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Gasification of high-density polyethylene (HDPE) [N=]vanona

T L TECHNOLOGY

Necessary to subclassify gasification for accurate kinetic modeling LABORATORY

Kinetically the gasification process can be thought of as pyrolysis/primary and gasification/secondary reactions

Pyrolysis — Heterogeneous Particle Reactions
Gasification - Homogeneous Gas Phase Reactions
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Current state of HDPE pyrolysis kinetics N=|NATONAL
: : . . — . T L [FEHnoLocy
Collaboration with CRECK Modeling Group at Polytechnic University of Milan LABORATORY

« HDPE characterized by two lumped functional groups:
- Mid-Chains (P-P)
« End-Chains (P-)

« Representative Mid Chains
- P-C20H40-P(L)
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Current state of HDPE pyrolysis kinetics N=|NATONAL
: : . . — . T L [FEHnoLocy
Collaboration with CRECK Modeling Group at Polytechnic University of Milan LABORATORY

Low-molecular weight (LMW)
characterized by real species
up to C;

Larger species (C,,)
described by lumped paraffin
and olefin species

Current Reaction Schemes:

/1 species, 1377 reactions
(71_1377)

/71_969

« 42 737

10_10
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Table 1. Classification of Mid- and End-Chain species for HDPE

Paraffin Olefin
Mid-Chain (MC) P-C,oH40-P(L)
End-Chain (EC) P-CyoH, (L) P-C,,Ho5(L)
MC radical P-CoH3o-P(L)

EC internal radical P-CyoH (L) P-C,,Hy(L)

EC position specific  P-CyyH,o-T(L) P-C,,H,-A(L)
radical
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Effect of Simplifying Kinetic Schemes N=|NArionaL
: — : T L [EcHnotocy
Increase computational efficiency but decrease species accuracy LABORATORY
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Figure 1. a) Mass loss of an HDPE particle using different reactions schemes, and b) mass fractions of the product gases using a simplified
10 species, 10 reaction scheme. Note: a) X_Y format represents a scheme with X species and Y reactions.

« Simplifying reaction schemes reduces computational cost

« Lose information about the detailed composition of products and remaining plastic
« Can lead to significantly different behavior

« Lumped species are not always easily attributed to experimental observations
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Machine learning (ML) approach for HPDE reaction

kinetics

N: NATIONAL
«m |[ENERGY

Increase computational speed while maintaining detailed speciation

Conventional Approach

« Take a single reaction:
A=>B+C

—Eq
k = ATPeRT
dXA _Ea

— = ATPeRT C,

« Create the full set of ODEs

AXpn
dt den,production — den,consumption

« Quickly becomes cumbersome
with 700+ reactions

#2%.  U.S. DEPARTMENT OF

T L TECHNOLOGY
LABORATORY

Machine Learning Approach

« Three variables present:
« Particle species concentration
« Temperature
* Time Step

(X100 s Xonn Tpy dt) = X 0 - X

« Predict final mass fractions
of all species for a given
time step
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Data generation for model training N=|NaroN
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Generate high-fidelity composition data over a range of operating conditions
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Figure 2. top) Mass fractions of liquid and gas spegi“éﬁs during HDEP conversion and bottom)
maximum mass of each species during conversion over a range of temperatures using a 1-kg basis.
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Architecture of the ML model N=|NAToNAL
TECHNOLOGY

Implementation of DeepONet structure with physics informed loss functions TLJIAsorATORY

« 20 input features * Trunk Network

. 35 output features « Handles dt for time dependence

» Liguid and gas species « Branch Network

« Temperature and species fractions
DeepONet

Encoder f Branch \

Decoder

®~8§ﬂw

T,X0, X1, eee) Xp—"

T = Temperature (K)
dt = Time step (S)
X; = Mass fraction of species i

dt—
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Physics-informed loss functions N =|NaTonAL
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Couple mass-conservation and time-informed loss functions for training

« Training and validation loss calculating sm"qu“i'vMAE in PyToreh
spcs

using the mean absolute error (MAE) Z Z X~ £

spcsl 1=

e Chemical reactions must conserve mass

Additional physics-informed MAE functions

« ML modelis useless if it doesn’'t abide by
ohysical laws (1) 77 PR ZX(I)
l 1j=1
* Infroduce new loss functions 2) izg X _Xa)
« Sum of gas species (1) = =
» Rate of gas production (2)
« Sum of liquid species (3) gl W ™
ST PIIREDRS
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Model inference in comparison fo CFD resulfs  [N=]ranona

Performance of isolated ML model compared to previous MFiX results

« 1-kg single HDPE Particle

 |nitial Particle Temperature: 650 K

Mass

« Heating Rates of 5, 10, 20 K/min

« Time step: 1x103 s

. U.S. DEPARTMENT OF

T L TECHNOLOGY
LABORATORY
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Figure 3. Comparison of ML model predictions against data from a similar MFiX
single particle simulation.
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Model inference in comparison fo CFD resulfs  [N=]ranona
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Performance of isolated ML model compared to previous MFiX results

