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ABSTRACT

The HPC/QC Requirements Document presents a comprehensive framework for integrating
High Performance Computing (HPC) and Quantum Computing (QC). The framework proposed
in this document supports a hybrid quantum-classical computing model that provides application
flexibility, and resource abstraction and standardization.

Key highlights

Emphasis on the potential of quantum computing to revolutionize specific algorithms and
applications.

Advantages of quantum simulators in mitigating challenges related to limited qubit
coherence times and error-prone computational platforms.

Outlines various models which an HPC/QC Integration framework needs to support.

Outlines the Integration of HPC and QC through a comprehensive framework, (a)
including resource management, (b) dynamic simulation environment, and (c) intelligent
resource allocation.

The framework's plugin architecture, allowing for seamless integration of new quantum
simulators and hardware as well as (d) Applications.

Emphases on the standardization of access to quantum platforms and the uniform
reporting of resources, enabling seamless integration and interaction within the HPC/QC
environment.

Intelligent resource allocation and dynamic simulation environment for optimizing
guantum task execution within the broader HPC context.

The document positions the proposed framework as a strategic choice for organizations seeking
to integrate quantum computing capabilities into their existing HPC infrastructure, with a focus
on hybrid quantum-classical computing, resource abstraction, and intelligent resource allocation.

Quantum Framework (QFw)

Aims to harness the potential of quantum computing through a generic approach for
executing quantum tasks on various quantum platforms.

Provides flexibility, allowing users to leverage any circuit composition framework like
Pennylane or Qiskit while maintaining standardization in the form of a common text-
based format for circuit description (e.g., QASM 2.0 [5], QIR [3,4].

Offers an MPI-based [2] mechanism to manage communication with the quantum
platform, facilitating seamless integration into existing HPC environments without
requiring significant changes in the application programming paradigm.

Provides mechanisms for reserving both HPC and quantum resources in a cohesive
manner, ensuring successful job submission by identifying required quantum resource
types and configuring underlying resources accordingly.




1. QUANTUM MOTIVATION

In recent years, the field of quantum computing has shown remarkable advancements,
demonstrating its potential to revolutionize certain types of algorithms and applications. While
quantum computing holds great promise for solving specific problems exponentially faster than
classical computers, its widespread adoption for general computing remains a future prospect. In
the foreseeable future, quantum computing is anticipated to coexist and collaborate with classical
High-Performance Computing (HPC) environments to harness its unique advantages.
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TERMS & DEFINITIONS

Term

Definition

High Performance
Computing (HPC)

HPC involves the use of advanced computing systems and parallel
processing techniques to efficiently handle complex computations
and large datasets, enabling significantly faster and more powerful
computational capabilities than traditional computing environments.

Quantum Computing

(QC)

Quantum computing is a field of computing that leverages principles
from quantum mechanics, such as superposition and entanglement,
to perform computations using quantum bits (qubits).

Qubits

Unlike classical bits, which can be either 0 or 1, qubits can exist in
multiple states simultaneously, enabling quantum computers to
explore parallel possibilities and potentially solve certain problems
more efficiently than classical computers.

Noisy Intermediate-
Scale Quantum (NISQ)

Quantum computers with ~50 - ~100 qubits may be able to perform
tasks that surpass the capabilities of today's classical digital
computers, but noise in quantum gates will limit the size of quantum
circuits that can be reliably executed.

Quantum Computer
Simulator

a classical computer simulating the behavior of a quantum computer.

Quantum
Platform/Quantum
Resources

the underlying hardware or software technology used to implement a
quantum computer or quantum simulator.

1.2 QUANTUM ADVANTAGE FOR SPECIFIC ALGORITHMS

Quantum computing excels in solving problems that involve complex mathematical operations,
optimization challenges, and cryptographic tasks. Algorithms such as Shor's algorithm for
integer factorization and Grover's algorithm for unstructured search showcase the quantum
advantage by outperforming their classical counterparts in terms of efficiency and computational

speed.

1.3 QUANTUM SIMULATORS

In the landscape of quantum computing Noisy Intermediate-Scale Quantum (NI1SQ) devices have
emerged as powerful yet have limited qubit coherence times and are error-prone computational
platforms. These devices, featuring a limited number of qubits, qubit coherency issues and




susceptibility to environmental noise, present challenges in ensuring the correctness of quantum
computations. As quantum algorithms become more intricate, the need for error correction
becomes pronounced, introducing complexity and demanding sophisticated algorithms to
maintain accuracy. Quantum simulators play a pivotal role in mitigating these challenges by
providing a controlled and error-free environment for researchers to develop, test, and debug
quantum algorithms.

1.3.1 Advantages of Quantum Simulators

1. Error-Free Development: Quantum simulators allow researchers to develop quantum
algorithms in an error-free environment, free from the coherency issues and noise
prevalent in NISQ devices. This facilitates a more straightforward and precise
algorithmic development process.

2. Testing and Debugging: Simulators provide a platform for rigorous testing and
debugging of quantum algorithms. Researchers can simulate various scenarios, inputs,
and conditions to analyze the behavior of quantum circuits, identify potential errors, and
refine their algorithms before transitioning to real quantum hardware.

3. Algorithm Optimization: Quantum simulators enable researchers to optimize algorithms
without the constraints of error correction. This iterative process helps fine-tune quantum
circuits, enhancing performance and paving the way for more efficient quantum
algorithms.

4. Preparing for Real Hardware Testing: Quantum simulators serve as a crucial step in
the development pipeline, allowing researchers to thoroughly prepare for the transition to
real hardware. By addressing correctness issues in a simulated environment, researchers
can strategically plan and optimize their algorithms before subjecting them to the inherent
challenges of NISQ devices.

5. Access and Availability: While real quantum hardware may have limitations in
accessibility, quantum simulators are widely available and easily accessible to
researchers. This democratization of simulation resources empowers a broader
community of scientists and developers to engage in quantum algorithm research.

2. PROJECT OVERVIEW

The integration of quantum computing into HPC environments represents a strategic approach
for unlocking the potential of quantum algorithms while maintaining the reliability and
versatility of classical computing. This overview sets the stage for exploring the detailed
requirements and considerations essential for realizing the quantum advantage within the broader
landscape of high-performance computing. Furthermore, Quantum Simulators play a vital role in
the NISQ era by providing a controlled environment for quantum algorithm development,
testing, and debugging. Their ability to circumvent errors and coherency issues allows
researchers to refine and optimize quantum algorithms before deploying them on real, error-
prone quantum hardware, contributing to the advancement of quantum computing capabilities.

