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Abstract

Small molecule metabolites drive inter- and intraspecies communication and dependencies in
diverse biological systems, yet a large proportion of these important chemical compounds
remain uncharacterized in plants and microbes. Approximately 90% of the metabolites in root
exudate profiles are unknown compounds, despite the importance of root exudate composition
in plant-microbe interactions. We need advanced analytical capabilities that will support rapid
discovery and structural elucidation of metabolites from biological samples that may be limited
in quantity and high in complexity. To fill this gap, this project aimed to develop an integrated
workflow involving metabolite extraction, separation, and crystallization from plant root exudates
followed by characterization using nuclear magnetic resonance (NMR) spectroscopy, mass
spectrometry, and microcrystal electron diffraction (MicroED). Using crude root exudates from
sorghum, this project successfully developed higher throughput exudate fractionation strategies
to obtain pure compounds for crystallization and identified crystals in multiple fractions that
diffracted. Additional efforts to increase the throughput of high-quality crystal generation for
MicroED, such as crystallization screening and crystallization chaperone exploration, will be
needed to further advance root exudate metabolite identification. The overall optimized sample
preparation process can then be integrated with the existing data collection and data analysis
pipelines for MicroED at PNNL to facilitate more rapid natural product discovery.
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Summary

This project developed a workflow for plant root exudate metabolite isolation and identification,
encompassing plant growth, exudate extraction, metabolite purification, and chemical
characterization. The final workflow utilized methods for higher throughput processing of these
highly complex samples, facilitating improved sample fractionation and metabolite isolation. We
investigated a combination of nuclear magnetic resonance (NMR) spectroscopy, mass
spectrometry (MS) and microcrystal electron diffraction (MicroED) for structural elucidation of
metabolites from sorghum root exudates. We obtained the first crystal structure of sorgoleone
up to C10 of the alkyl tail, and we obtained complete 1H-NMR shifts for a related compound,
4,6-dimethoxy-2-[(8'Z,112)-8',11¢,14'-pentadecatriene]resorcinol, which were incorrectly
reported in the literature. We isolated many additional metabolites that could be crystallized and
showed diffraction under initial low throughput crystallization, highlighting the potential for this
workflow to advance metabolite identification from complex biological samples at PNNL. Our
initial investigation of crystallization screening has yielded improved crystal quality over manual,
low throughput methods, suggesting that further optimization of crystallization methods will
improve the overall quality of samples for MicroED analysis in the future.
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1.0 Introduction

Immense chemical diversity exists in nature, evolving out of the distinct molecular interactions
between small molecules and biological macromolecules produced across all kingdoms of life,
from bacteria to fungi, plants, and more. This tightly intertwined relationship between natural
product structure and influence on specific biomolecular functions has been exploited for drug
discovery and biosystems design and continues to be a source of chemical novelty. However,
mining natural sources of chemical diversity such as plant and microbial systems remains a
logistical and analytical challenge to the DOE BER community due to the high complexity of
these samples.

Plants, which convert some of the simplest molecular carbon building blocks on Earth into
exquisitely complex organic structures, interact with a specific subset of the soil microbiome to
obtain nutrients, outcompete other plants, and withstand both abiotic and biotic stressors such
as drought and pathogenic insult. Plant-microbe interactions are thought to be strongly
influenced by root exudate composition, yet ~90% of root exudate metabolite profiles consist of
unknown or unidentified organic compounds. Mass spectrometry analyses, while highly
sensitive, often observe masses that cannot be assigned to any known structure or are
assigned to multiple possible structures. Identifications are therefore frequently limited to well-
characterized and highly abundant components, often primary metabolites such as sugars,
amino acids, and nucleotides. Thus, a major gap to understanding how plants drive beneficial
root-associated (rhizosphere) microbial community assembly and dynamics is this overall
scarcity of metabolite annotation, especially for secondary metabolites in root exudates.
Predicting and/or controlling specific plant-microbe interactions may depend upon metabolites
that are unique to a specific plant host and growth condition, rather than the abundant primary
metabolites which we can already identify and are shared amongst most plant species.
Approaches that facilitate novel small molecule discovery, in particular de novo methods, will
help us elucidate the complex biochemical interactions between plant hosts and their associated
microbiomes, thereby expanding our opportunities to shape plant-microbial ecosystems through
biological design. We envision the workflow developed in this project will also be readily
extended to other biological systems producing similarly diverse profiles of natural products to
understand the potential impact of these chemical compounds on their native or non-native
systems.

1.1 Plant root exudates

Plant root exudation includes both primary metabolites, such as amino acids, carbohydrates,
and lipids required for growth and development, as well as secondary metabolites, which are
non-essential for growth and development.” 2 Root exudation involves the production and
transport of organic small molecules from root cells, which facilitate their release into the
rhizosphere. Secondary metabolites in root exudates can influence cellular signaling in other
organisms, such as bacteria and fungi in the rhizosphere, as well as other plants. These
interactions can be beneficial or symbiotic, such as recruiting plant growth promoting bacteria to
the rhizosphere, or defensive, such as antifungal or antibacterial functions or inhibiting the
growth of competing plants.

Previous mass spectrometry-based metabolomics analyses of sorghum root tissue identified a
variety of primary and secondary metabolite compounds, including amino acids such as
phenylalanine and tyrosine; hydroxycinammic acids such as coumaric acid, ferulic acid, and
sinapic acid; and flavonoids and flavones such as naringenin, galangin, and vitexin. Notably,
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most previous metabolomics analyses of sorghum root exudates have focused on polar

metabolites, although lipidomics studies have been able to identify more of the nonpolar
metabolites.®
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Figure 1. Metabolites identified from roots and rhizosphere of the sorghum BTx642 genotype

after 8, 9, and 13 weeks of growth during the Epigenetic Control of Drought Response
in Sorghum (EPICON) project field trial.
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1.2 Root exudate metabolite isolation and characterization
strategies

The isolation of natural products for structural characterization has traditionally relied upon very
large starting quantities of material and repeated extraction and purification steps to obtain
sufficiently pure material for analysis.* Since root exudates are secreted from cells on the outer
part of the root into the external environment, the collection of root exudates is relatively
straightforward through washing with different solvents, although metabolites may partition into
different fractions depending upon their properties, e.g. hydrophobic vs. hydrophilic.

