the PAS 

are skewed towards the lower half of the ranking. Notably, the PHLf score only has a 

maximum score of three, where the maximum rank for the variable is four. Simulating 

the data allows the ability to create datasets where there is a PHLf score of four and what 

might have been the possible PHLwc, V, and C values to produce the score. 
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Figure 14. Encoded Ordinal Variables in Increasing Rank 

Several models were tested to determine any statistically significant correlation 

between the PHLf score and PHLwc, V, C, and V/C. Because higher PHLwc and V/C 

scores created a higher PHLf outcome from the framework, the modeling aims to fit the 

distribution of the data from the case study. 

Table 10. Descriptive Statistics of Encoded Case Study Data 

 PHLwc V C V/C  PHLf 
Mean 1.71 2.66 1.16 2.11 0.82 
Standard 
Deviation 0.64 0.58 0.99 0.43 0.68 

Minimum 
Value 0 0 0 0 0 

Maximum 
Value 4 4 4 4 3 
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Figure 15. Distribution of Case Study Values 

B. OVERVIEW OF STATISTICAL METHODS EVALUATED 

Understanding the key assumptions and limitations of each method is crucial for 

building robust and flexible computational models to simulate the necessary data. For this 

reason, two statistical models were used for the work based on their use in evaluating 

categorical data [45]. 

When selecting the appropriate statistical modeling technique, various 

assumptions and limitations were considered. These factors influence model performance 

and validity in operational use. Table 12 provides a summary of key assumptions, 

limitations, and benefits of each model evaluated. 

Table 11. Statistical Models Overview. Adapted from [45], [46]. 

Model Key Assumptions Limitations Benefits 
Ordinal 
Logistic 
Regression 

Ordinal dependent 
variables (i.e., the 
ratings have an 
order as discussed 
in the framework). 

The relationship 
between each pair of 
outcome categories is 
consistent across 
thresholds. 

Specifically designed 
nuanced analysis of 
ordered categories. 
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GLM with 
Poisson 
Distribution 

The data is 
discrete (e.g., 
number of 
incidents). 
Assumes that the 
data follows a 
Poisson 
distribution. 

Assumes that the mean 
and variance of the 
data is always equal. 

Effective for modeling 
count data.  

The goodness of fit for each statistical model was evaluated to understanding the 

relationship of the PHLf score and its distribution. Appendix B. pSIF Statistical Models 

explains in detail how the ordinal logistic regression model and GLM with Poisson 

distribution model were created and how they work.  

C. COMPARING RESULTS OF THE PSIF MODELING 

The Statsmodels [47] package from Python was used to create the pSIF statistical 

model. There are several methods in evaluating how well the model’s goodness of fit. 

Three variables were used to compare the goodness of fit, including the Log-Likelihood 

Function (LLF), the Akaike Information Criterion (AIC), and the Bayesian Information 

Criterion (BIC) [45]. Details of how the LLF, AIC, and BIC were calculated are 

described in detail in Appendix B. Section C. Variables to Compare Goodness of Fit.  

The LLF measures how well a statistical model explains observed data. It is the 

log of the likelihood of the observed data given the parameters and a probability 

distribution. The LLF is also calculated differently for each model because of how the 

cumulative probabilities is calculated. For an ordinal logistic regression model, it 

involves calculating cumulative probabilities for each PHLf score, with the LLF being 

the sum of the log of these probabilities weighted by an indicator variable. For a GLM 

with a Poisson distribution, the LLF is derived from the Poisson probability distribution. 

Using the formulas detailed in Appendix B. Section C. Variables to Compare 

Goodness of Fit, the LLF, AIC, and BIC were programmatically calculated in a Python 

script. The results of the model are seen in Table 12. In comparing model goodness of fit, 

the goal is to minimize each of the different criteria and there is a large discrepancy 

between the values produced by the ordinal logistic regression model and the generalized 
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linear model with Poisson distribution. Therefore, the ordinal logistic regression model 

seems to be better at modeling the data from the case study. However, to ensure that this 

is the case, both models were tested to create a simulated data set. Ideally, the model 

must be robust enough to change parameters to deal with changes in future incident 

distributions. 

Table 12. Descriptive Statistics of pSIF Statistical Models 

Criteria Ordered Model GLM with Poisson 

Distribution 

LLF -1.4e-4 -881 

AIC 14 1771 

BIC 49 1796 

 

Comparatively, the ordered model quantitatively had a better goodness of fit. 

With this in mind, the result of the model was analyzed and both statistical models 

showed a statistically significant correlation between the PHLf value and the PHLwc and 

V/C value as seen in Table 14. However, a significant limitation of the ordered model 

was in its ability to effectively predict values that would generate a PHLf score of 4, as 

there were none that occurred during the case study. This severe limitation raises 

concerns on the ability to generalize to new data and was determined to be ineffective in 

simulating the incidents needed for testing. But both results confirm that the pSIF model 

is behaving as expected, with a clear correlation between the PHLf value and dependent 

variables. There is no reason to believe that the V or C score alone have any correlation 

with the PHLf score as both scores contribute to the V/C score. 
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Table 13. Summary of pSIF Model Coefficients 
 

Model 
Coefficients Ordered  

Model 
GLM with  

Poisson Distribution 
PHLwc 393.7213 1.1627 

V -157.4856 0.0995 
C -151.3317 0.0018 

V/C 60.6603 1.0341 

 

D. SIMULATING PSIF DATA 

Because the case study is based on a random sample of over ten years, it may be a 

good indicator of what the distribution of injury and illness incidents may occur over 

time. For the thesis, the goal was to also synthesize pSIF data to model institutional 

response under various scenarios when implementing the framework operationally. 

Creating metrics is important in tracking framework influence in the organization and can 

indicate the efficacy of the framework [56]. The next section details simulating the pSIF 

data used to model institutional response. The simulated data allows to model response to 

incidents with a PHLf score of 4, which there were none in the case study data. Because 

the ordered logistic regression model was fitted to the only available categorical values 

available, the GLM with Poisson distribution was used as the basis to simulate data that 

will be used for testing institutional response against a dataset where the parameters are 

well characterized and known.  

The model provided the statistical parameters to provide the distribution of PHLf 

scores. Because the PHLf score was mostly influenced by the PHLwc and the V/C score, 

those two variables will be used to generate the synthetic data. Figure16 is a screenshot of 

the code that was used to generate synthetic pSIF data that will be used later on. The code 

works by generating PHLwc and V/C scores based on the descriptive statistics of those 

variables from the case study data. It then clips the data to ensure it meets the constraints 

of the framework and generates the appropriate number of variables as defined by the 

sample size desired. Next, the function calculates the 𝜆𝜆-value which defines the shape 

parameter of the Poisson-distributed outcomes. The shape parameter takes the place of 
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using thresholds in an ordinal logistic regression model and uses this to generate values 

based on discrete probabilities. It then uses the 𝜆𝜆-value to generate the PHLf scores and is 

converted to discrete values that meet the constraint of the framework. 