Integrating quantum computing into HPC ecosystems creates a symbiotic relationship, where
classical systems handle traditional tasks, and quantum processors address specific problems for
which they are uniquely suited. A practical and efficient approach involves adopting a hybrid




guantum-classical computing model. In this model, classical computers manage day-to-day
computations, while quantum processors focus on solving problems where they demonstrate a
clear advantage. Task-specific quantum algorithms can be seamlessly integrated into existing
HPC workflows, allowing organizations to leverage the strengths of both classical and quantum
computing paradigms.

Given these considerations, it becomes imperative to establish a framework which:

o Facilitates the integration of Quantum Hardware into HPC environments

o Facilitates the integration of Quantum Simulators within the HPC environments.

o Expandable to allow for seamless integration of new simulators and hardware through the
development of plugins tailored to the framework's requirements.

e Provides a layer of abstraction to the application, enabling it to access quantum
platforms, whether hardware or software, in a standardized manner.

o Provides the application the ability to express resource requirements.

« Intelligently selects the available quantum resource based on application provided
configuration.

2.1 TERMS & DEFINITIONS

Term Definition

A state vector Simulator in quantum computing is a simulation tool that

State Vector |represents the quantum state of a system using a state vector. It calculates the
Simulator  |evolution of this vector over time, allowing researchers to model and analyze
quantum algorithms and circuits.

A tensor network Simulator in quantum computing is a simulation tool based on tensor
Tensor network representations. It leverages tensor network diagrams to efficiently represent
Network and compute the quantum states of complex systems. This approach is particularly useful
Simulator for simulating large quantum systems where an explicit representation of the full state
vector is impractical.
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3. HPC/QC INTEGRATION USAGE PATTERNS

Hybrid HPC/QC applications typically involve classical logic intertwined with Quantum logic.
Quantum Tasks (QT) will need to be built, compiled, optimized and run on either real quantum
hardware or a quantum simulator; henceforth referred to as quantum platform or quantum
resource. In some cases, they may be run multiple times to collect a probabilistic result. Results
may or may not influence the following iterations. After the quantum portion is completed,
classical logic may continue making use of the quantum results.

Application patterns can be summarized as follows:

1.

In-Sequence Processing: Applications that require low-latency communication and
control decisions over the quantum platform for successful execution of a quantum task.
These applications demand individual outcomes calculated by the quantum processing
unit (QPU) to be transmitted to the HPC and processed during the remaining run time of
the quantum computation

Single-Circuit: Applications where the underlying quantum task remains static during
execution and does not change its state based on intermediate measurement outcomes.
These programs may be executed repeatedly to generate a distribution of measurements
and a resulting statistical characterization, but such choices do not change the
requirements placed on the control of the quantum platform. These circuits can be large
and complex.

Ensemble-Circuit: Applications that require the execution of multiple circuit instances
to generate a distribution of measurements and a resulting statistical characterization.




Circuit instances can be issued independently; however, aggregation of the results from
all circuit instances is necessary for post-processing to complete the calculation.

4. HPC/QC INTEGRATION MODELS

To satisfy the hybrid HPC/QC Application usage patterns outlined above, the following
integration models can be envisioned:

1. Single quantum computing resource
2. Per-Job quantum computing resource
3. Per-Process quantum computing resource

41 SINGLE QUANTUM COMPUTING RESOURCE

Application QC Sim/HW
Job —_—
Job —_— > Qc
Job —>»

In this model a single quantum platform is used by all HPC jobs. This can be implemented by:

1. Cloud resource model. Quantum circuits are posted to remote QC resources. Cloud
model presents several challenges, including latency and co-scheduling difficulties.
Cloud resources are managed by external entities which cater to a variety of users and
might not match local resource allocation policies.

2. On-premises QC resource model. Quantum circuits are posted to on-premises quantum
platform.

3. Long running QC Simulator model. A long running QC simulator can be running on
HPC and used by multiple jobs to perform Quantum computation

4.2 PER-JOB QUANTUM COMPUTING RESOURCE

Application QC Sim/HW

Job »{ «Qc
Job »{ «c
Job »{ Qc




In this model each job allocation is either paired with a quantum hardware resource or a set of
HPC nodes dedicated for a quantum simulation environment.

In this model each job will have a dedicated Quantum Resource.

In the near term, this will not be feasible with real Quantum hardware due to availability.
It is feasible to have a quantum simulator available for each job.

A resource management system can allocate enough HPC nodes and partition them such
that a subset is dedicated to the HPC job, and a subset is dedicated to the Quantum
Simulator.

e ltis possible to partition the nodes dedicated to Quantum Simulation, such that they run
multiple Quantum Simulator instances.

o Current Quantum Simulators parallelize single circuit execution. However, if
multiple circuits are submitted for execution they are run sequentially.

o For applications which use the "ensemble-circuit™ pattern, they will benefit from
running circuits in parallel. Therefore, having multiple Quantum Simulators
running in parallel will be useful

o This sub-version of the model can be extrapolated for the "Single quantum
computing resource” simulator model described above. There is nothing
preventing the HPC allocation dedicated for the quantum simulation to be
partitioned among multiple simulators. Multiple circuits can be submitted and can
run in parallel. In fact, this seems to be the preferred mode of operation.

43 PER-PROCESS QUANTUM COMPUTING RESOURCE
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In this model each HPC node has a dedicated quantum resource. This parallels the existing
approach where multiple MPI processes can run on a single node and have access to the
integrated GPUs for acceleration. The per-process quantum computing resource model is not
feasible in the near future with real quantum hardware, due to technology maturity. However,
HPC/QC hybrid applications use this model via quantum simulators. The hybrid application
steps include:

An HPC allocation is reserved.

The application runs on the allocation.

Multiple MPI processes run on each node of the application.

Each MPI process initializes its own quantum simulator when it starts up.




o Each MPI process uses a quantum framework (such as Pennylane or Qiskit) to build,
compile, optimize and execute circuits.

This model benefits small circuit execution, as each node (or MPI process) has a dedicated
simulator. However, there are several disadvantages to this approach:

e Oversubscribe resources. If there are multiple processes running on a single node, each
process will spawn its own simulator. This may put undue strain on allocated computing
resources.

o Large circuit execution. Large circuit execution may need a simulator running on
multiple HPC nodes. In this model it can not be parallelized, since each simulator is
restricted to one node

o Compute resource usage. Depending on the simulator being used, the compute
resources on the node might not be used efficiently. For example, some simulators do not
use GPUs.

e Lack of circuit parallelization. If an MPI process wants to run an ensemble of
independent circuits, it can not run them in parallel due to simulator restriction. Each
simulator can run one circuit at a time.