A variety of analytical techniques have been employed for natural product chemical
characterization, with nuclear magnetic resonance (NMR) spectroscopy and high-resolution
mass spectrometry (HRMS) among the most widely used approaches.®>® NMR is a powerful tool
for structure elucidation but requires relatively large quantities of pure substances, making
analysis challenging for limited samples. While MS is highly sensitive and provides the chemical
formula for a metabolite, compound identification depends upon reference libraries, and most
standard MS techniques cannot provide detailed structural information. Additionally, due to the
sensitivity of MS instrumentation, MS data can report on strongly ionizable but trace compounds
in samples, including contaminants, which may obscure other analytes that are highly abundant
but display poor ionization.

Electron diffraction methods have existed for many years, but the term microcrystal electron
diffraction (MicroED) was introduced in 2013.” MicroED allows for diffraction patterns on thin 3D
crystals to be collected while the crystal is continuously rotated and coming of the diffraction
patterns results in a 3D structure of the crystallized compound. The advantage of MicroED over
other analogous structural techniques is that very little sample needs to be used, and micro and
nanocrystals can be used. This is very important when using exudate fractions as there is often
limited sample availability. Additionally, multiple samples can be placed across the same grid
and the electron beam focused on each crystal individually, making MicroED a more high-
throughput technique. These characteristics make MicroED the ideal structural technique to
incorporate into a metabolite identification workflow and in fact, a similar workflow has been
demonstrated previously.® Here, we are looking at a much more complex system (plant root
exudates) and have incorporated many more screening steps across all aspects of the workflow
(Figure 2).
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Plant growth & exudate collection Fractionation

Biotage normal phase

SX-19 sorghum x sudangrass
(40-100 fractions)

SX-122 sorghum x sudangrass |
TurboFS forage sorghum

Less polar » More polar ) ) ‘
Preparative HPLC reverse phase

Ao
» E B (100-200 fractions) —
( - '!;J: jr,

MeOH e | ——

Toluene -> CHZCI2 EtOAc/
acetone

Metabolite analysis & identification Crystallization
NMR Dissolution and slow evaporation from organic and
organic/aqueous solventmixtures
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COUHMME W A
Mass spectrometry (MS) o
|
Encapsulated nanodroplet crystallization(ENACT)

Figure 2. Overall workflow for secondary metabolite isolation and identification from plant root
exudates.
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2.0 Methods
2.1 Materials

ACS or HPLC grade solvents were purchased and used without further purification from Fisher
or VWR. Sudangrass x sorghum SX-19 and SX-122 seeds (Forage Genetics) were purchased
from Helena Agri-Enterprises. Forage sorghum Turbo FS 310 seeds were purchased from
Sustain Seed + Soil (previously Center Seeds).

2.2 Seed germination and plant growth

Sorghum seeds were germinated and grown on sterile trays for 7-11 days before root
harvesting and subsequent exudate collection. To improve the growing conditions of the
sorghum seeds of interest, 1,365 g of sorghum seeds were stratified for a minimum of 24 hours
in a fridge at 4 °C. This process allows the seeds to experience a dormancy period, mimicking a
winter season. When germinating Turbo FS seeds, the seeds were sterilized with 10% bleach
concentration in Milli-Q water. The seeds were placed in a 5 L glass beaker and soaked in the
10% bleach solution for 10 minutes while gently agitating. The solution was removed following
the appropriate waste disposal methods and the seeds were rinsed up to 8 times with Milli-Q
water or until the rinse water was no longer cloudy. There is no sterilization or pretreatment of
SX-19 or SX-122 because they are coated in fungicide and herbicide. The beaker was filled with
1.5 L of fresh MilliQ water. All seed strains were soaked for a minimum of 3 hours before
planting. This initiates the germination process. All materials used to plant were sterilized by
autoclaving at a gravity cycle of 30 minutes minimum. Materials used for planting were
Patterson Development trays, mesh plastic canvases, 50 mL tubes, paper towels, and
aluminum foil sheets. Paper towels and foil sheets were cut to fit the trays. The materials were
allowed to cool after autoclaving. Excess water from the seed soak was poured off and
disposed of using the proper waste disposal methods. The laminar flow hood was used during
tray set up to maintain sterile conditions.

The following planting procedure workflow is seen in Figure 3. The bottom of a tray was lined
with 2 sterile paper towels (Figure 3A-B). Then, 8 sterile 50 mL tubes in 4 sets of two tubes
inserted together and laid horizontally onto the tray Figure 3C). The 4 rows of tubes were used
to prop up the mesh canvas (Figure 3D). Approximately 130 g of seeds were spread onto the
mesh canvas, ensuring that seeds were pushed to the edge and evenly spread (Figure 3E-F).
Seeds were then covered with another 4 sheets of sterile paper towels and watered with 250
mL of sterile water (Figure 3G). A sterile aluminum foil sheet was used to cover the tray and
pinched in around the sides to seal the tray (Figure 3H). One batch of seeds produced 10-12
trays depending on how well the mesh canvas space was utilized and its size. Trays were kept
in a dark growth chamber, at 25°C and >60% humidity until harvest. Every other day, trays
would receive an additional 100 mL of sterile water to maintain moisture and receive occasional
misting with a sterile water spray bottle. All glassware, gloves, and surfaces were cleaned with
70% ethanol before use.

