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ABSTRACT 

The HPC/QC Requirements Document presents a comprehensive framework for integrating 
High Performance Computing (HPC) and Quantum Computing (QC). The framework proposed 
in this document supports a hybrid quantum-classical computing model that provides application 
flexibility, and resource abstraction and standardization. 

Key highlights 

• Emphasis on the potential of quantum computing to revolutionize specific algorithms and 
applications. 

• Advantages of quantum simulators in mitigating challenges related to limited qubit 
coherence times and error-prone computational platforms. 

• Outlines various models which an HPC/QC Integration framework needs to support. 

• Outlines the Integration of HPC and QC through a comprehensive framework, (a) 
including resource management, (b) dynamic simulation environment, and (c) intelligent 
resource allocation. 

• The framework's plugin architecture, allowing for seamless integration of new quantum 
simulators and hardware as well as (d) Applications. 

• Emphases on the standardization of access to quantum platforms and the uniform 
reporting of resources, enabling seamless integration and interaction within the HPC/QC 
environment. 

• Intelligent resource allocation and dynamic simulation environment for optimizing 
quantum task execution within the broader HPC context. 

The document positions the proposed framework as a strategic choice for organizations seeking 
to integrate quantum computing capabilities into their existing HPC infrastructure, with a focus 
on hybrid quantum-classical computing, resource abstraction, and intelligent resource allocation. 

Quantum Framework (QFw) 

• Aims to harness the potential of quantum computing through a generic approach for 
executing quantum tasks on various quantum platforms. 

• Provides flexibility, allowing users to leverage any circuit composition framework like 
Pennylane or Qiskit while maintaining standardization in the form of a common text-
based format for circuit description (e.g., QASM 2.0 [5], QIR [3,4]. 

• Offers an MPI-based [2] mechanism to manage communication with the quantum 
platform, facilitating seamless integration into existing HPC environments without 
requiring significant changes in the application programming paradigm. 

• Provides mechanisms for reserving both HPC and quantum resources in a cohesive 
manner, ensuring successful job submission by identifying required quantum resource 
types and configuring underlying resources accordingly. 

  



 

 

1. QUANTUM MOTIVATION 

In recent years, the field of quantum computing has shown remarkable advancements, 
demonstrating its potential to revolutionize certain types of algorithms and applications. While 
quantum computing holds great promise for solving specific problems exponentially faster than 
classical computers, its widespread adoption for general computing remains a future prospect. In 
the foreseeable future, quantum computing is anticipated to coexist and collaborate with classical 
High-Performance Computing (HPC) environments to harness its unique advantages. 
 

1.1 TERMS & DEFINITIONS 

Term Definition 

High Performance 

Computing (HPC) 

HPC involves the use of advanced computing systems and parallel 
processing techniques to efficiently handle complex computations 
and large datasets, enabling significantly faster and more powerful 
computational capabilities than traditional computing environments. 

Quantum Computing 

(QC) 

Quantum computing is a field of computing that leverages principles 
from quantum mechanics, such as superposition and entanglement, 
to perform computations using quantum bits (qubits). 

Qubits 

Unlike classical bits, which can be either 0 or 1, qubits can exist in 
multiple states simultaneously, enabling quantum computers to 
explore parallel possibilities and potentially solve certain problems 
more efficiently than classical computers. 

Noisy Intermediate-
Scale Quantum (NISQ)  

Quantum computers with ~50 - ~100 qubits may be able to perform 
tasks that surpass the capabilities of today's classical digital 
computers, but noise in quantum gates will limit the size of quantum 
circuits that can be reliably executed. 

Quantum Computer 
Simulator 

a classical computer simulating the behavior of a quantum computer. 

Quantum 
Platform/Quantum 
Resources 

the underlying hardware or software technology used to implement a 
quantum computer or quantum simulator. 

 

1.2 QUANTUM ADVANTAGE FOR SPECIFIC ALGORITHMS 

Quantum computing excels in solving problems that involve complex mathematical operations, 
optimization challenges, and cryptographic tasks. Algorithms such as Shor's algorithm for 
integer factorization and Grover's algorithm for unstructured search showcase the quantum 
advantage by outperforming their classical counterparts in terms of efficiency and computational 
speed. 

1.3 QUANTUM SIMULATORS 

In the landscape of quantum computing Noisy Intermediate-Scale Quantum (NISQ) devices have 
emerged as powerful yet have limited qubit coherence times and are error-prone computational 
platforms. These devices, featuring a limited number of qubits, qubit coherency issues and 



 

 

susceptibility to environmental noise, present challenges in ensuring the correctness of quantum 
computations. As quantum algorithms become more intricate, the need for error correction 
becomes pronounced, introducing complexity and demanding sophisticated algorithms to 
maintain accuracy. Quantum simulators play a pivotal role in mitigating these challenges by 
providing a controlled and error-free environment for researchers to develop, test, and debug 
quantum algorithms. 

1.3.1 Advantages of Quantum Simulators 

1. Error-Free Development: Quantum simulators allow researchers to develop quantum 
algorithms in an error-free environment, free from the coherency issues and noise 
prevalent in NISQ devices. This facilitates a more straightforward and precise 
algorithmic development process. 

2. Testing and Debugging: Simulators provide a platform for rigorous testing and 
debugging of quantum algorithms. Researchers can simulate various scenarios, inputs, 
and conditions to analyze the behavior of quantum circuits, identify potential errors, and 
refine their algorithms before transitioning to real quantum hardware. 

3. Algorithm Optimization: Quantum simulators enable researchers to optimize algorithms 
without the constraints of error correction. This iterative process helps fine-tune quantum 
circuits, enhancing performance and paving the way for more efficient quantum 
algorithms. 

4. Preparing for Real Hardware Testing: Quantum simulators serve as a crucial step in 
the development pipeline, allowing researchers to thoroughly prepare for the transition to 
real hardware. By addressing correctness issues in a simulated environment, researchers 
can strategically plan and optimize their algorithms before subjecting them to the inherent 
challenges of NISQ devices. 

5. Access and Availability: While real quantum hardware may have limitations in 
accessibility, quantum simulators are widely available and easily accessible to 
researchers. This democratization of simulation resources empowers a broader 
community of scientists and developers to engage in quantum algorithm research. 

2. PROJECT OVERVIEW 

The integration of quantum computing into HPC environments represents a strategic approach 
for unlocking the potential of quantum algorithms while maintaining the reliability and 
versatility of classical computing. This overview sets the stage for exploring the detailed 
requirements and considerations essential for realizing the quantum advantage within the broader 
landscape of high-performance computing. Furthermore, Quantum Simulators play a vital role in 
the NISQ era by providing a controlled environment for quantum algorithm development, 
testing, and debugging. Their ability to circumvent errors and coherency issues allows 
researchers to refine and optimize quantum algorithms before deploying them on real, error-
prone quantum hardware, contributing to the advancement of quantum computing capabilities.  

 

Integrating quantum computing into HPC ecosystems creates a symbiotic relationship, where 
classical systems handle traditional tasks, and quantum processors address specific problems for 
which they are uniquely suited. A practical and efficient approach involves adopting a hybrid 



 

 

quantum-classical computing model. In this model, classical computers manage day-to-day 
computations, while quantum processors focus on solving problems where they demonstrate a 
clear advantage. Task-specific quantum algorithms can be seamlessly integrated into existing 
HPC workflows, allowing organizations to leverage the strengths of both classical and quantum 
computing paradigms. 