5. HPC/QC INTEGRATION FRAMEWORK OVERVIEW

The development of the Quantum framework (QFw) is aimed at harnessing the potential of
quantum computing through a generic approach that can be utilized by hybrid HPC/QC
applications for executing quantum tasks on various quantum platforms. QFw seeks to provide
flexibility, allowing users to leverage any circuit composition framework like Pennylane [7] or
Qiskit [6] while still maintaining standardization in the form of a common text-based format for
circuit description (e.g., QASM 2.0, QIR). QFw offers an execution phase where built circuits
are converted into this standardized format and handed off to QFw, which then executes them
and returns results. This approach enables users to select any framework that suits their needs
while still relying on a consistent circuit representation.

The framework offers an MPI-based mechanism to manage communication with the quantum
platform. This approach facilitates seamless integration into existing HPC environments without
requiring significant changes in the application programming paradigm. Additionally, the
framework provides mechanisms for reserving both HPC and quantum resources in a cohesive
manner, ensuring successful job submission by identifying required quantum resource types and
configuring underlying resources accordingly.

In summary, the QFw shall abstract the underlying quantum platform, offering a cohesive
approach for submitting quantum tasks and retrieving results. It shall feature a plugin
architecture enabling the seamless integration of various quantum platforms while minimizing
modifications to the application.




5.1

TERMS & DEFINITIONS

Term

Definition

Resource Management
System (RMS)

Is an infrastructure component responsible for Allocating resources;
both HPC and QC. SLURM is an implementation of this component.

Message passing
Interface (MPI)

MPI is a standardized and portable message-passing system designed
for parallel computing. It enables communication and coordination
among processes in a parallel computing environment, allowing
distributed memory systems to work collaboratively on a common task.
MPI provides a set of functions, routines, and conventions for
exchanging data and synchronization between processes in a parallel
program. It is widely used in high-performance computing for building
parallel applications that run on clusters, supercomputers, and other
parallel architectures.

MPI Communication
Group

A Communication Group refers to a set of processes that can
communicate with each other. MPI allows the grouping of processes
into subsets or groups, and communication operations, such as sending
and receiving messages, are typically defined within these groups.
Communication groups enable more flexible and efficient
communication patterns among subsets of processes in parallel
computing applications, allowing for targeted information exchange
within specific subsets of the overall process ensemble.

Is a task to run on a quantum platform. Currently, this is a quantum

Quantum Task (QT) circuit.
The QFw, as detailed in this document, is designed to establish a
standardized methodology for HPC/QC Applications to efficiently
HPC/Quantum leverage Quantum Resources. These resources encompass both

Hybrid Framework
(QFw)

Quantum Hardware and Software Simulators. The primary goal is to
enable the seamless execution of Quantum Tasks within a unified and
consistent environment, promoting interoperability and ease of
integration for applications relying on quantum computing capabilities.

HPC Resource
Management System
(HPC-RMYS)

Is a subcomponent of RMS responsible for dealing with HPC resources.

QC Resource
Management System
(QC-RMS)

Is a subcomponent of RMS responsible for dealing with QC resources.

Quantum Task
Manager - Tensor
Network (QTM-TN)

Is an infrastructure component which handles Quantum Task
submission to tensor network simulators.

Quantum Task
Manager - State
Vector (QTM-SV)

Is an infrastructure component which handles Quantum Task
submission to state vector Simulators.

Quantum Task
Manager - Hardware
(QTM-HW)

Is an infrastructure component which handles Quantum Task
submission to Quantum Hardware.

Quantum Platform

Is an infrastructure component which manages a specific quantum




Manager (QPM)

resource. It enforces the resource's management model, interfaces with
its API, and acts as the gateway to all Quantum Task submissions.

Quantum Runtime
Controller (QRC)

Is an infrastructure component responsible for preparing a QT to run on
the QC resource.

Quantum Transpiler

A quantum transpiler is a tool or component in quantum computing that
transforms a quantum algorithm or program written in a high-level
circuit representation into a quantum resource specific instruction set.
Its primary purpose is to optimize and adapt quantum code for
execution on specific quantum hardware or simulator architectures,
addressing differences in gate sets, connectivity, and other hardware-
specific constraints. Transpilers play a crucial role in making quantum
algorithms portable across different quantum processors and improving
their performance on available hardware.

Quantum Volume

Quantum volume is a metric introduced by IBM to assess the overall
capability and performance of a quantum computer. It is designed to
provide a single, comprehensive figure that reflects the potential of a
guantum processor, considering factors such as qubit quality,
connectivity, and error rates.

The Quantum volume takes into account various aspects of a quantum
device:

1. Number of qubits: It considers the total number of qubits on
the quantum processor. However, simply having more qubits
doesn't necessarily imply better performance.

2. Connectivity: The quantum volume considers the connectivity
between qubits. A higher degree of connectivity allows for more
complex quantum circuits and, consequently, more powerful
guantum computations.

3. Error rates: Quantum computers are prone to errors due to
factors like noise and decoherence. Quantum Volume factors in
the error rates of qubits and gates, aiming for a balance between
qubit quantity and error mitigation.

Long Running
Quantum Simulators
(LRQS)

LRQS is a mode of quantum simulation where one single simulation
resource can be shared by multiple jobs. Its lifetime is longer than the
jobs it serves.

Quantum
Configuration
Parameters (QCF)

QCEF refers to the user-provided parameters essential for assisting the
RMS in accurately reserving the appropriate set of quantum resources.

Quantum Simulation
Environment (QSE)

This refers to a set of HPC nodes and associated software modules and
environment variables designated to run quantum simulators. This is
determined at reservation time.

Quantum Simulation
Environment
Category Partition
(QSECP)

This refers to a partition of the QSE with its associated software
modules and environment variables designated to run a specific
category of quantum simulators, e.g., tensor network simulators, state
vector simulators. This is determined at reservation time.




This refers to a partition of the QSECP with its associated software
modules and environment variables designated to run a specific
quantum simulation software stack, e.g., TNQVM, QTENSOR, etc.
This is determined at reservation time.

Quantum Simulation [Refers to a partition of the QSSSP with its associated software modules
Instance Partition and environment variables running a specific instance of a quantum
(QSIP) simulator. This is determined at runtime.

Quantum Simulation
Software Stack
Partition (QSSSP)
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5.3 QUANTUM OPERATIONAL PHASES

5.3.1 Resource Reservation

The HPC/Quantum Framework (QFw) is designed for use by hybrid HPC/QC application and is
intended to abstract away quantum resource details. QFw is designed to integrate with the
application, allowing the application to interface with the framework in a seamless manner.

A modified Resource Management System (RMS) which will be created as part of this work will
integrate with the QFw. The RMS is responsible for reserving both HPC and QC resources.
While reserving HPC resources aligns with established practices supported by frameworks like
SLURM [9], the reservation process for QC resources lacks such standardized support. To
address this, a set of criteria for reserving QC resources will be detailed in the requirements
section of this document. Assuming these criteria are established, the "QC Resource
Management System (QC-RMS)" component in the system diagram above will employ them to
reserve either Quantum Hardware or a dedicated set of nodes for running QC simulators.