The roots were harvested by removing the aluminum foil and paper towels that lined the top of
the mesh canvas. The mesh canvas was lifted from one end to expose the roots. Using sterile
scissors cut the roots as close to the mesh canvas as possible. The roots will fall onto the tray
below (Figure 3l). After all the roots are cut from the mesh canvas the roots were placed into a
glass beaker using sterile forceps (Figure 3H). Once all trays were collected, the roots were
taken to the fume hood for chemical extractions.
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Figure 3. Seed germination and root harvesting workflow. Turbo FS seeds and seedlings are
shown. (A) Empty sterile tray. (B) Two paper towels are laid down. (C) Eight 50 ml
tubes laid out. (D) Mesh canvas placed atop 50 ml tubes. (E) 130 g seeds added to
canvas. (F) Seeds spread out. (G) Four paper towels on top, 250 mL sterile water
added. (H) Tray sealed with aluminum foil sheet. (I) Removal of roots during harvest.
(J) Turbo FS roots post collection.
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2.3 Root exudate extract preparation

Excised roots were washed sequentially with 3x toluene, ethyl acetate, dichloromethane, and
methanol, to obtain crude extracts of metabolites in order of increasing polarity. Extracts were
stored in diluted form (200-300 mL volume) at 4 °C until ready for chromatography. Storing
extracts in concentrated form even at -20 °C led to suspected metabolite degradation due to
sample complexity, as noted by a dramatic decrease in recovered yield of the known sorghum
metabolite, sorgoleone. Immediately prior to exudate fractionation, solvents were removed by
rotary evaporation; heating of toluene and methanol extracts up to 50 °C to evaporate solvents
was typically required.

2.4 Root exudate fractionation

Crude root exudate purification was performed using a Biotage Isolera automated flash
chromatography system. Normal phase separations were performed using pre-packed SiO-
columns (12 or 25 g, Luknova or Silicycle), eluting 1-10% MeOH/CH.CI; or 0-95%
EtOAc/hexane. Reverse phase chromatography was performed using Biotage Sfar C18 Duo
Reversed Phase pre-packed columns (12 g), eluting 5-95% MeCN/H>O with 0.1% trifluoroacetic
acid.

High performance liquid chromatography (HPLC) was performed using an Agilent Infinity 1l 1260
HPLC equipped with a preparative C18 5 ym SunFire™ 10 x 150 mm column (Catalog #:
186002563). Concentrated crude exudates were dissolved in a minimal amount of solvent—
typically DMSO, methanol, and/or water—and filtered through a 0.22 ym PTFE filter to remove
particulates. Samples were loaded into LC vials, and 100-150 uL sample were injected for each
run. HPLC separations were performed eluting with water + 0.1% formic acid (FA) and
acetonitrile + 0.1% FA. Samples were fractionated over gradients ranging from 5- to 30-95%
MeCN/H20 + 0.1% FA gradient for different extracts.

HPLC fractions were collected in a time-based manner into 16x100 mm glass test tubes (low
throughput method) or glass-coated 96-well 1 or 2 mL deepwell plates (Thermo Scientific
SureSTART™ WebSeal™ Plate+; high throughput method).

2.5 Low-throughput crystallization

Following fractionation into test tubes, solvents were allowed to evaporate in a fume hood from
the glass tubes they were collected in. After 2-4 weeks, crystals formed in the bottom of some of
the tubes. Tubes were visually inspected for crystal formation using a low-cost smartphone
microscope with glass bead lens (https://www.pnnl.gov/available-technologies/pnnl-smartphone-

microscope).

Crystals were scraped from the bottom of the glass tubes or resuspended in a small amount of
water/solvent and deposited onto TEM grids (Quantifoil Cu 4/1, 300 mesh). To potentially
increase crystal quality, dried down fractions were recrystallized. A small amount of sample was
placed in a glass vial and resolubilized using varying solvents and concentrations. The
solubilized compound was applied directly to a TEM grid and the solvent was allowed to
evaporate, allowing for recrystallization of the compound on the grid. Alternatively, the
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solubilized compound was left in the glass vial as the solvent evaporated. As above, formed
crystals were scraped from the vial and applied to a TEM grid. In all cases, grids were frozen in
liquid nitrogen immediately before CryoEM imaging.

2.6 High-throughput crystallization and screening

To increase the throughput for identifying exudate fractions that are crystalline, we collaborated
with Professor Hosea Nelson’s group at the California Institute of Technology (Caltech). In our
hands, the exudate was HPLC fractionated into 96-well plates (1-2 mL deepwell). Subsequently,
200 pL of each well was transferred into glass-coated 96-well plates (300 uL). All 96-well plates
were covered with Breathe-Easier permeable membranes and dried down using a
ThermoFisher SpeedVac SPD140P1 concentrator. Plates were covered with aluminum plate
sealers and stored at -20 °C. The subsampled 96-well plate was then sent to Caltech for array
electron diffraction (ArrayED)?® to identify which of the 96 fractions diffract using MicroED. The
deepwell plates containing the bulk of each fraction were reserved at PNNL for additional
analyses.

Solid material from deepwell plates was redissolved in MeCN/H20 mixtures (< 1 mL) and
transferred into 10 x 100 mm glass test tubes. If needed, tubes were gently warmed with a heat
gun to ensure full dissolution of solids and/or filtered through 0.22 um PTFE filters to remove
any particulates. Solvent was allowed to slowly evaporate at ambient temperature.

For screening of multiple crystal conditions, we utilized the Encapsulated Nanodroplet
Crystallization of Organic-Soluble Small Molecules (ENACT) method.' To optimize the ENACT
process for generating and harvesting crystals for MicroED, we performed ENACT screening on
pure, commercially available salicylic acid, naringenin, quercetin, and tricin, using ethanol and
water as solvents in various ratios. Analyte solutions were filtered through a 0.22 ym PTFE filter
to remove any particulates. Four types of oils were investigated: Fluorinert FC-40, mineral oil,
silicone oil, and Fomblin YR-1800 (in order of increasing viscosity). Rainin micropipettors were
used to deliver oils and sample to wells. Initial ENACT testing was performed using 0.9 pL of
each oil and 0.12 pL of each sample dissolved in solvent. Both Laminex 100 ym plates and
polystyrene 96-well glass-bottom plates were used for initial small-scale tests. Scale up of
ENACT samples was performed in polystyrene 96-well glass-bottom plates using 5 uL oil and 1
pL sample volumes or 8-35 pL oil and 5 pL sample volumes.