Given these considerations, it becomes imperative to establish a framework which: 

• Facilitates the integration of Quantum Hardware into HPC environments 
• Facilitates the integration of Quantum Simulators within the HPC environments. 
• Expandable to allow for seamless integration of new simulators and hardware through the 

development of plugins tailored to the framework's requirements. 
• Provides a layer of abstraction to the application, enabling it to access quantum 

platforms, whether hardware or software, in a standardized manner. 
• Provides the application the ability to express resource requirements. 
• Intelligently selects the available quantum resource based on application provided 

configuration. 

2.1 TERMS & DEFINITIONS 

Term Definition 

State Vector 
Simulator 

A state vector Simulator in quantum computing is a simulation tool that 
represents the quantum state of a system using a state vector. It calculates the 
evolution of this vector over time, allowing researchers to model and analyze 
quantum algorithms and circuits. 

Tensor 

Network 
Simulator 

A tensor network Simulator in quantum computing is a simulation tool based on tensor 
network representations. It leverages tensor network diagrams to efficiently represent 
and compute the quantum states of complex systems. This approach is particularly useful 
for simulating large quantum systems where an explicit representation of the full state 
vector is impractical. 

 



 

 

2.2 HPC/QC INTEGRATION SPACE 

 
 

3. HPC/QC INTEGRATION USAGE PATTERNS 

Hybrid HPC/QC applications typically involve classical logic intertwined with Quantum logic. 
Quantum Tasks (QT) will need to be built, compiled, optimized and run on either real quantum 
hardware or a quantum simulator; henceforth referred to as quantum platform or quantum 
resource. In some cases, they may be run multiple times to collect a probabilistic result. Results 
may or may not influence the following iterations. After the quantum portion is completed, 
classical logic may continue making use of the quantum results. 

Application patterns can be summarized as follows: 

1. In-Sequence Processing: Applications that require low-latency communication and 
control decisions over the quantum platform for successful execution of a quantum task. 
These applications demand individual outcomes calculated by the quantum processing 
unit (QPU) to be transmitted to the HPC and processed during the remaining run time of 
the quantum computation 

2. Single-Circuit: Applications where the underlying quantum task remains static during 
execution and does not change its state based on intermediate measurement outcomes. 
These programs may be executed repeatedly to generate a distribution of measurements 
and a resulting statistical characterization, but such choices do not change the 
requirements placed on the control of the quantum platform. These circuits can be large 
and complex. 

3. Ensemble-Circuit: Applications that require the execution of multiple circuit instances 
to generate a distribution of measurements and a resulting statistical characterization. 



 

 

Circuit instances can be issued independently; however, aggregation of the results from 
all circuit instances is necessary for post-processing to complete the calculation. 

4. HPC/QC INTEGRATION MODELS 

To satisfy the hybrid HPC/QC Application usage patterns outlined above, the following 
integration models can be envisioned: 

1. Single quantum computing resource 
2. Per-Job quantum computing resource 
3. Per-Process quantum computing resource 

4.1 SINGLE QUANTUM COMPUTING RESOURCE 

 

In this model a single quantum platform is used by all HPC jobs. This can be implemented by: 

1. Cloud resource model. Quantum circuits are posted to remote QC resources. Cloud 
model presents several challenges, including latency and co-scheduling difficulties. 
Cloud resources are managed by external entities which cater to a variety of users and 
might not match local resource allocation policies. 

2. On-premises QC resource model. Quantum circuits are posted to on-premises quantum 
platform. 

3. Long running QC Simulator model. A long running QC simulator can be running on 
HPC and used by multiple jobs to perform Quantum computation 

4.2 PER-JOB QUANTUM COMPUTING RESOURCE 

 
 



 

 

In this model each job allocation is either paired with a quantum hardware resource or a set of 
HPC nodes dedicated for a quantum simulation environment.   

• In this model each job will have a dedicated Quantum Resource. 
• In the near term, this will not be feasible with real Quantum hardware due to availability. 
• It is feasible to have a quantum simulator available for each job. 
• A resource management system can allocate enough HPC nodes and partition them such 

that a subset is dedicated to the HPC job, and a subset is dedicated to the Quantum 
Simulator. 

• It is possible to partition the nodes dedicated to Quantum Simulation, such that they run 
multiple Quantum Simulator instances. 

o Current Quantum Simulators parallelize single circuit execution. However, if 
multiple circuits are submitted for execution they are run sequentially. 

o For applications which use the "ensemble-circuit" pattern, they will benefit from 
running circuits in parallel. Therefore, having multiple Quantum Simulators 
running in parallel will be useful 

o This sub-version of the model can be extrapolated for the "Single quantum 
computing resource" simulator model described above. There is nothing 
preventing the HPC allocation dedicated for the quantum simulation to be 
partitioned among multiple simulators. Multiple circuits can be submitted and can 
run in parallel. In fact, this seems to be the preferred mode of operation.   

4.3 PER-PROCESS QUANTUM COMPUTING RESOURCE 

 
 

In this model each HPC node has a dedicated quantum resource. This parallels the existing 
approach where multiple MPI processes can run on a single node and have access to the 
integrated GPUs for acceleration. The per-process quantum computing resource model is not 
feasible in the near future with real quantum hardware, due to technology maturity. However, 
HPC/QC hybrid applications use this model via quantum simulators. The hybrid application 
steps include: 

• An HPC allocation is reserved. 
• The application runs on the allocation. 
• Multiple MPI processes run on each node of the application. 
• Each MPI process initializes its own quantum simulator when it starts up. 



 

 

• Each MPI process uses a quantum framework (such as Pennylane or Qiskit) to build, 
compile, optimize and execute circuits. 

This model benefits small circuit execution, as each node (or MPI process) has a dedicated 
simulator. However, there are several disadvantages to this approach: 

• Oversubscribe resources. If there are multiple processes running on a single node, each 
process will spawn its own simulator. This may put undue strain on allocated computing 
resources. 

• Large circuit execution. Large circuit execution may need a simulator running on 
multiple HPC nodes. In this model it can not be parallelized, since each simulator is 
restricted to one node 

• Compute resource usage. Depending on the simulator being used, the compute 
resources on the node might not be used efficiently. For example, some simulators do not 
use GPUs. 

• Lack of circuit parallelization. If an MPI process wants to run an ensemble of 
independent circuits, it can not run them in parallel due to simulator restriction. Each 
simulator can run one circuit at a time. 

5. HPC/QC INTEGRATION FRAMEWORK OVERVIEW 

The development of the Quantum framework (QFw) is aimed at harnessing the potential of 
quantum computing through a generic approach that can be utilized by hybrid HPC/QC 
applications for executing quantum tasks on various quantum platforms. QFw seeks to provide 
flexibility, allowing users to leverage any circuit composition framework like Pennylane [7] or 
Qiskit [6] while still maintaining standardization in the form of a common text-based format for 
circuit description (e.g., QASM 2.0, QIR). QFw offers an execution phase where built circuits 
are converted into this standardized format and handed off to QFw, which then executes them 
and returns results. This approach enables users to select any framework that suits their needs 
while still relying on a consistent circuit representation. 

