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2-D FINITE ELEMENT CABLE & BOX IEMP ANALYSIS

C. David Turner and Gary J. Scrivner

ABSTRACT

A 2-D finite element code has been developed
for the solution of arbitrary geometry cable
SGEMP and box IEMP problems. The quasi-
static electric field equations with radiation-
induced charge deposition and radiation-induced
conductivity are numerically solved on a
triangular mesh. Multiple regions of different
dielectric materials and multiple conductors are
permitted.

INTRODUCTION

The absence of underground nuclear testing
makes advdnced computational tools for
addressing radiation-induced electromagnetic
phenomena much more important than in the
past. In addition, the cost-driven desire to
minimize hardware design iterations, due to
problems revealed by radiation testing relatively
late in the development process, further
increases the need for such analysis capability.
This paper describes a code aimed at
significantly improving the capability of
calculating direct charge injection cable
SGEMP response and the IEMP response within
electronic boxes.

The purpose of this effott is to develop a
computational tool for evaluating direct charge
injection effects in lightly shielded cables for
systems having reasonably stressing x-ray
requirements. Based on cables existing in the
present nuclear stockpile and those being
considered for future applications, this code
must have the capability to treat rather complex
geometries consisting of multiple conductors
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and multiple dielectric regions. The applicable
x-ray environments require that radiation-
induced conductivity effects be considered in
the multiple dielectric regions. Furthermore, the
computational approach must be compatible
with lumped-element, multi-conductor
transmission line analysis in order to evaluate
transmission line effects and electrical stresses
at termination circuits.

METHODOLOGY

It is assumed that both the incident radiation
environment and the transmission line voltages
are constant over a section of cable of length
(Az) and that at time (t) the potentials are known
for all conductors. It is further assumed that
charge density (p) within the dielectric regions,
due to both direct radiation-induced charge
deposition and charge transport by natural
and/or radiation-induced conductivity at time
(t), is known. Figure 1 depicts the cable
geometry being addressed.

Figure 1. Cable Geometry.
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Letting E = -V¢ represent the transverse electric
field, it follows that VeeE = p where ¢ is the
potential and € is the permittivity within the
cable. Define E; as the electric field in the
absence of the internal charge distribution due
to a unit potential on the i conductor with all
the remaining conductors grounded. Define E*
as the field due to the internal charge density
with all conductors grounded. This implies that
E can be written as

E=E*+Z¢iEi

where ¢; is the potential on the i conductor and
the sum is over all conductors. It also follows
that VegsE* = p with the boundary conditions
that the potential function associated with E*
must vanish on the surface of all conductors.
Given the ¢;’s and p, E can be computed at time
t. To advance the solution to time t + At, one
must be able to advance the ¢;’s and p in time.
The charge density is advanced using the charge
continuity equation

VeJ, +VeoE + pldt =0

where J; is the radiation-driven transport current
and o is the conduction current. The potentials
on the conductors are advanced in time by
invoking the charge balance relation obtained by
integrating the above continuity equation over
the volume of each conductor having length Az.
Charge flow in the z-direction due to
transmission line currents or conductor
terminations must be included.

The numerical solution of the above spatial
equations is accomplished using finite element
analysis on a triangular mesh. An explicit finite
difference procedure is used to advance the
solution in time. Mesh generation is
accomplished using commercial grid generation
software.

CODE DESCRIPTION and RESULTS

The code was written using object-oriented
techniques in C++. This allows great

extensibility and code reuse. For example, early
on it was determined that the accuracy of the
electric field for linear elements (field is
constant within an element) was inadequate to
achieve good charge balance results. Therefore,
quadratic elements were introduced (field is
linear within an element) in very short order,
thereby greatly improving our results. Extension
of the code to 3-D has also proved very
straightforward with little new code. Essentially
the same code now does both 2-D and 3-D
analysis.

Figure 2 shows an example cable geometry with
two conductors surrounded by a dielectric
region and a shield.

Figure 2. Example cable geometry.

The finite-element mesh is shown along with
the elemental charge density distribution 50
time steps into the simulation. The upper section
(upper 7/8 vertically, including both conductors)
has zero conductivity for all time and zero
transport charge deposited. The lower section
(lower 1/8 vertically) has a finite conductivity
and has transport charge delivered over a
triangular pulse having a risetime of 20 time
steps and a total length of 40 time steps. The
mesh density has been increased near the
material discontinuity for greater accuracy. For
this simulation, the upper conductor and the
shield are grounded while the lower conductor
is floating. Therefore, charge will accumulate on
the interface between the two materials until all




charge is bled to ground through the lower
portion of the shield.

The charge existing on the boundary after 50
time steps is shown in Figure 3. In this figure,
the charge actually existing on each edge in the
boundary is depicted as an “elemental” charge
in each of the elements adjacent to the boundary
which shares that edge.

Figure 3. Interface charge at material
discontinuity.

Figure 4. Potential distribution.

Figure 4 shows the potential distribution, also
after 50 time steps. Clearly the lower conductor
is floating and the others are grounded. Also, the
dominant source is now the charge on the

interface boundary. Figure 5 shows the
replacement current induced in the grounded
conductor as a function of time step.
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Figure 5. Replacement current through
grounded conductor.

DISCUSSION

Although the initial purpose of this work was to
develop a code for cable response calculations,
the code can also be used to perform 2-D box
IEMP calculations with complex geometries and
radiation-induced conductivity. The cable shield
becomes the metallic-box walls and the
conductors become lands. Cable dielectric
regions map over into IEMP suppression
coatings, potting materials, and printed circuit
boards. The numerical techniques utilized in this
2-D code should be directly applicable for a 3-D
box IEMP code and, in fact, this development
has begun. Perhaps the most significant result of
this work is that it provides a methodology for
performing cable response calculations without
resorting to the approximate equivalent circuit
approach used in the past [1]. This previous
approach required the analyst to construct a
network of parallel capacitors, time-dependent
resistors, and time-dependent current sources to
approximately represent the radiation-induced
phenomena.

As the reader might realize, a 2-D/3-D quasi-
static electric field code for cable/box IEMP
problems is of limited usefulness unless
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radiation-transport  calculations can  be
performed for the same  geometries.
Conceptually, the radiation transport could be
performed with a MONTE CARLO code such
as ITS [2]. However, obtaining highly accurate
charge and energy deposition values with the
spatial resolution required to support the quasi-
static electric-field -analysis would require
significant computer resources. A much more
desirable approach would be to perform
deterministic radiation transport using the same
mesh as used for the electrical analysis. Effort is
currently underway to develop such a code, first
in 2-D, followed by a 3-D version.

REFERENCES

[1] C. E. Wuller, L. C. Nielsen, and D. M.
Clement, “Definition of the Linear Region of X-
ray-Induced Cable Response,” IEEE
Transactions on Nuclear Science, Vol. NS-25,
No. 4, August, 1978, pp. 1061-1067.

[2] J. A. Halbleib, R. P. Kensek, T. A
Mehlhorn, and G. D. Valdez, “ITS Version 3.0:
The Integrated TIGER Series of Coupled
Electron/Photon Monte Carlo Transport Codes,”
SAND91-1634, Sandia National Laboratories
Report, 1992.

Sandia is a multiprogram laboratory
operated by Sandia Corporatjon, a
Lockheed Martin Company, for-the
United States Department of Energy
under contract DE-AC04-94A1.85000.