 
Figure 16. Code Used to Generate Simulated PHLf Values 

Three separate sample sizes were created simulating 1,000, 1,100, and 1,200 

incidents respectively. Figure 17 illustrates the results for three sample data sets that were 

created to compare to the case study data and evaluate the fit of the model.  
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Figure 17. Results of GLM with Poisson Distribution Simulation 
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E. SIMULATING ORGANIZATION RESPONSE 

Now that the data can be modeled to encompass the full range of PHLf scores, a 

separate statistical model was created to simulate current institutional responses to the 

incidents. This model was developed to understand the relationship between the PHLf 

scores of the case study and the institutional response to the incident defined as the 

Preventative Action Score (PAS). However, the model will need to be flexible in order to 

change the parameters to represent the various scenarios outlined in the beginning of this 

chapter to simulate different institutional responses. 

In an ideal scenario, the institution would increase response to incidents with a 

higher PHLf score. However, this may not always be ideal due to the definitions of the 

PAS categories as outlined in Chapter II. Section G. 

There are scenarios where a lower institutional response can mitigate incidents 

with higher PHLf scores. For example, if an incident occurs relating to explosives occurs 

in a facility with a high PHLf score, but does not affect the operations of other facilities, 

the institutional response may be more localized and generate a PAS value that is 

localized to the facility. In this way, adequate response was considered using an 

appropriate graded approach. 

Additionally, injury and illness incidents are highly variable, which is why a 

comprehensive safety management system, and risk assessments are incredibly 

important. The importance of acceptable risk and its industrial safety guidelines have 

been outlined by various organizations, including the International Atomic Energy 

Agency (IAEA) [70], [71] which outlines specifics industrial safety guidelines and risk 

aggregation for nuclear facilities. The IAEA has also outlined a concept similar to the 

pSIF model but calls those with a high-potential for harm (HiPo) incidents, also 

generating near miss analysis for such instances [70].  

1.Modeling the Relationship Between PHLf Score and PAS 

The ordinal regression was thought to be appropriate because the preventative 

action score is categorical with a natural order, but not with a known interval between 

categories. In this case, the PHLf is the predictor variable to estimate the probability of 
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each preventative action score by maximizing the probability of observing the given data 

as a function of model parameters in a likelihood function,𝐿𝐿(θ)[46]. The maximum 

likelihood (ML) is an estimate that the parameter value maximizes this function and 

using numerical optimization techniques, the fit method in the statsmodels library iterates 

through various model parameters until the algorithm has reached convergence. For an 

ordered logistic regression model, the likelihood function can be expressed as 𝐿𝐿(θ)  =

  ∏ 𝑃𝑃(𝑦𝑦𝑖𝑖  ∣∣  𝑥𝑥𝑖𝑖 ,  θ )𝑛𝑛
𝑖𝑖=1  where 𝑃𝑃(𝑦𝑦𝑖𝑖  ∣∣  𝑥𝑥,  θ )is the probability of observing a preventative 

action score, 𝑦𝑦𝑖𝑖, given a PHLf, 𝑥𝑥𝑖𝑖, and where n is the number of observations [46].  

The log-likelihood function was used to ensure the predicted probabilities are 

always between 0 and 1 and for any non-linear relationships that may have been found 

between the PHLf and preventative action score and is expressed as ln L (θ) =

∑ ln P ( yi ∣∣ xi, θ )n
i=1 . The optimization method used was the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [49]. The code and results are in Figure 18, where severity is 

the PHLf, and response was the preventative action score.  
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Figure 18. Logistic Regression Results 

The coefficient for the PHLf was estimated at 0.4911 with a standard error of 

0.087, yielding a z-value of 5.31 and a p-value that is statistically significant at 0.001 

(<0.05). The results suggest that the increase in PHLf score did have a statistically 

significant correlation with higher preventative action scores. Future work is still needed 

to understand those cases with a PHLf of three or higher and it is possible that the model 

suffers from under dispersion due to the low amount of incidents reviewed with a PHLf 

of 3 or 4. 

The methods used to model the relationship between the PHLf score, and the PAS 

are outlined in Appendix B. pSIF Statistical Models. However, in this case, the PHLf 

score was used as the predictor value and the PAS was defined as the target variable. 

Table 15 shows some descriptive statistics of the case study data for the PHLf score and 
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PAS. Figure 11 also shows the distribution of the PAS for each PHLf category, which is 

useful in understanding how the institution has responded to incidents of varying 

severity. 

Table 14. Descriptive Statistics of Case Study Data for PHLf and PAS 

 PHLf PAS 

Mean 0.82 1.18 

Standard Deviation 0.68 0.85 

Minimum Value 0 0 

Maximum Value 3 4 

 

Additionally, Figure 19 shows the code that was used to create GLM with Poisson 

distribution model along with summary of the results. The model is simpler in that only 

one variable, the PHLf sore, is used as the predictor for the target, PAS. This was done to 

more easily change the coefficient to model distributions outside of what was found in 

the case study.  
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Figure 19. GLM with Poisson Distribution Results 

The results of comparing the LLF, AIC, and BIC are seen in Table 16. Note that 

the values of each are much closer to each other when compared to the model used for 

simulating the PHLf case study data in Table 14. This suggests that each model 

comparatively fits the data similarly. Providing additional predictor variables may have 

improved the fit but was intentionally not done to avoid over fitting of the data.  

Table 15. Results of Both Models 

 GLM w/ 
Poisson 

Ordinal 
Logistic 

Regression 

LLF -1354 -1283 

AIC 2715 2581 

BIC 2730 2615 
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Similar scores for the LLF, AIC, and BIC also suggest that an additional method 

should be used to test how well the model may simulate the results. Therefore, each 

model was used to predict the PAS value based on the PHLf score of the case study data 

and the mean absolute error (MAE) was used as a measure for accuracy of the predictions 

[73]. The MAE is defined by the following equation: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ |𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

Where:  

• 𝑦𝑦𝑖𝑖 is the predicted value, in this case the PAS predicted from the statistical 

model. 

• 𝑥𝑥𝑖𝑖is the actual value, in this case the actual PAS from the case study data. 

• 𝑛𝑛 is the number of predictions, in this case 1,064 as those were the values 

from the case study. 

The MAE was calculated for both the GLM with Poisson distribution and the 

ordered model. The results in Table 16 and Figure 20 illustrate the results for both models 

with the kernel density estimation displayed to better distinguish between the case study 

data and the simulated data. 

Table 16. Results of Both Models 

 GLM w/ Poisson Ordinal Logistic 
Regression 

Absolute value of 
difference 

MAE 0.988 0.866 0.122 
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Figure 20. Simulated PAS results for both of the statistical models. 

Both Table 16 and Figure 20 show that the ordered model is able to inform the 

PAS value more than the GLM with Poisson distribution. The GLM with Poison 

distribution had lower accuracy for a lower PAS, while the ordered model did not 

produce any incidents with PAS of four, it overall fit the case study data more accurately. 

Therefore, we can use the ordered model to simulate what the institutional response could 

have been based on simulated data.  

2.Simulated PAS Values for Several Scenarios 

This section looks at simulating institutional response against several scenarios. 

