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3. Executive Summary

The overarching mission of the Center for Mechanistic Control of Unconventional Formations
(CMC-UF) was to garner cross-cutting, fundamental, geoscience knowledge to achieve
mechanistic control over the strongly coupled nonequilibrium physical and geochemical
processes in extreme geological environments including shale, mudstone, marls, and other tight
rocks with nanoscale pores. Collectively, these are referred to as unconventional formations and
they often play the role of seals for other subsurface storage formations, see Fig. 1. The
fundamental knowledge garnered by CMC-UF enables science-based management of US
unconventional formations for subsurface storage of carbon dioxide and TWh quantities of
renewable energy as hydrogen and/or compressed air over longer timeframes as well as for
natural gas production, with reduced environmental impacts, in the short term
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nanoporous media at nm to m scales before,
during, and after interaction with aqueous and nonaqueous fluids (e.g., COz). These new
experimental workflows and image analysis methods aided elucidation of the coupled phase
behavior, geomechanical, and transport mechanisms of single and multiphase flow through
nanoporous media across cascading length and time scales to understand, model, and control
both conduits and barriers to transport. Delineation of reactivity at shale-mineral interfaces
combined with fluid and solute transport revealed that shale surfaces are among the most
reactive in the subsurface due to substantial compositional heterogeneity and large surface area
of reactive surfaces. Knowledge of the interplay of water composition, fluid flow conduits, stress




with rock matrix composition and microfracture topology enables control through geochemical
processes that can be engineered to either open pore space to flow or, conversely, close
fractures and other pathways for rapid flow and thereby reduce transport through seals. The
CMC-UF team characterized mechanisms of fracture closure under the influence of stress and
reaction as well as the mechanisms of viscoplasticity and ductility of shale barriers when exposed
to brine that are all important in determining the durability of reservoir seals. Throughout the
scientific effort, integration and translation of physical and chemical mechanisms was
accomplished using advanced algorithms and modeling to assess the influence of fine-scale
processes at macroscopic length and time scales.

Notable advances are summarized as follows.

e We developed new workflows to collect and integrate characterization data from multiple
instruments to solve the scientific puzzle of pore structure and connectivity of multiscale
nanoporous geomaterials.

e We decoded the coupled nonlinear behavior of complex systems using both bottom-up
and top-down models, combined with multiscale characterization data where it was
impractical, or impossible, to create experimental conditions with outcomes that were
measurable directly.

e We measured and modeled chemical reactions to understand how the many interfacial
processes in heterogeneous solid-liquid and solid-gas phase systems control dissolution,
adsorption, deposition, and mechanical failure.

e We built robust predictive models of highly complex, multiphase, heterogeneous, and
reactive natural systems incorporating holistic spatiotemporal scale integration.

4. Science Questions

The research approach within CMC-UF was guided by 11 cross-cutting science questions that
required a multidisciplinary approach to answer. These questions were the north star guiding
CMC-UF efforts toward science-based management of the US shale resource for reduced
environmental impacts of natural gas production in the short term and, importantly,
foundational understanding for building subsurface hydrogen and carbon dioxide storage
infrastructure as well as geothermal energy recovery. A description of the 11 CMC-UF specific
science questions follows:

1. How are shale compositional and structural heterogeneities, interfaces, and disorder
characterized and how do these attributes control the behavior & performance within
this natural energy system?

2. How are characterization data from multiple sources integrated and extended to solve
the scientific puzzle of multiscale, multiphysics processes in multiscale porous media?

3. How do complex fluids wet the heterogeneous surfaces of natural porous media, i.e.,
shale?

4. How does sorption interplay with transport to determine permeability and mechanical
properties?

5. How do the many interfacial processes in heterogeneous solid-liquid and solid-gas phase
systems control dissolution, adsorption, deposition, and failure?



6. How do we achieve mechanistic control of interfaces and transport in extreme
environments?

7. How are experimental and simulation data transformed into practical information?

8. How is a predictive understanding of subsurface system behavior developed that
embraces multi-scale complexity, dynamics, and reactivity across approximately ten
orders of magnitude length. scale?

9. How are robust predictive models developed for highly complex, multiphase,
heterogeneous, and reactive natural systems?

10. How are numerical algorithms advanced to reach across traditional mathematical
boundaries to generate computer models of sophisticated, coupled, multiscale
phenomena and experiments to understand data?

11. How are theory, computation, and experiment combined to probe the structure,
chemistry, mechanics, and response of complex natural systems?

The efforts to answer these questions propelled the CMC-UF team to garner significant
fundamental knowledge and to develop comprehensive models of coupled, multiscale
processes. Meeting these science goals provided fundamental understanding of chemical
transformation and transport in nonequilibrium, heterogeneous, nanoscale environments. Our
research probed the geochemical and geophysical processes at the fine scale to understand
mineral/fluid interactions and chemical transport and pushed the boundaries of current
measurement methods and data science approaches to integrate experimental results, models,
and data.

5. Accomplishments

The CMC-UF approach was multidisciplinary geoscience and was summarized in our reviews of
scale translation and reactivity of unconventional formations (Mehmani et al. 2021, Khan et al.
2021, Jew et al. 2022). We pioneered innovative workflows for spatiotemporal scaling with the
potential to overcome the fundamental lack of scale separation in unconventional rocks (Liu et
al. 2024). We discovered and documented that the mineral/fluid interface in these systems is
among the most reactive in the subsurface (Khan et al. 2021, Néel et al. 2023, Murugesu et al.
2024a). We developed and exploited imaging and image reconstruction modalities with nm
resolution to understand shale fine-scale rock fabric (Frouté and Kovscek 2020, Frouté et al. 2023)
and performed transport calculations on such images (Anderson et al. 2020b, Frouté et al. 2020,
Liu et al. 2024). These advances provided the basis of CMC-UF’s accomplishments in our mission
to unravel and control the interplay of heterogeneity, fluid/mineral reactivity, and stress.

