skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fatigue and fracture of fiber composites under combined interlaminar stresses

Conference ·
OSTI ID:2450

As part of efforts to develop a three-dimensional failure model for composites, a study of failure and fatigue due to combined interlaminar stresses was conducted. The combined stresses were generated using a hollow cylindrical specimen, which was subjected to normal compression and torsion. For both glass and carbon fiber composites, normal compression resulted in a significant enhancement in the interlaminar shear stress and strain at failure. Under moderate compression levels, the failure mode transitioned from elastic to plastic. The observed failure envelope could not be adequately captured using common ply- level failure models. Alternate modeling approaches were examined and it was found that a pressure-dependent failure criterion was required to reproduce the experimental results. The magnitude of the pressure-dependent terms of this model was found to be material dependent. The interlaminar shear fatigue behavior of a carbon/epoxy system was also studied using the cylindrical specimen. Preliminary results indicate that a single S/N curve which is normalized for interlaminar shear strength may be able to reproduce the effects of both temperature and out-of-plane compression on fatigue life. The results demonstrate that there are significant gains to be made in improving interlaminar strengths of composite structures by applying out-of-plane compression. This effect could be exploited for improved strength and fatigue life of composite joints and other regions in structures where interlaminar stress states are critical.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE Office of Defense Programs (DP)
DOE Contract Number:
W-7405-Eng-48
OSTI ID:
2450
Report Number(s):
UCRL-JC-131165; R&D Project: YN0100000; ON: DE00002450
Resource Relation:
Conference: American Society for Composites 13th Technical Conference, Baltimore, MD, September 21-23, 1998
Country of Publication:
United States
Language:
English