First the ideal scenario where the PHLf score perfectly informs the PAS, then the 

simulated scenario based on the ordered model from before, a completely random 

scenario, and an analysis of all three scenarios. From the case study data, it is known that 

the average number of incidents in a given year were 291 incidents reported to the injury 

and illness (I&I) program with the lowest being 184 incidents and the maximum being 

491 in a given year. For this reason, 290 incidents were simulated using the pSIF model 

to mimic the number of cases in a single random year. 

a. Ideal Scenario: PHLf Perfectly Informs PAS 

This scenario is not particularly interesting besides it being the ideal scenario. The 

objective being that there is a perfect correlation between PHLf and PAS. Which is to say 
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that a one-point increase in PHLf would result in a one-point increase in institutional 

response. Figure 21 illustrates the scenario, and the following scenarios will follow 

similar format in illustration.  

 
Figure 21. Ideal Scenario of PHLf and PAS 

b. Modeled Response Scenario: Statistical Model Informs PAS 

In the following scenario, the same PHLf data is used in the statistical modeling 

of the case study data’s PAS values. Figure 22 illustrates the predicted PAS values, and 

although it seems that the institutional response tends to have a higher response per PHLf 

score, the difference between each incident PHLf and PAS shows the variance between 

response. If a PHLf score is two and there is a PAS of three, the institution’s response 

was higher than the PHLf score and it is possible that the response required more 

resources. This is not necessarily a bad scenario, but if the difference between the PHLf 
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score and PAS is negative, it is possible that the response was not impactful enough for 

that specific incident.  

 
Figure 22. Modeled Scenario of PHLf and PAS 

Table 18 shows the number of occurrences where the difference was a certain 

value for the scenario. In incidents where the difference is three or greater could indicate 

that the institutional has over responded to an incident that has a low PHLf score. This 

presents an opportunity to focus resources on those incidents where the PAS score was 

lower than the PHLf score. Especially since a difference of three would indicate a 

response that affects several facilities or the whole institution for an incident with a PHLf 

score of at most one. Inversely, incidents where a difference was lower than negative one 
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present opportunity where the institution should have considered a higher response in an 

attempt to mitigate the incident. This is especially true for those with score of negative 

three, as this may suggest an exceptionally low institutional response for an incident that 

at least had a moderate potential to have been a pSIF. Incidents where the difference is 

negative ultimately present opportunities to mitigate pSIF and suggest instances where 

the institutional PAS could have been higher to mitigate future instances of the incident. 

Table 17. Difference of PAS and PHLf for Modeled Scenario 

Difference  -4 -3 -2 -1 0 1 2 3 4 

Number of 
Occurrences 

0 3 8 26 102 107 35 8 1 

Percent of 
Total 

0% 1% 2.8% 9.0% 35% 37% 12.1% 2.8% 0.3% 

 

c. Random Response Scenario: Institutional Response is Random  

The next scenario looks at the difference between PHLf and PAS if the PAS was 

completely random. This scenario serves as a control to be able to compare the difference 

between completely random institutional response and the ideal scenario. A random seed 

was chosen to enhance the repeatability of this scenario. In this scenario, for each PHLf 

score a random PAS value between 0 and 4 was assigned. Figure 23 illustrates this 

scenario in similar fashion to the previous two scenarios.  
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Figure 23. Random Scenario of PHLf and PAS  

Table 18 shows the difference between PHLf and PAS for the random scenario. 

Because the majority of PHLf values are zero, it is an expected result that the majority of 

incidents in the random scenario led to a higher PAS score. Operationally, this scenario is 

also not ideal as such extreme responses to incidents with minimal pSIF potential causes 

a burden on allocated resources. However, in the random response there was a similar 

number of occurrences where the PAS score was lower than the PHLf. The modeled 

scenario showed 37 occurrences where the PAS score was below the PHLf whereas the 

random scenario showed 31 occurrences. Operationally, these occurrences should be 

minimized in order to mitigate incidents that had a pSIF potential. Next, an examination 

of the case study in a similar fashion is done to see if any similar inferences can be made. 
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Table 18. Difference of PAS and PHLf for Modeled Scenario 

Difference  -4 -3 -2 -1 0 1 2 3 4 

Number of 
Occurrences 

0 1 11 19 57 58 57 49 48 

Percent of 
Total 

0% 0.3% 3.8% 6.5% 19.7% 20% 19.7% 16.9% 13.1% 

 

d. Case Study Scenario 

Figure 24 illustrates the PHLf, PAS, and difference from the case study. The case 

study data shows that there were no instances where the difference between PAS and 

PHLf were less than negative two. This shows that none of the incidents with a PHLf 

score of three had a PAS of zero. Table 20 shows the difference between PAS and PHLf 

for the case study. 

 
Figure 24. Case Study Scenario of PHLf and PAS 



61 

Table 19. Difference of PAS and PHLf for Modeled Scenario 

Difference  -4 -3 -2 -1 0 1 2 3 4 

Number of 
Occurrences 

0 0 12 188 426 310 105 22 1 

Percent of 
Total 

0% 0% 1.1% 17.7% 40.0% 29.1% 9.9% 2.1% 0.1% 

 

F. LIMITATIONS OF PAS AND SCENARIOS 

Three separate scenarios were created to model the PAS and the PHLf of those 

scenarios. The ideal scenario was one in which the PHLf score matches the PAS. 

Operationally, this scenario concludes that there is perfect correlation between the PHLf 

of an incident and the PAS. The PAS is a measure of institutional response in the 

scenario. However, there are some limitations to this approach.  

The case study showed no instances of incidents with a PHLf score of four. This 

is inherently a limitation of the sample that was taken. For this reason, a PHLf 

distribution modeled after the case study data was used. There are instances where an 

organization may want to mitigate risks that have a low probability to turn into a SIF 

incident. This includes occupational hazards that affect the work population. For 

example, facilities built with asbestos material may provide a minimal risk if there is 

proper abatement and it would benefit any institution in mitigating those risks before 

there is an increased potential for the material to deteriorate and become an increased 

hazard risk. The abatement of this material is typically costly and could affect large work 

populations. 

Additionally, the scenario that is modeled from the case study data also showed 

instances where the difference between the PAS and PHLf was negative three. Instances 

where the difference was negative three were not found in the case study data. In fact, the 

case study data suggests that there were 105 instances where the difference between the 

PAS and PHLf were two. This suggests that there was a higher response to incidents that 
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had a low potential to cause SIF. Although these situations can lead to mitigation of 

occupational hazards, it is useful to keep in mind the allocation of resources. 

Another limitation of the case study and these scenarios was that the actual 

severity of the cases was not included. Ideally, actual severity should be reviewed to see 

if the PAS correlates with the potential severity of the incidents. This may also explain 

the higher response for some of the incidents from the case study. In instances where an 

incident causes a SIF to occur, the model should be flexible enough to not penalize the 

institution for a higher PAS. 