5.3.1.1 Hardware Reservation

e For HW resources or Long Running Quantum Simulators (LRQS) each resource will
need to run a "Quantum Platform Manager (QPM)" process, depicted in the system
diagram above.

e The QPM will be responsible for:

o communication with both compute nodes and the quantum resource
Providing a standardized API for submitting Quantum Tasks
o Managing and configuring the underlying quantum resource.
= Different QC resources can implement different resource sharing models;
QPU-Based sharing model; Qubit-Based Sharing model or Shares-based
sharing model.
= The QPM is aware of its resource's reservation model and can respond to
the QC-RMS reservation requests appropriately.

e The QPM will register with the QC-RMS. This will allow the QC-RMS to determine
which QC resources are available for reservation.

e The QC-RMS will then proceed to reserve the available HW or LRQS.

e Upon reservation success, QPM will start a "Quantum Runtime Controller (QRC)" for
each reserved portion of the resource.

o e.g., for the qubit-based model a quantum platform can be subdivided into
multiple portions. A QRC process will run for each of these portions.

e QFw will query the RMS to get information about the allocation; both the Quantum HW
allocation and the HPC node allocation.

o QFw will start a "Quantum Task Manager - Hardware (QTM-HW)™" MPI process
to track the Quantum HW reserved.

o The QFw will pair the QPM with the QTM-HW,; more details on this step below.
This pairing allows execution of Quantum Tasks on the QC resource.

o The QFw will start the Application on the nodes reserved for the HPC application.

« Once this infrastructure is in place, the application can start submitting QT.




5.3.1.2 Cloud Reservation

o Cloud quantum resource reservation theoretically align with local quantum hardware
reservation but face challenges due to coscheduling difficulties and job execution
latencies.

e Reserving both local HPC and cloud quantum resources requires synchronization, but
abstracted cloud reservation policies may introduce significant delays.

e Quantum Task execution, even with both resources reserved, is subject to cloud provider
queuing policies, with no assurance of completion within the HPC job's lifetime.

e Security concerns arising from connecting to an external system also pose a set of
challenges which need to be resolved.

e Aside from security concerns, if a time slice is allocated on a cloud quantum resource
with a dedicated execution time, then the QFw can handle it.

e However, given the listed challenges, this document will not explore solutions for the co-
scheduling and execution latency issues inherit to cloud resources.

5.3.1.3 Simulator Reservation

e For SW simulator bring up, the criteria provided will be used to determine how many
HPC nodes to reserve and the category of simulation required by the application, e.g,
tensor network simulation or state vector simulation.

o It's possible that an application might want different simulation categories
simultaneously.

e QFw will query the RMS for the HPC node allocation and all Quantum Configuration
Parameters (QCP).

o QFw will start the application on the nodes designated for the HPC/QC Hybrid
application.

o The exact breakdown of responsibility in the QFw will be explored in the High-
Level Design.

e QFw will use the QCP to partition the simulation designated HPC nodes among the
different simulation categories.

e QFw will designate a head node per simulation category partition and bring up a QPM
process on each head node.

o A head node is one of the nodes in allocation designated for running QFw
services.

e The QPM in the simulation case is responsible for further partitioning the designated
HPC nodes into Quantum Simulation Partitions.

« Each partition can run exactly one quantum simulator instance of the category assigned to
it. This can be done dynamically.

e A head node is designated per partition, and it runs a Quantum Runtime Controller
(QRC) process.

e The QRC process is responsible for transpiling a quantum circuit and executing it on its
designated simulator.

o QFw will start the correct category of "Quantum Task Manager" MPI process to track the
Quantum Simulator.

e The QFw will pair the QPM with the QTM.

o Once this infrastructure is in place, the application can start submitting QT.




5.3.2

5.3.3

Quantum Resource Pairing

Different categories of Quantum Task Managers (QTM) run as MPI processes.
Each category has one QTMs running as depicted in the diagram above.
Each QTM would be responsible for a group of similar QC resources.

o For example, if we have both TNQVM [10] and QTensor [11] simulators, we
would have one QTM for each. The QTM can manage multiple QC resource of
the same type.

The QTM's primary role is to provide a standard MPI interface for an application to
submit Quantum Tasks.

o Since they run as an MPI process, the standard MPI communication patterns can
be used to submit one or many Quantum Tasks for execution and then wait for
their completion.

On the backend each QTM can handle one or more quantum resources of the same
category.
This assignment of QPM to QTM is done by the QFw on QFw initialization.
o For example, if the QFw (through querying the QC-RMS) was instructed to start a
QTNVM and a QTensor simulators, it would
= partition the Quantum Simulator HPC node allocation into two.
Designate a head node for each of the partitions
Start a QPM on each of the head nodes
Start one MP1 QTM-TN process
Provide the QTM-TN information to the QPMs
QPMs would register with the QTM-TN.
QTM-TN can subsequently assign tasks as appropriate to the QPMs
=  QTM-TN manages the task execution on the separate simulators
depending on the submitted Quantum Task meta data

Quantum Task Execution

Once the resource allocation and initialization of the QFw is complete, the infrastructure
is in place for the application to exercise the QC resources through standard MPI message
patterns.

On the back end running QPMs have registered with their assigned QTM before QFw
initialization can be completed.

The Application may use any circuit composition framework, such as Qiskit or
PennyLane to create a quantum circuit.

The QFw will provide plugins for supported circuit composition framework to translate
the framework specific circuit object into the agreed upon standardized format (e.g.,
QASM 2.0, QIR).

The QFw will provide an API for the application to build a quantum task using the
generated circuit.

The Application can then query the QFw for available quantum resources, in a specific
category.

The QFw will return one QTM MPI handle to the application indicating the quantum
resource(s) which matches the Application's query criteria.

The application can then send the QT to the provided QTM using MPI_Isend() or similar
APIs.




e The application can then wait on the completion of these QTs using standard MPI
patterns, e.g., MP1_Waitall().

e The QTM can manage the usage of the underlying resources via some selection criteria.
In its simplest form, it can round robin over all the resources it knows about.

e Whena QTM receives a QT, it invokes the public QPM APIs to execute that QT.

e The QT is queued on the QPM Task Queue and scheduled for execution

e Once the QT completes a Quantum Result needs to be returned in a canonical format to
the QTM.

e The QFw will provide a utility library to build the Quantum Result

e The QFw will provide plugins for supported circuit composition framework to translate
the canonical quantum result format back into the circuit composition framework specific
format.

o The point is to minimize the amount of changes an application needs to make in
order to integrate with the QFw

5.3.4 Dynamic Simulation Environment

In this section we introduce the concept of a simulation environment. Its purpose is to manage
different classical quantum simulators instances running in parallel. A simulation environment
can be partitioned per simulator category, if necessary, to ensure that resources can be used
evenly. The partitioning of resources for use by the simulation environment are specified by the
user for the job. The configuration rules are instantiated at runtime during the parallel job launch
(i.e., application and simulation environment). The appropriate simulation environment is chosen
at runtime based on user specified selection criteria and circuit metadata.

