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Key Points:

. Dropsondes over the northwest Atlantic are used to determine mixed layer height
(MLH) and boundary layer height (PBLH).

. HSRL-2 lidar MLH product compares well with dropsonde-derived MLH but does
not correspond to PBLH for decoupled PBL.

. The current operational HSRL-2 algorithm is modified to include retrieval of the
PBLH for decoupled PBL.
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Abstract

The Planetary Boundary Layer height (PBLH) is essential for studying PBL and ocean-
atmosphere interactions. Marine PBL is usually defined to include a mixed layer (ML) and a
capping inversion layer. The ML height (MLH) estimated from the measurements of aerosol
backscatter by a lidar was usually compared with PBLH determined from
radiosondes/dropsondes in the past, as the PBLH is usually similar to MLH in nature. However,
PBLH can be much greater than MLH for decoupled PBL. Here we evaluate the retrieved MLH
from an airborne lidar (HSRL-2) by utilizing 506 co-located dropsondes during the ACTIVATE
field campaign over the Northwest Atlantic from 2020 to 2022. First, we define and determine
the MLH and PBLH from the temperature and humidity profiles of each dropsonde, and find that
the MLH values from HSRL-2 and dropsondes agree well with each other, with a coefficient of
determination of 0.66 and median difference of 18 m. In contrast, the HSRL-2 MLH data do not
correspond to dropsonde-derived PBLH, with a median difference of -47 m. Therefore, we
modify the current operational and automated HSRL-2 wavelet-based algorithm for PBLH
retrieval, decreasing the median difference significantly to -8 m. Further data analysis indicates
that these conclusions remain the same for cases with higher or lower cloud fractions, and for
decoupled PBLs. These results demonstrate the potential of using HSRL-2 aerosol backscatter
data to estimate both marine MLH and PBLH and suggest that lidar-derived MLH should be
compared with radiosonde/dropsonde-determined MLH (not PBLH) in general.

Plan Language Summary

The Planetary Boundary Layer Height (PBLH) is essential for studying the lower atmosphere
and its interaction with the surface. Usually, it contains a mixed layer (ML) with vertically well-
mixed (i.e., nearly constant) specific humidity and potential temperature. Over the ocean, the
PBL is usually coupled (vertically well-mixed) and the ML height (MLH) is usually close to
PBLH, hence the MLH estimated from the measurements of aerosol backscatter by a lidar is
traditionally compared with PBLH determined from radiosondes/dropsondes. However, when
the PBL is decoupled (not vertically well mixed), the MLH differs from the PBLH. Here we used
dropsondes’ thermodynamic profile to evaluate the airborne High-Spectral-Resolution Lidar —
Generation 2 (HSRL-2) estimation of MLH and PBLH in airborne field campaign over the
northwestern Atlantic (ACTIVATE) from 2020-2022. We show that the HSRL-2 has excellent
MLH estimation compared to the dropsondes. We also improved the HSRL-2 estimation of
PBLH. Further data analysis indicates that these conclusions remain the same for cases with
different cloud fractions, and for decoupled PBLs. These results demonstrate the potential of
using HSRL-2 aerosol backscatter data to estimate both marine MLH and PBLH and suggest that
lidar-derived MLH should be compared with radiosonde/dropsonde-determined MLH (not
PBLH) in general.

1 Introduction

The planetary boundary layer (PBL) is the lowest layer of the atmosphere and it has
direct effects on global weather and climate as it interacts with the planet's surface and is also the
layer of the atmosphere where humans reside (Teixeira et al., 2021). The height of PBL (PBLH)
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varies depending on the seasonal cycle, diurnal solar heating, and low-level cloud-top cooling,
and the estimation of PBLH has received much attention in recent years (Palm et al., 2021;
Teixeira et al., 2021).

Over the ocean, the marine PBL is usually statically unstable (with near-surface virtual
potential temperature decreasing with height), consisting of a well-mixed layer and a capping
inversion, with the PBLH usually greater than (or close to) the mixed layer (ML) height (MLH).
When low-level clouds exist, the MLH is usually defined as the cloud base, while the cloud top
is defined as the PBLH, suggesting that PBLH can be much greater than MLH (Zeng et al.,
2004) . PBLH can also be greater than MLH for a decoupled PBL in which a shallow ML is
decoupled from the upper part of PBL (Jones et al., 2011). For instance, the decoupled PBL is
often found downwind of subtropical stratocumulus clouds when turbulence is insufficient to
maintain a well-mixed PBL, particularly when the PBLH is over 1 km (Bretherton and Wyant,
1997; Wood and Bretherton, 2004; Zuidema et al., 2009; Jones et al., 2011; Luo et al., 2016).

