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ABSTRACT

The Idaho INEL Oversight Program, in association with the
University of Idaho, Idaho Geological Survey, Boise State
University, and Idaho State University, developed a research
program to determine the hydraulic properties of the Snake River
Plain aquifer and characterize the vertical distribution of
contaminants. A straddle-packer was deployed in four observation
wells near the Idaho Chemical Processing Plant at the Idaho
National Engineering Laboratory. Pressure transducers mounted in
the straddle-packer assembly were used to monitor the response of
the Snake River Plain aquifer to pumping at the ICPP production
wells, located 2600 to 4200 feet from the observation wells. The
time-drawdown data from these tests were used to evaluate various
conceptual models of the aquifer.

Aquifer properties were estimated by matching time-drawdown
data to type curves for partially penetrating wells in an
unconfined aquifer. This approach assumes a homogeneous and
isotropic aquifer. The hydraulic properties of the aquifer
obtained from the type curve analyses were:

. Storativity = 3 x 10°

+ Specific Yield = 0.01

« Transmissivity = 740 ft?/min
- Anisotropy (Kv:Kh)= 1:360

Further evaluation of the time-drawdown data collected at
various depth intervals in the aquifer indicated that drawdown
generally increased with depth. Time-drawdown data were compared
to the stratigraphy of the basalt flows and sedimentary interbeds
at the Idaho National Engineering Laboratory developed by
Anderson (1991). The greatest drawdown was observed in tested
intervals below the top of Flow Group I.

To evaluate the implications of this observation, a radial
flow model was used to simulate three conceptual models for the
Snake River Plain aquifer near the Idaho Chemical Processing
Plant:

1) One Layer System:
Single aquifer - Flow Groups E-I (homogeneous and
anisotropic)

2) Two Layer System:

Upper aquifer - Flow Groups E~-G (homogeneous and
anisotropic)
Lower aquifer - Flow Group I (homogeneous and
anisotropic)
ii




3) Three Layer Systen:

Upper aquifer - Flow Groups E-G (homogeneous and
anisotropic)

Confining unit - sedimentary interbed at the top of
Flow Group I (homogeneous and
isotropic)

Lower aquifer - Flow Group I (homogeneous and
anisotropic)

The three-layer system, in which the upper 70 feet of the
aquifer is unconfined, the sedimentary interbed at the top of
Flow Group I is a leaky confining layer, and the basalt units in
Flow Group I represent a leaky confined aquifer, provided the
best match of simulated drawdown to observed drawdown. Estimates
of the hydraulic properties of each layer were determined by
trial and error model calibration. This optimization resulted in
the following average estimates for the hydraulic properties of
the composite, three-layer system:

+ Storativity = 7 x 10

+ Specific Yield = 0.009

- Transmissivity = 430 ft’/min
- Anisotropy (Kv:Kh)= 1:230

The estimated hydraulic properties for each of the three layers
are as follows:

1) Upper aquifer (unconfined)

Horizontal conductivity = 3.7 ft/min
Vertical conductivity = 0.3 ft/min

2) confining layer (leaky)
Horizontal conductivity = 1.4 x 10* ft/min
Vertical conductivity = 1.4 x 10* ft/min

3) Lower aquifer (leaky, confined)
Horizontal conductivity 0.6 ft/min
Vertical conductivity 0.4 ft/min

Calibration of the radial flow model and type curve analysis
resulted in similar estimates of the hydraulic properties of the
aquifer system, despite major differences in the conceptual

models (i.e. one layer versus three layers).
For aquifer characterization studies with less quantitative

objectives, such as an evaluation of an area’s water supply
potential, type-curve analysis may be adequate. However, for
more complex needs, such as contaminant-transport modeling, it
may be necessary to refine the conceptual model and corresponding
estimates of the hydraulic properties.
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CHAPTER 1:

INTRODUCTION

Background
The Idaho National Engineering Laboratory (INEL) is located

in southeast Idaho and is operated by the U.S. Department of
Energy (DOE). The INEL encompasses 890 sguare miles of the Snake
River Plain about 40 miles west of Idaho Falls (Figure 1). Since
it was established in 1949 as the National Reactor Testing
Station, 52 nuclear reactors have been constructed and tested at
the INEL.

There are several major facilities at the INEL which have
served a range of uses associated with DOE operations, including
nuclear-reactor research, waste disposal, and reprocessing of
spént nuclear fuel. One of these facilities, the Idaho Chemical
Processing Plant (ICPP), was constructed in the early 1950s to
recover fissionable materials from spent nuclear fuel (Figure 2).
Reprocessing of nuclear fuel began at the ICPP in 1952, and
continued intermittently until 1994.

From 1953 to 1984, low-level radioactive, chemical, and
sanitary waste water from the ICPP was discharged directly to the
Snake River Plain aquifer (SRPA) via an injection well (CPP-03).
At present, process waste water is discharged to two unlined
infiltration ponds located south of the ICPP, and sewage effluent

is routed to a infiltration pond east of the facility.
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Figure 1. Map of Idaho showing the locations of the INEL, eastern Snake River Plain,
and generalized ground-water flow lines of the Snake River Plain aquifer.
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Figure 2. Location of the Idaho Chemical Processing Plant at the Idaho National
Engineering Laboratory.




Disposal of waste water at the ICPP has resulted in the
formation of contaminant plumes which extend several miles
downgradient (Barraclough and Jensen, 1976; Barraclough and
others, 1982; Mann and Cecil, 1990). Contaminants detected in
the aquifer include tritium, strontium-90, iodine-129, nitrate,
‘and chloride.

In 1989, the INEL Oversight Program was established by the
legislature of the State of Idaho to provide an unbiased and
independent source of information on the INEL’s impact on the
environment. In an effort to characterize the three-dimensional
nature of the ICPP contaminant plumes, the INEL Oversight
Program, in cooperation with the University of Idaho, Idaho State
University, Boise State University, and the U.S. Geological
Survey, conducted a series of straddle-packer tests in four
obéervation wells (USGS-44, USGS-45, USGS-46, and USGS-59)
located west and south of the ICPP (Figure 3). These wells were
installed by the U.S. Geological Survey in the 1950s and 1960s to
monitor the water quality of the aquifer.

A straddle-packer system was used to isolate specific
intervals of the Snake River Plain aquifer and monitor water
quality, vertical gradients, and the aquifer response to an
applied hydraulic stress. Three types of aquifer tests were
performed with the straddle-packer system:

1) Single-well tests. Water was pumped from a specific

interval of the aquifer using a pump located between
two packers.
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2) 8lug tests. The riser pipe on the straddle-packer
system was filled with water, which was instantaneously
released into the interval of the aquifer between the
two packers.

3) Multiple-well tests. The straddle-packer system was
used in observation wells to measure the response of
specific zones in the aquifer to pumping of the ICPP
production wells.

This report discusses the results and interpretation of the

multiple well tests.

Geology

The INEL is located in the central part of the eastern Snake
River Plain, a large northeast-trending basin covering
approximately 12,000 square miles (Figure 1). The basin has been
filled by several thousand feet of Tertiary and Quaternary basalt
and sediment. A more detailed discussion of the geology and
geologic history of the Snake River Plain can be found in
Robertson and others (1974), Bonnichsen and Breckenridge (1984),
Hackett and others (1986), Whitehead (1986), and Lindholm (1993).

Anderson (1991) studied the stratigraphy of the vadose zone
and upper portion of the Snake River Plain aquifer in the
vicinity of the ICPP using geophysical logs coupled with
paleomagnetic data and radiometric-age determinations from the
basalt. Twenty three basalt-flow groups were identified and
categorized into seven stratigraphic units based on source and
age relations. Composite stratigraphic units generally consist

of multiple basalt flows and sedimentary interbeds (Figure 4).
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The location of the cross section in Figure 4 is shown on Figure
3.