A quantum simulation environment needs to be flexible such that it can handle different quantum
task work loads. As illustrated in the below diagram, once a job allocation is granted it will be
partitioned as follows:

1. HPC Application, and
2. Quantum Simulation Environment (divided into 3 levels):

o Level-1: (Determined at reservation time) One or more Quantum Simulation
Environment Category Partitions (QSECP): These partitions can fall in the
simulator type category, e.g., tensor network category, state vector category.

o Level-2: (Determined at reservation time) One or more Quantum
Simulation Software Stack Partitions (QSSSP): Each simulation stack
will have its own partition.

e Level-3: (Determined at runtime) One or more Quantum
Simulation Instance (QSI): There could be multiple instances of
the simulation stack running on each QSSSP.
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There are two primary Quantum Task models to consider:

1. Ensemble circuit model: this model represents applications which want to execute many
independent circuits in parallel.

2. Single large circuit model: This model represents applications which want to execute
one single large circuit

The ensemble circuit model would benefit from multiple simulators running in parallel, each
executing a single independent circuit. The single large circuit model would benefit from one
simulator running on multiple nodes which would parallelize the execution of the large circuit. A
single application could potentially exercise both models at the same run. Therefore, having a
dynamic simulation environment that adapts to the workload in the pipeline would be ideal. Each
QPM managing a simulated environment has a set of nodes it knows about. It has a queue of
Quantum Tasks. It can look ahead in the queue and using Quantum Task metadata can determine
how the Simulation environment can be configured to most efficiently execute the queued tasks.

The following example can be used as an illustration for dynamic resource management.




INPUT:
o QPM manages a simulation environment consisting of:
= 5nodes.
= 30 Quantum Tasks in its queue.
= 4 qubits per task.
DECISION:
o Run 5 quantum simulators one on each node is best.
ACTION:
o start a quantum simulator and an associated QRC on each node.
o Using round robin, it will assign six circuits per quantum simulator for execution.
o Each circuit submitted by the QTM has a Circuit ID (CID). The QPM will use the
CID to track each circuit execution.
OUTPUT:
o QPM reports back a completion event to the QTM using the CID.

5.4 HPCECOSYSTEM INTEGRATION

The integration of a Quantum Computing Resource Management System (QC-RMS) with
existing Resource Management Systems (RMS) like SLURM is crucial for establishing a
cohesive and efficient allocation of both HPC and quantum resources. SLURM, as a widely used
RMS, excels in managing classical computing tasks and orchestrating the allocation of HPC
resources. The QC-RMS must seamlessly align with SLURM's capabilities to create a unified
environment where both classical and quantum computing resources can be cohesively managed.
This integration involves extending SLURM's functionality to incorporate quantum-specific
resource allocation, ensuring a streamlined and consistent experience for users and
administrators.

To achieve this integration, the QC-RMS should introduce a quantum-aware scheduler that
comprehensively understands the intricacies of quantum computing tasks and their unique
resource requirements. This scheduler will interface with SLURM, allowing users to submit
hybrid quantum-classical jobs seamlessly. It becomes imperative to extend SLURM's job
definition to include quantum-specific parameters, such as the type of quantum hardware or
simulator required, quantum circuit details, and expected parallel circuits to run. The QC-RMS
should also introduce a mechanism to reserve quantum resources alongside classical ones,
ensuring that both are available concurrently for hybrid jobs. By harmonizing the functionalities
of SLURM with quantum-specific requirements, the integrated system will empower users to
leverage the full potential of hybrid computing environments, ultimately enhancing the overall
efficiency of computational workflows.

6. DATA MODEL

Hybrid HPC/QC applications typically function by processing datasets through classical logic on
the HPC platform. This processed data is utilized to generate Quantum Tasks (QT) destined for
execution on a quantum platform. The outcomes obtained from these quantum tasks serve as
inputs for generating additional QTs or for further processing on the classical side. While the
initial datasets for processing may be substantial, leveraging HPC for handling large datasets is a
well-established practice, and no specific requirements unique to this context arise. However, the




transportation of QTs to the quantum platform poses a challenge, especially when the quantum
platform is not directly connected to the HPC platform.

Practically, the Quantum Platform Manager (QPM) may consist of two distinct components. The
first component operates on the HPC platform, acting as a proxy, while the second component
runs on the classical segment of the quantum platform. This second component interfaces
directly with the quantum platform's provided API. It is noteworthy that QTs and their results are
generally small, typically a few kilobytes in size. Consequently, the network throughput required
for transferring QTs and their results is not extensive and is not anticipated to be a bottleneck.

7. PLUGIN ARCHITECTURE

The QFw plugin architecture is intended to cover the following aspects.

1. Application integration into the QFw
2. Quantum platforms integration into the QFw
3. External Platform Integration

7.1 APPLICATION INTEGRATION

The landscape of quantum simulation is rich with many frameworks which provide a Python
interface to ease the composition and transpiling of quantum circuits. Each platform has its
strengths. For example, PennyLane is designed to aid in natural language processing.
Applications might prefer to use one over the other.

The aim of the QFw is to allow applications to use whatever circuit composition framework they
need. The QFw will support the most used frameworks like Qiskit and Pennylane, by providing a
backend plugin for these frameworks. These frameworks themselves have a plugin architecture
that allows developers to specify the backend they would like their circuit to execute on. The
QFw will provide a new backend for these frameworks, which should make QFw appear like yet
another quantum platform. This allows applications to specify the QFw backend. The rest of the
application’s code will not change. When the application executes the circuit built by their
preferred framework, the QFw backend will be invoked.

A QFw Quantum Task will be built and send to the QTM.

The QTM will post this QT on the QPM.

The QPM will execute the QT on the quantum platform.

Once the QT has completed the QPM will return the result back to the QTM.

The QTM will return the quantum result back to the QFw Backend plugin of the circuit
composition framework.

e The QFw backend plugin will do the necessary conversion into circuit composition
framework specific format.
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7.2 QUANTUM PLATFORM

The other aspect of the plugin architecture is the ability to add new quantum platforms for
applications to use without the need to change the application code or the framework. The QFw
shall achieve this goal by:

1. Standardizing an interface APl which the quantum platform needs to implement in order
to integrate into the QFw.

2. Defining a quantum task and quantum result format which is submitted and received
respectively to and from the QPM.

3. Supplying a software framework which allows quantum platform providers to write
plugins which adhere to the standardized API.