The framework offers an MPI-based mechanism to manage communication with the quantum 
platform. This approach facilitates seamless integration into existing HPC environments without 
requiring significant changes in the application programming paradigm. Additionally, the 
framework provides mechanisms for reserving both HPC and quantum resources in a cohesive 
manner, ensuring successful job submission by identifying required quantum resource types and 
configuring underlying resources accordingly. 

In summary, the QFw shall abstract the underlying quantum platform, offering a cohesive 
approach for submitting quantum tasks and retrieving results. It shall feature a plugin 
architecture enabling the seamless integration of various quantum platforms while minimizing 
modifications to the application. 

 

 

 



 

 

5.1 TERMS & DEFINITIONS 

Term Definition 

Resource Management 
System (RMS) 

Is an infrastructure component responsible for Allocating resources; 
both HPC and QC. SLURM is an implementation of this component. 

Message passing 
Interface (MPI) 

MPI is a standardized and portable message-passing system designed 
for parallel computing. It enables communication and coordination 
among processes in a parallel computing environment, allowing 
distributed memory systems to work collaboratively on a common task. 
MPI provides a set of functions, routines, and conventions for 
exchanging data and synchronization between processes in a parallel 
program. It is widely used in high-performance computing for building 
parallel applications that run on clusters, supercomputers, and other 
parallel architectures. 

MPI Communication 
Group 

A Communication Group refers to a set of processes that can 
communicate with each other. MPI allows the grouping of processes 
into subsets or groups, and communication operations, such as sending 
and receiving messages, are typically defined within these groups. 
Communication groups enable more flexible and efficient 
communication patterns among subsets of processes in parallel 
computing applications, allowing for targeted information exchange 
within specific subsets of the overall process ensemble. 

Quantum Task (QT) 
Is a task to run on a quantum platform. Currently, this is a quantum 
circuit. 

HPC/Quantum 

Hybrid Framework 
(QFw) 

The QFw, as detailed in this document, is designed to establish a 
standardized methodology for HPC/QC Applications to efficiently 
leverage Quantum Resources. These resources encompass both 
Quantum Hardware and Software Simulators. The primary goal is to 
enable the seamless execution of Quantum Tasks within a unified and 
consistent environment, promoting interoperability and ease of 
integration for applications relying on quantum computing capabilities. 

HPC Resource 
Management System 

(HPC-RMS) 

Is a subcomponent of RMS responsible for dealing with HPC resources. 

QC Resource 
Management System 
(QC-RMS) 

Is a subcomponent of RMS responsible for dealing with QC resources. 

Quantum Task 
Manager - Tensor 

Network (QTM-TN) 

Is an infrastructure component which handles Quantum Task 
submission to tensor network simulators. 

Quantum Task 
Manager - State 
Vector (QTM-SV) 

Is an infrastructure component which handles Quantum Task 
submission to state vector Simulators. 

Quantum Task 
Manager - Hardware 
(QTM-HW) 

Is an infrastructure component which handles Quantum Task 
submission to Quantum Hardware. 

Quantum Platform Is an infrastructure component which manages a specific quantum 



 

 

Manager (QPM) resource. It enforces the resource's management model, interfaces with 
its API, and acts as the gateway to all Quantum Task submissions. 

Quantum Runtime 
Controller (QRC) 

Is an infrastructure component responsible for preparing a QT to run on 
the QC resource. 

Quantum Transpiler 

A quantum transpiler is a tool or component in quantum computing that 
transforms a quantum algorithm or program written in a high-level 
circuit representation into a quantum resource specific instruction set. 
Its primary purpose is to optimize and adapt quantum code for 
execution on specific quantum hardware or simulator architectures, 
addressing differences in gate sets, connectivity, and other hardware-
specific constraints. Transpilers play a crucial role in making quantum 
algorithms portable across different quantum processors and improving 
their performance on available hardware. 

Quantum Volume 

Quantum volume is a metric introduced by IBM to assess the overall 
capability and performance of a quantum computer. It is designed to 
provide a single, comprehensive figure that reflects the potential of a 
quantum processor, considering factors such as qubit quality, 
connectivity, and error rates. 

The Quantum volume takes into account various aspects of a quantum 
device: 

1. Number of qubits: It considers the total number of qubits on 
the quantum processor. However, simply having more qubits 
doesn't necessarily imply better performance. 

2. Connectivity: The quantum volume considers the connectivity 
between qubits. A higher degree of connectivity allows for more 
complex quantum circuits and, consequently, more powerful 
quantum computations. 

3. Error rates: Quantum computers are prone to errors due to 
factors like noise and decoherence. Quantum Volume factors in 
the error rates of qubits and gates, aiming for a balance between 
qubit quantity and error mitigation. 

Long Running 
Quantum Simulators 
(LRQS)  

LRQS is a mode of quantum simulation where one single simulation 
resource can be shared by multiple jobs. Its lifetime is longer than the 
jobs it serves. 

Quantum 
Configuration 

Parameters (QCF) 

QCF refers to the user-provided parameters essential for assisting the 
RMS in accurately reserving the appropriate set of quantum resources. 

Quantum Simulation 

Environment (QSE) 

This refers to a set of HPC nodes and associated software modules and 
environment variables designated to run quantum simulators. This is 
determined at reservation time. 

Quantum Simulation 
Environment 

Category Partition 
(QSECP) 

This refers to a partition of the QSE with its associated software 
modules and environment variables designated to run a specific 
category of quantum simulators, e.g., tensor network simulators, state 
vector simulators. This is determined at reservation time. 



 

 

Quantum Simulation 
Software Stack 
Partition (QSSSP) 

This refers to a partition of the QSECP with its associated software 
modules and environment variables designated to run a specific 
quantum simulation software stack, e.g., TNQVM, QTENSOR, etc. 
This is determined at reservation time. 

Quantum Simulation 
Instance Partition 
(QSIP) 

Refers to a partition of the QSSSP with its associated software modules 
and environment variables running a specific instance of a quantum 
simulator. This is determined at runtime. 

5.2 HIGH-LEVEL SYSTEM DIAGRAM 

 



 

 

5.3 QUANTUM OPERATIONAL PHASES 

5.3.1 Resource Reservation 

The HPC/Quantum Framework (QFw) is designed for use by hybrid HPC/QC application and is 
intended to abstract away quantum resource details. QFw is designed to integrate with the 
application, allowing the application to interface with the framework in a seamless manner. 

A modified Resource Management System (RMS) which will be created as part of this work will 
integrate with the QFw. The RMS is responsible for reserving both HPC and QC resources. 
While reserving HPC resources aligns with established practices supported by frameworks like 
SLURM [9], the reservation process for QC resources lacks such standardized support. To 
address this, a set of criteria for reserving QC resources will be detailed in the requirements 
section of this document. Assuming these criteria are established, the "QC Resource 
Management System (QC-RMS)" component in the system diagram above will employ them to 
reserve either Quantum Hardware or a dedicated set of nodes for running QC simulators. 

5.3.1.1 Hardware Reservation 

• For HW resources or Long Running Quantum Simulators (LRQS) each resource will 
need to run a "Quantum Platform Manager (QPM)" process, depicted in the system 
diagram above. 

• The QPM will be responsible for: 
o communication with both compute nodes and the quantum resource 
o Providing a standardized API for submitting Quantum Tasks 
o Managing and configuring the underlying quantum resource. 

▪ Different QC resources can implement different resource sharing models; 
QPU-Based sharing model; Qubit-Based Sharing model or Shares-based 
sharing model. 