A challenge to understand marine PBL structure and its associated processes is the
scarcity of observational data (Teixeira et al. 2021). One well-known method to estimate PBLH
variability over ocean is through the use of spaceborne lidar. For example, CALIPSO (Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation) is the first spaceborne polarized
lidar for aerosol and cloud measurement, from which the aerosol distributions can be used to
estimate MLH (Hunt et al., 2009, Luo et al., 2016). The ICESat-2 (Ice, Cloud, and land Elevation
Satellite) lidar (Neumann et al. 2019) does not provide a PBLH product but there have been
multiple proposed MLH retrievals using ICESat-2 aerosol backscattering (Palm et al., 2021).
Because MLH and PBLH can sometimes coincide, MLH (e.g., from lidar measurements) has
also been used to represent PBLH (e.g., in model evaluations) (Scarino et al., 2014; Hegarty et
al., 2018; Caicedo et al., 2019; Teixeira et al., 2021; Brunke et al., 2022; Liu et al., 2023). More
advanced lidars are widely used in airborne field campaigns, including their use for estimating
MLH. For instance, the NASA Langley Research Center (LaRC) airborne High Spectral
Resolution Lidar-Generation 2 (HSRL-2) has been used in various field campaigns to retrieve
the vertical distribution of aerosol properties and estimate MLH in cloud free conditions over
land (Scarino et al., 2014; Liu et al., 2023). Although the laser beam cannot penetrate thick
clouds, there are usually holes between clouds where MLH can still be retrieved.

Radiosondes are commonly used to derive PBLH (Teixeira et al., 2021). For instance,
Scarino et al. (2014) used ceilometers and radiosondes to evaluate the HSRL’s estimate of MLH.
These comparisons of lidar-estimated MLH and radiosonde/dropsonde-derived PBLH are
appropriate most of the time, as the PBLH is usually similar to MLH in nature. However, PBLH
can be much greater than MLH for decoupled PBLs, and such comparisons would lead to larger
differences. In this study, we will quantitatively address this issue using dropsonde data from
research flights between 2020 to 2022 over the Northwest Atlantic. First, we will use the
dropsonde data to estimate both MLH and PBLH and quantify their differences. Then we will
assess the relationship between HSRL-2’s MLH product and dropsonde MLH and PBLH and
quantify the differences if the HSRL-2’s MLH is used to represent marine PBLH. With insights
gained from these data analyses, we present a slightly revised HSRL-2 MLH retrieval for an
automatic PBLH retrieval, demonstrating the potential of using HSRL-2 aerosol backscatter data
to estimate both marine MLH and PBLH.
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2 Data and Methods

2.1 Dropsonde and HSRL-2 data

The dropsonde and HSRL-2 data were collected during the Aerosol Cloud meTeorology
Interactions oVer the western ATlantic Experiment (ACTIVATE) field campaigns (Sorooshian
etal., 2019, 2023). ACTIVATE flights were executed mostly in winter and summer for a more
extensive coverage of the dynamic range of aerosols and meteorological conditions, as well as
different cloud types. ACTIVATE featured joint flights whereby the high-flying NASA LaRC
King Air (at an altitude of ~9 km) was spatially coordinated with the low-flying NASA LaRC
HU-25 Falcon (at an altitude < 3 km), as outlined in Sorooshian et al. (2023). This research
exclusively utilized the data collected by the HSRL-2 (Hair et al., 2008) and the National Center
for Atmospheric Research (NCAR) nRD41 mini-sondes (dropsondes) (VOomel et al., 2023)
through the Airborne Vertical Atmospheric Profiling System (AVAPS) by the King Air aircraft.
The multi-wavelength airborne HSRL-2 provides vertically resolved aerosol properties. All
flights were during day time. There are three different flight paths used to release the
dropsondes: 1) a circle and spoke patterns of sondes launched around a point, 2) flights under a
satellite overpass, and 3) flights out to a point and return (Sorooshian et al., 2023). Figure 1
shows all of the King Air flight tracks in the region covered by the ACTIVATE flights.

The HSRL-2’s MLH is retrieved using a wavelet-based algorithm applied to the 532 nm
aerosol backscatter product for all three years of ACTIVATE (2020-2022) using a fixed set of
retrieval parameters (see Section 2.3). Scarino et al. (2014) used ceilometers and radiosondes to
evaluate the HSRL’s MLH and showed good agreement of MLH with a bias lower than 50 m
and a correlation coefficient greater than 0.9 over land in the Central Valley and over the
foothills of the Sierra Nevada, California.