mmmmmmemmme e mmemee e ————————— 025 | il vttt ettt i
0254 0T m————— e, 0.14 4 e L LT
- -
’ . pmmmmm - o e e ¢
s s
/
/ 020 0.12
0.20 A ’ :
/
I 4
1 0.10
7
0.15 H 0.15
@ h " @ 008
fird [} o} fir]
H 1 = H
! 0.06
0.10 4 1 0.10 -
!
0.04 4
0.05 1 0.05 4
—— dTydt=5, ML —— dTydt=5,ML 0.02 4 —— dTydt=5, ML
== dTydt = 10, ML == dT/dt = 10, ML == dTydt = 10, ML
== dT/dt = 20, ML == dT/dt = 20, ML == dT/dt = 20, ML
0.00 1 —— dT/dt = 10, Sim 0.00 1 —— dT/dt = 10, Sim 0.00 1 —— dT/dt = 10, Sim
T T T T T T T T T T T T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Time Time Time
10 —= dT/dt =5, ML == dT/dt =5, ML o144 == dT/dt =5, ML
—= dT/dt = 10, ML 020 1 — = dT/dt = 10, ML g == dT/dt = 10, ML
—— dTydt = 20, ML : == dT/dt = 20, ML —— dTydt =20, ML
— dT/dt = 10, Sim — dT/dt = 10, Sim 0124 — dT/dt = 10, Sim
0.8
0.15 1 0.10 1
0.6
A 0.08 A
. ; v P-C20H41(L 5 \ P-C20H39(L
@ T \ G 1
2 - - = 0.10 ‘\ = Ay
Y 0.06 1 Y
0.4 \ 1
\ \
\ \
Y 0.04 4 \
0.05 1 Y \
0.2 A '\ \ ‘\
\ \ 0.02 4 \
A \ AY
by \ \
S N \"'-.
~ { =TT et e e e S e 0.00 4
001 = 0.00
T T T T r T T T T T T T T T T T T T
! ! ' ) ! " ' ' ! [} 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
0 250 500 750 1000 1250 1500 1750 2000 Time Time

Time

Figure 4. Comparison of ML model predictions against data from a similar MFiX single particle simulation for the three largest species for each phase.
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Implementation of Neural Network into MFIX  [N=]ranona
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Fluid Iteration: Stiff Solver:
Traditfional | Update gas-phase »| Update both gas and
MFiX: variables based on non- solid phases based
reaction terms on reaction terms
DEM Update:
Update solid phases
based on non-
reaction terms
ML Model: Fluid lteration:
.|+ Update solid-phase Update gas-phase
ML + MFIX: bZSed on MLEredic’rions —| variables based on
« Obtain source/sink terms non-reaction terms
for gas phase mass and and source/sink terms
species from ML model from ML model

ML model is integrated into MFiX to replace the stiff solver for reacting terms
« Solid phases from reactions are predicted directly by ML model

« Source/sink terms for gas phases are predicted from ML model and used in the following fluid iteration
Scheme provided by Hang Zhou.

/""‘, % U.S. DEPARTMENT OF :
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Performance in a Single-Parficle Simulation N=|AToNaL
TL TECHNOLOGY
Testing kinetic performance in an ideal environment LABORATORY

Single, 1-kg HDPE particle

Fixed tfemperature ramp

10 K/min

Full particle conversion at 1600 s
Test of kinetic performance

ML Performance:

Error of particle mass (w.r.t initial mass):
« 0.8% average
« 9.1 % max

Error during conversion (1100 — 1500 s):

« 3.2% average
* 9.0 % max

N\

=~ MFiX
— ML_6

Particle Mass (kg)
o [=] -
E) o =]

o
s

o
[N}

0.0 1

800 900 1000 1100 1200 1300 1400 1500 1600
Time (s)

Figure 5. Top) Geometry setup of the MFiX simulation and bottom)

.S. DEPARTMENT OF

orediction of particle mass loss compared to the stiff-solver.
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Performance in a Single-Particle Simulation N
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Figure 6. Comparison of ML model predictions against data from a similar MFiX single particle simulation for gas products.
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Performance in a Single-Particle Simulation
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Figure 7. Comparison of ML model predictions against data from a similar MFiX single particle simulation for liquid plastic species.
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Future Work N=|NATONAL
T L |Estinorocy
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« Optimize the current NN to improve predictions

* Increase the breadth of our training data
* More heating rates for data generations

« Implement our ML model into full scale simulations
» Fluidized bed reactors

« Adapt similar strategies for developing a NN for large secondary
gasification schemes

« Performed detailed simulations with all kinetics are solved via ML models
while achieving the same level of accuracy

=% U.S. DEPARTMENT OF
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Performance in a Drop Tulbe Reactor N=|Manona
TLJA55RRTSR

Mass inlet of Argon at

« Experimental drop tube reactor af et
NI':F%L P -

Short Residence Time case

Domain size : 2x 44 x 2 cm \___/ﬁrl.s em
: g,ig ;iflssfz:?‘)lg: 3.4): 0.4 cm '-".':‘_;':";f i 2 ‘F@BOOC .
* Cumently used as g source of e
validation for HDPE kinetics Sae "0 M
- Higher heating rate
o ~23K/s .
- Full particle conversion at 20 s I
S
ML Performance: il
« ML was 25% faster than stiff-solver
» Error of particle mass: - L I
+ 2.3% average : Comsie:TxSirzen
« 26 % max E%Erjiﬁt%:o}gg;g:m p— i Figure 8. Left) Drop tube geometry and right)
ensity: 938 ka/m \;P/ - mass loss prediction for particle in a reactor

¢ for ML and stiff-solver

Simulation settings in MFiX
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