2.7 Root exudate characterization

271 Nuclear magnetic resonance (NMR) spectroscopy

NMR characterization was performed on the “Badger Mountain” Bruker 400 MHz Aeon Avance
[l magnet with BBFO 5 mm probe or the “Mt. Adams” Varian 500 MHz magnet. Samples were
dissolved in deuterated solvent (CDCls;, MeOD) and analyzed by 1D-NMR experiments (1H,
13C) and 2D-NMR experiments (COSY, HSQC, HMBC).

All chemical shifts are reported in the standard notation of parts per million using the peak of the
residual protonated solvent for CDCl; (6 7.24 ppm) or MeOD (6 4.78 ppm) as an internal
reference. Splitting patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet;
dd, doublet of doublets.
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2.7.2 Mass spectrometry

Compound masses were determined using several different mass spectrometers: direct infusion
of sample into a Thermo LTQ Orbitrap XL, direct infusion of sample onto a dual-gated structures
for lossless ion manipulations (SLIM)-Orbitrap', or liquid chromatography mass spectrometry
(LC-MS) using a QExactive with Thermo Hypersil GOLD column (2.1 x 150 mm, 3 ym) or
QExactive HF with Waters ACQUITY UPLC BEH HILIC column (2.1 x 100 mm, 1.7 ym). Data
files (.RAW) were processed using XCalibur software.

2.7.3 MicroED

Microcrystal electron diffraction (MicroED) data was collected on a Thermo-Fisher Titan Krios
G3i cryo-transmission electron microscope operating at 300 kV equipped with a Ceta-D CMOS
camera. EPU-D (Thermo Fisher Scientific) was used for all data collection. Multiple grids (up to
10) were loaded via autoloader and a low mag atlas was taken for each grid, allowing for
visualization of all crystals on the grid without exposing crystals to large amounts of dose. Once
a gridsquare with ideal crystals was identified, EPU-D’s autoeucentric height function was used
to find eucentric height. After locating a crystal, a selected area (SA) aperture was used, limiting
the data collection area. Eucentric height of the crystal was further refined manually to ensure
that it stayed within the SA aperture for most of the tilt range. An initial diffraction pattern (1 s
exposure) was taken to assess crystal quality. The position (X, y, z) of quality crystals was
added to a queue for batch data collection. This process was repeated for multiple crystals
across the same gridsquare. Using batch collection, data was collected on all saved crystals, by
continuously rotating the stage from -65° to +65° at a tilt rate of 0.6°/frame and individual frames
were saved as MRC files. This same process was repeated for each gridsquare containing
crystals. Data was collected using 1 s exposures at 0.008 e-/A%/frame and camera length of 430
or 540 mm. All data was processed using our in-house built software, AutoMicroED."?
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3.0 Results

3.1 Root exudate isolation

Root exudate crude extracts for 3 different types of sorghum were readily obtained after
washing in organic solvents (Figure 4). Initial exudate extractions were performed using only
chloroform and methanol, but we determined that increasing the number of solvents and their
range of polarities would generate lower complexity crude extracts for improved separations.
Toluene, dichloromethane, and ethyl acetate are immiscible with water, and therefore did not
extract any water-soluble compounds such as salts and were not believed to extract metabolites
from the internal parts of the root to a significant extent. Methanol and acetone, which are
miscible with water, resulted in dehydration of root material; the resulting extracts were cloudy
and contained some root debris that required filtration prior to purification.

- - L o LR d _—

Figure 5. Appearance of Turbo FS root exudate extracts from solvent washes, in order of
increasing polarity (from left to right: toluene, dichloromethane, ethyl acetate,
methanol; harvested roots).

Roots from SX-122 contained the highest quantities of red compounds, while SX-19 contained
the least overall amounts of red compounds. These compounds were moderately polar, with the
greatest solubility in MeOH, but limited solubility in either 100% MeOH or 100% water.

Results 10



PNNL-36689

Figure 6. Isolation of red compounds from SX-122 crude exudate, extracted with methanol. (A)
Appearance of exudate material as a gummy red solid after rotary evaporation. (B)
Reverse phase flash chromatography on C18 silica gel, showing elution of red
compounds. (C) Appearance of collected fractions after reverse phase flash
chromatography. (D) Appearance of isolated fractions containing red and white solids
after lyophilization.

3.2 Fractionation

Certain highly abundant metabolites, such as sorgoleone, the lipid resorcinol, and stigmasterol,
could be isolated in high quantities (dozens of milligrams) from root exudates even the lowest
resolution purification method, normal phase flash chromatography with the Biotage Isolera.

For more complex mixtures, 2D fractionation (normal phase flash chromatography followed by
HPLC into 1 mL volume fractions) yielded the best separations with more pure fractions for
crystallization. HPLC fractionation of the “post-sorgoleone peak” fraction from flash
chromatography, which eluted as a single peak after sorgoleone at 10% MeOH/DCM from silica
gel (Figure 7C), showed ~50 distinct peaks with absorbance at 254 nm (Figure 9). Notably,
monitoring absorbance cannot account for non-absorbing compounds that elute, and therefore
the HPLC traces shown likely underestimate the complexity of compounds eluting from the
column.