Furthermore, we will use an additional product (MLH-LaRC) (for the year 2020 only)
that was produced by combining the above automatic algorithm with manual inspection (Scarino
et al., 2014). Specifically, every curtain of backscatter profiles in 2020 was visually inspected
first. If the automated algorithm chooses an edge gradient that does not appear to be associated
with the MLH, the threshold retrieval parameter is adjusted to match the visual inspection
(Scarino et al., 2014). The MLH values determined from the automated algorithm and from the
manual inspection are combined to produce a set of “best estimate” MLH, equal to the automated
estimate where they agree within 300 m, and equals to the manual otherwise (Scarino et al.,
2014). While this adjustment process is subjective, the evaluation of this experimental product
may provide some insights for the further improvement of the automatic algorithm.

It takes ~10 minutes for a dropsonde to reach the surface from the aircraft altitude
(~9km). To collocate the HSRL-2 and dropsondes, we choose the MLH with the closest distance
to the dropsonde. In this way, we are able to use 506 dropsondes (out of 785 dropsondes) with
collocated HSRL-2 MLH data within about 20 km in the horizontal distance in this study.
Conclusions remain the same if a 10 km, 30 km, or 40 km horizontal distance is used (results not
shown).

In the discussion of the comparison results, we also use HSRL-2 low cloud fraction (CF)
determined at the 506 collocated datapoints: For our focus on low clouds, we use the average CF
in the lowest 3 km above the surface that fell within the 10-minute interval. Specifically, CF for
each dropsonde is calculated using the HSRL-2 cloud_top_height variable and the dropsonde
data. First, the dropsonde launch time is matched to the corresponding time in the HSRL-2 data.
Then, plus or minus 5 minutes from the dropsonde launch time are identified to create a 10-
minute interval. Within the 10-minute interval, every measurement with a cloud top height of
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less than 3 km is counted, divided by the total number of measurements within the 10-minute
interval to calculate the CF.

Figure 1. The King Air flight routes from 2020 to 2022 (blue = 2020, red = 2021, black = 2022),
All flights took place during the day (adopted from Sorooshian et al., 2023).
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2.2 MLH and PBLH derivations from dropsonde thermodynamic profiles
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Figure 2. (a) The schematic of coupled (i.e., well mixed) vs. decoupled PBLs over the ocean,
where the PBLH and MLH are close to each other for coupled PBLs, and far away from each
other for decoupled PBLs. The red lines show the typical 6, profile. (b) Example of a coupled
PBL. (c) Example of a decouple PBL.

First, it is important to identify the difference between ML and PBL. The ML represents

the layer with vertically well-mixed (i.e., nearly constant) virtual potential temperature and

specific humidity. For coupled (i.e., well mixed) PBLs (Figures 2a and 2b), the PBL includes the

ML and the thin capping inversion, and hence MLH is close to PBLH. For decoupled PBLs
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(Figures 2a and 2c), MLH is the cloud base, while PBLH is the cloud top, leading to a much
greater PBLH than MLH.
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Figure 3: The steps to determine PBLH from the dropsonde thermodynamic profiles. The steps
are the same for determining MLH by taking zO = 100 m (dashed lines). LCL refers to lifting
condensation level. 6y refers to the virtual potential temperature. RH refers to relative humidity.
Bvo= refers to the bottom point in the 6, profile, and By~ refers to the 10" point(~100m) from

bottom up. z* refers to the altitude where 0y is the greatest value among the bottom six points in
the profile, starting from the surface up.

Motivated by the above schematic features of coupled vs. decoupled PBLs and the
thermodynamic profiles from the dropsondes in Figure 2, we have developed an algorithm to
estimate the PBLH and MLH from dropsonde profiles. Figure 3 shows the steps to determine
PBLH and MLH from the dropsonde thermodynamic profiles with a vertical interval of around 7
m. As the marine PBL is usually statically unstable (with a well-defined mixed layer), we focus
on unstable PBL cases using the algorithm in Figure 3. The PBL is defined as stable if the
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maximum virtual potential temperature (6v) from the lowest ~70 m above the ocean is less than
the minimum 6v from the bottom 10th to 20th points (lowest ~70 m to ~140 m). The stable PBLs
represent only 14% of the dropsondes (see Section 3.1) and are shallow (see Figure S1b).
Additional efforts are needed to develop an algorithm (different from that in Figure 3) to reliably
compute PBLH from dropsonde data for stable PBLs. Furthermore, the aerosol gradient may be
small or non-existent at PBLH for stable PBLs because aerosols may be confined to the bottom
of stable PBLs, making the lidar estimation less reliable as a proxy of the PBLH. For these
reasons, we leave stable PBLs as a future task.