Lastly, the PAS is only one aspect of response from an institution and does not 

give a holistic view of the resources required for proper risk mitigation. Safety 

management systems are integrated into the complete work process and implementation 

of a general potential severity framework to other organizations should consider other 

aspects of risk mitigation beyond the amount of people that are affected by the 

mitigation.  
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V. CONCLUSION AND RECOMMENDATIONS 

One of the objectives for this thesis was to determine if the current injury and 

illness (I&I) process at LLNL could be adapted to utilize a potential serious injury or 

fatality (pSIF) framework. A case study was conducted to assess the feasibility using 

historical LLNL data. The quality of a sample set of incidents was evaluated to assess 

whether the current LLNL process captures the necessary data for a pSIF model. Since 

over 86% of the incidents in a representative sample from 2007 to 2022 had sufficient 

information in the case data elements, minimal changes would be needed to incorporate a 

pSIF framework operationally.  

The recommendations are to increase efforts in gathering information related to 

both the root causes of incidents and hazard identification. Among the four criteria 

reviewed for data quality, these two were found to be the lowest. LLNL has a rigorous 

work planning process that would be best utilized in hazard identification. Efforts are 

underway in looking at how to incorporate the work planning control in the I&I process, 

which would aid in hazards identification.  

The case study included the creation of a job-aid for practitioners to utilize when 

classifying incidents and determining the final potential hurt level (PHLf). Ideally, 

practitioners would review a set of incidents to calibrate the largely qualitative 

assessments needed for addressing the diverse range of hazards and controls present in a 

research and development environment. From the over 1,000 cases reviewed for the case 

study, only eight cases had a PHLf score of three and none were found to have a score of 

four. Although this was expected, as serious injury or fatality (SIF) incidents are rare 

occurrences, this provides a limited resource for performing tracking and trending of 

these incident types.  

Additionally, the case study also aimed to evaluate institutional responses by 

qualitatively reviewing the impact of corrective actions recorded within the I&I process. 

A review of incidents with a PHLf score of two identified 142 cases, accounting for 

approximately 13% of the total incidents analyzed. The top three accident type 
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categories—noise exposure, overexertion, and repetitive motion—comprised 62% of the 

cases with a PHLf score of two. This finding highlights opportunities for improvement 

and mitigation through engineered controls, such as noise suppression, and administrative 

controls, like adjusting the frequency of work tasks to prevent repetitive motion injuries. 

It is imperative to keep in mind that research institutions are constantly 

repurposing equipment and lab space to meet changes in work scope. Preventative 

actions in the form of work control are also essential for mitigating long-term 

organizational risk. These considerations should inform institutional responses to 

incidents, as significant policy changes can have lasting implications for work done in an 

organization. 

The institutional response, noted as the Preventative Action Score (PAS), to 

injuries suggests that the higher the potential severity of the incident, the greater the 

response, even without the implementation of the framework. However, the distribution 

of PAS values was not consistently applied across the representative sample. This 

suggests that a pSIF framework can improve organizational risk management by 

providing a more consistent approach to incident response. Appendix C also highlights 

how a pSIF framework could be generalized for other frameworks, offering organizations 

a holistic view of their risk management.  

The computational modeling of incidents and scenarios provides deeper insights 

into improvements that a pSIF framework can facilitate as well as model scenarios not 

scene in the representative sample. Three scenarios were modeled based on the average 

number of injury and illness (I&I) incidents may occur in a given year. The 

computational model found that scenarios where the difference between the PAS and 

PHLf was less than negative one should be revisited to ensure that a proper institutional 

response is provided. The model also provides an opportunity to further refine the PAS 

and PHLf methodologies and to forecast institutional responses based on PHLf 

distributions. The outcome of the computational model was compared to the results of the 

case study and found that the modeled scenario underrepresented institutional response.  
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The case study data showed that the PAS was typically higher than the PHLf 

value for an incident. This meant that the institutional response to incidents typically used 

more resources than initially expected. Although scenarios where the PAS exceeds the 

PHLf are not necessarily adverse conditions, it may indicate instances where a less 

resource intensive method of mitigation should be considered due to the probability of a 

pSIF occurring. This approach may free up resources to address incidents with a PHLf 

score of three or four, indicating a higher likelihood of causing a SIF. 

A recommendation from the results is for organizations to use the classification of 

incidents to inform resource allocation towards those with the greatest risk. When 

developing metrics for pSIF implementation, one should consider the difference between 

PAS and PHLf to identify opportunities for improving risk management. The modeled 

scenario found that there were 31 instances where the PAS was less than the PHLf, 

indicating a possible suboptimal response from the institution. 

Another recommendation is to view the pSIF framework as an integrated 

approach to risk management that enhances organizational impact. This aids the 

redistribution of resources across management systems, emphasizing integrated 

improvement. With appropriate modifications, the pSIF framework can be implemented 

to add value to integrated management systems. This approach would focus on a holistic 

perspective to risk mitigation.  

Modifications to the PAS are necessary to ensure alignment with organizational 

resource allocation. Any significant changes within an organization present inherent risk 

and implementing this framework is no exception. It requires an implementation plan, 

additional training, and the comprehensive tracking and trending of incidents to inform 

those with the highest organizational risk. Insufficient attention to lower severity 

incidents may increase their frequency, potentially elevating overall organizational risk. 

Additionally, there is a need for consensus on the thresholds for high severity incidents 

and to agree on the use of incident classification to inform response and corrective 

actions. 
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For this reason, the scope of the thesis included the computational modeling of 

relevant case studies, as well as modeling of the relationship between PHLf score and 

PAS. The PAS is a generalized method for classifying institutional response. However, 

the computational models developed were simplistic, which highlights opportunities for 

greater improvement. 

Further work is needed to validate the efficacy of the framework. Specifically, 

addressing the limitation of the case study will require testing the model against various 

DOE OPEX incidents [50]. This approach could prove an effective way to evaluate the 

operational pSIF model against known incidents to ensure the thresholds for each 

category are appropriate. This incident database includes environmental and security 

incidents, providing an opportunity to test a generalized framework beyond safety as 

described in Appendix C. The ability to test against larger datasets is crucial, especially 

since higher severity incidents are rare occurrences across various management systems; 

this was a clear limitation of the case study sample set. 

Lastly, implementation of the framework and tracking of key performance 

indicators are required to ensure maximum efficacy. This requires a clear understanding 

of current institutional response to risk. Further research includes retrospective analysis 

of incidents to create example scenarios for framework implementation. The scope of 

national research laboratories are ever changing and the framework outlined can provide 

an additional toolset in comprehensive risk management.  
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APPENDIX A.  EXAMPLE SCENARIO 

The following is an example incident to show case how a proposed pSIF model 

would work in operation. The scenario is not intended to represent any real events and 

any resemblance to an actual incident or personal experience is purely coincidental. The 

scenario is adapted from the case study performed but tailored more for a nuclear 

operations research and development environment [15].  