Attempts to perform reverse phase HPLC after reverse phase flash chromatography did not
yield significant improvement in sample purity for fractions containing red pigments; NMR
analyses of these fractions showed even after HPLC, each individual fraction contained a
complex mixture of compounds, and improved separations could not be achieved with available
resources.
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of chloroform extract of SX-19 over a 0-10% MeOH/DCM gradient. The major UV-
absorbing peaks were: (A) lipid resorcinol, (B) sorgoleone, and (C) “post-sorgoleone
peak” (complex mixture).
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Example of Biotage flash chromatography chromatogram for reverse phase
separation of methanol extract of SX-122, eluting 5-95% MeCN/H>O + 0.1% TFA. The
major UV-absorbing peaks were (A) suspected carbohydrates with white appearance
when fully dry, hygroscopic, and highly viscous/sticky when wetted and (B) red
pigments.
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Figure 9. Examples of preparative HPLC chromatograms (absorbance at 254 nm) of different
exudate extracts.

3.1 Fraction screening for crystal formation

3.11 Manual crystallization from bulk fractions

We transferred fractionated exudates (5-10 mL volumes from flash chromatography or HPLC)
into vials or glass test tubes followed by layering with solvents, heating and slow cooling of
mixed solvents, or slow evaporation of solvents. Slow evaporation at room temperature was
problematic due to microbial growth, particularly in aqueous solvents with minimal amounts of
organic solvent and no acid.

While formation of visually crystalline materials was possible for a variety of samples (Figure

10), we observed that frequently, crystals that formed in tubes were challenging to collect and
often formed in mixed fractions. Harvesting crystals in the presence of other constituents that
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were non-crystalline (e.g. oily) was particularly difficult. Some crystals could be resuspended in
a small amount of aqueous or organic solvent, but careful selection of the solvent was needed
to avoid redissolving the crystals during this process.

6/20/2023, SX-19 6/20/2023, SX-19 6/20/2023, SX-19 6/20/2023, SX-19 6/20/2023, SX-19
Fraction 12, post-sorgo HPLC Fraction 15, post-sorgo HPLC Fraction 20, post-sorgo HPLC Fraction 22, post-sorgo HPLC Fraction 28, post-sorgo HPLC

6/20/2023, SX-19 6/20/2023, SX-19 6/20/2023, SX-19 o A 6/
Fraction 43, post-sorgo HPLC Fraction 49, post-sorgo HPLC Fraction 53, post-sorgo HF i a X-122 HPLC of F8

BTN ) L
3/6/2024 Turbo FS EtOAc 3/15/2024 Turbo FS EtOAc, well 6/20/2023, SX-19, post-so 24 3 B SX-122 DCM Plate
(842095766), Plate1, Well C9 C9 from crushed crystals HPLC, F19 iotag 8\ i b, Well G3

11/10/2023, SX -122 DCM HPLC 3/6/2024, Turbo FS DCM HPLC 3/6/2024, Turbo FS EtOAC HPLC 12/06/2023, EtOAC extract 7/14/2023, Fraction 11, SX-122

(842097515), Plate 2, Well F2 (842097512), Plate 2, Well F11 (842095768), Plate 2, Well F9 (pooled from $X122) HPLC, reverse phasebiotage
842097573, Well E12

3/6/2024, Turbo FS DCM HPLC 3/31/2023, Fractions 34-39 5/1/2024, Turbo FS, DCM HPLC 4/19/2024 HPLC SX -122 MeOH 5/1/2024, Turbo FS, DCM HPLC

(842097512), Plate2, Well F8 hexaneextract (Stigmasterol) (842095771), Plate 2, Well F1 Plate 2, well G6 (842095767), Plate 1, wellD11
A il Ty

5/1/2024, Turbo FS, DCM 5/1/2024, Turbo FS, DCM 5/1/2024, Turbo FS, DCM HPLC 4/16/. 8/28/2023, Fraction 46 of
HPLC (842095767), plate 1, HPLC (842095771), plate 2, (842095771), plate 2, well F7 biotage 0-10% MeOH/DCM SX-122
well A7 well E2

Figure 10. Cellphone microscope images of fractions (3 mm bead objective, 100x

magnification) from various fractions from SX-19, SX-122, and Turbo FS sorghum
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exudates. All imaged fractions were crystallized and imaged in the bottom of glass
test tubes.

3.1.2 Higher throughput crystallization and imaging

ENACT was introduced into our workflow to increase the number of crystallization conditions
that could be tested per compound. Crystallization conditions were set up in a 96-well format
which allows for future potential automation, further increasing the throughput. The first screens
were performed using pure compounds known to be plant metabolites, including some
compounds identified in sorghum root exudate metabolomics datasets: salicylic acid, quercetin,
naringenin and tricin. Four oils (listed in order of increasing viscosity), Fluorinert FC-40, mineral
oil, silicon oil and Fomblin YR-10, were tested, as well as a variety of solvents and
concentrations of the compounds being crystallized. The conditions were initially set up at a
small scale to minimize sample usage. Once more favorable conditions were found, the
condition was scaled up to a volume more amenable for picking up the crystals for TEM grid
deposition.

To monitor crystal formation, rather than manually imaging each well using the smartphone
camera, we chose a higher-throughput route and employed an Agilent BioTek Cytation C10
Confocal Imaging Reader. To test the imager, we performed bulk crystallization of the 4 pure
compounds listed above, and then transferred these to polystyrene glass bottom 96-well plates.
After optimizing the imaging settings, we performed ENACT directly in these glass bottom 96-
well plates. We determined that the glass Laminex plates used in ENACT publications were
incompatible with the reader without creating a custom holder. The 96-well plate (excluding
edge wells) could be imaged in approximately 20 min at 4X magnification, providing fast readout
of the crystallization results. An example 96-well plate result is shown in Figure 11.