For our algorithm in Figure 3, we first eliminate cases that do not reach a minimum
altitude of 40 m (step 1, Figure Sl1a) and cases that are stable (step 1, Figure S1b) - output as no
data (Nan). Second, we estimate if a boundary layer cloud is present (Step 3) by having relative
humidity (RH) exceeding 95% above the lifting condensation level (LCL, determined from
temperature and dewpoint from 100 m above the surface) within 3000 m above the surface (Zeng
et al., 2004). If there is a cloud (step 3 (right)), the altitude (z1) is set to cloud top or the point
where there is a sudden drop in RH, and the results are not sensitive to the exact constant values
(e.g., >30% RH drop within 5 points) used (Figure S2). We then add a constraint (Zeng et al.,
2004) that if the PBL is within a thick cloud (z1 — LCL> LCL), we use the cloud base as the
PBLH (Figure S2a); if within a thin cloud (z1 — LCL< LCL), we use the cloud top as the PBLH
(Figure S2Db). If there is no cloud (step 3 (middle)), the altitude (z2) is determined when we
consider the slight increase of Ov with height at a rate of 0.7 K/km due to large eddies (Garratt,
1992) in the unstable marine PBL (Figure S3a), or the RH drop by 20% (Figure S3b). The
constant (0.3K) ensures that the PBL top inversion is reached. To determine the constant (0.3K),
we first manually/visually inspected the 506 dropsonde profiles and generated approximated
PBLH values. The constant is determined by looping through values within a reasonable range
(0.3 K to 1 K) and obtaining the constant (0.3K) with the least difference when comparing with
the manually determined PBLHs.

The MLH is determined similarly (step 3 (left)), except using starting altitude = 100 m.
This is due to the assumption that, for an unstable PBL, the 100 m height is within or near the
ML, leading to the base of the inversion layer, while Ov at z0 is greater than that at 100 m (for an
unstable PBL), leading to a PBLH in the inversion layer, which also ensures that MLH < PBLH.
An additional step is added to ensure MLH < PBLH (step 4). Physically, our parcel method
determines PBLH or MLH as the height at which a near-surface air parcel (for PBLH) or an air
parcel in the lower part of the ML moves upward adiabatically to reach the inversion. In this
process, the slight increase of 6v with height at a rate of 0.7 K/km due to large eddies (Garratt,
1992) and thick versus thin clouds are also considered.

2.3 MLH and PBLH derivations from HSRL-2

HSRL-2 estimates MLH (denoted as MLH-HSRL) using an automated technique that
utilizes a Haar wavelet transform with a dilation value of a = 360 m in Equation (1) below, to
identify the sharp gradients in aerosol backscatter profiles, usually located at the top of the ML
(the lowest maxima) (Dauvis et al., 2000; Brooks, 2003; Scarino et al., 2014). The Haar wavelet
transform is able to detect the step changes in a lidar signal, whereas the Haar function h is
defined as (Brooks et al., 2003):
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( a
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( a )_ —1:szSb+§ M

0: elsewhere
where z is altitude, b is the center of the Haar function, and a is the dilation value (Brooks et al.,

2003). From the Haar function, the covariance transform of the Haar function (Ws) between the
lower and upper limits of the profile (z, and z;) can be calculated from

1 (% iy
Wy(a,b) =~ f(z)h(ZT) dz )

A local maximum in Wf(a,b) identifies the step change in the aerosol backscatter profile
f(z) with a coherent scale of a, located at z = b. The key to identifying features of interest is the
selection of an appropriate dilation under less ideal conditions (Brooks et al., 2003). In general,
Wf(a,b) contains more than one local maxima with different magnitudes, and the HSRL
algorithm only considers local maxima greater than an empirically determined threshold value.
Specifically, MLH is taken as the lowest altitude with the local maximum rather than the altitude
with the overall maximum of Wif(a,b) (Scarino et al., 2014).

It needs to be emphasized that, as widely recognized, the MLH derived from aerosol
backscatter profiles is often a good proxy of, but could differ from, the MLH derived from
thermodynamic profiles for unstable PBLs. Partly for this reason, as an experimental product, in
2020, the MLH-HSRL was further manually adjusted by tuning the threshold and dilation values
in each flight based on visual inspection and MLH climatology (Scarino et al., 2014) in order to
retrieve the MLH more accurately. This product is called MLH-LaRC. While the approach is
subjective, we take this as an opportunity to evaluate this experimental product in this study, as it
may provide some insights for the further improvement of the automatic algorithm.