QFw RMS ] [ QFw Runtime

Quantum Platform Manager Proxy
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7.2.3

Standardized API

Reservation API: API used to reserve the underlying platform.

A standard reservation description specification: Specification adopted such that all
platforms report their resources in a uniform manner. Example: Hardware location
(hwloc).

Resource query API: API used to query details regarding the reservation model and
availability of the platform.

Quantum task submission API: API used to submit quantum task for execution.
Quantum task query API: API used to query the quantum task execution status.
Quantum task result API: API used to form the quantum task results in a uniform
format.

Quantum platform configuration API: API used to configure platform specific
parameters.

Quantum Task Format

1. The QFw shall use the standardized circuit format to describe the QT to execute.
2.
3.

The QFw shall define a set of QT metadata information to pass along with the QT.
The QFw shall define a message format to include all the data pertaining to a QT.

Software Framework

To streamline the standardization process, the Quantum Framework (QFw) will introduce a
software library structured akin to the functionality of libfabric [1]. This library serves as a
central component for seamless integration with various quantum platforms.

( QFw Platform Library \
(libQuantum)
API
(Reservation, Calibration, Runtime ...)
[ Common Utilities ]

N

#

Quantum Quantum Quantum
Platform Platform Platform
Provider 1 Provider 2 Provider N
.

The proposed structure of the library encompasses:

1. User Facing API:

o Purpose: Providing a common interface for applications and middleware to

interact with the underlying quantum platform.




o Functionality: Enabling a unified set of calls that applications and middleware
can utilize to communicate with the quantum platform.
2. Common Utilities:
o Purpose: Offering a collection of standardized utilities to assist platform
providers in harnessing shared functionalities.
o Examples: Provision of request queues, completion queues, and other essential
components that enhance overall efficiency.
3. Provider Plugin:
o Purpose: Allows each platform provider to develop a plugin responsible for
implementing either the entire or a subset of the user-facing API.
o Functionality: Allowing platform providers to tailor their plugins to suit specific
requirements, ensuring flexibility and adaptability.

For the success of this approach, a consensus on the set of APIs must be achieved. This
necessitates collaboration among industry platform providers. Notably, this collaborative effort
involves establishing a working group, comprising industry leaders such as IBM, to deliberate
and reach a consensus on the essential APIs. This inclusive process ensures that the finalized set
of APIs is agreeable to all stakeholders, facilitating smooth integration and fostering a
standardized approach across diverse quantum platforms.

7.3 EXTERNAL PLATFORM INTEGRATION

It is inevitable that the QFw will need to integrate a quantum platform which exists on a different
network than the HPC cluster, either internal to the organization or managed by an external
organization. It is not feasible for the QFw to present a standard way to connect with all potential
external platforms. The challenge is not only technical but due to policies of both the local and
external organizations.

ORNL is working on methods to allow external organizations to programmatically access local
ORNL resources, such as frontier. These methods will be used to transfer data in and out of the
HPC resources. The best approach to handle external platform integration is for the QFw to
leverage work already done at ORNL in this area.

The QFw can provide utility functions which allow QPMs to open ports and manage the security
with the external quantum platform. It is likely these operations will be unique for each external
quantum platform, especially if it's managed by a different organization. It might be possible to
standardize access from the ORNL side, but since the work to allow external access into ORNL
OLCF machines is still ongoing, no approach can be suggested at the time of this writing. The
best approach is to have an amendment to this document, when a clear design can be envisioned.

8. JUSTIFICATION

Existing frameworks like XACC [8], Qiskit [6] and PennyLane [7] provide a plugin architecture,
which allows different quantum platforms to be added. The proposed quantum framework
distinguishes itself from these existing frameworks by focusing on the seamless integration of
guantum computing within HPC environments. While Qiskit and PennyLane are excellent tools
for quantum algorithm development and simulation, they primarily cater to standalone quantum




computing applications. In contrast, our framework is specifically tailored to foster a symbiotic
relationship between quantum processors and classical HPC systems.

Key differentiators are:

Holistic Integration with HPC: The QFw is designed to be deeply integrated into HPC
ecosystems. It provides a cohesive approach for organizations looking to harness the
complementary strengths of classical and quantum computing.

Hybrid Quantum-Classical Computing Model: The framework advocates for a
practical and efficient hybrid quantum-classical computing model. This model seamlessly
incorporates quantum algorithms into existing HPC workflows.

Application Flexibility: QFw doesn't lock the application into using a specific circuit
composition framework. Applications can use any they deem fit; e.g., Qiskit, Pennylane,
etc. QFw offers a backend to these frameworks.

Resource Abstraction and Standardization: One of the framework's key features is the
provision of a layer of abstraction to the application. This abstraction enables
standardized access to quantum platforms, whether they are hardware or software
simulators. The framework empowers applications to express their resource requirements
intelligently.

Expandability and Plugin Architecture: The QFw is designed to be highly adaptable,
allowing for the seamless integration of new quantum simulators and hardware. The
development of plugins tailored to the framework's requirements facilitates the
incorporation of emerging technologies without requiring changes to the existing QFw
architecture.

Intelligent Resource Allocation: The framework goes beyond providing a mere
interface and actively assists in resource management. It intelligently selects the most
suitable quantum resource based on the configuration provided by the application,
optimizing the execution of quantum tasks within the broader HPC context.

Dynamic Simulation Environment: The framework provides a method to schedule
guantum task simulation in the most efficient way possible on a set of HPC nodes.

In summary, QFw positions itself as a comprehensive solution for organizations seeking to
integrate quantum computing capabilities into their existing HPC infrastructure. The emphasis on
hybrid quantum-classical computing, resource abstraction, expandability, intelligent and
dynamic resource allocation distinguishes it as a strategic choice for harnessing the power of
both classical and quantum paradigms within a unified framework.
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10. REQUIREMENTS

10.1 REQUIREMENT METADATA

10.1.1 Requirement Description

Requirement
Priority (RP)

Demo (D): Must be implemented for the feasibility of the demo
Mandatory (M): Must be implemented for the project to be declared
complete

Optional (O): Need to be implemented to make the project stand out
Nice to have (N): Only implement if time permits

In cases where a requirement is assigned multiple priorities, it may undergo
partial implementation at the primary priority, while other components may
be addressed at the secondary priority.

Requirement
Description (RD)

Description of the requirement.

(RID)

Requirement ID

Unique requirement ID to identify a specific requirement. Can be used to
associate an HLD or Test in a test plan with the intended requirement

Each Requirement ID is divided as follows
<PROJECT>_<CATEGORY>_<NUMBER>

<PROJECT> is the project ID. This document will use QCI
(Quantum Computing Integration)

<CATEGORY> is the requirement category. The categories are
outlined in a later section

<NUMBER> unique requirement number

10.1.2 Project Acronym

Acronym Meaning

QCI Quantum Computing Integration

10.1.3 Requirement Category

Acronym |Meaning Description

Qcp Quantum Configuration Requirements for configuratio_n parameters required
Parameters for quantum resource reservation.