The USGS wells tested by the INEL Oversight Program were
ideélly suited for performing packer testing in the Snake River
Plain aquifer because they were drilled to a depth of about 650
feet below land surface (bls) and are open to the aquifer over an
interval of approximately 200 feet. The wells, which were cased
throughout the vadose zone, are completed in Flow Groups E-G and
Flow Group I, as identified by Anderson (1991) and shown in
Figure 4. The flow units dip to the southeast. Individual flows
in Flow Groups E-G are 10-26 feet thick in wells USGS-44, -45, -
46, and -59 (Steve Anderson, 1995, personal communication). The
two basalt flows in Flow Group I which were identified in these
wells are typically thicker, ranging from 19 ft to >90 ft. A
sedimentary interbed, four to nine feet thick, is present at the

top of Flow Group I in USGS-45, -46, and -59.

Hydrogeology

The Snake River Plain aquifer is present beneath nearly all
of the eastern Snake River Plain. The aquifer primarily consists
of a layered sequence of basaltic lava flows intercalated with
sedimentary interbeds. Recharge to the aquifer is primarily from
irrigation, underflow from basins north and northwest of the
INEL, and precipitation on the plain. The primary discharge
areas for the aquifer is the Thousand Springs region near

Hagerman (Figure 1), and springs near American Falls Reservoir.




At the INEL, depth from land surface to the agquifer ranges from
about 200 feet at the north end of the INEL to more than 600 feet
at the south end.

Considerable debate exists over the thickness of the Snake
River Plain aquifer. Robertson (1974) states that "Although the
real aquifer system is probably more than 1,000 feet (300 meters)
thick, a thickness of 250 feet (76 meters) is used in this study
based on apparent layering effects in the agquifer." Based on the
presence of low permeability sedimentary layers encountered in a
well drilled approximately three miles north of the ICPP, Mann
(1986) suggested that the Snake River Plain aquifer is 450-800
feet thick. Modeling studies performed by the U.S. Geological
Survey represented the eastern Snake River Plain aquifer as a
four-layer system, with the total thickness of the aquifer at the
INEL ranging from 500 ft to over 3000 ft in thickness
(Garabedian, 1989).

Most, if not all, of the aquifer tests at the INEL have been
conducted in partially penetrating wells in an aquifer of unknown
thickness. The thickness of the tested interval is a function of
the construction characteristics of a given pumping well.
Estimates of transmissivity from these tests do not represent the
entire thickness of the aquifer.

Transmissivity estimates for the Snake River Plain aquifer
range over several orders of magnitude. Walton (1958) analyzed
aquifer test data for nineteen wells at the INEL, and determined

that the transmissivity of the aquifer ranged from 2.8 to 1670




ft?/min. Ackerman (1991) evaluated aquifer-test data from 94
wells at the INEL, and reported transmissivity estimates of the
Snake River Plain aquifer ranging from 0.0008 to 530 ft?/min.
Table 1 summarizes the transmissivity determined for the ICPP
production wells.

Table 1. Transmissivity estimates for the Snake River Plain

aquifer determined from pumping tests of the ICPP
production wells (Ackerman, 1991).

Well Transmissivity
(ft?/min)

CPP-01 50

CPP-02 110

Wylie and others (1994) estimated the transmissivity of the
aquifer to be about 695 ft?/min based on a multiple-well pumping
test conducted near the Radioactive Waste Management Complex
(RWMC) . Haskett and Hampton (1979) and Mundorff and others
(1964) reported transmissivity values of 14 to 3472 ft’/min from
aquifer tests in the eastern Snake River Plain aquifer.

Previous studies have evaluated the Snake River Plain
aquifer as a water-table aquifer (Garabedian, 1989; Wylie and
others, 1994). Estimates of specific yield from aquifer tests in
the eastern Snake River Plain aquifer range from 0.01 to 0.22

(Haskett and Hampton, 1979; Mundorff and others, 1964).
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Objectives
o The objectives of this study were to:
1) Collect and utilize drawdown and recovery data from

routine pumping of the ICPP production wells.
2) Provide quantitative estimates of the storativity,
® specific yield, and horizontal and vertical hydraulic
conductivities of the Snake River Plain aquifer near
the Idaho Chemical Processing Plant.
This information will advance the conceptual and quantitative
® understanding of the three-dimensional characteristics of the

Snake River Plain aquifer near the ICPP, and can be used to

develop or refine ground-water models.







CHAPTER 2:

METHODOLOGY

From 1992 to 1994, aquifer tests were performed with the
straddle-packer system in four wells (USGS-44, USGS-45, USGS-46,
and USGS-59) near the Idaho Chemical Processing Plant. The
investigations of the Snake River Plain aquifer performed in each
well included monitoring the response of the aquifer to pumping
at the ICPP production wells to evaluate properties of the Snake
River Plain aquifer. This information was used to supplement the
single-well pumping tests conducted with the straddle-packer.
Well construction diagrams and the lithologic logs for the
observation wells and production wells are in Appendix A.
Sediments and other fine-grained material are readily "washed
out" of the cuttings prior to reaching the surface. As a result,
some discrepancies may exist between the driller’s lithologic log
and the lithology determined by Anderson (1991).

The results of the aquifer tests were first evaluated using
type curves developed for wells which do not penetrate the entire
thickness of the aquifer, assuming a homogeneous system (Neuman,
1974). As a result of the observed change in aquifer response
which likely corresponds to the top of Flow Group I, the test

data was also compared to numerical modeling results for a

stratified (multi-layered) aquifer.




Straddle-Packer Systen

Intervals for packer testing were selected by viewing down-
hole video logs of the basaltic rocks and identifying intervals
of the wells where the basalt likely would provide a suitable
seal for the packers. Ideally, a packer would be seated at a
portion of the well where the borehole wall was smooth, and the
basalt exhibited a minimal number of vesicles or fractures. The
thickness of the straddled interval was adjusted by changing the
configuration of pipe lengths between the packers; for this
study, the straddle packer was used to isolate intervals of the
aquifer which were 15-20 feet thick. After lowering the
straddle-packer assembly to the desired depth, the packers, which
are fabricated from Viton™' and rubber, were inflated with
nitrogen gas. Hydraulic head was measured by three
Paroscientific, Inc. "Digiquartz" depth sensors (transducers):
one in the packed-off interval, and one each above and below the
packed-off interval. This configuration provided measurements of
the vertical gradients in the well. Figure 5 is a schematic
diagram of the straddle-packer systen.

The transducers have a pressure range of 0 to 400 pounds/in?
(psi), and provide temperature and temperature-corrected pressure
readings. The repeatability and hysteresis are listed at +
0.005% of full scale, which is approximately + 0.046 feet of

head. The accuracy of the transducers for relative static head

1 The use of trade names in this document does not
constitute an endorsement by the State of Idahc or its employees.
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Figure 5. Schematic of the straddle packer system. (from Olsen, 1994; not to scale).
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measurements is about + 0.005 feet, due to background "noise".
The transducers are linked in a serial loop, and data is recorded
on a portable computer. The frequency at which the transducers
measure and record pressure can be varied using a BASIC program.
Pressure data were collected at intervals ranging from one
second to several minutes, depending on the design of the test.
At time intervals greater than one minute, ten consecutive
pressure readings are taken at one second intervals, and the
BASIC program calculates an average, thus reducing the background
"noise". Additional information on the straddle-packer assembly

can be found in Olsen (1994).

Description of Production Wells

The Idaho Chemical Processing Plant has two production
wells, CPP-01 (or CPP 670) and CPP-02 (or CPP 671) for supplying
process water. These wells, which are located at the north end
of the ICPP, were utilized as pumping wells for the aquifer tests
discussed in this report (Figure 3). The pumping rate of the
production wells was estimated to be 3000 gallons per minute
(gpm) (Daryl Hall, ICPP Utilities Dept., personal communication,
1994) .