ACTIVATE 8/17/20 Dropsonde1609_R1
HSRL2-CF: 0.32

(a) gb) Relative Humidity (%)
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Figure 4. The different dilation values used in (a) PBLH-UA (dilation = 280 m) and MLH-
HSRL (dilation = 360 m). The line on the right is the particulate backscatter coefficient, and the
two overlapped lines on the left are the signal after wavelet transform and shifted 10-3 to the left
side of the x-axis. The local maximum of the backscatter coefficient at the lowest altitude and the
overall maximum of the backscatter coefficient are also shown. (b) The comparison with the
nearest dropsonde’s thermodynamic profile. PBLH-UA picks up the overall maximum at 1200
m, which is in agreement with the dropsonde.
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As mentioned in Section 1, MLH (e.g., from lidar measurements) has also been used to
represent PBLH in prior studies, but we find that the MLH-HSRL can differ significantly from
PBLH-dropsonde for some cases (see Section 3). Using the insights from these intercomparisons,
we revise the MLH-HSRL (automated) algorithm to better retrieve PBLH. The final product is
denoted as PBLH-UA. As mentioned above, we make two revisions to the above MLH-HSRL
algorithm, as illustrated in Figure 4: a) decreasing the default dilation value (i.e., a in the above
two equations) from 360 m to 280 m (Figure 4a) through a systematic process of trial and
refinement to resolve more peaks; and, more importantly, b) utilizing both the lowest altitude
with the local maximum (z1; ~700 m in Figure 4a) and the altitude with the overall maximum
(z2; ~1200 m in Figure 4a). When the difference (z2 — z1) is less than z1, we use z2 for PBLH-
UA, which is greater than MLH-HSRL. For other cases, we use z1 for PBLH-UA, which is
similar to MLH-HSRL). When compared with the nearest dropsonde (Figure 4b, with a distance
of 16 km), the PBLH-UA picked up the PBLH at z2 =~1200 m (instead of the z1 = ~700 m),
which is very close to the PBLH-dropsonde. Physically, the vertical profile of the backscatter
coefficient (i.e., the right profile in Figure 4a) represents the HSRL2’s measurements averaged
over a period of 10 seconds, including both cloudy conditions (where the strongest backscatter is
from cloud top) and clear-sky conditions (where the strongest backscatter is from the ML top).
Therefore, the profile exhibits two maxima at z2 = ~1200 m and z1 = ~700 m, consistent with
the cloud top and cloud base (as represented by the LCL) from the nearest dropsonde (Figure
4b). As (z2 — z1, representing the cloud thickness) is greater than z1 (cloud base height), the
cloud layer is thin, and z2 is taken as the PBLH-UA.

For the evaluations of these three products, we use three statistical metrics: the coefficient
of determination (R2), the median, and the interquartile range (IQR, i.e., the difference between
75th and 25th percentiles of differences). In general, the median and IQR values are more robust
statistical metrics (against outliers) than mean differences, root mean square differences, and
mean absolute differences.

3 Results
3.1 Marine daytime MLH and PBLH from dropsondes
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Figure 5. (a) The monthly median value (m) of PBLH and MLH from dropsondes in 2020-2022;
and (b) the monthly 25" 50" (median), and 75" of HSRL-2 cloud fraction. April, November,
and December are dropped due to small number of cases (<15). The number of dropsondes in
each month: Jan (41), Feb (46), March(111), Apr (2), May (64), Jun(142), Jul (0), Aug (37), Sep
(46), Nov (3), Dec (14).

First, we use the dropsonde data to compare marine daytime MLH and PBLH. Usually,
they are close to each other (e.g., Figure 2 and Figure S2a). Sometimes, MLH is considerably
lower than PBLH (Figure 2 and Figure S2b). Furthermore, PBLH and MLH are affected by
weather patterns, and different seasons are associated with different weather patterns (Tornow et
al., 2023). Therefore, Figure 5 shows the seasonal cycle of PBLH and MLH from dropsonde
data. PBLH and MLH are higher in the winter months (January, February, and March) than in
other months (Figure 5a), because the PBL is more statically unstable in winter. The PBLH and
MLH differences are also greater in winter than in other months (Figure 5a). One reason is the
greater cloud fractions in winter (Figure 5b). With a deeper PBL in winter, these clouds would
also be thicker. As MLH and PBLH are close to the cloud base and top, respectively, their
differences are also greater in winter.

To evaluate the HSRL-retrieved MLH and PBLH using the co-located dropsonde data,
we use the HSRL data within a radius of 20 km around a dropsonde. With this co-location
criterion, there are 610 dropsondes out of a total of 785 dropsondes launched from 2020 to 2022.
Further, 104 dropsondes are excluded from the analysis, including 87 stable cases and 17 cases
in which the lowest altitude of the dropsonde was above 40 m, resulting in 506 dropsondes used
in the analysis below.