▪ The QPM is aware of its resource's reservation model and can respond to 
the QC-RMS reservation requests appropriately. 

• The QPM will register with the QC-RMS.  This will allow the QC-RMS to determine 
which QC resources are available for reservation. 

• The QC-RMS will then proceed to reserve the available HW or LRQS. 
• Upon reservation success, QPM will start a "Quantum Runtime Controller (QRC)" for 

each reserved portion of the resource. 
o e.g., for the qubit-based model a quantum platform can be subdivided into 

multiple portions. A QRC process will run for each of these portions. 
• QFw will query the RMS to get information about the allocation; both the Quantum HW 

allocation and the HPC node allocation. 
o QFw will start a "Quantum Task Manager - Hardware (QTM-HW)" MPI process 

to track the Quantum HW reserved. 
o The QFw will pair the QPM with the QTM-HW; more details on this step below. 

This pairing allows execution of Quantum Tasks on the QC resource. 
o The QFw will start the Application on the nodes reserved for the HPC application. 

• Once this infrastructure is in place, the application can start submitting QT. 



 

 

5.3.1.2 Cloud Reservation 

• Cloud quantum resource reservation theoretically align with local quantum hardware 
reservation but face challenges due to coscheduling difficulties and job execution 
latencies. 

• Reserving both local HPC and cloud quantum resources requires synchronization, but 
abstracted cloud reservation policies may introduce significant delays. 

• Quantum Task execution, even with both resources reserved, is subject to cloud provider 
queuing policies, with no assurance of completion within the HPC job's lifetime. 

• Security concerns arising from connecting to an external system also pose a set of 
challenges which need to be resolved. 

• Aside from security concerns, if a time slice is allocated on a cloud quantum resource 
with a dedicated execution time, then the QFw can handle it. 

• However, given the listed challenges, this document will not explore solutions for the co-
scheduling and execution latency issues inherit to cloud resources. 

5.3.1.3 Simulator Reservation 

• For SW simulator bring up, the criteria provided will be used to determine how many 
HPC nodes to reserve and the category of simulation required by the application, e.g, 
tensor network simulation or state vector simulation. 

o It's possible that an application might want different simulation categories 
simultaneously. 

• QFw will query the RMS for the HPC node allocation and all Quantum Configuration 
Parameters (QCP). 

• QFw will start the application on the nodes designated for the HPC/QC Hybrid 
application. 

o The exact breakdown of responsibility in the QFw will be explored in the High-
Level Design. 

• QFw will use the QCP to partition the simulation designated HPC nodes among the 
different simulation categories. 

• QFw will designate a head node per simulation category partition and bring up a QPM 
process on each head node. 

o A head node is one of the nodes in allocation designated for running QFw 
services. 

• The QPM in the simulation case is responsible for further partitioning the designated 
HPC nodes into Quantum Simulation Partitions. 

• Each partition can run exactly one quantum simulator instance of the category assigned to 
it. This can be done dynamically. 

• A head node is designated per partition, and it runs a Quantum Runtime Controller 
(QRC) process. 

• The QRC process is responsible for transpiling a quantum circuit and executing it on its 
designated simulator. 

• QFw will start the correct category of "Quantum Task Manager" MPI process to track the 
Quantum Simulator. 

• The QFw will pair the QPM with the QTM. 
• Once this infrastructure is in place, the application can start submitting QT. 



 

 

5.3.2 Quantum Resource Pairing 

• Different categories of Quantum Task Managers (QTM) run as MPI processes. 
• Each category has one QTMs running as depicted in the diagram above. 
• Each QTM would be responsible for a group of similar QC resources. 

o For example, if we have both TNQVM  [10] and QTensor [11] simulators, we 
would have one QTM for each. The QTM can manage multiple QC resource of 
the same type. 

• The QTM's primary role is to provide a standard MPI interface for an application to 
submit Quantum Tasks. 

o Since they run as an MPI process, the standard MPI communication patterns can 
be used to submit one or many Quantum Tasks for execution and then wait for 
their completion. 

• On the backend each QTM can handle one or more quantum resources of the same 
category. 

• This assignment of QPM to QTM is done by the QFw on QFw initialization. 
o For example, if the QFw (through querying the QC-RMS) was instructed to start a 

QTNVM and a QTensor simulators, it would 
▪ partition the Quantum Simulator HPC node allocation into two.  
▪ Designate a head node for each of the partitions 
▪ Start a QPM on each of the head nodes 
▪ Start one MPI QTM-TN process 
▪ Provide the QTM-TN information to the QPMs 
▪ QPMs would register with the QTM-TN. 
▪ QTM-TN can subsequently assign tasks as appropriate to the QPMs  
▪ QTM-TN manages the task execution on the separate simulators 

depending on the submitted Quantum Task meta data 

5.3.3 Quantum Task Execution 

• Once the resource allocation and initialization of the QFw is complete, the infrastructure 
is in place for the application to exercise the QC resources through standard MPI message 
patterns. 

• On the back end running QPMs have registered with their assigned QTM before QFw 
initialization can be completed. 

• The Application may use any circuit composition framework, such as Qiskit or 
PennyLane to create a quantum circuit. 

• The QFw will provide plugins for supported circuit composition framework to translate 
the framework specific circuit object into the agreed upon standardized format (e.g., 
QASM 2.0, QIR). 

• The QFw will provide an API for the application to build a quantum task using the 
generated circuit. 

• The Application can then query the QFw for available quantum resources, in a specific 
category. 

• The QFw will return one QTM MPI handle to the application indicating the quantum 
resource(s) which matches the Application's query criteria. 

• The application can then send the QT to the provided QTM using MPI_Isend() or similar 
APIs. 



 

 

• The application can then wait on the completion of these QTs using standard MPI 
patterns, e.g., MPI_Waitall(). 

• The QTM can manage the usage of the underlying resources via some selection criteria. 
In its simplest form, it can round robin over all the resources it knows about. 

• When a QTM receives a QT, it invokes the public QPM APIs to execute that QT. 
• The QT is queued on the QPM Task Queue and scheduled for execution  
• Once the QT completes a Quantum Result needs to be returned in a canonical format to 

the QTM. 
• The QFw will provide a utility library to build the Quantum Result 
• The QFw will provide plugins for supported circuit composition framework to translate 

the canonical quantum result format back into the circuit composition framework specific 
format. 

o The point is to minimize the amount of changes an application needs to make in 
order to integrate with the QFw 

5.3.4 Dynamic Simulation Environment 

In this section we introduce the concept of a simulation environment. Its purpose is to manage 
different classical quantum simulators instances running in parallel. A simulation environment 
can be partitioned per simulator category, if necessary, to ensure that resources can be used 
evenly. The partitioning of resources for use by the simulation environment are specified by the 
user for the job. The configuration rules are instantiated at runtime during the parallel job launch 
(i.e., application and simulation environment). The appropriate simulation environment is chosen 
at runtime based on user specified selection criteria and circuit metadata.  

A quantum simulation environment needs to be flexible such that it can handle different quantum 
task work loads. As illustrated in the below diagram, once a job allocation is granted it will be 
partitioned as follows: 

1. HPC Application, and 
2. Quantum Simulation Environment (divided into 3 levels): 

• Level-1: (Determined at reservation time) One or more Quantum Simulation 
Environment Category Partitions (QSECP): These partitions can fall in the 
simulator type category, e.g., tensor network category, state vector category. 