The production wells were drilled in the early 1950s, and
have a 16 inch diameter well screen. The depth to water in the
wells is estimated to be 456 feet bls, based on measurements
taken in nearby USGS wells in April 1994. CPP-01 is screened

from 460-486 feet and 527-577 feet bls. CPP-02 is also screened
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over two intervals of the aquifer: 458-483 feet and 551-600 feet
bls (Appendix A). Type curves for production wells screened in
multiple intervals of the aquifer are not available. Therefore,
for the type curve analyses, it was assumed that CPP-01 is
screened from 460-577 feet bls, and CPP-02 is screened from 458-
600 feet bls. Production wells screened in multiple intervals
would result in vertical gradients between pumped zones near the
production well. The radial distance between the production
wells and the observation wells ranged from 2600 to 4200 feet
(Table 2), therefore the error introduced into the type curve
solution by assuming the production wells have a continuous
interval open to the aquifer should be minimal. Furthermore,
between the screened intervals in the production wells, gravel
was placed in the annular space surrounding the casing (Appendix
A). This gravel would facilitate a uniform vertical distribution
of drawdown near the borehole.

The production wells are not equipped with a valve assembly
to maintain the column of water in the riser pipe. Therefore,
the discharge rate is higher when the pump is first turned on,
and decreases as the pressure head increases due to increases in
the height of the overlying water column in the pipe. Similarly,
water in the riser pipe flows back into the aquifer when the pump
is turned off. This imparts some degree of error in the

estimation of aquifer storativity from early time data.
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Table 2. Radial distance between observation wells tested with
the straddle packer and the ICPP production wells.

“ CPP-01 CPP-02
USGS-44 |r = 2800 ft |r = 2600 ft
USGS-45 |r = 3300 ft |r = 3100 ft
USGS-46 | r = 2800 ft [r = 2700 ft

" USGS-59 |r = 4000 ft |r = 4200 ft

Data Collection

The time-drawdown data presented in Chapter 3 is frequently
a combination of two data files which were collected for
different purposes; "timed~response" and "static" tests. "Timed-
response"” data was collected by contacting the Utilities
Department at the ICPP and requesting the production well be
turned on or off, depending on the current cycle. In some
instances, these tests were of relatively short duration (i.e.
less than 10 minutes). The frequency of pressure readings
collected during these tests ranged from one second (early-time),
to several minutes (late-time).

The "timed-response" tests were supplemented with water
level data collected during long-term tests, which were run for
several hours. Drawdown from pumping at the ICPP production
wells is readily recognizable in the long-term tests; however,
the exact time that pumping began can only be estimated. The
accuracy of the estimate is dependent on the frequency at which
pressure readings were being collected by the transducers. For

example, if the head data was being collected at five minute
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intervals, the production well may have been operational a few
seconds or a few minutes before the pressure was measured. The
time-drawdown data was plotted on logarithmic scale paper for the
type curve analyses and comparisons to simulated drawdown from
the radial flow model (for example, see Figures 7 and 18). As a
result, the error in the estimates of aquifer properties
associated with the uncertainty of the time at which pumping
began is insignificant for the late-time data (i.e. greater than
30 minutes of pumping). This uncertainty will influence
estimates of storativity, which are derived from the early-time
data. To counter this ambiguity, the curve matching was weighted
more heavily to the late-time data, and storativity estimates are
listed as "not meaningful” if a timed response data file was not
available. Table 3 contains a summary of the time-drawdown data
collected with the straddle-packer assembly.

Previous studies have indicated that the water level in the
Snake River Plain aquifer near the ICPP is affected by changes in
barometric pressure (Johnson and others, 1994). The effect of
barometric pressure changes on drawdown values should be minimal
because 1) the pumping tests were less than five hours duration,

and 2) data files from static tests were selected from time

periods when fluctuations in barometric pressure were minimal.




Table 3. Summary of data files collected during the multiple-
well aquifer tests.
Observation Straddled Date of Type of Type of Duration Frequency of“—'_l
Well Interval Test Data File Adquifer Test of Test Transducer
(fect below Readings
iand surface)
l 461482 8/13/92 Long-term CPP-01 Pumping_ 165 minutes 5 minutes
480495 8/15/92 Long-term CPP-01 Pumping 130 minutes S minutes
USGS-44 500-515 11/12/92 Long-term CPP-02 Pumping 130 minutes 5 minutcs &
519-534 8/17/92 Long-term CPP-01 Pumping 130 minutes 5 minutcs
580-600 7129192 Long-term CPP-02 Pumping 130 minutes S minutes
| 600-620 8/5/92 Longterm _ CPPOI Pumping | 120 minutes S minutes
462477 8/19/93 Long-term CPP-01 Pumping 305 minutes 4.3 minutes
480495 8/18/93 Timed-response CPP-01 Recovery 8.6 minutes 1-2 seconds
USGS-45 8/16/93 Long-term CPP-01 Pumping 140 minutes 5 minutes
500-515 8/13/93 Long-term CPP-01 Pumping 302 minutes S minutes
519-534 8/4/93 Loag-term CPP-01 Pumping 260 minutes 8.5 minutes
538-553 7/13/93 Long-term CPP-02 Pumping_ 255 minutes 10 minutes 1
462483 9/14/93 Timed-response CPP-02 Recovery 9.3 mimutes 1-2 seconds u
488-506 9/17/93 Timed-responsc CPP-02 Recovery 44 minutes 3-5 seconds
9/14/93 Long-term CPP-02 Pumping 238 minutes 4.3 minutes
H 507-525 9/28/93 Timed-response CPP-02 Pumping 5.2 minutes 1-2 seconds
9/23/93 Long-term CPP-02 Pumping 234 minutes 6 minutes
531-549 9/29/93 Timed-responsc CPP-02 Recovery 8.8 minutes 1 scc to 1.1 min '
9/29/93 Long-term CPP-02 Pumping _ 249 minutes 8 minutos "
USGS-46 553-571 9/30/93 Timed-response CPP-02 Pumping 71 minutes 1 sec to 2.1 min «“
575-593 9/23/93 Timed-response CPP-02 Pumping 3.8 minutes 1-2 seconds
9/22/93 Long-term CPP-02 Pumping 251 minutes 8.3 minutes
594-612 10/13/93 Timed-response CPP-01 Pumping _ 60.5 1-33 seconds
10/13/93 Long-term CPP-01 Pumping 262 minutes 3 minutes
611-629 10/23/93 Timed-response CPP-01 Pumping 5.2 minutes 1-2 seconds
l[ 10/23/93 Loog torm CPP-01 Pumping 256 minutes 5 minutes
462480 6/28/94 Timed-response CPP-01 Recovery 7.5 minutes 2scctollmn |
6/28/94 Long-term CPP-01 Pumping 240 minutes 5 minutcs
484-502 715194 Timed-responsc CPP-02 Pumping 187.4 minutes | 2-3 scconds (edited)
USGS-59 7/6/94 Long-term CPP-02 Pumping 245 minutes 5 minutes
517-535 8/2/94 Timed-responsc CPP-01 Pumping _ 105 minutcs 2 sec t0 2.1 min
8/2/94 Long-term CPP-01 Pumping 253 minutes 4.2 min
538-556 8/9/94 Timed-response CPP-01 Pumping 65.5 minutes 2 scc to 4.3 min
8/11/94 -term CPP-01 Pumping 247 minutes 5 minutes ‘
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CHAPTER 3:

TYPE CURVE ANALYSIS

Introduction

When plotted on log-log paper, the time-drawdown data for
the ICPP production wells often exhibits an "S"-shape, suggesting
that the aquifer may be responding as either 1) an unconfined
system (Neuman, 1974), or 2) a double-porosity media (Gringarten,
1987). The time-drawdown data collected by the three trénsducers
in the straddle-packer system show an increase in drawdown with
increasing depth in the observation wells, which is expected with
a partially penetrating pumping well in an unconfined system (see
Chapter 4). 1In addition, previous studies have concluded that
the eastern Snake River Plain aquifer is an unconfined system
(Garabedian, 1989; Wylie and others, 1994). Therefore, the
time-drawdown data were evaluated using the type curves developed
for an unconfined aquifer with partially penetrating wells
(Neuman, 1974). The type curves developed by Neuman assume the
aquifer is vertically and laterally homogenous, and can be used
for isotropic or anisotropic aquifers.