RMB Resource Management Requirement for the the quantum reservation
Backend management system.

QT Quantum Task Requirements for defining a quantum task.

QTM Quantum Task Manager Requirements for managing quantum tasks.

QPM Quantum Platform Manager |Requirements for managing a quantum resource.

QRC Quantum Runtime Controller |[Requirements for running operations on the quantum




Acronym |Meaning Description
resource.
PAA Plugin Architecture for Requirements for formalizing the interface between
Applications QFw and the Application
PAP Plugin Architecture for Requirements for formalizing the interface between

Quantum Platform

QFw and the quantum platform.

10.2 RESOURCE MANAGEMENT FRONTEND

RID
QCI_QCP_001

QCI_QCP_002

QCI_QCP_003

QCI_QCP_004

QCI_QCP_005

QCI_QCP_006

QCI_QCP_007

QCI_QCP_008

QCI_QCP_009

QCI_QCP_010

QCI_QCP 011

QCI_QCP 012

RP
D

RD

The user shall have the option to specify Quantum Configuration
Parameters (QCP) in YAML format

The user shall have the option to specify their preference for
reserving either quantum hardware resources or quantum software
simulation

The user shall have the option to specify the quantum hardware
system from a list of available hardware

The user shall have the option to specify the location of the
quantum hardware; cloud based or on-premises.

The user shall have the option to specify the quantum software
simulation category. E.g., tensor network simulator, state vector
simulator

The user shall have the option to specify multiple quantum
software simulation categories it will require

The user shall have the option to specify the quantum software
simulation software stack from a list of supported software stacks

The user shall have the option to specify the maximum number of
qubits it will require

The user shall have the option to specify the maximum quantum
gate depth it will require

The user shall have the option to specify the acceptable error rates
for qubits and gates

The user shall have the option to specify a noise profile to apply to
the simulation

The user shall have the option to specify the qubit connectivity

Qubit connectivity can be expressed as a selection criteria by




RID

QCI_QCP_013

QCI_QCP 014

QCI_QCP 015

QCI_QCP_016

RP

RD

specifying the desired pattern or arrangement of qubit connections
that aligns with the requirements of your quantum algorithm or
application. Here are ways to express qubit connectivity as
selection criteria:

1. Graph Representation: Describe the desired qubit
connectivity using a graph representation where nodes
represent qubits and edges represent allowable connections.
Specify the connectivity pattern that best suits your
quantum circuit.

2. Adjacency Matrix: Provide an adjacency matrix that
defines the allowed connections between qubits. The matrix
elements indicate whether qubits are connected (1) or not
(0). This allows you to explicitly specify the connectivity
constraints.

3. Topological Constraints: Express topological constraints on
the qubit layout, specifying the relationships between qubits
in terms of physical proximity or connectivity. For
example, you may require qubits to be arranged in a linear
chain or a specific geometric configuration.

4. Custom Constraints: Define custom constraints based on
your application's needs. For instance, you might require a
specific subset of qubits to be fully connected while
allowing limited connectivity for other qubits.

5. Connectivity Patterns: Explicitly state the desired
connectivity pattern, such as fully connected, nearest-
neighbor connectivity, or any other specific arrangement
that optimally supports your quantum algorithm.

When reserving quantum resources, these criteria can be provided
to the quantum reservation system, allowing the system to allocate
a quantum processor with the specified qubit connectivity. This
ensures that the selected quantum resource is well-suited for the
connectivity requirements of your quantum application.

The user shall have the option to specify the maximum
decoherence time of the qubits

The user shall have the option to specify the Quantum Volume of
the quantum resource required

The user shall have the option to specify the maximum number of
parallel quantum tasks it requires to execute

The user shall have the option to specify the number of nodes to
dedicate to the quantum software simulation environment




RID
QCI_QCP_017

R
D

P

RD

The user shall have the option to specify the details of how the
quantum software simulation environment will be partitioned.

This can be specified in the form of:
¢ <Category>: <number of nodes>
Example:

e Tensor Network: 5

10.3 RESOURCE MANAGEMENT BACKEND

RID

QCl_RMB_018

QCI_RMB_019

QCI_RMB_020

QCI_RMB_021
QCI_RMB_022

QCI_RMB_023

QCI_RMB_024

QCI_RMB_025

QCI_RMB_026

RP

D,N

RD

The system shall require the specification of the quantum
resource type: either quantum hardware resources or quantum
software simulation

The system shall use the quantum resource type to determine if
it's being requested to reserve quantum resources

The system shall provide a mechanism to query existing quantum
resources available for reservation

The system shall support heterogeneous quantum resources

The system shall provide a mechanism to indicate the status of
available quantum resources

The system shall provide a mechanism to query the users who are
currently using the quantum resources

The system shall support reserving quantum hardware if
requested and if resources are available

The system shall return an error if quantum hardware is specified
but no resources are available for reservation

In the absence of explicit quantum hardware specification, the
system shall use the following criteria when attempting to find a
matching quantum hardware resource

e Maximum number of specified qubits
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Maximum quantum circuit depth

Maximum number of parallel quantum tasks
Qubit Connectivity

Maximum acceptable error rate (noise profile)
Maximum qubit decoherence time

Minimum Quantum Volume

The system shall provide a plugin architecture to allow the
integration of new types of quantum hardware

The system shall provide a mechanism to query available
guantum simulation categories

The system shall support two quantum simulation categories

e« Tensor Network
« State Vector

The system shall provide a plugin architecture to allow the
integration of Quantum Simulation Software Stacks into one of
the above categories

The system shall provide a mechanism to query available
quantum simulation software stacks

The system shall allocate enough HPC nodes to accommaodate the
HPC application and the Quantum Simulation Environment

(QSE)

The system shall prioritize user-specified simulation category
when it selects the category to use for the job allocation

The system shall prioritize user-specified simulation software
stack(s) when it selects the software stack(s) to use for the
guantum simulation

The system shall leverage user-specified parameters, including
the maximum number of parallel quantum tasks, required qubits,
and quantum circuit depth, to ascertain the necessary number of
HPC nodes for the quantum simulation environment.

This determination is contingent upon the supported quantum
simulation software stacks. Each supported software stack will
undergo profiling to establish the maximum number of qubits and
circuit depth that can be simulated per HPC node using the stack.
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10.4 QUANTUM TASKS
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Subsequently, the derived software stack profile will be combined
with the application’s specified maximum number of parallel
quantum tasks to calculate the requisite number of HPC nodes.