• Level-2: (Determined at reservation time) One or more Quantum 
Simulation Software Stack Partitions (QSSSP): Each simulation stack 
will have its own partition.  

• Level-3: (Determined at runtime) One or more Quantum 
Simulation Instance (QSI): There could be multiple instances of 
the simulation stack running on each QSSSP. 

 

 



 

 

 

There are two primary Quantum Task models to consider: 

1. Ensemble circuit model: this model represents applications which want to execute many 
independent circuits in parallel. 

2. Single large circuit model: This model represents applications which want to execute 
one single large circuit 

The ensemble circuit model would benefit from multiple simulators running in parallel, each 
executing a single independent circuit. The single large circuit model would benefit from one 
simulator running on multiple nodes which would parallelize the execution of the large circuit. A 
single application could potentially exercise both models at the same run. Therefore, having a 
dynamic simulation environment that adapts to the workload in the pipeline would be ideal. Each 
QPM managing a simulated environment has a set of nodes it knows about. It has a queue of 
Quantum Tasks. It can look ahead in the queue and using Quantum Task metadata can determine 
how the Simulation environment can be configured to most efficiently execute the queued tasks. 

The following example can be used as an illustration for dynamic resource management. 

 

 



 

 

• INPUT: 
o QPM manages a simulation environment consisting of: 

▪ 5 nodes. 
▪ 30 Quantum Tasks in its queue. 
▪ 4 qubits per task. 

• DECISION: 
o Run 5 quantum simulators one on each node is best. 

• ACTION: 
o start a quantum simulator and an associated QRC on each node. 
o Using round robin, it will assign six circuits per quantum simulator for execution. 
o Each circuit submitted by the QTM has a Circuit ID (CID). The QPM will use the 

CID to track each circuit execution. 
• OUTPUT: 

o QPM reports back a completion event to the QTM using the CID. 

5.4 HPC ECOSYSTEM INTEGRATION 

The integration of a Quantum Computing Resource Management System (QC-RMS) with 
existing Resource Management Systems (RMS) like SLURM is crucial for establishing a 
cohesive and efficient allocation of both HPC and quantum resources. SLURM, as a widely used 
RMS, excels in managing classical computing tasks and orchestrating the allocation of HPC 
resources. The QC-RMS must seamlessly align with SLURM's capabilities to create a unified 
environment where both classical and quantum computing resources can be cohesively managed. 
This integration involves extending SLURM's functionality to incorporate quantum-specific 
resource allocation, ensuring a streamlined and consistent experience for users and 
administrators. 

To achieve this integration, the QC-RMS should introduce a quantum-aware scheduler that 
comprehensively understands the intricacies of quantum computing tasks and their unique 
resource requirements. This scheduler will interface with SLURM, allowing users to submit 
hybrid quantum-classical jobs seamlessly. It becomes imperative to extend SLURM's job 
definition to include quantum-specific parameters, such as the type of quantum hardware or 
simulator required, quantum circuit details, and expected parallel circuits to run. The QC-RMS 
should also introduce a mechanism to reserve quantum resources alongside classical ones, 
ensuring that both are available concurrently for hybrid jobs. By harmonizing the functionalities 
of SLURM with quantum-specific requirements, the integrated system will empower users to 
leverage the full potential of hybrid computing environments, ultimately enhancing the overall 
efficiency of computational workflows. 

6. DATA MODEL 

Hybrid HPC/QC applications typically function by processing datasets through classical logic on 
the HPC platform. This processed data is utilized to generate Quantum Tasks (QT) destined for 
execution on a quantum platform. The outcomes obtained from these quantum tasks serve as 
inputs for generating additional QTs or for further processing on the classical side. While the 
initial datasets for processing may be substantial, leveraging HPC for handling large datasets is a 
well-established practice, and no specific requirements unique to this context arise. However, the 



 

 

transportation of QTs to the quantum platform poses a challenge, especially when the quantum 
platform is not directly connected to the HPC platform. 

Practically, the Quantum Platform Manager (QPM) may consist of two distinct components. The 
first component operates on the HPC platform, acting as a proxy, while the second component 
runs on the classical segment of the quantum platform. This second component interfaces 
directly with the quantum platform's provided API. It is noteworthy that QTs and their results are 
generally small, typically a few kilobytes in size. Consequently, the network throughput required 
for transferring QTs and their results is not extensive and is not anticipated to be a bottleneck. 

7. PLUGIN ARCHITECTURE 

The QFw plugin architecture is intended to cover the following aspects. 

1. Application integration into the QFw 
2. Quantum platforms integration into the QFw 
3. External Platform Integration 

7.1 APPLICATION INTEGRATION 

The landscape of quantum simulation is rich with many frameworks which provide a Python 
interface to ease the composition and transpiling of quantum circuits. Each platform has its 
strengths. For example, PennyLane is designed to aid in natural language processing. 
Applications might prefer to use one over the other. 

The aim of the QFw is to allow applications to use whatever circuit composition framework they 
need. The QFw will support the most used frameworks like Qiskit and Pennylane, by providing a 
backend plugin for these frameworks. These frameworks themselves have a plugin architecture 
that allows developers to specify the backend they would like their circuit to execute on. The 
QFw will provide a new backend for these frameworks, which should make QFw appear like yet 
another quantum platform. This allows applications to specify the QFw backend. The rest of the 
application's code will not change. When the application executes the circuit built by their 
preferred framework, the QFw backend will be invoked. 

• A QFw Quantum Task will be built and send to the QTM. 
• The QTM will post this QT on the QPM. 
• The QPM will execute the QT on the quantum platform. 
• Once the QT has completed the QPM will return the result back to the QTM. 
• The QTM will return the quantum result back to the QFw Backend plugin of the circuit 

composition framework.  
• The QFw backend plugin will do the necessary conversion into circuit composition 

framework specific format. 

 



 

 

 

7.2  QUANTUM PLATFORM 

The other aspect of the plugin architecture is the ability to add new quantum platforms for 
applications to use without the need to change the application code or the framework. The QFw 
shall achieve this goal by: 

1. Standardizing an interface API which the quantum platform needs to implement in order 
to integrate into the QFw. 

2. Defining a quantum task and quantum result format which is submitted and received 
respectively to and from the QPM. 

3. Supplying a software framework which allows quantum platform providers to write 
plugins which adhere to the standardized API.  

 

 

 



 

 

7.2.1 Standardized API 

1. Reservation API: API used to reserve the underlying platform. 
2. A standard reservation description specification: Specification adopted such that all 

platforms report their resources in a uniform manner. Example: Hardware location 
(hwloc). 

3. Resource query API: API used to query details regarding the reservation model and 
availability of the platform. 

4. Quantum task submission API: API used to submit quantum task for execution. 
5. Quantum task query API: API used to query the quantum task execution status. 
6. Quantum task result API: API used to form the quantum task results in a uniform 

format.  
7. Quantum platform configuration API: API used to configure platform specific 

parameters. 

7.2.2 Quantum Task Format 

1. The QFw shall use the standardized circuit format to describe the QT to execute. 
2. The QFw shall define a set of QT metadata information to pass along with the QT. 
3. The QFw shall define a message format to include all the data pertaining to a QT. 

7.2.3 Software Framework 

To streamline the standardization process, the Quantum Framework (QFw) will introduce a 
software library structured akin to the functionality of libfabric [1]. This library serves as a 
central component for seamless integration with various quantum platforms. 