The time-drawdown data from the pumping tests were evaluated
using computer-generated type curves from a commercial software
package (Duffield and Rumbaugh, 1991). For the type-curve
analyses, the screened interval of the observation well was
defined as the interval over which the borehole was open to the

aquifer. For example, the time-drawdown data from the upper
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transducer was matched to the type curve for an observation well
with a screen extending from the water table to a depth
corresponding to the center of the upper packer. Similarly, the
middle transducer was matched to type curves for a well with a
screened interval equal to the depth of the interval between the
centers of the upper and lower packers, and the lower transducer
was matched to the type curve for a partially-penetrating well
screened from the center of the lower packer to the bottom of the
borehole. In several tests conducted in USGS-45 and one interval
in USGS-59 (484-502 feet bls) the time-drawdown data from the
middle transducer suggests leakage of ground water around the
packers, and a resulting error in the type curve solutions.
Table 3 summarizes the intervals tested in each well. The time-
drawdown data and type curves for intervals not discussed in the
text are in Appendix B.

The aquifer was assumed to have an effective thickness of
250 feet based on the work of Robertson (1974). Because the
effective thickness of the agquifer is poorly defined, and may in
fact be variable due to heterogeneity, the effect of aquifer
thickness on the estimation of aquifer properties was evaluated
with a sensitivity analysis, which is presented at the end of

this chapter.
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USGS-44

USGS-44 is located west of the Idaho Chemical Processing
Plant, approximately 2800 feet from CPP-01 and 2600 feet from
CPP-02. The aquifer response to pumping at the ICPP production
wells was measured in six intervals in USGS-44 in 1992. Time-
drawdown data was taken from long-term tests. The duration of
pumping ranged from 120 to 165 minutes (Table 3). During the
testing periods, the depth to water in USGS-44 was about 461 feet
below land surface.

There is considerable scatter in the drawdown data due, at
least in part, to a small integration time, which decreased the
resolution of the pressure transducers (Figure 6). This was
corrected in later tests. The estimated transmissivity for the
Snake River Plain aquifer, as determined from evaluation with the
Neuman type curves for partially penetrating wells, was 250-2000
ft?/min, with an average of 850 ft?/min (Table 4). In general,
the transmissivity appears to decrease with depth. The specific
yield ranged from 0.006 to 0.02, with an average of 0.016.
Early-time data were not collected, so the storativity of the
aquifer could not be evaluated with the data sets for USGS-44.
The ratio of vertical conductivity to horizontal conductivity

(Kv:Kh) ranged from 1:60 to 1:540. The average Kv:Kh is 1:240

(Table 4).
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Figure 6. Time-drawdown data and estimated hydraulic properties
from Neuman type curves for USGS-44, 461-482 ft bls.
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Table 4. Estimated hydraulic properties of the Snake River Plain
aquifer derived from matching the time-drawdown data
from USGS-44 to type curves developed for partially-
penetrating wells.

M Straddled TDX Transmissivity Storativity Specific Beta Screened Pumping Kv:Kh

Interval (f*/min) Yield Interval Well

(feet below (feet below

land surface) water table)

461-482 M 1000 NM 0.02 2 0211t CPP-01
L 1000 NM 0.013 2 21-188 ft
U NA NA NA NA 0-19ft NA

480-495 M 1000 NM 0.015 2 19-34 ft CPP-01 1:60
L 800 NM 0,008 2 34-183 R 1:60
U 2000 NM 0.08 3 0-39 ft 1:40

500-515 M 1000 NM 0.02 3 3954 CPP-02 1:40
L 850 NM 0.006 02 54-188 R
u 1000 NM 0.02 3 0-S3 ft

519-534 M 500 NM 0.01 02 58-73 R
L 900 NM 0.009 0.2 73-188 ft
U 1000 NM 0.01 0.5 o119t

580-600 M 450 NM 0.01 0.5 119-139 8t
L 500 NM 0.01 0.5 139-188 R
U 1700 NM 0.012 0.2 0-139ft

600-620 M 300 NM 0.009 0.5 139-159
L 250 NM 0.008 0.8 159-188 ft

Average 850 0.014 1.1

NA = Not available -

NM = Not meaningful

TDX = Transducer (Upper, Middic, Lower)




USGS=45

Five intervals were tested with the straddle packer in USGS-
45. This observation well is located 3280 feet southwest of CPP-
01, and 3100 feet southwest of CPP-02 (Figure 3). The straddle
packer could not be maneuvered deeper than 553 feet bls due to
irregularities in the borehole, consequently deeper intervals
could not be tested. The depth to water in this well is about
464 feet bls, and the well is cased to 461 feet bls. The total
depth of the well is about 651 feet bls, which is 187 feet below
the water table.

The duration of the tests ranged from 8.6 minutes to

305 minutes (Table 3). The estimated transmissivity ranged from
180 to 2000 ft?/min, with an average of 890 ft?/min (Table 5).
Storativity estimates ranged from 2 x 10° to 4 x 10%; however,
the type curves did not match the early-time data well for the
lower transducer (Figure 7). This may be the result of the
greater pumping rate when the production wells are first turned
on, because the riser pipe is empty and there is no head on the
system (see page 16). The average specific yield is estimated at

0.009, and the average Kv:Kh was 1:600 (Table 5).

USGS-46
The aquifer response to pumping at the ICPP production wells
was measured in eight intervals in USGS-46 (Table 6). The depth
to water in USGS-46 is about 462 feet bls, and the well is cased

to a depth of 460 feet. This well has open-hole construction to
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Table S. Estimated hydraulic properties of the Snake River Plain
aquifer derived from matching time-drawdown data from
USGS~45 to type curves developed for partially-
penetrating wells.
Straddled TDX . Transmissivity Storativity Specific Beta Screened Pumping Kv:Kh
Interval (ft*/min) Yield Interval Well
(feet below (fect below
land surface) water table)
462477 M 180 0.00004 0.011 0.1 013t CPP-01 1:1700
L 500 0.00004 0.01 - 0.3 13-187 ft 1:575
U 2000 NM 0.005 0.8 0-16 ft 1:215
480495 M 1200 NM 0.008 0.1 16-31 ft CPP-01 1:1700
L 250 0.00002 0.01 1 31-187 fi 1:170
u 500 NM 0.009 1.5 036 ft 1:115
500-515 M 600 NM 0.009 1.5 36-51 ft CPP-01 1:115
L 400 NM 0.007 0.4 51-187 ft 1:430
U 2000 NM 0.016 0.2 0-55 ft 1:360
519-534 700 NM 0.02 1 55-70 ft CPp-01 1:170
L 1100 NM 0.004 0.2 70-187 fe 1:860
U $00 NM 0.013 1 0-74 ft 1:150
538-553 M 1200 NM 0.004 0.2 74-89 fi CPP-02 1:770
L 900 NM 0.005 0.3 89-187 ft 1:510
Average 890 0.00003 0.009 0.6 1:600
NA = Not available

NM = Not meaningful
TDX = Transducer (Upper, Middle, Lower)
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Table 6.