3.2 Relationship of HSRL-2 MLH with dropsonde MLH and PBLH
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Figure 6. (a) The distribution of MLH-HSRL versus MLH-dropsonde using all data from 2020-
2022. Data are binned every 300 m from 0 to 3000 m. (b) Scatterplot of lidar-estimated MLH vs.
MLH-dropsondes. The black line is the 1:1 line. (c) Monthly medians. April, November, and

December results are not shown in panel (c) as there are less than 15 dropsondes collocated with

HSRL-2 MLH data.

MLH-HSRL is the product based on an automated retrieval algorithm (Section 2.3).
Figure 6 demonstrates that MLH-HSRL agrees well with MLH-dropsonde in terms of the
distributions in altitude bins, variation from month to month, and even spread around the 1-1
line. Figure 6¢ shows that MLH-HSRL has larger differences from MLH-dropsonde in winter
months than in other months. The monthly difference between MLH-HSRL vs. MLH-dropsonde
could be due to the clouds at the top of the ML or complicated aerosol structures within and/or
above the ML (Scarino et al., 2014). For the whole period, Table 1 shows that MLH-HSRL has
an R2 of 0.44 with MLH-dropsonde, and median and 1QR of differences of 18 m and 286 m,

respectively.

2020 - 2022 MLH
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Median difference (m)

| IQR difference (m) with
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with dropsondes dropsondes
MLH-HSRL 0.44 18 286
PBLH-UA 0.45 53 295
2020 - 2022 PBLH
Median difference (m) IQR difference (m) with
R with dropsondes dropsondes
MLH-HSRL 0.42 -47 296
PBLH-UA 0.48 -8 242

Table 1. Statistical metrics when comparing MLH-HSRL against dropsonde - derived MLH and

PBLH in 2020 to 2022.
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Figure 7. (a) The distribution of MLH-HSRL, PBLH-UA, and PBLH-dropsonde. Data are
binned every 300 m from 0 to 3000 m. (b) Scatterof lidar-estimated PBLH vs. PBLH-
dropsondes. The black line is the 1:1 line.. (¢) Monthly medians. April, November, and
December results are not shown in panel (c) as there are less than 15 dropsondes collocated with

HSRL-2 MLH data.
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Because MLH-dropsonde sometimes differs from PBLH-dropsonde (see Section 3.1) and
MLH-HSRL was used to represent PBLH in prior studies over land (e.g., Scarino et al., 2014;
Hegarty et al., 2018; Caicedo et al., 2019; Liu et al., 2023), it is useful to also compare MLH-
HSRL against PBLH-dropsonde. For most months, MLH-HSRL is less than PBLH-dropsonde
(Figure 7c), with a median difference of -47 m (Table 1), which is larger in magnitude than
compared with MLH-dropsonde (-8 m, Table 1). Motivated by the larger differences (between
MLH-HSRL and PBLH-dropsonde) and considering the need to use an automated algorithm for
future satellite missions in global applications, we conducted sensitivity tests using the MLH-
HSRL algorithm and developed the automated PBLH-UA algorithm by revising the MLH-HSRL
algorithm (see Section 2.3). PBLH-UA agrees better with PBLH-dropsonde than MLH-HSRL in
terms of most of the altitude bins (Figure 7a), scatter plots (Figure 7b), and winter months
(Figure 7c). Accordingly, Table 1 shows that PBLH-UA shows a higher correlation and much
better median difference (-8 m versus -47 m) and IQR (242 m versus 296 m).

4 Discussion

2000 1
1800 -
1600 -

=
i
o
o

1200 -
1000 -
800 -
600 -
400 -

altitude(m)

0.0 0.2 0.4 0.6 0.8 1.0
HSRL2-CF

Figure 8. The medians of PBLH-dropsonde (black) and MLH-dropsonde (pink) at each HSRL-
2-CF value versus HSRL-2 low cloud fractions. The HSRL-2-CF values are initially rounded to
the closest 0.01. Subsequently, the medians of the PBLH-dropsonde and MLH-dropsonde in
each 0.01 CF bin are calculated and graphed on a scatterplot.

As shown in Section 3.1, PBLH-dropsonde and MLH-dropsonde differ sometimes. Due
to the importance of PBLH and MLH relation with cloud fraction (CF) for the understanding of
cloud processes, it is interesting to consider how their differences vary with cloud fraction which



374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397
398

399
400
401
402
403
404
405
406
407
408

Journal of Geophysical Research Atmospheres

is related to different weather patterns. Figure 8 shows that both PBLH and MLH increase with
greater low cloud fractions, with an R? value that is statistically significant (p-value < 0.01). The
PBLH has a greater slope (black line) when compared with that of MLH (pink line), with a
higher R? value (0.31 versus 0.20).