A. SCENARIO 

“A laboratory technician working with inorganic compounds in a glovebox 

noticed a strong odor during routine operations. The technician noticed a strong odor and 

mucous membrane irritation during the operations, which regularly produces hydrogen 

sulfide. The operations regularly produce hydrogen sulfide. The technician alerted others 

in the area and warned them to leave immediately. A stop work was initiated after 

informing the supervisor. The technician is transported to the on-site clinic and is tested 

for chemical exposure. The safety team was notified to ensure safe reentry and to inspect 

the glovebox. An industrial hygienist reviewed the work and assessed that the quantities 

of material within the glovebox operations could have led to respiratory depression. After 

inspection of the glovebox, it is noted that there was an improper seal from the gaskets 

that had deteriorated over time, leading to the incident. Consequently, the gloveboxes in 

the facility were inspected for leaks.” 

B. DETERMINING FRAMEWORK VARIABLES 

Using the job-aid in Figure 8, the first step is to determine what could have been 

the potential hurt level worst-case (PHLwc) for the incident. A reasonable worst-case 

includes a review of the quantity of hazardous materials and types of hazards. Given an 

example of quantities where inadvertent chemical exposure could have led to some type 

of respiratory depression or damage to the central nervous system may be possible. If the 

main hazards from within the glovebox are sparking hazards and the chemical hazards 

are secondary, this would also be reviewed at this stage. In this example an industrial 
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hygienist that is comfortable and knowledgeable of the work occurring in the laboratory 

assessed the hazards and assigns a PHLwc score of 3 (severe hurt) based on Table 5.  

Next, the primary variable (V) is identified. This is where a review of possible 

variables that would have contributed to the PHLwc score is considered. Possible 

contributing variables include the amount of material used, body placement, training, or 

ventilation system failure. The investigator concludes that the material used was the 

primary variable, with a likelihood of the material being used leading to the worst-case 

being around 50% of the time. This leads to a primary variable of “sometimes.”  

The second variable required is the controls effectiveness (C), a qualitative 

measure of hazard mitigation through controls. It is a holistic approach to all controls in 

place at time of the incident, even if they were ineffective. In this case, this would include 

items such as administrative controls like procedures, training, glovebox specifications, 

alarms, and personal protective equipment. In this case, the glovebox as an engineered 

control was ineffective. Using the V/C score matrix in Table 6, the value is determined to 

be three.  

With the V/C score and PHLwc determined, Table 7 is used to determine the final 

potential hurt level (PHLf). The PHLf was then determined to be three, indicating that 

there was a high potential for a serious injury or fatality and would warrant an elevated 

response from the institution. 

C. INSTITUTIONAL RESPONSE 

For the framework to be effective, it is not only pertinent to evaluate incidents for 

their PHLf score, but to respond effectively to the mitigation of such incidents with 

higher scores. Because the example incident leads to a PHLf determination of three, it is 

recommended that there is an institutional response of three or more in risk mitigation.  

The response would most likely include a root cause to determine mitigation. In 

the example, it is possible that there were modifications to the glovebox or perhaps the 

frequency of testing glovebox for those operations needs to be reevaluated. In the 
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incident report, it is stated that the gloveboxes in the facility were inspected, which would 

be classified as a PAS of three based on Table 8.  

If the operations occurring within the glove box lead to the failure in engineered 

control and if warranted could be escalated to a score of 4. This response may look like 

changes to policy affecting current and future operations. The proactive risk mitigation 

approach considers the precursors that led to the event.  
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APPENDIX B.  ALTERNATE STATISTICAL METHODS TESTED 

The following appendix explains the other two methods of statistical modeling 

that engaged in testing throughout the thesis, along with the results. The evaluation and 

testing of these statistical models were important in informing the most ideal statistical 

modeling method for the computational model. 

A. GENERALIZED LINEAR MODEL WITH A POISSON DISTRIBUTION 

GLM with a Poisson distribution is used where the response to a predictor 

variable is the count of incidents that occurred within a certain amount of time. Poisson 

distributions can be used to calculate the number of rare events, such as radioactive 

decay, uncertainty analysis, and safety. Understanding these incidents made it a clear 

choice to attempt to model the number of events in each category over a period of time, 

perfect for simulating decades worth of data. However, Poisson distributions have an 

assumption that the mean and the variance of the data is equal. For the case study, this 

would mean that if over the course of five years the average number of incidents with a 

PHLf score of four was five, there would be a variance of five over the same period. 

Because fatalities at LLNL have been so rare and the case study found no incidents with a 

PHLf score of four, it is possible that under dispersion may occur. The model is defined 

with the following equation:  

𝑙𝑙𝑙𝑙𝑙𝑙�𝐸𝐸� 𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∣∣ 𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑋𝑋𝑉𝑉 ,𝑋𝑋𝐶𝐶 ,𝑋𝑋𝑉𝑉𝑉𝑉 �� = 

 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑉𝑉𝑋𝑋𝑉𝑉 + 𝛽𝛽𝐶𝐶𝑋𝑋𝐶𝐶 + 𝛽𝛽𝑉𝑉𝑉𝑉𝑋𝑋𝑉𝑉𝑉𝑉 + 𝛽𝛽𝑖𝑖  [46], [47]. 

Where: 

• 𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸[ YPHLf ∣∣ 𝑋𝑋PHLwc,𝑋𝑋V,𝑋𝑋C,𝑋𝑋VC ]) is the log of the expected count of 

the responses given the predictor variables.  

• 𝛽𝛽PHLwc𝑋𝑋PHLwc + 𝛽𝛽V𝑋𝑋V + 𝛽𝛽C𝑋𝑋C + 𝛽𝛽VC𝑋𝑋VC represents the product of the 

coefficients, 𝛽𝛽-value, and the predictor value, 𝑋𝑋, that defines the threshold 

for a one-unit change for the PHLf score. 
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• 𝛽𝛽i is the constant that defines when the PHLf score, YPHLf, is zero.  

Similarly to the ordinal logistic regression model, the generalized linear model 

with a Poisson distribution uses MLE to find the best fit. An explanation of how MLE is 

used and how it is different from the method of ordinary least squares in linear regression 

is explained in the previous section, Section A. 1. Ordinal Logistic Regression Model. An 

important distinction of generalized linear models is that it allows the response variable 

to have distributions different from typical normal distributions [46]. The fact that 

typically injury and illness incidents occur at a time independently of other incidents is 

also an assumption of the Poisson distribution. Poisson is also a discrete probability 

distribution, which means in this case there are no instances of the negative or partial 

incident. An incident either occurred or did not. The Poisson distribution of the predictor 

variables is defined by the following equation: 

 𝑝𝑝(𝑋𝑋𝑖𝑖; 𝜆𝜆) = 𝜆𝜆𝑥𝑥𝑒𝑒−𝜆𝜆

𝑥𝑥!
  [46], [62]. 

Where: 

• Xi is the predictor variables in the model such as 𝑋𝑋PHLwc,𝑋𝑋V,𝑋𝑋C,𝑋𝑋VC. 

• 𝜆𝜆 represents the shape parameter indicating the average number of events 

and the variance of that value. 

• 𝑥𝑥 is a non-negative integer and the count of PHLf scores in each category. 