Estimated hydraulic properties of the Snake River Plain
aquifer derived from matching time-drawdown data from

U8GS-46 to type curves developed for partially-
penetrating wells.

Transmissivity Storativity Specific Beta Screened Pumping Kv:Kh
(f*/min) Yield Interval well
(fect below
water table)
NA NA NA NA None NA
462-483 M NA NA NA NA 021 CPP-02 NA
L NA NA NA NA 21-189 ft NA
[ u 800 0.00001 0.01 3 026 ft
488-506 1000 NM 0.009 1 2644 ft CPP-02
L 800 0.00005 0.01 1 44189 ft
U 600 NM 0.017 1 045 ft
507-525 M 800 NM 0.015 1 45-63 ft
L 500 0.000013 0.01 0.5 63-189 ft
U 800 NM 0.014 0.5 0-69 ft
531-549 M 500 NM 0.02 1.1 6987t
'J L 450 B 0.00004 0.013 0.5 87-189 fi 1:230
= e e
[ v 600 NM 0.013 1.1 091 fi 1:100
553-571 M 430 0.00003 0.008 0.5 91-109 ft CPP-02 1:230
L 530 0.00004 0.007 05 | 1091891t 1:230
U NM NM NM NM o113 ft M|
575-593 M 520 0.00003 0.01 0.5 113-131 ft CPP-02 1:230
L 550 0.00003 0.01 0.5 131-189 1:230
U 480 0.00002 0.009 0.5 0132 1:250
594-612 M 350 0.00001 0.007 0.5 132150 ft CPP-01 1:250 |
L 400 0.00003 0,008 0.5 150-189 ft 1:250
v 440 0.00003 0.007 0.5 0149 1:250
611-629 M 450 0.00004 0.006 0.5 149-167 ft CPP-01 1:250
L 400 0.00004 0.006 0.5 167-189 ft 1:250 |
Average 570 0.00003 0.01 0.6 1:190 "

A = Not available
NM = Not meaningful
TDX = Transducer (Upper, Middle, Lower)




a depth of 651 feet, which is 189 feet below the water table.
USGS=-46 is located approximately 2800 feet from CPP-01 and 2680
feet from CPP-02.

Oscillations in drawdown were observed in the upper
transducer at two intervals: 488-506 feet bls, and 575-593 feet
bls (Figures 8 and B-13). The cause of the fluctuations in
drawdown is unknown. It does not appear to be related to a
changing pumping rate, as the drawdown measured in the middle and
lower transducers did not change. Pumping from CPP-04, a potable
water supply well at ICPP (pumping rate of 400 gpm), can probably
be eliminated as a possible cause because similar results were
observed during two other long-term tests conducted at 575-593
feet bls. Due to oscillations in the drawdown data from the
middle transducer during the static test at 488-506 feet bls on
Sept. 14, the 44-minute recovery test was used to evaluate time-
drawdown data from this transducer (Figure 8).

The estimates of transmissivity ranged from 350-1000
ft?/min, with an average of 565 ft’/min (Table 6). The
transmissivity appears to decrease with depth, similar to the
observed trend in USGS-44. The average storativity is 3 x 107,
and the average specific yield is 0.01. The Kv:Kh ranged from

1:40 to 1:250, with an average of 1:190 (Table 6).
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USGS-59

USGS-59 is located south of the Idaho Chemical Processing
Plant, approximately 4000 feet from CPP-0l1 and 4200 feet from
CPP~-02 (Figure 3). Four intervals in this well were evaluated
with the straddle packer in 1994 (Table 7). Due to a large
breakout in the basalt at a depth of 561-570 feet bls, which
would not accommodate the packer, the maximum depth tested was
556 feet bls. Figure 9 illustrates the time-drawdown data and
corresponding best-fit Neuman type curves for the lower interval.
When the aquifer tests were condﬁcted in 1994 the water level in
USGS-59 was about 459 feet below land surface, which is
approximately the same depth as the bottom of the casing.

Transmissivity estimates for the Snake River Plain aquifer
ranged from 200-1200 ft?/min, with an average of 640 ft?/min
(Table 7). The average specific yield was 0.007, and the average
storativity was 2 x 10°. The ratio of vertical to horizontal
conductivity ranged from 1:60 to 1:640, with an average of 1:390.

Transmissivity generally decreased with depth.

Summary

The results of the Neuman type curve analyses are summarized
in Table 8. The average horizontal hydraulic conductivity (Xh)
for each well was determined by dividing the average
transmissivity by the assumed effective thickness of the aquifer
(250 feet). The average vertical hydraulic conductivity (Kv) is

Kh multiplied by the average Kv:Kh determined from the aquifer

31




Table 7. Estimated hydraulic properties of the Snake River Plain
aquifer derived from matching time-drawdown data from
® USG8-59 to type curves developed for partially-
penetrating wells.

TDX Transmissivity Storativity Specific Beta Screened Pumping
(A*/min) Yield Interval Well
. s kY
U NA NA NA NA None
462-480 M 600 0.000015 0.007 1 321t CPP-01
L 500 0.00002 0.004 0.5 21192t
® U 600 NM 0.006 0.5 025 fi
484-502 M 300 0.00003 0.003 0.5 2543 ft CPP-02
L RS 200 0.00003 002 | 2 43124
u 900 NM 0.009 0.5 058 ft
® 517-535 M 1100 NM 0.009 1 5876 ft CPP-01 1:260
_ L 500 0.00002 0.01 04 76-192 R L 1:640
u 1200 NM 0.009 0.3 079 ft [ 1:320
538-556 M 800 NM 0.011 4 7997t CPP-01 1:60
® L 360 | 0.000007 __0.006 0.5 97192 ft 1510 |
l Average 640 l 0.00002 0,007 1.1 1:390 ]
= Not av: c

NM = Not meaningful
TDX = Transducer (Upper, Middle, Lower)
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tests. Kh ranged from 2.3-3.6 ft/min for the four wells, and Kv
ranged from 0.006 to 0.01 ft/min. The estimated specific yield
varied from 0.007 to 0.016.

Table 8. Estimated hydraulic properties for the Snake River
Plain aguifer determined from Neuman type curve

matching.

Monitoring Kh Kv Storativity Specific l
Well (£t/min) (ft/min) Yield
USGS-44 3.4 0.01 NA 0.016
USGS-45 3.6 0.006 3 x 107 0.009
USGS~-46 2.3 0.01 3 x 107 0.01
USGS-59 2.6 0.007 2 x 107 0.007
Average 3.0 0.008 3 x 10°% 0.01

The total thickness of the agquifer is not well defined. To
evaluate the potential error introduced into the type curve
solutions which may result from an incorrect estimate of aquifer
thickness (250 feet), additional type curve solutions were
developed assuming an aquifer thickness of 200 feet and 450 feet.
Two hundred feet was used as a minimum thickness because the
observation wells are screened over approximately 200 feet of the
aquifer. The maximum thickness of 450 feet is based on the
presence of a thick sedimentary interbed at that depth in a
nearby well (Mann, 1986).

The aquifer test conducted from 553-571 feet bls in USGS-46

was selected for the sensitivity analysis because early time-

drawdown data is available for the middle and lower transducers.




The type curves developed for the sensitivity analysis are shown
in Figures 10 and 11, and the results are summarized in Table 9.

Increasing the saturated thickness from 250 feet to 450 feet
results in an estimate of horizontal hydraulic conductivity (Kh)
which is 17% to 33% of the value obtained assuming a thickness of
250 feet (Table 9). Conversely, decreasing the saturated
thickness to 200 feet results in a greater estimate of Kh, with
values being 129-188% of the value determined using an aquifer
thickness of 250 feet. The estimateé of specific yield and
storativity did not change appreciably when other values were
used for aquifer thickness (Table 9).