As the median cloud fraction is 0.22 using all dropsondes, we have also computed the
statistics for CF < 0.22 and CF > 0.22 separately. When CF is less than or equal to 0.22 the
PBLH-dropsonde median value (659 m) does not differ much from MLH-dropsonde (624 m),
with a difference of 34 m. Compared with PBLH-dropsonde, PBLH-UA has better performance
than MLH-HSRL, with a lower median difference (-2 m versus -24 m) in magnitude. When CF
is greater than 0.22, the median value for PBLH-dropsonde (1169 m) is greater than MLH-
dropsonde (950 m), and this difference (218 m) is much greater than that (34 m) for CF < 0.22.
Overall, it is evident that an increase in low cloud fraction leads to a wider separation between
the PBLH-dropsonde and MLH-dropsonde. Compared with PBLH-dropsonde, PBLH-UA
outperforms MLH-HSRL, with a lower median difference (-14 m versus -74 m) in magnitude.

Besides cloud fraction, another interesting question is how our results will change for
decoupled PBLs (e.g., Jones et al. 2011) that have larger PBLH and MLH differences (than well-
mixed PBLs). Following the definition of decoupled PBL based on aircraft measurements from
Jones et al. (2011), we use a similar criterion for dropsonde data for our sensitivity test.
Specifically, if the mean specific humidity difference between the bottom 25% and top 25% of
PBL is less than 0.5 g/kg and the mean virtual potential temperature difference between the top
25% and bottom 25% of PBL is less than 0.5 K, the PBL is defined to be well mixed; otherwise,
the PBL is defined to be decoupled. Furthermore, we only consider cases with PBLH > 400 m so
that there is enough data in the top and bottom 25% of PBL.
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50 1 1600 - . ® PBLH-dropsonde
2
S 401 — 1400+ .
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c o o °®
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Figure 9. (a) The number of monthly cases of decoupled PBLs in 2020-2022, and (b) the
corresponding monthly median PBLH and MLH of dropsondes.

Overall, a total of 141 dropsondes out of 506 dropsondes (~28%) have decoupled
boundary layers (Figure 9). Figure 9a shows that June has the most decoupled cases (53) than
other months because June has the highest number of dropsondes (142, see Figure 5). The
decoupled PBLs occurred in seven months, with greater differences between PBLH-dropsonde
and MLH-dropsonde in winter (January, February, and March) than in other months, consistent
with the results using all dropsonde data (Figure 5a). For instance, the median differences are
465 m in January and 201 m in August in Figure 9b, and they are larger than those using all data
for those months (239 m and 39 m in Figure 5a, respectively). This is due to thicker clouds with
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more synoptic events (cold fronts) and storms in winter over the Atlantic region (Kirschler et al.,
2023).

2020 - 2022 MLH of days with decoupled PBLs
Median difference (m) IQR difference (m) with
R? with dropsondes dropsondes
MLH-HSRL 0.32 -164 388
PBLH-UA 0.3 -75 539
2020 — 2022 PBLH of days with decoupled PBLs
Median difference (m) IQR difference (m) with
R with dropsondes dropsondes
MLH-HSRL 0.33 -312 459
PBLH-UA 0.44 -193 315

Table 2. Statistical metrics when comparing MLH-HSRL and PBLH-UA against MLH and
PBLH of dropsondes with decoupled PBLs.

For the decoupled PBL cases, we have also repeated the evaluations in Section 3, and the
results are summarized in Table 2. Compared with PBLH-dropsonde, PBLH-UA performs better
than MLH-HSRL based on the three metrics, also consistent with the results using all dropsonde
data in Table 1. When compared to those using all observations, both PBLH-UA and MLH-
HSRL tend to have larger differences from PBLH-dropsonde for decoupled PBLs. For instance,
compared with PBLH-dropsonde, MLH-HSRL has a higher median difference (-297 m) in
magnitude for decoupled PBLs than for all cases (-51 m); PBLH-UA has a higher median
difference (-197 m) in magnitude for decoupled PBLs than for all cases (-8 m).

As the median HSRL2-CF is 0.22 for decoupled PBLs, we have also computed the
statistics for CF < 0.22 and CF > (.22 separately. When CF < 0.22, the PBLH-dropsonde (932
m) is greater than MLH-dropsonde (874 m). Compared with PBLH-dropsonde, PBLH-UA has a
lower median difference (-75 m) in magnitude than MLH-HSRL (-164 m). When CF is greater
than 0.22, the PBLH-dropsonde (1532 m) and MLH-dropsonde (1011 m) have a much larger
difference (521 m). Compared with PBLH-dropsonde, the median difference (-193 m) from
PBLH-UA is less than that (-312 m) from MLH-HSRL in magnitude.