The Poisson equation above explains the probability that the random variables 

from above take on a certain value. The shape parameter, 𝜆𝜆, is useful in understanding 

how the data is skewed and has been used to explain injuries in military operations [63] 

and has been cited as being dependable for analysis of traffic accidents [64]. Making it an 

ideal distribution to simulate incidents.  

B. ORDINAL LOGISTIC REGRESSION MODEL 

The ordinal logistic regression technique is common for data sets where the data 

is categorical and follows an order, such as the Likert scales type questions seen on 
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satisfaction surveys. Another important assumption about this method is that the ranking 

of each level does not mean that the intervals between the ranks are equal. For example, a 

PHLwc of one may indicate a broken arm, but a PHLwc of thee may indicate an 

amputation. An amputation is not compared by proportions of broken arms. The 

regression method uses the predictor variables V, C, and V/C, to predict the probability 

that the PHLf falls into a specific category. The model is defined with the following 

equation: 

𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑃𝑃�𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃≤𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�
1−𝑃𝑃�𝑌𝑌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃≤𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�

� = 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑉𝑉𝑋𝑋𝑉𝑉 + 𝛽𝛽𝐶𝐶𝑋𝑋𝐶𝐶 + 𝛽𝛽𝑉𝑉𝑉𝑉𝑋𝑋𝑉𝑉𝑉𝑉 + 𝛼𝛼𝑗𝑗 [47] 

Where: 

• log � 𝑃𝑃(YPHLf≤jPHLf)
1−𝑃𝑃(YPHLf≤jPHLf)

� is the log of the probability that the PHLf score, 

YPHLf, is a score of jPHLf or lower and is also known as the logit function 

[47]. 

• 𝛽𝛽PHLwc𝑋𝑋PHLwc + 𝛽𝛽V𝑋𝑋V + 𝛽𝛽C𝑋𝑋C + 𝛽𝛽VC𝑋𝑋VC represents the product of the 

coefficients, 𝛽𝛽-value, and the predictor value, 𝑋𝑋, which defines the 

threshold for a one-unit change, and the predictor variables, 𝑋𝑋. 

• 𝛼𝛼𝑗𝑗 is a constant that will be used to define the threshold between 

categorical scores of PHLf. 

Similar to how linear regression uses a method of ordinary least squares, logistic 

regression uses the maximum likelihood estimation to find the best fit. The model works 

by adjusting the coefficients until the likelihood that the series of predictor variables 

results in the target outcome is maximized. There are several methods that can be used to 

iteratively optimize the algorithm to solve the equation. Among these, the BFGS [49] 

method was used and is commonly used for optimization problems. BFGS optimization 

works by approximating the second-order partial derivatives of the function to get a 

Hessian matrix. The matrix is refined at each iteration until the local extrema of the 

function is found. The outcome of the regression model is therefore the probabilities of 
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the output for each value of the predictor variables [47]. However, another regression 

model was explored to simulate the data. 

Now that there are two models, they can be leveraged to create simulations of the 

case study data. Because the case study is based on a random sample of over ten years, it 

may be a good indicator of what the distribution of injury and illness cases look like and 

can be used to synthesize data of various distributions. For the thesis, the goal is also to 

synthesize the case study data to model institutional response for the development of 

useful metrics in the case of framework implementation. Creating these metrics is 

important in tracking framework influence in the organization [56]. The next section will 

go into detail on simulating the case study data for modeling implementation. 

The models provide the statistical parameters to provide the distribution of PHLf 

scores. The results showed that PHLf, regardless of model, is mostly influenced by the 

PHLwc and the V/C value. Which is to say that there is no statistical correlation between 

the V and C score. For this reason, the PHLf and V/C value will be used to generate the 

synthetic data in question. Figure 25 shows the code that was used to simulate the data 

from the ordinal logistic regression model.  

 
Figure 25. Code Snippet to Generate Synthetic Data for the Ordinal Logistic 

Regression Model 
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The function takes the various 𝛽𝛽-value of the two coefficients that had the most 

influence in determining the PHLf score, its thresholds, the mean, and standard deviation 

of the coefficients. The sample size variable is used to know the amount of simulated 

values, or PHLf scores, to generate. The thresholds are used to categorize the generated 

values. An ordinal logistic regression does not have an assumption of the distribution of 

the values. Because a Poisson distribution was not assumed, a normal distribution was 

used. The normal distribution is defined by the means and standard deviations from the 

model in order to generate the characteristics of the predictor variables in the model.  

The linear predictor is used to create a weighted sum of generated predictor 

values. In this manner, the function computes the relationship between these values and 

the outcome. However, these linear predictor values must be transformed into a 

cumulative probability to be deterministic. This is done using the logistic sigmoid 

function, defined as 𝜎𝜎(𝑥𝑥) = 1
1+𝑒𝑒𝑥𝑥

 , used as SciPy’s Expit function [69]. Using the 

probabilities for each category, the code then ensures that the probability will be within 

zero and one. This is to ensure that the probability is possible. Then the values are 

generated based on the probabilities and the PHLwc scores and V/C scores are converted 

from continuous values to discrete integers. The simulated values were then saved in a 

Pandas data frame and the results for simulated values of 900, 1,000, and 1,100 cases can 

be seen in Figure 26. An important thing to note is that a set value for the random seed 

was used to get repeatable results.  

An important feature to note is that although the PHLwc and V/C distribution is 

similar to that of the original case study, the distribution in PHLf is biased on the lower 

and upper bounds of the values from the case study. This is clearly problematic in terms 

of simulating the PHLf distribution for modeling changes in distribution. For this reason, 

an attempt was made to use the GLM with Poisson distribution to see if a more similar 

distribution could be simulated. It is possible that there were several issues with the 

model. One of which was that the ordinal logistic regression model could be overfitting 

the data. This also explains why there is no coefficient for where the PHLf value was 

four. However, because the Poisson distribution is specifically for counts of events, it 

may be able to better simulate various distributions of injury and illness data.  
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Figure 26. Results of Ordered Model PHLf Simulation 

The results of the GLM with Poisson distribution show that there is a positive 

correlation between PHLf and both the PHLwc and V/C score. Similarly to the ordinal 

logistic regression model, it seemed that the values of V and C showed less of a 

statistically significant correlation. Although the LLF, AIC, and BIC of both models were 
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significantly different, it is possible that the Poisson distribution may be more robust 

when simulating the data. Figure 24 shows the code that was used to generate simulated 

results. Like the function that was created to simulate data from the ordinal logistic 

regression model, the GLM with Poisson distribution uses the 𝛽𝛽-values, mean, and 

standard deviation of the predictor variables.  