The values presented in Table 8 are based on estimates
obtained using type curves developed for an unconfined aquifer
with partially penetrating wells (Neuman, 1974). This method
assumes the aquifer is a single layer, homogeneous system.
However, the increased drawdown consistently measured below the
top of Flow Group I suggests that, near the ICPP, the Snake River
Plain aquifer behaves as a multi-layered system. The multi-layer

conceptual model is developed in Chapter 4.
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Table 9. Results of the sensitivity analysis of aquifer -
thickness for USGS-46, 553-571 feet bls. Aquifer
storativity and specific yield were relative
insensitive to the changes in aquifer thickness. The
estimates of the horizontal and vertical hydraulic
conductivities (Kh and Kv) were inversely proportional
to the aquifer thickness.

TDX Aquifer Kh Percent of Kv Percent of Storativity Specific
Thickness (fVmin) Bascline (f/min) Bascline Yield
(feet) =250 fect) (®=250 feet)
200 4.5 188% 0.027 113% Na 0.013 "
Upper
Ik
Middle

450

0.7

33%

0.008

89%

0.00004

0.009

Lower
LA = Not available (carly-time data
TDX = Transducer

not collected)
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CHAPTER 4:

REFINEMENT OF CONCEPTUAL MODEL

Introduction

The Neuman type curve analysis is based on the simplifying
assumption of a single, anisotropic aquifer unit. The time-
drawdown data suggests that, near the ICPP, the Snake River Plain
aquifer hydraulically functions as a layered aquifer. This
interpretation is based on two lines of evidence: 1) during
pumping of the ICPP production wells, there was more dfawdown in
zones below the top of the I-Flow than in zones above the I-Flow,
and 2) drawdown measured by the middle transducer mimics the
upper transducer in zones above the I-Flow, and tracks closely
with the lower transducer in zones below the I-Flow.

In USGS-46, the drawdown measured by the middle transducer
is substantially greater at depths more than 90 feet below the
water table than at shallower intervals (Figure 12A). The
transition closely corresponds to the top of Flow Group I, which
is 86 feet below the water table (Table 10).

A similar response was observed in USGS-59, where drawdown
increases markedly at depths greater than 97 feet below the water
table (Figure 12B). The top of Flow Group I is at a depth of 101
feet below the water table in USGS~59 (Table 10). The fact that
drawdown is greater below the top of the I-Flow suggests the
presence of a semi-confining layer at this depth. The confining

layer could be the sedimentary interbed at the top of the I-Flow.
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Figure 12. Time-drawdown response in observation wells from purnping of ICPP production wells.
Depths in feet below water table (WT). A) USGS-46. B) USGS-59.
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The drawdown measured from 25-43 feet below the water table
falls between the response curves of the shallow and deep zones
(Figure 12B). There is a large void/breakout in the basalt at a
depth of 30-43 feet below the water table, suggesting the lower
packer did not effectively seal of the borehole during the
Table 10. Depth to the top of the Flow Group I and the overlying

sedimentary interbed in the ICPP production wells and
the observation wells tested with the straddle packer

(from Anderson, 1991; S.R. Anderson, 1995, personal
communication).

Well Depth below water Depth below water Depth to
table (depth bls) table (depth bls) water
to top of Flow to top of interbed (bls)
Group I
UsSGS-44 60 feet absent 461 feet
(521 feet)
USGS-45 86 feet 77 feet 464 feet
(550 feet) (541 feet)
USGS-46 86 feet 80 feet 462 feet
(548 feet) {542 feet)
USGS-59 101 feet 97 feet 459 feet
(558 feet) (558 feet)
CPP-01 31 feet absent 456 feet
(487 feet)
CPP~02 34 feet absent 456 feet
(490 feet)

aquifer test. Consequently, the time-drawdown data measured in
this interval probably represents an average of deep and shallow

zones in the aquifer; the data was not used in the comparisons of

simulated and measured drawdown.




Drawdown data from USGS-44 also shows a distinct change in
aquifer response with depth: an attenuated response in intervals
less than 54 feet below the water table, and more drawdown in
deeper zones (Figure 13). The distinction is not as clear due to
the poor resolution of the transducers, which resulted from an
improper setting of the integration time (see page 22). At USGS-
44, the top of the I-Flow is 60 feet below the water table (Table
10).

At USGS-45, the top of the I-Flow is 86 feet below the water
table, and the top of the overlying interbed is 77 feet below the
water table (Table 10). The time-drawdown collected with the
middle transducer in USGS-45 does not show the distinct change in
response with depth which was observed in the other wells,
probably due to difficulties in effectively sealing off the
borehole with the straddle packer (Figure 14B). However, the
time-drawdown data collected by the upper and lower transducers
while testing the interval near the I-Flow (74-89 feet below the
water table) clearly illustrates separate response curves, which
supports the concept of a layered aquifer (Figure 14A).

The concept of a layered aquifer is supported by changes in
drawdown with depth in all the observation wells tested with the
straddle packer. The observed responses have the following

significant characteristics:

1) Drawdown is apparent at earlier times in the intervals
below the I-Flow and associated overlying interbed.
2) Drawdown is greater in intervals below the top of the
I-Flow.
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3) In intervals below the I-Flow, an "S"-shaped response
curve is apparent - typical of delayed water-table
response (i.e. a leaky, confined aquifer).

Each of these characteristics are associated with the attenuation
of response at the phreatic surface due to the release of water
from storage during pore dewatering. The observed segregation of
drawdown for intervals below the interbed overlying the top of
the I-Flow strongly suggests that the interbed is acting as a
confining bed and impedes the vertical movement of water.

Additional evidence supporting the concept of a layered

aquifer is apparent from a comparison of observed drawdown among
the three transducers in the straddle-packer assembly (above,
within, and below the isolated interval) which measure drawdown
throughout the vertical profile (Figure 15). It is apparent
that, in most intervals, drawdown detected by the middle
transducer closely mimics the drawdown measured by either the
upper or lower transducer, with an abrupt transition that
consistently occurs at the interbed at the top of the I-Flow. In
zones within the I-Flow, the drawdown measured by the middle
(isolated) transducer normally is very similar to that measured
by the lower transducer. Above the I-Flow, the middle transducer
responds in a pattern very similar to the upper transducer. The
physical implication of these observations is that the aquifer is
composed of two distinct hydrologic units, and the boundary
between these two units corresponds approximately to the top of

the I-Flow.
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The abrupt change in response at the top of the I-Flow is
further evidence of the presence of a confining unit at or near
the top of the I-Flow. In a homogeneous and anisotropic aquifer
(as assumed for the Neuman type-curve analysis in Chapter 3), the
response measured by the middle transducer would be an average of

the drawdown observed in the upper and lower transducers.

Simulation of Alternative Conceptual Models

To evaluate the applicability of layered conceptual models,
measured time~drawdown data was compared to simulated drawdown
from a radial-flow model.

The most complete set of time-drawdown data (seven
intervals) was collected from USGS-46. Therefore, this data was
evaluated using three conceptual models:

1) One Layer System:
Single aquifer - Flow Groups E-I (homogeneous and

anisotropic)

2) Two Layer System:

Upper aquifer - Flow Groups E-G (homogeneous &
anisotropic)

Lower aquifer - Flow Group I (homogeneous &
anisotropic)

3) Three Layer System:

Upper aquifer - Flow Groups E~G (homogeneous &
anisotropic)

Confining unit - sedimentary interbed at the top of
Flow Group I (homogeneous &
isotropic)

Lower aquifer - Flow Group I (homogeneous &

anisotropic)




The idealized cross section of the Snake River Plain aquifer near
the ICPP, presented in Figure 16, suggests that the three layer
system may best represent the agquifer near the ICPP.