In the absence of user-specified simulation category or software
stack, the system shall select one based on the QCP provided by
the user

The system shall partition the job allocation into a partition for
the HPC application and a partition for the QSE

The system shall partition the QSE among the application
specified quantum simulation categories; these partition shall be
referred to as Quantum Simulation Environment Category
Partitions (QSECP)

The system shall designate a head node per QSECP

The system shall partition each QSECP further per specified
software stacks. Each partition shall be assigned to a specific
software stack; these partitions shall be referred to as Quantum
Simulation Software Stack Partition (QSSSP). There shall be at
least one QSSSP

The system shall designate a head node per QSSSP
The system shall spawn a QPM process per QSSSP head node
The system shall spawn an QTM MPI process per QSSSP

The system shall provide a registration mechanism to allow QPM
modules to register with the QC-RMS

In the hardware quantum resource or LRQS case QC-RMS uses
the registration to know which resources are available

The system shall require each registered QPM to send an alive
ping every 60 seconds

RD

The system shall allow the usage of any quantum circuit
composition framework, such as Qiskit or PennyLane
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The system shall require quantum circuits to be submitted in the
standardized circuit format

The system shall provide a way for the application to identify the
MPI ranks of all running QTMs

The system shall provide a way for the application to identify the
category of running QTMs

The system shall provide a way for the application to identify the
quantum simulation stack managed by the QTM

The system shall provide an API to build a Quantum Task (QT).
A QT is constituted of:

e Quantum circuit in the standardized circuit format, e.g.,
QASM 2.0, QIR
e Quantum circuit metadata, e.g.,
o preferred software simulation stack
o number of qubits
o gQate depth
o noise profile

The system shall support QT submission to QTMs through standard
MPI communication patterns

10.5 QUANTUM TASK MANAGER
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The QTM shall support MPI communication
The QTM shall support a standard QT format

The QTM shall support QT submission via MPI communication
patterns

The QTM shall support reporting back QT completion via MPI
communication patterns

The QTM shall timeout a QT if it has not completed after a
configured time period

The QTM shall provide a mechanism for QPMs to register with it
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The QTM shall reject registrations from incompatible QPMs

e.g., if the QTM is configured for a tensor network it will reject
state vector QPM registration

The QTM shall support multiple compatible QPM registrations

The QTM shall enforce the following registration metadata

e QPM software stack type
e QPM supported API

The QTM shall support calling QPM APIs to submit QT

The QTM shall monitor the health of registered QPMs

10.6 QUANTUM PLATFORM MANAGER
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The QPM shall provide an API to query the reservation model
The QPM shall provide a resource reservation API

The QPM shall support QPU-Based Reservation Model

e The QPU-Based Model is an approach to resource
management in quantum computing where the entire
quantum device is treated as a unified resource unit. In
this model, the quantum processing unit (QPU) is
considered as a single entity, and computational tasks are
allocated to the entire QPU as a whole. This approach is
similar to the current GPU model in traditional high-
performance computing.

o However, this approach has the potential downside of
potential underuse of the QPU when jobs only target a
subset of the QPU. It may not fully leverage the
capabilities of the QPU, especially if the computational
tasks do not require the entire quantum device. Therefore,
while the QPU-Based Model simplifies resource
allocation, it may not fully optimize the utilization of the
guantum processing unit.




RID RP RD

QCI_QPM_067 N The QPM shall support Qubit-Based Reservation Model

The Qubit-Based Model is an alternative approach to
resource management in quantum computing. In this
model, the qubits themselves are treated as resources,
allowing a quantum processing unit (QPU) to be fully
occupied simultaneously by a variety of jobs. Unlike the
QPU-Based Model, where the entire QPU is treated as a
unified resource unit, the Qubit-Based Model allocates
computational tasks to individual qubits within the QPU.
However, in near-term devices, with qubits exhibiting
different types and amounts of noise, and in the presence
of limited device connectivity, this approach has
shortcomings. There would be competition among jobs
for the best or more suited resources within the QPU, and
the allocation of tasks to specific qubits may introduce
complexities in resource management.

Therefore, the Qubit-Based Model aims to provide more
flexibility in resource allocation by treating individual
qubits as resources, but it also introduces challenges
related to qubit noise, connectivity, and competition
among computational tasks for the available qubits within
the QPU.

QCI_ QPM 068 N The QPM shall support Shares-Based Reservation Model

The Shares Model is a resource management approach in
quantum computing that introduces a pseudo-unit of
resource definition where each "share" represents a part
of the device, a specific period of time, or the circuit size.
Essentially, each share signifies a portion of the
computational capacity of the resource.

In this model, computational tasks are allocated to shares
of the quantum processing unit (QPU) based on the
specific requirements of the task. For example, a task that
requires a larger circuit size may be allocated more shares
than a task that requires a smaller circuit size. This
approach provides more flexibility in resource allocation
than the QPU-Based Model, which treats the entire QPU
as a unified resource unit.

The Shares Model can be treated as a sub-category of the
QPU-Based Model, as it still considers the QPU as a
single entity but introduces a more granular approach to
resource allocation. However, this approach may
introduce additional complexity in resource management,
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as it requires a more detailed understanding of the
computational requirements of each task and the available
resources within the QPU.

The QPM shall provide an API to submit QTs

The QPM shall support dynamic configuration of QSSSPs during
run time

The QPM shall implement a scheduling algorithm, which looks
at the queued QTs and determine the best configuration of the
QSSSP

The QPM shall partition the QSSSP into QSIPs at runtime, one
for each instance of a quantum simulator

The QPM shall designate a head node per QSIP
The QPM shall spawn a QRC on each QSIP head node
The QPM shall schedule the QTs among the running QRCs

10.7 QUANTUM RUNTIME CONTROLLER
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The QRC shall expose an API to submit a QT for execution
The QRC shall report back when a QT has finished execution

The QRC shall be responsible for transpiling quantum tasks for
the specific hardware or software simulator it manages

The QRC shall interface with the quantum platform specific API
to perform quantum platform specific operations. e.g., running a
QT, configuring the quantum platform, etc.

The QRC shall handle hardware or software specific errors which
are unique to the underlying quantum platform and translate them
into framework specific errors
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The system shall provide a standard reservation API
implemented by the quantum platform

The system shall provide a standard reservation model query API
implemented by the quantum platform

The system shall provide a standard quantum task submission
APl implemented by the quantum platform

The system shall provide a standard quantum task Query API
implemented by the quantum platform

The system shall provide a standard set of API return codes to
insure common behavior among all platforms

The system shall provide a set of APIs to build and parse a
quantum task; thereby ensure quantum task standardization
among all platforms

The system shall provide a standard set of APIs to build the
canonical Quantum Result format

The system shall provide a software library to formalize the
interface between the quantum platform provider and the system

The system shall provide a backend plugin for supported circuit
composition frameworks to integrate with the QFw
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