 

 

The proposed structure of the library encompasses: 

1. User Facing API: 
o Purpose: Providing a common interface for applications and middleware to 

interact with the underlying quantum platform. 



 

 

o Functionality: Enabling a unified set of calls that applications and middleware 
can utilize to communicate with the quantum platform. 

2. Common Utilities: 
o Purpose: Offering a collection of standardized utilities to assist platform 

providers in harnessing shared functionalities. 
o Examples: Provision of request queues, completion queues, and other essential 

components that enhance overall efficiency. 
3. Provider Plugin: 

o Purpose: Allows each platform provider to develop a plugin responsible for 
implementing either the entire or a subset of the user-facing API. 

o Functionality: Allowing platform providers to tailor their plugins to suit specific 
requirements, ensuring flexibility and adaptability. 

For the success of this approach, a consensus on the set of APIs must be achieved. This 
necessitates collaboration among industry platform providers. Notably, this collaborative effort 
involves establishing a working group, comprising industry leaders such as IBM, to deliberate 
and reach a consensus on the essential APIs. This inclusive process ensures that the finalized set 
of APIs is agreeable to all stakeholders, facilitating smooth integration and fostering a 
standardized approach across diverse quantum platforms. 

7.3 EXTERNAL PLATFORM INTEGRATION 

It is inevitable that the QFw will need to integrate a quantum platform which exists on a different 
network than the HPC cluster, either internal to the organization or managed by an external 
organization. It is not feasible for the QFw to present a standard way to connect with all potential 
external platforms. The challenge is not only technical but due to policies of both the local and 
external organizations. 

ORNL is working on methods to allow external organizations to programmatically access local 
ORNL resources, such as frontier. These methods will be used to transfer data in and out of the 
HPC resources. The best approach to handle external platform integration is for the QFw to 
leverage work already done at ORNL in this area. 

The QFw can provide utility functions which allow QPMs to open ports and manage the security 
with the external quantum platform. It is likely these operations will be unique for each external 
quantum platform, especially if it's managed by a different organization. It might be possible to 
standardize access from the ORNL side, but since the work to allow external access into ORNL 
OLCF machines is still ongoing, no approach can be suggested at the time of this writing. The 
best approach is to have an amendment to this document, when a clear design can be envisioned. 

8. JUSTIFICATION 

Existing frameworks like XACC [8], Qiskit [6] and PennyLane [7] provide a plugin architecture, 
which allows different quantum platforms to be added. The proposed quantum framework 
distinguishes itself from these existing frameworks by focusing on the seamless integration of 
quantum computing within HPC environments. While Qiskit and PennyLane are excellent tools 
for quantum algorithm development and simulation, they primarily cater to standalone quantum 



 

 

computing applications. In contrast, our framework is specifically tailored to foster a symbiotic 
relationship between quantum processors and classical HPC systems. 

Key differentiators are: 

• Holistic Integration with HPC: The QFw is designed to be deeply integrated into HPC 
ecosystems. It provides a cohesive approach for organizations looking to harness the 
complementary strengths of classical and quantum computing. 

• Hybrid Quantum-Classical Computing Model: The framework advocates for a 
practical and efficient hybrid quantum-classical computing model. This model seamlessly 
incorporates quantum algorithms into existing HPC workflows. 

• Application Flexibility: QFw doesn't lock the application into using a specific circuit 
composition framework. Applications can use any they deem fit; e.g., Qiskit, Pennylane, 
etc. QFw offers a backend to these frameworks. 

• Resource Abstraction and Standardization: One of the framework's key features is the 
provision of a layer of abstraction to the application. This abstraction enables 
standardized access to quantum platforms, whether they are hardware or software 
simulators. The framework empowers applications to express their resource requirements 
intelligently. 

• Expandability and Plugin Architecture: The QFw is designed to be highly adaptable, 
allowing for the seamless integration of new quantum simulators and hardware. The 
development of plugins tailored to the framework's requirements facilitates the 
incorporation of emerging technologies without requiring changes to the existing QFw 
architecture. 

• Intelligent Resource Allocation: The framework goes beyond providing a mere 
interface and actively assists in resource management. It intelligently selects the most 
suitable quantum resource based on the configuration provided by the application, 
optimizing the execution of quantum tasks within the broader HPC context. 

• Dynamic Simulation Environment: The framework provides a method to schedule 
quantum task simulation in the most efficient way possible on a set of HPC nodes. 

In summary, QFw positions itself as a comprehensive solution for organizations seeking to 
integrate quantum computing capabilities into their existing HPC infrastructure. The emphasis on 
hybrid quantum-classical computing, resource abstraction, expandability, intelligent and 
dynamic resource allocation distinguishes it as a strategic choice for harnessing the power of 
both classical and quantum paradigms within a unified framework. 
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10. REQUIREMENTS 

10.1 REQUIREMENT METADATA 

10.1.1 Requirement Description 

Requirement 
Priority (RP) 

• Demo (D): Must be implemented for the feasibility of the demo 
• Mandatory (M): Must be implemented for the project to be declared 

complete 
• Optional (O): Need to be implemented to make the project stand out 
• Nice to have (N): Only implement if time permits 

In cases where a requirement is assigned multiple priorities, it may undergo 
partial implementation at the primary priority, while other components may 
be addressed at the secondary priority. 

Requirement 
Description (RD) 

Description of the requirement. 

Requirement ID 
(RID) 

Unique requirement ID to identify a specific requirement. Can be used to 
associate an HLD or Test in a test plan with the intended requirement 

Each Requirement ID is divided as follows 
<PROJECT>_<CATEGORY>_<NUMBER> 

• <PROJECT> is the project ID. This document will use QCI 
(Quantum Computing Integration) 

• <CATEGORY> is the requirement category. The categories are 
outlined in a later section 

• <NUMBER> unique requirement number 

10.1.2 Project Acronym 

Acronym Meaning 

QCI Quantum Computing Integration 

10.1.3 Requirement Category  

Acronym Meaning Description 

QCP 
Quantum Configuration 
Parameters 

Requirements for configuration parameters required 
for quantum resource reservation. 

RMB 
Resource Management 
Backend  

Requirement for the the quantum reservation 
management system. 

QT Quantum Task Requirements for defining a quantum task. 

QTM Quantum Task Manager Requirements for managing quantum tasks. 

QPM Quantum Platform Manager Requirements for managing a quantum resource. 

QRC Quantum Runtime Controller Requirements for running operations on the quantum 



 

 

Acronym Meaning Description 

resource. 

PAA 
Plugin Architecture for 
Applications 

Requirements for formalizing the interface between 
QFw and the Application 

PAP 
Plugin Architecture for 
Quantum Platform 

Requirements for formalizing the interface between 
QFw and the quantum platform. 

10.2 RESOURCE MANAGEMENT FRONTEND 

RID RP RD 

QCI_QCP_001 D The user shall have the option to specify Quantum Configuration 
Parameters (QCP) in YAML format 

QCI_QCP_002 D The user shall have the option to specify their preference for 
reserving either quantum hardware resources or quantum software 
simulation 

QCI_QCP_003 O The user shall have the option to specify the quantum hardware 
system from a list of available hardware 

QCI_QCP_004 O The user shall have the option to specify the location of the 
quantum hardware; cloud based or on-premises. 