 
Figure 27. Code Snippet to Generate Synthetic Data for the Ordinal Logistic 

Regression Model 

However, an important distinction is that the GLM with Poisson distribution 

generates a 𝜆𝜆-value which defines the shape parameter of the Poisson-distributed 

outcomes. An explanation of the equation λ𝑖𝑖 = exp�β0 + β𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑋𝑋𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑖𝑖 + β𝑉𝑉𝑋𝑋𝑉𝑉,𝑖𝑖 +

β𝐶𝐶𝑋𝑋𝐶𝐶,𝑖𝑖 + β𝑉𝑉𝑉𝑉𝑋𝑋𝑉𝑉𝑉𝑉,𝑖𝑖� is derived in Appendix A. Section A. The shape parameter takes the 

place of the use of the thresholds of the ordinal logistic regression model and the function 

then proceeds to generate the values based on the discrete probability. Additionally, 

because the shape parameter is exponentiated, the lambda value is always positive. Not 

only is this a requirement of the Poisson distribution, but this also reflects an important 

assumption that there are no such thing as negative incidents. The values of PHLwc and 

V/C score at this point are floats because they are generated randomly based on the mean 
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and standard deviation of the original model. For this reason, they are binned into their 

nearest integer and the simulated PHLf values are limited to only produce cases with a 

value between zero and four to meet the constraints of the framework. Again, the random 

values are generated using a known seed for repeatability. The simulated values were 

then saved in a Pandas data frame and the results for simulated values of 900, 1,000, and 

1,100 incidents can be seen in Figure 28. 

The results of the GLM with Poisson distribution were much more favorable than 

the simulated values generated from the ordinal logistic regression model. Both in terms 

of fitting against the case study data and in terms of the ability to adjust parameters to 

simulate different parameters. For this reason, the GLM with Poisson distribution was 

chosen and should be considered when simulating various distributions of the data. Next 

the focus will be on simulating institutional response to generate metrics for use in an 

operational setting. 
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Figure 28. Results of the GLM with Poisson Distribution PHLf Simulation 
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APPENDIX C.  MANAGEMENT SYSTEMS 

The Livermore site has environmental and occupational health and safety 

management systems in place to provide support for protecting its workers, the public, 

and environmental stewardship [21]. It is imperative that the proposed model live within 

this management system to be effective. It achieves this through an integrated 

management system approach that considers the International Organization for 

Standardization’s (ISO) 14001: Environmental Management Systems [22], and ISO 

45001: Occupational Health and Safety Management System (OHSMS) [23]. Both ISO 

standards require and emphasize continuous improvement, evaluation, and risk mitigation 

to minimize adverse environmental and occupational health and safety risks.  

The framework of the case study is meant to demonstrate how to encompass a 

continuous improvement philosophy in a way that can mitigate high-severity adverse 

incidents across management systems. A look at the framework and it’s fit for purpose 

against other management systems is discussed in later chapters. The overlap between 

ISO standards also provides additional structure for the framework to be applicable 

outside of environment and health. Such conceptual overlap may benefit concerns in 

quality or security management systems. 

A. IMPLICATIONS OF THE CASE STUDY BEYOND HEALTH AND 
SAFETY 

Frameworks that are system agnostic provide a flexible, scalable, and general 

solution that can be adopted across an organization. For instance, LLNL integrates the 

ISO 45001 [23] and ISO 14001 [22] standards to simultaneously manage occupational 

health and safety alongside environmental management. The integration raises insights 

on how lessons learned from a pSIF framework may be applied beyond occupational 

health and safety. For this reason, the following sections highlight possible implications 

across various management systems.  
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B. IMPLICATIONS FOR ENVIRONMENTAL MANAGEMENT 

LLNL follows ISO 14001 [22] for guidance on managing its environmental 

management system. One of the guiding principles of any environmental management 

system is its commitment to continuous improvement. Especially doing so in manner that 

mitigates any negative impact to the environment. DOE national research laboratories are 

required to follow strict federal, state, and local regulations ranging from executive orders 

to voluntary obligations. This is all in part of ensuring federal agencies consider the 

potential environmental impacts in accordance with the National Environmental Policy 

Act.  

In order to correlate a pSIF framework to another type of system, an 

understanding of what constitutes a high severity incident for that system must be 

understood.  

Environmental incidents can impact organizations in several ways. This includes 

monetary fines and penalties for non-compliance. Unlike private entities, national 

research laboratories cannot recuperate losses due to environmental non-compliance. 

Severe environmental incidents may lead to a degradation in public perception and 

community relations. As well as leading to increased scrutiny from federal oversight.  

For example, Lawrence Livermore National Laboratory is surrounded by a lively 

community and several wineries. An incident related to the release of toxic material into 

the water could create irreparable damage to the laboratory’s reputation. Understanding 

the implications of various incident types can facilitate a crosswalk between occupational 

health and safety and environmental management, as illustrated in Figure 29.  
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Figure 29. Incident Overlap in Occupational Health and Safety and 

Environmental 

The framework can then be used to evaluate incidents based on overlapping 

repercussions, while still recognizing some of the unique implications of environmental 

incidents and their varying severity. A key difference between injury and illness incidents 

and environmental incidents is that while many minor incidents may not increase the 

severity of impact to an individual, the same cannot be said of environmental incidents. 

For example, the release of smaller quantities of hazardous materials to the environment 

can eventually lead to larger environmental impact.  

In contrast, multiple minor injuries would not necessarily lead to a severe 

outcome. Although multiple strains on muscle may cause irreparable damage it is 

unlikely that strains would lead to amputation of a limb, except under extreme 

circumstance. The pSIF model also assumes that a percentage of near misses could 

contribute to more significant events. This has not been verified for smaller 

environmental impacts leading to more significant environmental impacts and may 

require a similar case study to be done. Although at least one study focused on China’s 

chemical industry looked at a general safety triangle in terms of occupational health and 
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safety, environmental, and even quality [72]. This may imply that the overlap and 

framework may apply to other management systems. 

C. IMPLICATIONS FOR QUALITY MANAGEMENT 

In addition to ISO 14001 [22] and ISO 45001 [23], LLNL also adheres to ISO 

9001 for guidance on managing its Quality Management System (QMS). Similarly to the 

other management system standards, ISO 9001 emphasizes the principle of continuous 

improvement. A QMS is responsible for having a system in place to documents 

processes, procedures, and responsibilities necessary to achieve operational objectives. 

Given LLNL’s mission to support national security research; ranging from stockpile 

stewardship to fundamental science discovery – the implementation of a QMS can 

streamline operations, reduce costs, and drive long-term success in meeting contractual 

agreements.  

Understanding the implications of incidents regarding quality can enhance how a 

pSIF framework impacts QMS and mission objectives. A common consequence of 

adverse quality incidents is the Cost of Poor Quality (COPQ). COPQ refers to the cost 

associated when processes are inefficient or produce subpar results [53]. From a mission 

perspective, catastrophic failures can impact product and service quality leading to far-

reaching impacts across the complex. This is especially important as LLNL is the only 

DOE national research facility that relies on other facilities within the complex to meet 

research objectives. Such failures may also result in occupational health and safety 

incidents as well as not meeting mission or contractual obligations.  

National research laboratories, such as LLNL, have strong brand recognition that 

could influence federal and public perception institutional performance. As illustrated in 

Figure 30, there is an overlap between negative outcomes related to occupational health 

and safety and quality.  
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Figure 30. Incident Overlap in Occupational Health and Safety and Quality 

Quality management encompasses broad operational processes and for this 

reason, it is crucial to understand how quality affects both Occupational Health and 

Safety Management Systems (OHSMS) and Environmental Management Systems 

(EMS). For example, in review of an incident that lead to an inadvertent dose in radiation 

could stem from a failure in the management of the quality of a process that lead to 

inadequate engineered control to prevent it. Thus, systems quality has far-reaching 

relevancy across all management systems, not just in the production of widgets.  