4 5 7 8 9 10 11 12

3
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C ) ¢ ) :
o [ 3 ] [e F1 M O
E [] " 4H 2l )
i s R P &
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Figure 11. Cytation imaging platform output for 96-well plate containing samples from ENACT
crystallization screening of salicylic acid, naringenin, quercetin, and tricin in mineral
(columns 1-3), Fluorinert FC-40 (columns 4-6), silicone (columns 7-9), and Fomblin
YR-1800 (columns 10-12) oils.
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Using the Cytation, results of the ENACT screen were imaged for salicylic acid (Figure 12),
quercetin (Figure 13), naringenin (Figure 14) and tricin (Figure 15). In all cases, multiple
conditions were found that resulted in crystal formation. Additional imaging of wells or regions of
interest was readily performed at higher magnification (up to 40X). Notably, Cytation images at
4X magnification were generally sufficient to differentiate formation of crystalline vs. amorphous
solids, such as well C2 compared to well C10 for quercetin (Figure 13).

B2 B3 B4 | O
OH
Fluorinert
OH
salicylic acid
Mineral oil
Silicone oil

Figure 12. ENACT crystallization screening of salicylic acid (100 mg/mL in 50/50 EtOH/water).
Well location is identified in the upper left corner of each image. 4X objective, bright
field color.
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Fluorinert

ﬁ Mineral oil
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Silicone oil

Figure 13. ENACT crystallization screening of quercetin (0.8 mg/mL in 50/50 EtOH/water). Well
location is identified in the upper left corner of each image. 4X objective, bright field
color. C2 inset shows an example of amorphous solid quercetin compared to C10
insert, which shows formation of quercetin yellow needles.
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Figure 14. ENACT crystallization screening of naringenin (3.8 mg/mL in 89/11 EtOH/water).
Well location is identified in the upper left corner of each image. 4X objective, bright
field color.
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Figure 15. ENACT crystallization screening of tricin (2.8 mg/mL in 100% EtOH). Well location is
identified in the upper left corner of each image. 4X objective, bright field color.

Some general trends were observed during ENACT screening. Microbial growth (gray mold) in
plates stored at room temperature was observed after 3 or more days, consistent with previous
observations of fractions collected in test tubes in mixtures of aqueous and organic solvents.
Although crystals were frequently formed in conditions using the most viscous oils (silicone oil
and Fomblin), we found that it was difficult to collect the crystals from these drops. The viscosity
of the oil created challenges for pipetting samples as well as for blotting oil away while
depositing the sample on the TEM grid. High concentrations of oil on a TEM grid are
incompatible with MicroED. The least viscous oil (Fluorinert) created a different set of
challenges. When applying the oil to the 96-well plate, Fluorinert was too thin, and instead of
maintaining a droplet, it would spread out across the well, as can be seen by the lack of a drop
in the top row of Figures 11-14. This caused quicker evaporation of the solvent/compound
mixture which sometimes still resulted in crystal formation but required the addition of more
solvent to lift the crystals off the well and onto a TEM grid. Mineral oil seemed to be the easiest
oil to work with, however, fewer crystals formed under this condition with the current compounds
tested. An initial investigation of oil removal prior to crystal harvesting, including mechanical
removal through careful pipetting or blotting, or washing with an appropriate solvent such as
hexane, suggested a combination of these approaches may improve crystal collection in the
future. A wider screen of oils and solvents will be necessary to find optimal crystallization and
working conditions for the wide diversity of metabolites found in root exudates.
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3.2 Metabolite characterization

3.21 Sorgoleone-358

o
OH

~o e

(o] X gz

Sorgoleone-358, a known secondary metabolite produced in high quantities by sorghum, was
isolated through chloroform extraction from SX-19 roots and purified by flash chromatography
as previously described.”™ '* The identity of sorgoleone-358 was confirmed through NMR and
MS. Crystallization of sorgoleone was readily achieved using various mixtures of organic
solvents including dichloromethane and methanol, yielding flat yellow plates. In bulk, sorgoleone
was a bright orange solid.

Figure 16. Sorgoleone-358 sample for MicroED analysis. From left to right: smartphone
microscope image of crystals, appearance of crystals deposited on TEM grid, and
example diffraction pattern.

Sorgoleone-358 crystals (Figure 16A) were broken into smaller pieces and deposited onto TEM
grids. Higher mag views showed presence of a lot of material across grid squares (Figure 16B)
and the crystals diffracted well out to ~0.5 A (Figure 16C). More than 50 individual datasets
were collected across multiple grids and sample preparations. The head group of sorgoleone-
358 was clearly resolved after data processing, the lipid tail however is very flexible, creating
high heterogeneity across crystals and datasets. Due to this, we were unable to fully resolve the
structure of sorgoleone-358, but we were able to resolve the crystal structure up to C10 of the
lipid tail (Figure 17).

Figure 17. Pymol screenshot of sorgoleone-358 structure up to C10 of the lipid tail (yellow/pink)
modeled into the electron density (blue) from MicroED.
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3.2.2 Lipid resorcinol
O/
OH

' oHn P

A lipid resorcinol (4,6-dimethoxy-2-[(8'Z,11°'2)-8',11¢,14‘-pentadecatriene]resorcinol) with the
formula C23H3404 was isolated in milligram quantities from SX-19. This compound was
previously identified in sorghum root exudates by Fate and Lynn in 1996.'° The biosynthesis of
this metabolite proceeds through a similar pathway as sorgoleone, and the compound is
structurally similar to sorgoleone-358. This lipid resorcinol is hydrophobic and soluble in
nonpolar solvents such as hexane and dichloromethane. It appears as a clear oil in pure form at
room temperature. Over time during storage at room temperature or -20 °C, this compound
appeared to oxidize and turn brown; an impurity with higher polarity was observed by thin layer
chromatography (TLC). The compound identity was confirmed through 1D- and 2D-NMR and
HRMS (M+H = 374.25) (Figure 18).
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Figure 18. (A) 1H-NMR spectrum in CDClz and (B) mass spectrum for lipid resorcinol (4,6-
dimethoxy-2-[(8'Z,11‘2)-8',11‘,14"-pentadecatriene]resorcinol) isolated from SX-19
exudates via flash chromatography (hexane/EtOAc).
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Notably, the previously published 1H-NMR shifts did not account for all protons in the structure,
reporting a total of only 21 protons; we therefore report the structure of this lipid resorcinol
compound for the first time with complete NMR shifts: '"H NMR (400 MHz, CDCl3) 8 6.42 (s, 1H),
5.82 (ddt, J=17.2, 10.1, 6.2 Hz, 1H), 5.49 — 5.26 (m, 5H), 5.05 (dq, J = 17.1, 1.8 Hz, 1H), 4.98
(dg, J=10.1, 1.6 Hz, 1H), 3.83 (s, 6H), 2.89 — 2.72 (m, 4H), 2.72 — 2.64 (m, 2H), 2.04 (q, J =
6.7 Hz, 2H), 1.64 — 1.51 (m, 1H), 1.42 — 1.24 (m, 10H). As this compound was not a solid at
room temperature, we could not obtain crystals for MicroED analysis using room temperature
crystallization techniques.