QCI_QCP_005 D The user shall have the option to specify the quantum software 
simulation category. E.g., tensor network simulator, state vector 
simulator 

QCI_QCP_006 O The user shall have the option to specify multiple quantum 
software simulation categories it will require 

QCI_QCP_007 O The user shall have the option to specify the quantum software 
simulation software stack from a list of supported software stacks 

QCI_QCP_008 D The user shall have the option to specify the maximum number of 
qubits it will require 

QCI_QCP_009 D The user shall have the option to specify the maximum quantum 
gate depth it will require  

QCI_QCP_010 N The user shall have the option to specify the acceptable error rates 
for qubits and gates 

QCI_QCP_011  The user shall have the option to specify a noise profile to apply to 
the simulation 

QCI_QCP_012 N The user shall have the option to specify the qubit connectivity 
 
Qubit connectivity can be expressed as a selection criteria by 



 

 

RID RP RD 

specifying the desired pattern or arrangement of qubit connections 
that aligns with the requirements of your quantum algorithm or 
application. Here are ways to express qubit connectivity as 
selection criteria: 
  

1. Graph Representation: Describe the desired qubit 
connectivity using a graph representation where nodes 
represent qubits and edges represent allowable connections. 
Specify the connectivity pattern that best suits your 
quantum circuit. 

2. Adjacency Matrix: Provide an adjacency matrix that 
defines the allowed connections between qubits. The matrix 
elements indicate whether qubits are connected (1) or not 
(0). This allows you to explicitly specify the connectivity 
constraints. 

3. Topological Constraints: Express topological constraints on 
the qubit layout, specifying the relationships between qubits 
in terms of physical proximity or connectivity. For 
example, you may require qubits to be arranged in a linear 
chain or a specific geometric configuration. 

4. Custom Constraints: Define custom constraints based on 
your application's needs. For instance, you might require a 
specific subset of qubits to be fully connected while 
allowing limited connectivity for other qubits. 

5. Connectivity Patterns: Explicitly state the desired 
connectivity pattern, such as fully connected, nearest-
neighbor connectivity, or any other specific arrangement 
that optimally supports your quantum algorithm. 

When reserving quantum resources, these criteria can be provided 
to the quantum reservation system, allowing the system to allocate 
a quantum processor with the specified qubit connectivity. This 
ensures that the selected quantum resource is well-suited for the 
connectivity requirements of your quantum application. 

QCI_QCP_013 N The user shall have the option to specify the maximum 
decoherence time of the qubits 

QCI_QCP_014 N The user shall have the option to specify the Quantum Volume of 
the quantum resource required 

QCI_QCP_015 D The user shall have the option to specify the maximum number of 
parallel quantum tasks it requires to execute 

QCI_QCP_016 D The user shall have the option to specify the number of nodes to 
dedicate to the quantum software simulation environment  



 

 

RID RP RD 

QCI_QCP_017 D The user shall have the option to specify the details of how the 
quantum software simulation environment will be partitioned. 

This can be specified in the form of: 

• <Category>: <number of nodes>  

Example: 

• Tensor Network: 5  

 

10.3 RESOURCE MANAGEMENT BACKEND 

RID RP RD 

QCI_RMB_018 D The system shall require the specification of the quantum 
resource type: either quantum hardware resources or quantum 
software simulation 

QCI_RMB_019 D The system shall use the quantum resource type to determine if 
it's being requested to reserve quantum resources 

QCI_RMB_020 O The system shall provide a mechanism to query existing quantum 
resources available for reservation 

QCI_RMB_021 O The system shall support heterogeneous quantum resources 

QCI_RMB_022 O The system shall provide a mechanism to indicate the status of 
available quantum resources 

QCI_RMB_023 O The system shall provide a mechanism to query the users who are 
currently using the quantum resources 

QCI_RMB_024 O The system shall support reserving quantum hardware if 
requested and if resources are available 

QCI_RMB_025 O The system shall return an error if quantum hardware is specified 
but no resources are available for reservation 

QCI_RMB_026 D,N In the absence of explicit quantum hardware specification, the 
system shall use the following criteria when attempting to find a 
matching quantum hardware resource 

• Maximum number of specified qubits 



 

 

RID RP RD 

• Maximum quantum circuit depth  
• Maximum number of parallel quantum tasks  
• Qubit Connectivity 
• Maximum acceptable error rate (noise profile) 
• Maximum qubit decoherence time 
• Minimum Quantum Volume 

QCI_RMB_027 D The system shall provide a plugin architecture to allow the 
integration of new types of quantum hardware 

QCI_RMB_028 M The system shall provide a mechanism to query available 
quantum simulation categories 

QCI_RMB_029 M The system shall support two quantum simulation categories 

• Tensor Network 
• State Vector 

QCI_RMB_030 M The system shall provide a plugin architecture to allow the 
integration of Quantum Simulation Software Stacks into one of 
the above categories 

QCI_RMB_031 M The system shall provide a mechanism to query available 
quantum simulation software stacks 

QCI_RMB_032 D The system shall allocate enough HPC nodes to accommodate the 
HPC application and the Quantum Simulation Environment 
(QSE) 

QCI_RMB_033 M The system shall prioritize user-specified simulation category 
when it selects the category to use for the job allocation 

QCI_RMB_034 M The system shall prioritize user-specified simulation software 
stack(s) when it selects the software stack(s) to use for the 
quantum simulation 

QCI_RMB_035 D The system shall leverage user-specified parameters, including 
the maximum number of parallel quantum tasks, required qubits, 
and quantum circuit depth, to ascertain the necessary number of 
HPC nodes for the quantum simulation environment. 

This determination is contingent upon the supported quantum 
simulation software stacks. Each supported software stack will 
undergo profiling to establish the maximum number of qubits and 
circuit depth that can be simulated per HPC node using the stack. 



 

 

RID RP RD 

Subsequently, the derived software stack profile will be combined 
with the application's specified maximum number of parallel 
quantum tasks to calculate the requisite number of HPC nodes. 

QCI_RMB_036 D In the absence of user-specified simulation category or software 
stack, the system shall select one based on the QCP provided by 
the user 

QCI_RMB_037 D The system shall partition the job allocation into a partition for 
the HPC application and a partition for the QSE 

QCI_RMB_038 M The system shall partition the QSE among the application 
specified quantum simulation categories; these partition shall be 
referred to as Quantum Simulation Environment Category 
Partitions (QSECP) 

QCI_RMB_039 D The system shall designate a head node per QSECP 

QCI_RMB_040 D The system shall partition each QSECP further per specified 
software stacks. Each partition shall be assigned to a specific 
software stack; these partitions shall be referred to as Quantum 
Simulation Software Stack Partition (QSSSP). There shall be at 
least one QSSSP 

QCI_RMB_041 D The system shall designate a head node per QSSSP 

QCI_RMB_042 D The system shall spawn a QPM process per QSSSP head node 

QCI_RMB_043 D The system shall spawn an QTM MPI process per QSSSP 

QCI_RMB_044 D The system shall provide a registration mechanism to allow QPM 
modules to register with the QC-RMS 

In the hardware quantum resource or LRQS case QC-RMS uses 
the registration to know which resources are available  

QCI_RMB_045 D The system shall require each registered QPM to send an alive 
ping every 60 seconds 

 

10.4 QUANTUM TASKS 

RID RP RD 

QCI_QT_046 D The system shall allow the usage of any quantum circuit 
composition framework, such as Qiskit or PennyLane 



 

 

RID RP RD 

QCI_QT_047 D The system shall require quantum circuits to be submitted in the 
standardized circuit format 

QCI_QT_048 D The system shall provide a way for the application to identify the 
MPI ranks of all running QTMs 

QCI_QT_049 M The system shall provide a way for the application to identify the 
category of running QTMs 

QCI_QT_050 M The system shall provide a way for the application to identify the 
quantum simulation stack managed by the QTM 

QCI_QT_051 D The system shall provide an API to build a Quantum Task (QT).  

