
Solutions for Today | Options for Tomorrow

Development of a machine learning model 
for polyethylene pyrolysis using a detailed 
reaction mechanism
2024 Clearwater Clean Energy Conference

June 16-19th, Clearwater, FL
Ross Houston, Hang Zhou, and Mehrdad Shahnam

National Energy Technology Laboratory



• Kinetically the gasification process can be thought of as pyrolysis/primary and gasification/secondary reactions

Necessary to subclassify gasification for accurate kinetic modeling

Gasification of high-density polyethylene (HDPE)
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• Char, Ash
• Tar (C4+)
• Light gases 

(C0-C4)

• Pyrolysis – Heterogeneous Particle Reactions

• Gasification – Homogeneous Gas Phase Reactions



• HDPE characterized by two lumped functional groups:
• Mid-Chains (P-P)

• End-Chains (P-)

• Representative Mid Chains
• P-C20H40-P(L)

• P-C40H80-P(L)

Collaboration with CRECK Modeling Group at Polytechnic University of Milan

Current state of HDPE pyrolysis kinetics
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HMW (P-P) (P-) LMW Products

Image credit: A. Locaspi, et al., Waste Management 156 (2023) 107-117 



• Low-molecular weight (LMW) 
characterized by real species 
up to C5

• Larger species (C6+) 
described by lumped paraffin 
and olefin species

Current Reaction Schemes:

• 71 species, 1377 reactions 
(71_1377)

• 71_969

• 42_737

• 10_10

Collaboration with CRECK Modeling Group at Polytechnic University of Milan

Current state of HDPE pyrolysis kinetics
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Paraffin Olefin

Mid-Chain (MC) P-C20H40-P(L)

End-Chain (EC) P-C20H41(L) P-C24H23(L)

MC radical P-C20H39-P(L)

EC internal radical P-C20H40(L) P-C24H22(L)

EC position specific 

radical

P-C20H40-T(L) P-C24H22-A(L)

Table 1. Classification of Mid- and End-Chain species for HDPE



Increase computational efficiency but decrease species accuracy

Effect of Simplifying Kinetic Schemes
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a) b)

Figure 1. a) Mass loss of an HDPE particle using different reactions schemes, and b) mass fractions of the product gases using a simplified 

10 species, 10 reaction scheme. Note: a) X_Y format represents a scheme with X species and Y reactions.

• Simplifying reaction schemes reduces computational cost

• Lose information about the detailed composition of products and remaining plastic

• Can lead to significantly different behavior

• Lumped species are not always easily attributed to experimental observations



• Three variables present:
• Particle species concentration

• Temperature

• Time Step

• Predict final mass fractions 
of all species for a given 
time step

• Take a single reaction:

Increase computational speed while maintaining detailed speciation

Machine learning (ML) approach for HPDE reaction 
kinetics
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A => B + C

𝑘 = 𝐴𝑇𝛽𝑒
−𝐸𝑎
𝑅𝑇

𝑑𝑋𝐴

𝑑𝑡
= 𝐴𝑇𝛽𝑒

−𝐸𝑎
𝑅𝑇 𝐶𝐴

𝑑𝑋𝑚𝑛

𝑑𝑡
=  ෍ 𝑑𝑋𝑚𝑛,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − ෍ 𝑑𝑋𝑚𝑛,𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

• Create the full set of ODEs

• Quickly becomes cumbersome 
with 700+ reactions

Conventional Approach Machine Learning Approach

𝑓 𝑋1,0, … , 𝑋𝑚𝑛, 𝑇𝑝, 𝑑𝑡 = 𝑋0,0 … 𝑋𝑚𝑛



• HDPE_42_737 scheme

• 1-kg pure HDPE particle

• Initial temperature: 300 K

• Max temperature: 1000 K

• Fixed heating rate:
• 5, 10, 15 K/min

• Timestep:
• 1E-6 to 1E-3 s

• 49 total runs

• 4+ million data points

Generate high-fidelity composition data over a range of operating conditions

Data generation for model training
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Figure 2. top) Mass fractions of liquid and gas species during HDEP conversion and bottom) 

maximum mass of each species during conversion over a range of temperatures using a 1-kg basis.