Previous investigators have suggested that the Snake River
Plain aquifer near the ICPP may consist of distinct,
hydrostratigraphic units. Johnson and others (1994) noted that
the response of the system to pumping from the ICPP production
wells suggested a multi-layered system. Barrash and others
(1994) recognized two distinct hydrostratigraphic units: 1) an
upper unit consisting of Flow Groups E-H and the upper part of
the I-Flow Group, and 2) a lower unit consisting of the interior
of the I-Flow Group.

A radial-flow model based on the PLASM code (Prickett and
Lonnquist, 1971; Johnson, 1989) was developed to simulate the
three conceptual models. The model grid extended 40,000 feet
from the production well to prevent boundary effects. The
discharge rate at each node representing a screened interval of
the pumping well was assumed to be proportional to the horizontal

hydraulic conductivity.
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One Layer Conceptual Model

The Snake River Plain aquifer was first evaluated as a one
layer system (Figure 17A). Aquifer properties were based on the
averages determined from the time-drawdown data for USGS-46
(Table 6). Simulated drawdown with this conceptual model
resulted in a distinct vertical gradient in the aquifer; however,
the modeled drawdown is greater than the observed drawdown in
intervals above the I-Flow (86 feet below the water table) and
less than the observed drawdown below the I-Flow (Figure 183).
Furthermore, the simulated drawdown curves for upper and lower
zones in the aquifer converge at late times, contrary to the
observed time-drawdown data, which have a distinct separation.
As illustrated in Figure 18A, greater drawdown is observed at
increasing depths in the aquifer due to partial penetration of
the production well (i.e. vertical flow to the pumping wells);
however, the simulated time-drawdown data does not show the
distinct change in drawdown observed near the top of the I-Flow
during packer testing. The differences between observed and
simulated values result from the averaging of aquifer properties
determined from different depths in the type curve matching.
These differences imply that a single-layer model for the Snake

River Plain aquifer is not appropriate.
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Two-Layer Conceptual Model

The two-layer conceptual model for the Snake River Plain
aquifer near the ICPP is illustrated in Figure 17B. The
hydraulic properties of the upper aquifer, consisting of basalt
Flow Groups E-G, are the average from type-~curve estimates using
time-drawdown data from the middle transducer at depths of 488~
506, 507-525, and 531-549 ft bls (Table 6). Hydraulic properties
for the lower aquifer (Flow Group I) are an average of the
estimates obtained with the Neuman type curves from intervals
which were greater than 90 feet below the water table.

While the model results compare favorably with the observed
drawdown in the three intervals in Flow Groups E-H, the model
predicted less drawdown than measured in the lower intervals
(Figure 18B). Significantly, this conceptual model did not
produce the separation in the time-drawdown data observed at late
times, but rather showed a convergence in the simulated time-
drawdown curves at late times. 1In an effort to resolve this

discrepancy, a three-layer conceptual model was developed.

Three-Laver Conceptual Model

A three-layer conceptual model was developed based on the
recognition of distinct geologic units near the Idaho Chemical
Processing Plant. The model consists of two distinct aquifers,

one above and one below the sedimentary interbed at the top of

Flow Group I (Figure 16).




As discussed in Chapter 1, the individual basalt flows above
the interbed are typically thin, ranging from 10 to 26 feet thick
in the observation wells tested with the straddle packer. 1In
contrast, the basalt flows in Flow Group I, located below the
sedimentary interbed, are 19 to >90 feet thick. Based solely on
stratigraphic observations, the thin basalt flows (Flow Groups E-
G) can be expected to have a higher horizontal transmissivity
than the thick units of the Flow Group I, due to the presence of
a higher number of permeable interflow zones.

The sedimentary interbed ranges from four to nine feet thick
in USGS-45, -46, and -59, but is absent in USGS-44 (Anderson,
1991; S.R. Anderson, 1995, personal communication). Though
lithologic descriptions of the interbed are not readily
available, the driller’s log for USGS-59 described the unit as
consisting of red cinders and clay (Appendix A).

Hydraulic conductivity estimates are not available for the
sedimentary interbed; however, four slug tests have been
performed on perched water bodies in interbeds in the vadose zone
at the ICPP. Hydraulic conductivity estimates of these
sedimentary interbeds, which were between 105 and 150 ft below
land surface, ranged from 4 x 103 to 7 x 10% ft/min (LITCO,
1994).

The hydraulic properties for the three-layer conceptual
model were determined by trial and error model calibration
(Figure 19). The model predictions of drawdown in the upper and

lower aquifers closely mimic the observed drawdown data from
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USGS-46, and, importantly, the simulated drawdown shows the
distinct break observed in the late-time drawdown data (Figure
203).

To further test the validity of the three-layer conceptual
model, simulated drawdown data from the radial flow model were
compared to the time-drawdown data collected in USGS-44, USGS-45,
and USGS-59. Specific yield, storativity, and the hydraulic
conductivity of the confining unit were adjusted during model
calibration (see Table 11). The simﬁlated and observed time-
drawdown data display similar patterns (i.e. greater drawdown in
zones below the top of the I-Flow), and simulated drawdown is
typically within a few hundredths of a foot of measured drawdown

(Figures 20 and 21).

Summary

The differences between the observed drawdown and the
drawdown simulated with the one- and two-layer models likely
reflects conceptual differences between these models and the real
system. This partially results from averaging, or homogenizing,
properties of distinct layers of the Snake River Plain aquifer.
The three-layer model provides the best match to the data sets,
and most closely mimics the stratigraphic relations of the
system. Geologic heterogeneity and variations in aquifer
thickness may hamper efforts to provide a better match to the

time~-drawdown data.
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The estimated properties of the Snake River Plain aquifer,

based on optimization of the radial flow model for the three-

layer conceptual model developed using time-drawdown data

collected in USGS-44, USGS-45, USGS-46, and USGS-59, are

summarized in Table 11.

Model calibration was accomplished by

varying specific yield, storativity, and the hydraulic

conductivity of the leaky confining layer; the hydraulic

conductivities of the upper and lower layers, determined from

model calibration to time-drawdown data from USGS-46, were held

constant.

Table 11. Estimated hydraulic properties from optimization of the
three-layer radial flow model for the Snake River Plain

agquifer. (NM = not meaningful - no early-time data)
USGS-44 USGS—-45 USGS-46 USGS-59
Upper Aquifer
Kh 3.7 ft/min | 3.7 ft/min | 3.7 f£t/min | 3.7 ft/min
Kv 0.3 ft/min | 0.3 ft/min | 0.3 ft/min | 0.3 ft/min
Confining Unit
Kh=Kv 1.5 x 10* |1.5 x 10* |1.9 x 10 | 0.7 x 10% |
ft/min ft/min ft/min ft/min
Lower Aquifer
Kh 0.6 ft/min | 0.6 ft/min | 0.6 ft/min | 0.6 ft/min
Kv 0.4 ft/min | 0.4 ft/min [ 0.4 ft/min | 0.4 ft/min
Storativity NM NM 1 x 103 3 x 10°%
Specific 0.01 0.01 0.01 0.006
Yield

Assuming the effective porosity of the aquifer is 0.01 (i.e.

the specific yield), storage from the compressibility of water

(i.e. no compression of the aquifer skeleton) would be 3.5 x 107,

which is less than the storativity of 1 x 10° estimated from the

modeling.
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the lower aquifer is derived from compression of the aquifer
skeleton.

The average horizontal hydraulic conductivity (Kh,,) of the
three-layer system is 1.7 ft/min, and the average vertical
hydraulic conductivity is 7.3 x 103 ft/min (Appendix C).
Multiplying Kh,, by the aquifer thickness (245 feet) results in a
transmissivity estimate of 420 ft?/min. Ackerman (1991) assumed
the aquifer was isotropic, therefore the calculated
transmissivities of 50 ft?/min for CPP-01 and 110 ft?/min for CPP-‘
02 which he reported are considerably less than the estimate from
this study.