D. IMPLICATIONS FOR SECURITY  

Lastly, there was interest in seeing if the pSIF framework could apply to security. 

A system typically not associated with OHSMS and EMS. Although security is a broad 

topic that can encompass information security, physical security, and national security. 

Understanding the implications of high severity incidents in a comprehensive manner can 

facilitate the implementation of a pSIF framework across these areas. This includes the 

overlap as a consequence of the incidents from each system.  
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Security management systems typically integrate people, processes, hardware, 

and software to apply a risk management strategy to mitigate incidents with a negative 

outcome. The DOE considers quality, environmental, health and safety, and security in its 

operational excellence lessons learned [50]. The interconnectedness in Figure 31 

illustrates the overlapping consequences between these systems. Security has similarities 

to OHSMS and EMS in that both management systems must mitigate operational risk, 

perform incident response, and ensure compliance with federal, state, and local 

regulations. For these reasons, a pSIF framework may have success in being adapted to 

various security management frameworks. However, in this instance, security is a general 

field of study, where operationally, security may encompass physical security, cyber 

security, and other aspects that each have specific ways to gauge organizational risk.  

 
Figure 31. Incident Overlap in Occupational Health and Safety and Broad 

Security Management 

E. OVERARCHING SIMILARITIES IN MANAGEMENT SYSTEMS 

By examining the lasting implications of high-severity incidents across different 

management systems, LLNL can enhance system integration and performance. The 
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International Organization for Standardization (ISO) released a handbook in 2018 on the 

integrated use of management system standards, [54] which influenced the expansion of 

the pSIF framework to encompass multiple management systems. LLNL has already 

started efforts in creating an integrated management system that combines OHSMS and 

EMS. There has also been institutional interest in understanding how the 

interconnectedness of these management systems can enhance operational excellence. 

For clarity, Figure 32 synthesizes Figures 13–15 and illustrates overlap in incident 

outcome between the management systems discussed in Subsections 1–3. Effective post-

incident classification based on their overall severity can aid in continuous improvement 

of these systems.  

Lastly, integrated management systems present opportunities for increased 

efficiency within organizations. For example, a nuclear power plant in East China sighted 

that implementing an integrated management system assisted in passing multiple 

certifications and cited reduction in bureaucracies, management reviews, and corrective 

and preventative actions [55]. The pSIF framework aims in improving corrective and 

preventative actions, and its adoption across management systems may shift focus from 

isolated deficiencies to comprehensive system improvements. Siloed management 

systems can therefore have a holistic approach to risk management.  
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Figure 32. Overlap Between Several Management Systems and Incident 

Severity 

The concept of the “worst-case scenario” that institutes the highest level of hurt 

level can then be reframed by the “highest level of incident severity,” dependent on the 

management system involved. Table 20 presents various examples of proposed incident 

severity level definitions, while maintaining the structure of the original pSIF frameworks 

used in the LLNL case study [15]. Additionally, Figure 33 shows a modified job aid for a 

general approach to a potential severity incident framework.  

While a generalized approach to the potential severity framework brings a holistic 

approach to risk mitigation in an organization, it presents opportunities for confusion in 

terms of institutional response. But it is still important to recognize that incidents in other 

management systems may have contributing factors that could escalate their potential 

severity. This is an underlying assumption of the pSIF framework. For example, if an 

organization breaks up its management systems across the institution to various 
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directorates or departments, the roles and responsibilities may create an issue of 

fragmented responsibilities. This has the potential to lead to diminished accountability in 

incident response [52].  

 
Figure 33. Modified Job Aid for High Severity Incidents 
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To address this challenge, it requires consistency in decision making, 

organizational priorities, and resource utilization. A holistic approach to an integrated 

approach is also a benefit of integrated management systems [54]. However, there are 

limitations in adopting a graded approach to the response to high-severity events 

discussed in the conclusion and recommendation section of the thesis. 

Additionally, redundancy in incident response can lead to a lack of accountability. 

To mitigate this, it is recommended to establish cross-functional teams for decision 

making [54]. From an operational perspective, this may include having an incident 

severity response team in which various management systems are represented. The team 

would evaluate incidents to determine potential severity of an incident. While this 

collaborative approach allows each management system to implement its own mitigation 

strategies, it still requires top management to approve final decisions. This is especially 

important in overlap in preventative action determinations.  

 
Figure 34. Cross Functional Incident Response Team 
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A holistic approach to risk management is often necessary due to the overlap in 

risk to the organization [56]. Siloing of the risk may continue to create fragmented 

responsibilities. Implementing consistent methodology across management systems 

reduces the likelihood of unforeseen risks emerging. Figure 18 illustrates individual 

potential severity impacts within the cross functional team. However, achieving 

consistency could also be a challenge in a newly formed cross-functional incident 

severity response team. Consistent and effective risk assessment is always a concern and 

especially when qualitative measures are employed in risk management [56]. These 

topics are revisited in the conclusion, although overarching themes expand beyond the 

theme of this thesis.  
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Table 20. Example of Potential Severity by Management Systems 

Incident 
Severity 

Level 

Definition  Occupational 
Health and Safety 
Examples 

Environmental 
Examples 

Quality Examples Security 
Examples 

Highest 
Severity 
(4) 

Permanent 
reputational damage. 
Significant disruption 
to operations. 

- Fatality or Multiple 
Fatalities 

- Large scale 
dispersal of 
hazardous materials 

- Inability to 
complete mission 
critical procedures 

- Theft of 
nuclear 
materials 

High 
Severity 
(3) 

Significant damage to 
reputation. Major 
disruption to 
operations.  

- Amputation 
- Loss / impairment 
of organ functions 
- Severe to complete 
loss of hearing 

- Release of 
hazardous gas 
above regulatory 
limits 

- Critical process 
failure affecting 
multiple systems 

- Breach of 
sensitive 
information 

Moderate 
Severity 
(2) 

Noticeable damage to 
reputation with 
impacted operational 
capabilities available. 

- Fractures, loss of 
tooth/teeth 
- Partial / single digit 
amputations 
- Moderate hearing 
loss 

- Temporary 
increase in 
emission within 
regulatory limits 

- Procurement of 
low-quality 
materials 

- Intentional 
breach of 
security 
protocols 

Minor 
Severity 
(1) 

Minimal reputational 
damage with little to 
no disruption to 
operational 
capabilities. 

- Minor lacerations 
that bleed freely 
- Confirmed slight to 
mild hearing loss 
- Mild corneal 
abrasion 

- Minor spill of 
non-hazardous 
material 

- Process deviation 
that lowers quality 
of measurements 

- Misplaced ID 
badge without 
unauthorized 
access attempt 

No 
Severity 
(0) 

No risk to reputation 
or disrupt operations.  

N/A N/A 
 
 

N/A  
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