• 20 input features

• 35 output features
• Liquid and gas species

Implementation of DeepONet structure with physics informed loss functions

Architecture of the ML model
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𝑇 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐾
𝑑𝑡 = 𝑇𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 (s)
𝑥𝑖 = 𝑀𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖

• Trunk Network
• Handles dt for time dependence

• Branch Network
• Temperature and species fractions



• Training and validation loss calculating 
using the mean absolute error (MAE)

• Chemical reactions must conserve mass

• ML model is useless if it doesn’t abide by 
physical laws

• Introduce new loss functions
• Sum of gas species (1)

• Rate of gas production (2)

• Sum of liquid species (3)

Couple mass-conservation and time-informed loss functions for training

Physics-informed loss functions
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Performance of isolated ML model compared to previous MFiX results

Model inference in comparison to CFD results
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• 1-kg single HDPE Particle

• Initial Particle Temperature: 650 K

• Heating Rates of 5, 10, 20 K/min

• Time step: 1x10-3 s

Figure 3. Comparison of ML model predictions against data from a similar MFiX 

single particle simulation.



C15H28 C15H30 NC5H10

P-C20H40-P(L)
P-C20H41(L) P-C20H39(L)

Model inference in comparison to CFD results
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Performance of isolated ML model compared to previous MFiX results

Figure 4. Comparison of ML model predictions against data from a similar MFiX single particle simulation for the three largest species for each phase. 



Replace conventional stiff chemistry solver with the ML model

Implementation of Neural Network into MFiX
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DEM Update:

Update solid phases 

based on non-

reaction terms
Fluid Iteration:

Update gas-phase 

variables based on

non-reaction terms 

and source/sink terms 

from ML model

Stiff Solver:

Update both gas and 

solid phases based 

on reaction terms

Traditional 

MFiX:

ML + MFiX:

Fluid Iteration:

Update gas-phase 

variables based on non-

reaction terms

ML Model:

• Update solid-phase 

based on ML predictions

• Obtain source/sink terms 

for gas phase mass and 

species from ML model

ML model is integrated into MFiX to replace the stiff solver for reacting terms

• Solid phases from reactions are predicted directly by ML model

• Source/sink terms for gas phases are predicted from ML model and used in the following fluid iteration
Scheme provided by Hang Zhou. 



Testing kinetic performance in an ideal environment

Performance in a Single-Particle Simulation
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• Single, 1-kg HDPE particle

• Fixed temperature ramp

• 10 K/min

• Full particle conversion at 1600 s

• Test of kinetic performance

ML Performance:

• Error of particle mass (w.r.t initial mass):
• 0.8% average
• 9.1 % max

• Error during conversion (1100 – 1500 s):
• 3.2% average
• 9.0 % max

Figure 5. Top) Geometry setup of the MFiX simulation and bottom) 

prediction of particle mass loss compared to the stiff-solver. 



Performance in a Single-Particle Simulation
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Figure 6. Comparison of ML model predictions against data from a similar MFiX single particle simulation for gas products. 



Performance in a Single-Particle Simulation
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Figure 7. Comparison of ML model predictions against data from a similar MFiX single particle simulation for liquid plastic species. 



• Optimize the current NN to improve predictions

• Increase the breadth of our training data
• More heating rates for data generations

• Implement our ML model into full scale simulations
• Fluidized bed reactors

• Adapt similar strategies for developing a NN for large secondary 
gasification schemes

• Performed detailed simulations with all kinetics are solved via ML models 
while achieving the same level of accuracy

Future Work
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VISIT US AT: www.NETL.DOE.gov

     www.mfix.netl.doe.gov

@NationalEnergyTechnologyLaboratory

@NETL_DOE

@NETL_DOE

CONTACT:

Thank you for 
your attention

Ross Houston, Research General Engineer 

Ross.Houston@netl.doe.gov

O: (304) 285-0284

mailto:Ross.Houston@netl.doe.gov


Performance in a Drop Tube Reactor
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Simulation settings in MFiX

• Experimental drop tube reactor at 
NETL

• Currently used as a source of 
validation for HDPE kinetics

• Higher heating rate
• ~23 K/s

• Full particle conversion at 20 s

ML Performance:

• ML was 25% faster than stiff-solver

• Error of particle mass:
• 2.3% average
• 26 % max

Figure 8. Left) Drop tube geometry and right) 

mass loss prediction for particle in a reactor 

for ML and stiff-solver
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