The calibrated radial flow ground-water model satisfactorily
reproduces the drawdown measured during the ICPP production well
pumping tests analyzed by Ackerman (1991). These tests were
conducted in August 1981 at a discharge rate of 2500 gpm; the
duration of pumping was 760 minutes for CPP-01 and 720 minutes
for CPP-02 (Ackerman, 1991). The maximum drawdown measured in
the production wells during pumping was approximately 4.5 feet in
CPP-01 and 2.8 feet in CPP-02. Simulation of the 1981 pumping
tests with the radial flow model resulted in a predicted drawdown
in the production well of about 2.4 feet. The similarity of
measured and simulated drawdowns further supports the aquifer
properties and three-layer conceptual model developed from

multiple-well aquifer tests conducted with the straddle packer.
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CHAPTER 5:

SUMMARY

The Idaho INEL Oversight Program, in association with the
University of Idaho, Idaho Geological Survey, Boise State
University, and Idaho State University, developed a research
program to determine the hydraulic properties of the Snake River
Plain aquifer and characterize the vertical distribution of
contaminants. A straddle-packer was deployed in four observation
wells near the Idaho Chemical Processing Plant at the Idaho
National Engineering Laboratory. Pressure transducers mounted in
the straddle-packer assembly were used to monitor the response of
the Snake River Plain aquifer to pumping at the ICPP production
wells, located 2600 to 4200 feet from the observation wells. The
time-drawdown data from these tests were used to evaluate various
conceptual models of the aquifer.

Aquifer properties were estimated by matching time-drawdown
data to type curves for partially penetrating wells in an
unconfined aquifer. This approach assumes a single aquifer unit
which is homogeneous and anisotropic. The hydraulic properties
of the aquifer obtained from the type curve analyses were:

- Storativity = 3 x 107
+ Specific Yield = 0.01
- Transmissivity = 740 ft?/min
+ Anisotropy (Kv:Kh)= 1:360
Further evaluation of the time-drawdown data collected at

various depth intervals in the aquifer indicate that drawdown
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generally increased with depth. Time-drawdown data were compared
to the stratigraphy of the basalt flows and sedimentary interbeds
at the Idaho National Engineering Laboratory developed by
Anderson (1991). The greatest drawdown was observed in tested
intervals below the top of Flow Group I.

To evaluate the implications of this observation, a radial
flow model was used to simulate three conceptual models for the

Snake River Plain aquifer near the Idaho Chemical Processing

Plant:
1) One Layer System:
Single aquifer - Flow Groups E-I (homogeneous and
anisotropic)
2) Two Layer System:
Upper aquifer - Flow Groups E-G (homogeneous and
anisotropic)
Lower aquifer - Flow Group I (homogeneous and
anisotropic)
3) Three Layer System:
Upper aquifer - Flow Groups E-~G (homogeneous and
anisotropic)
Confining unit - sedimentary interbed at the top of
Flow Group I (homogeneous and
isotropic)
Lower aquifer - Flow Group I (homogeneous and
anisotropic)

The three-layer system, in which the upper 70 feet of the
aquifer is unconfined (460-545 feet bls), the sedimentary
interbed at the top of Flow Group I is a leaky confining layer
(545-550 feet bls), and the basalt units in Flow Group I
represent a leaky confined aquifer (550-710 feet bls), provided
the best match of simulated drawdown to observed drawdown.
Estimates of the hydraulic properties of each layer were

determined by trial and error model calibration. This

62




optimization resulted in the following average estimates for the
hydraulic properties of the composite, three-layer system:

Storativity = 7 x 10
Specific Yield = 0.009
Transmissivity = 430 ft’/min
Anisotropy (Kv:Kh)= 1:230

e « o @

The estimated hydraulic properties for each of the three layers

are as follows:

1) Upper aquifer (unconfined)

Horizontal conductivity = 3.7 ft/min
Vertical conductivity ™ = 0.3 ft/min

2) Confining layer (leaky)
Horizontal conductivity = 1.4 x 10* ft/min
Vertical conductivity = 1.4 x 10* ft/min

3) Lower aquifer (leaky, confined)
Horizontal conductivity = 0.6 ft/min
Vertical conductivity 0.4 ft/min

Calibration of the radial flow model and type curve analysis
resulted in similar estimates of the hydraulic properties of the
aquifer system, despite major differences in the conceptual
models (i.e. one layer versus three layers).

For aquifer characterization studies with less guantitative
objectives, such as an evaluation of an area’s water supply
potential, type=-curve analysis may be adequate. However, for
more complex needs, such as contaminant transport modeling, it
may be necessary to refine the conceptual model. Utilization of
a straddle-packer system during pumping tests can aid in the
recognition of individual hydrostratigraphic units in an aquifer.

Radial flow models allow for less restrictive conceptual models
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than existing type curve solutions, and provide a useful tool for

the estimation of hydraulic properties in layered aquifers.
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APPENDIX A

LITHOLOGIC WELL LOGS
AND
CONSTRUCTION DIAGRAMS

(from Sehlke and others, 1993)
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APPENDIX C

CONTRIBUTION OF WATER FROM STORAGE
FROM THE COMPRESSIBILITY OF WATER
AND

CALCULATION OF HYDRAULIC CONDUCTIVITY

C1l




A) Calculation of water in storage derived from the
compressibility of water.

The specific storage of an aquifer refers to the amount of water
per unit volume of an aquifer that is expelled from storage due
to the compressibility of pore water and the agquifer skeleton.

Specific storage can be calculated using the following equation:

S=pg(a+nB) (1)
where,
S, = specific storage
p = density of the water (1.94 lb-sec?/ft?)
g = acceleration of gravity (32.2 ft/sec?)
a = compressibility of the aquifer skeleton
7 = porosity
B = compressibility of water (2.3 x 10% £t2?/1b)

To calculate the contribution of water from storage resulting
from the compressibility of water, equation (1) reduces to:

s, = pg(1B) (2)

Assuming the porosity (1) is equal to the specific yield of
0.01 determined from model calibration (Chapter 4),

S, = pg(nB)
S, = (1.94 lb-sec?/ft%) (32.2 ft/sec?) (0.01*(2.3 x 10® ft?/1b))
S, = 1.4 x 10%/ft

The storativity of an aquifer is defined by the following
equation:

S = S,*b (3)
where,
S = storativity
S, = specific storage

aquifer thickness

Using equation (3), and assuming the aquifer thickness is 250
feet, the water in storage derived entirely from the
compressibility of water is:

1.4 x 10%/ft * 250 ft
3.5 x 10°

S
S




B)

Calculation of the average vertical and horizontal hydraulic
conductivity of the system.

The average hydraulic conductivity of the three-layer system

was calculated using the following equations:

KV',Vg

Kv,

avg

1) Kh,, = (Kh;*d,)/D + (Khy*d;) /D + (Khy*d;) /D

where, ,
Kh,, = average horizontal hydraulic conductivity
Kh; = horizontal hydraulic conductivity of layer i
d; = thickness of layer i
D = thickness of system

eliminating layer 2 due to the small Kh yields

Kh,, =(3.7 ft/min*85 ft)/245 ft + (0.6 ft/min*160 ft)/245 ft

avg

Kh,, = 1.7 ft/min

2) Rv,, = D
(d;/Rvyy, + (dy/Kvy) + (d3/Kv;)
where,
Kv,, = average vertical hydraulic conductivity
Kv; = vertical hydraulic conductivity of layer i
q; = thickness of layer i
D = thickness of system

= 250
(85 ft/0.3 ft/min)+(5 ft/1.5E-04 ft/min)+160 ft/0.4 ft/min)

= 7.3 x 107 ft/min

3