A QT is constituted of: 

• Quantum circuit in the standardized circuit format, e.g., 
QASM 2.0, QIR 

• Quantum circuit metadata, e.g., 
o preferred software simulation stack 
o number of qubits 
o gate depth 
o noise profile 

QCI_QT_052 D The system shall support QT submission to QTMs through standard 
MPI communication patterns 

 

10.5 QUANTUM TASK MANAGER 
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QCI_QTM_053 D The QTM shall support MPI communication 

QCI_QTM_054 D The QTM shall support a standard QT format 

QCI_QTM_055 D The QTM shall support QT submission via MPI communication 
patterns 

QCI_QTM_056 D The QTM shall support reporting back QT completion via MPI 
communication patterns 

QCI_QTM_057 M The QTM shall timeout a QT if it has not completed after a 
configured time period 

QCI_QTM_058 D The QTM shall provide a mechanism for QPMs to register with it 
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QCI_QTM_059 M The QTM shall reject registrations from incompatible QPMs 

e.g., if the QTM is configured for a tensor network it will reject 
state vector QPM registration  

QCI_QTM_060 M The QTM shall support multiple compatible QPM registrations 

QCI_QTM_061 M The QTM shall enforce the following registration metadata 

• QPM software stack type 
• QPM supported API 

QCI_QTM_062 D The QTM shall support calling QPM APIs to submit QT 

QCI_QTM_063 O The QTM shall monitor the health of registered QPMs 

 

10.6 QUANTUM PLATFORM MANAGER 
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QCI_QPM_064 O The QPM shall provide an API to query the reservation model 

QCI_QPM_065 O The QPM shall provide a resource reservation API 

QCI_QPM_066 O The QPM shall support QPU-Based Reservation Model 

• The QPU-Based Model is an approach to resource 
management in quantum computing where the entire 
quantum device is treated as a unified resource unit. In 
this model, the quantum processing unit (QPU) is 
considered as a single entity, and computational tasks are 
allocated to the entire QPU as a whole. This approach is 
similar to the current GPU model in traditional high-
performance computing. 

• However, this approach has the potential downside of 
potential underuse of the QPU when jobs only target a 
subset of the QPU. It may not fully leverage the 
capabilities of the QPU, especially if the computational 
tasks do not require the entire quantum device. Therefore, 
while the QPU-Based Model simplifies resource 
allocation, it may not fully optimize the utilization of the 
quantum processing unit. 
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QCI_QPM_067 N The QPM shall support Qubit-Based Reservation Model 

• The Qubit-Based Model is an alternative approach to 
resource management in quantum computing. In this 
model, the qubits themselves are treated as resources, 
allowing a quantum processing unit (QPU) to be fully 
occupied simultaneously by a variety of jobs. Unlike the 
QPU-Based Model, where the entire QPU is treated as a 
unified resource unit, the Qubit-Based Model allocates 
computational tasks to individual qubits within the QPU. 

• However, in near-term devices, with qubits exhibiting 
different types and amounts of noise, and in the presence 
of limited device connectivity, this approach has 
shortcomings. There would be competition among jobs 
for the best or more suited resources within the QPU, and 
the allocation of tasks to specific qubits may introduce 
complexities in resource management. 

• Therefore, the Qubit-Based Model aims to provide more 
flexibility in resource allocation by treating individual 
qubits as resources, but it also introduces challenges 
related to qubit noise, connectivity, and competition 
among computational tasks for the available qubits within 
the QPU. 

QCI_QPM_068 N The QPM shall support Shares-Based Reservation Model 

• The Shares Model is a resource management approach in 
quantum computing that introduces a pseudo-unit of 
resource definition where each "share" represents a part 
of the device, a specific period of time, or the circuit size. 
Essentially, each share signifies a portion of the 
computational capacity of the resource.  

• In this model, computational tasks are allocated to shares 
of the quantum processing unit (QPU) based on the 
specific requirements of the task. For example, a task that 
requires a larger circuit size may be allocated more shares 
than a task that requires a smaller circuit size. This 
approach provides more flexibility in resource allocation 
than the QPU-Based Model, which treats the entire QPU 
as a unified resource unit. 

• The Shares Model can be treated as a sub-category of the 
QPU-Based Model, as it still considers the QPU as a 
single entity but introduces a more granular approach to 
resource allocation. However, this approach may 
introduce additional complexity in resource management, 
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as it requires a more detailed understanding of the 
computational requirements of each task and the available 
resources within the QPU. 

QCI_QPM_069 D The QPM shall provide an API to submit QTs 

QCI_QPM_070 O The QPM shall support dynamic configuration of QSSSPs during 
run time 

QCI_QPM_071 O The QPM shall implement a scheduling algorithm, which looks 
at the queued QTs and determine the best configuration of the 
QSSSP 

QCI_QPM_072 O The QPM shall partition the QSSSP into QSIPs at runtime, one 
for each instance of a quantum simulator   

QCI_QPM_073 O The QPM shall designate a head node per QSIP 

QCI_QPM_074 D The QPM shall spawn a QRC on each QSIP head node 

QCI_QPM_075 D The QPM shall schedule the QTs among the running QRCs 

 

10.7 QUANTUM RUNTIME CONTROLLER 
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QCI_QRC_076 D The QRC shall expose an API to submit a QT for execution 

QCI_QRC_077 D The QRC shall report back when a QT has finished execution 

QCI_QRC_078 D The QRC shall be responsible for transpiling quantum tasks for 
the specific hardware or software simulator it manages 

QCI_QRC_079 O The QRC shall interface with the quantum platform specific API 
to perform quantum platform specific operations. e.g., running a 
QT, configuring the quantum platform, etc. 

QCI_QRC_080 O The QRC shall handle hardware or software specific errors which 
are unique to the underlying quantum platform and translate them 
into framework specific errors 

 



 

 

10.8 PLUGIN ARCHITECTURE 
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QCI_PAP_081 D The system shall provide a standard reservation API 
implemented by the quantum platform 

QCI_PAP_082 M The system shall provide a standard reservation model query API 
implemented by the quantum platform 

QCI_PAP_083 D The system shall provide a standard quantum task submission 
API implemented by the quantum platform 

QCI_PAP_084 M The system shall provide a standard quantum task Query API 
implemented by the quantum platform 

QCI_PAP_085 D,M The system shall provide a standard set of API return codes to 
insure common behavior among all platforms  

QCI_PAP_086 D,M The system shall provide a set of APIs to build and parse a 
quantum task; thereby ensure quantum task standardization 
among all platforms 

QCI_PAP_087 O The system shall provide a standard set of APIs to build the 
canonical Quantum Result format 

QCI_PAP_088 O The system shall provide a software library to formalize the 
interface between the quantum platform provider and the system 

QCI_PAA_089 O The system shall provide a backend plugin for supported circuit 
composition frameworks to integrate with the QFw 
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