3.2.3 Stigmasterol

Stigmasterol, a known abundant and hydrophobic plant metabolite that can be found in root
exudates,?® was identified through NMR and HRMS (Figure 19Figure 20). NMR indicated the
presence of ~20% beta-sitosterol as an impurity in stigmasterol samples isolated from root
exudates.
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Figure 19. 1D-NMR and MS characterization data for stigmasterol isolated from SX-19
exudates. Approximately 20% beta-sitosterol was also present in these samples. (A)
1H-NMR spectrum. (B) 13C-NMR spectrum. (C) ESI-MS spectrum, positive mode.
The M+H peak is indicated in the red circle.
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Figure 20. 2D-NMR spectra for stigmasterol isolated from SX-19 exudates. Approximately
20% beta-sitosterol was also present in these samples. (A) Aliphatic 1H-13C HSQC.
(B) Aromatic 1H-13C HSQC. (C) 1H-13C HMBC. (D) 1H-1H COSY.

Stigmasterol from sorghum exudates could be recrystallized from hexane and appeared as
white/clear needles (Figure 21 left). Deposition of these crystals onto TEM grids (Figure 21
center) followed by MicroED showed that samples diffracted to ~0.5 A (Figure 21 right) and
around 30 datasets were collected. The maximum completeness we were able to achieve after
data processing was <75% which was not enough for final structure elucidation. As seen in the
center of Figure 21, the crystals on the grid were flat plates and therefore unfortunately had a
preferred orientation, creating a large missing wedge of data. Despite multiple attempts to
recrystallize the compound in different solvents or to apply the crystals differently on the TEM
grids, the issue of preferred orientation persisted.
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Figure 21. Appearance of stigmasterol crystals isolated from hexane fraction of SX-19 roots
and recrystallized from hexane. From left to right: smartphone microscope image of
crystals, crystal appearance on TEM grid, and diffraction pattern.

3.24 Unknown compounds

Additional crystalline samples were isolated from various root exudate extracts and showed
diffraction (Figure 22). Several compounds appeared visually similar to sorgoleone (yellow
crystals) but were obtained as separately eluting fractions during HPLC, suggesting some of
these may be sorgoleone analogs with different alkyl chain lengths as previously described by
the Dayan group.' While each of the samples shown in Figure 22 appeared to be crystalline
upon visual inspection and showed some diffraction, final structures could not be solved. This
was due to a variety of reasons such as weak diffraction, multicrystallinity, preferred orientation,
and/or heterogeneity.
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Figure 22. Compiled results for crystalline samples isolated from sorghum root exudate
extracts. For each listed sample, from left to right, images show: smartphone
microscope image, appearance of crystals on grid, and diffraction pattern.
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4.0 Discussion

411 Exudate isolation

Ouir initial efforts to obtain sufficiently pure metabolites for chemical characterization and
structural elucidation was significantly challenged by the very high complexity of these natural
product mixtures. Even though we could routinely obtain 50-100 mg of total crude root exudates
from each batch of sorghum root harvest, only a few, highly abundant metabolites could be
cleanly isolated through 1D chromatographic techniques.

For example, large amounts of red pigments were obtained from SX-122 root exudates, but no
individual compound could be isolated in high purity. Certain types of sorghum are known to
produce red pigments in various parts of the plant, including in the root.'®* These compounds
have been generally identified as anthocyanidins, which are charged, water soluble pigments;
specific anthocyanidins found in sorghum include apigenin, luteolin apigenidin, and luteolinidin.
While fractionation of the red pigment material was possible through both reverse phase flash
chromatography and HPLC, 1H-NMR analysis of individual HPLC fractions showed each
fraction still contained multiple compounds and was highly complex, suggesting alternative
methods are needed to obtain higher purity fractions for crystallization. Attempts to crystallize
any fractions containing red solids were unsuccessful, yielding amorphous solids or fine
precipitates.

In future efforts, 2D-HPLC using two different types of stationary phases may be needed for
enhanced separation of metabolites from complex natural samples such as plant root exudates.
We obtained the largest number of crystalline compounds using 2D separation, i.e. normal
phase flash chromatography of SX-19 chloroform extract followed by reverse phase HPLC of
the “post-sorgoleone” fractions that elute immediately after sorgoleone. Alternate types of
separation techniques, such as hydrophilic interaction liquid chromatography (HILIC), may also
be useful for improving chromatographic resolution of metabolites in root exudates in the future.

41.2 Crystallization

Metabolites isolated in high yields from sorghum root exudates (e.g. sorgoleone, stigmasterol)
could be bulk recrystallized from various solvents; the ability to obtain these compounds in large
quantities also made these samples good candidates for NMR characterization. Although
multiple samples were obtained that appeared visually crystalline, low throughput crystallization
frequently yielded samples that did not diffract or were multicrystalline. Overall, manual, low
throughput methods for crystallization of fractionated material had limited success for generating
suitable samples for MicroED, likely due to the high complexity and low abundance of the
majority of secondary metabolites in root exudates.