Finally, as mentioned in Section 2, both MLH-HSRL (from an automated algorithm) and
MLH-LaRC (based on MLH-HSRL and manual correction) data are available for 2020. Here, we
also take this opportunity to evaluate the impact of manual correction on the MLH retrieval
performance. Compared with MLH-dropsonde, MLH-LaRC outperforms MLH-HSRL with a
higher R? (0.64 versus 0.42), lower median difference (27 m versus 40 m), and comparable IQR
(249 m versus 256 m) due to manual revision. Compared with PBLH-dropsonde, MLH-LaRC
has the highest R? (0.58) among the three products (i.e., MLH-LaRC, MLH-HSRL, and PBLH-
UA), while PBLH-UA has the lowest median difference (-2 m) in magnitude.

5 Conclusions

PBLH sometimes differs from MLH over the ocean, making it crucial to estimate the
PBLH in addition to the MLH. In this study, we used 506 dropsondes from NASA’s ACTIVATE
field campaigns over the northwest Atlantic from 2020 to 2022 to estimate PBLH and MLH. The
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PBLH and MLH differences are higher in winter (January, February, and March) than in other
months (May, June, August, and September) because the PBL is more statically unstable and
cloudier in winter.

These data were then used to evaluate the MLH product of airborne High-Spectral-
Resolution Lidar — Generation 2 (HSRL-2). The HSRL-2 MLH product agrees well with MLH-
dropsonde, with a median difference of 18 m and an R? of 0.44. However, using the MLH-HSRL
product to represent PBLH, as used in prior studies (e.g., for model evaluations), would
introduce larger differences, with a median difference of -47 m.

We modified the automated wavelet-based MLH-HSRL algorithm for PBLH retrieval
(i.e., PBLH-UA). The use of an automated algorithm also indicates the possibility of efficient
retrieval of global PBLH in future satellite missions. The PBLH-UA performs better than MLH-
HSRL in comparison with PBLH-dropsonde, with a median difference of -8 m and R2 of 0.48
(versus -47 m and 0.42 for MLH-HSRL). These results demonstrate the potential of using
HSRL-2 aerosol backscatter data to estimate both marine MLH and PBLH and suggest that lidar-
derived MLH should be compared with radiosonde/dropsonde-determined MLH (not PBLH) in
general.

These conclusions remain the same for cases with higher-or-lower low cloud fraction
values, and for decoupled PBLs. As low cloud fraction increases, the differences between PBLH-
dropsonde and MLH-dropsonde usually increase and the differences between HSRL-2-retrieved
products and those from dropsondes usually also increase. Compared with the results using all
dropsondes in the dataset, the differences between PBLH-dropsonde and MLH-dropsonde and
the differences between HSRL-2-retrieved products and those from dropsondes become greater
on average for decoupled PBLs.

Note that the PBLH-UA algorithm includes two revisions to the MLH-HSRL algorithm
as discussed in Section 2.3, and hence has a similar limitation: the PBLH derived from the
aerosol backscatter profile does not always correspond to that determined from thermodynamic
profiles when aerosol structures within and/or above the PBL is complicated (particularly when
clouds are present or decoupled PBL exists).

The manual revision of the MLH-HSRL product in 2020 is found to improve the
performance in MLH retrieval. We are currently using these data to investigate the relationship
of instantaneous low cloud fractions with thermodynamic conditions as an extension of the
global monthly and seasonal data analysis in Cutler et al. (2022). Recognizing that various
methods have been used in the past to determine MLH or PBLH from radiosondes or dropsondes
(e.g., Zeng et al., 2004; Li et al., 2021), we will comprehensively compare various methods of
determining marine PBLH in dropsondes (including ours, as detailed in Figure 3) using the
ACTIVATE dropsonde data covering all seasons in three years in a separate study. It will also be
interesting to test the robustness of our algorithms (for PBLH retrieval from HSRL-2 and for
MLH and PBLH estimates from dropsondes) and conclusions using dropsonde and HSRL data
from several previous and upcoming airborne campaigns, such as the Cloud, Aerosol and
Monsoon Processes Philippines Experiment (CAMP?Ex) (Reid et al., 2023) and the Convective
Processes Experiment - Cabo Verde (CPEX-CV) in the eastern tropical Atlantic
(https://espo.nasa.gov/cpex-cv/content/ CPEX-CV). The PBLH and MLH data from dropsondes
and HSRL-2 can also be used to evaluate climate models.
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