Higher throughput fractionation methods into 96-well plates (1-2 mL volumes), and particularly
2D separations using different types of stationary phases (e.g. SiO2 normal phase followed by
C18 reverse phase), yielded higher purity compounds in lower total quantities. Most fractions
were too limited for NMR analysis without extended analysis times, requiring the need for
MicroED and crystallization strategies that utilize far less material. Even for fractions that had
sufficient material for NMR analysis and were >95% pure by 1H-NMR, manual crystallization
through slow evaporation in test tubes yielded crystals that did diffract but were still too poor
quality for structural elucidation by MicroED. Thus, we determined that optimization of
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crystallization conditions was a necessary next step for improving our overall metabolite
identification workflow.

To accomplish this, we employed ENACT for crystallization screening. Samples were set up in a
96-well format, and initial screens required >0.5 pl of a low concentration sample. The first set of
screens were set up using known, pure compounds as a proof of concept. Many of the
conditions attempted resulted in crystal formation. Further, we observed differences in crystal
shape, size, and form across the different crystallization conditions, which could improve
MicroED data collection. It is likely that for the sorghum root exudate metabolites, a wider
screen of oils, solvents, and/or concentrations would be needed due to high chemical diversity
among these compounds. Current efforts are being made to improve the methods for moving
the crystals from the 96-well plates and onto TEM grids for MicroED data collection.

41.3 MicroED

We have demonstrated that MicroED can be incorporated into the sorghum root exudate
metabolite identification pipeline. Many different exudate fractions could be crystallized, as
shown by the collection of diffraction patterns for each (Figure 22). Unfortunately, many of the
fractions collected had lipid character. As demonstrated with sorgoleone-358, the head group of
lipids is more easily resolved than the highly flexible tails. More advanced MicroED data
processing methods are likely necessary to fully resolve the structure of these lipid-like samples.
Although diffraction data was collected for many other crystalline compounds as well, these
compounds were unable to be structurally resolved due to multiple issues. In some case, the
initial fractionation did not result in a pure enough sample creating highly heterogeneous
crystals, which were difficult to separate out during MicroED data collection and/or data
processing. We also ran into the issue of preferred orientation which was often caused by
formation of flat plate-like crystals which we were unable to force into different orientations. This
resulted in low completion values, preventing us from solving the structure of the compound.
Issues of heterogeneity and preferred orientation could potentially be resolved with our higher
throughput fractionation strategy, particularly 2D separations, and recent addition of ENACT
(see above). With an increase in crystallization screening conditions, this increases the chances
of forming crystals of varying size and orientation, which would likely improve MicroED data
collection and processing.

414 Overall workflow and future directions

We established an integrated workflow for metabolite characterization, from crude metabolite
generation, fractionation, and chemical structural analysis using various analytical methods.
Overall, the application of this workflow to sorghum root exudates, which are highly complex,
was very challenging, and successful identification of novel metabolites from these samples will
require additional efforts, particularly in the areas of improved separations and crystallization
screening. Upgraded instrumentation that allowed for higher throughput sample processing and
fractionation—such as an HPLC fraction dispenser adapter tray and new SpeedVac
concentrator that enabled sample collection in glass-coated 96-well plates instead of individual
glass test tubes—significantly improved our ability to obtain fractions that could crystallize. NMR
analysis of isolated fractions containing solid compounds showed substantial improvement in
sample purity, yielding multiple fractions that formed crystals that diffracted. We anticipate that
further exploration of different fractionation approaches, including different types of
chromatography, column and fraction size, and expanded crystallization screening, will improve
sample purity and quality. Our most recent results from ENACT screening show that this is a
promising direction for MicroED sample generation. Higher throughput technologies such as
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automated, nanoliter-scale liquid handling systems will also facilitate more rapid crystallization
screening in the future.

This project identified a substantial number of compounds that were poorly crystalline, such as
many of the lipid-like, hydrophobic compounds identified in the toluene and DCM extracts. Many
of these substances were oily at room temperature, making isothermal crystallization
challenging. To improve the identification of these and other poorly crystalline metabolites,
additional methods such as crystallization sponges and small molecule crystallization
chaperones could be integrated into our overall workflow.'” '® We briefly explored
tetraaryladamantane crystallization chaperones given their reported high success rate at
generating high quality crystals of diverse small molecules, including hydrophobic compounds
and compounds that are not solid at room temperature, such as hexane.'® ?° Crystallization with
1,3,5,7-tetrakis(2,4-dimethoxyphenyl)adamantane (TDA) and 1,3,5,7-tetrakis(2-bromo-4
methoxyphenyl)adamantane (TBro), two commercially available crystallization chaperones, was
attempted for sorgoleone and the lipid resorcinol. However, TDA has a working molecular
weight range for analytes between 40 and 180 Da, while TBro is reported for hydrophobic
analytes between 150 to 270 Da. No reported success of co-crystallization for compounds >
270 Da have been reported for these two chaperones, suggesting they may not be able to
accommodate larger metabolites such as sorgoleone, which has a molecular weight of 358 Da.
We identified a newer crystallization chaperone in the literature, 1,3,5,7-tetrakis(2-fluoro-4-
methoxyphenyl)adamantane (TFM), which was reported to assist the co-crystallization of phytyl
acetate, which has a molecular weight of 338 Da.?' A larger compound, squalene, with a
molecular weight of 411 Da, was also co-crystallized with TFM, but the structure could not be
fully resolved. Our attempts to synthesize TFM, which is not commercially available, yielded the
desired product, but the reaction was lower yielding than reported, and the product was not
sufficiently pure to form a solid at room temperature, precluding its use for MicroED testing.
Development of alternate crystallization chaperones spanning a wider range of analyte
molecular weights and properties may be another promising direction for future technologies
that can be integrated with our overall metabolite identification workflow.
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