The remainder of section 5 summarizes the findings of the CMC-UF team in response to the 11
science questions asked above.



5.1 How are shale compositional and structural heterogeneities, interfaces, and disorder
characterized and how do these attributes control the behavior & performance within this natural
energy system?

We observed shale fabric, mineralogy, and porosity and integrated observations with numerical
simulations to reveal the physical mechanisms limiting transport at various scales. No single
experimental or numerical approach completely characterizes the complexity of shale reservoirs
at all scales (Mehmani et al. 2021). To meet this challenge, we integrated experimental techniques
from across CMC-UF in novel ways, including electron, X-ray, and optical microscopy, as well as
nuclear magnetic resonance, positron emission tomography, and X-ray absorption spectroscopy
(Anderson et al. 2020a,b, Ling et al. 2022, Noel et al. 2023, Zahasky et al. 2023). The sum of these
techniques paints a complete picture of the physical and chemical properties of shale from the
centimeter to nanometer scale. In order to integrate observations across scale, we developed
novel methods for image registration and data assimilation (Anderson et al. 2021). All the samples
used in our experimental studies were from a single shale formation, where we used well logs,
microseismic monitoring, and borehole stress measurements to model production, slip on
existing fractures (Alshafloot et al. 2024), and hydraulic fracture propagation (Alshafloot et al.
2024, Yang et al. 2021 & 2023). By placing our experimental samples in the context of field data,
we connect our observations of fundamental physics to operational parameters and efficiency
metrics.

5.2 How are characterization data from multiple sources integrated and extended to solve the
scientific puzzle of multiscale, multiphysics processes in multiscale porous media?

We developed and adapted machine learning and statistical techniques to integrate, extend,
and translate diverse multimodal and multiscale data of porous media into meaningful
applications and representations for understanding multiscale and multiphysics phenomena.
Our efforts have focused on data translation between imaging modalities as shown in Fig. 2,
image downscaling in the form of image super-resolution, and data synthesis for porous media
images (Anderson et al. 2020a, Anderson et al 2021, Ling et al. 2021, Murugesu et al. 2024b).
Each of these efforts extends our characterization capabilities and thereby furthers our
understanding of multiscale/multiphysics porous media. Data translation models allow us to
predict high-contrast nanoscale images and image volumes from low-contrast/low-resolution
nondestructive input data (Anderson et al. 2020a). These algorithms preserve samples for further
experimentation while providing image data with comparable resolution and contrast to
destructive imaging modalities. Image downscaling, meanwhile, allows us to predict low-
throughput/high-resolution images from high-throughput/low-resolution data (Murugesu et al
2024a). Such an imaging setup enables dynamic imaging of reactive transport processes at both
sufficient time and spatial resolution to understand the system dynamics. Finally, data generation
allows us to extend limited, costly, or destructive image data of shale fabric and microfracture
networks by building models to sample statistically synthetic images of samples and to use these
to quantify uncertainty in petrophysical properties (Anderson et al. 2021). Beyond image
processing, generation, and analysis, the data representations learned by these
multiscale/multimodal image assimilation models are applied to modeling and analyzing
multiphysics/multiscale physical and chemical processes (Wang and Battiato 2021).
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Fig. 2. Example of multimodal image translation and generation of domain for transport simulation
(Anderson et al. 2021). On the left is an input transmission x-ray microscope (TXM) image of a shale volume.
TXM is nondestructive. Machine learning is used for image translation to predict an image of a high-contrast
scanning electron microscope (FIB SEM) reconstruction of the pore space. FIB SEM is a destructive imaging
technique. After segmentation of the FIB SEM volume, an image of pore space is obtained on the far right.

5.3 How do complex fluids wet the heterogeneous surfaces of natural porous media, i.e., shale?

We used a multipronged approach that cross-cut length scales and entails experiments as well
as theory to address the fundamental question of gas, water, and organic phase wetting of
heterogeneous surfaces. Characterization of the shale fabric and nanopore structure provides
the basis for diverse integrated studies of wetting including molecular dynamics of water and
carbon dioxide in nanopores and microcracks, upscaling using Minkowski functionals (Simeski et
al. 2020, Boelens and Tchelepi 2021a), nuclear magnetic resonance spectra as shown in Fig. 3
(Medina-Rodriguez 2021), measurement of the microscopic details of reaction product evolution
in microfluidic devices (Ling et al. 2022), direct numerical simulations incorporating wetting and
phase behavior, and adsorption (Esmeailzadeh et al., 2020, Boelens and Tchelepi 2021b). We find
that fluids wet heterogeneous surfaces in surprising ways with results depending upon pressure,
temperature, reaction rates, phase composition, and the mutual solubility of chemical
components in different phases. Condensation within nanopores is an important manifestation
of wetting that is being understood within the experimental-theoretical-upscaling framework
described above (Rehmeier et al. 2023, Simeski et al. 2023). Importantly, stronger electrostatic
moments, all other factors equal, lead to greater adsorption and condensation at low pressures
(Simeski et al. 2020).



N, adsorption

e _o—o" scCO, aging
(40 °C, 10 MPa)
NMR 3 days

? Mass transport

Fig. 3. Characterization of shale pore sizes and structures before and after exposure to scCO, using a
combination of gas adsorption and nuclear magnetic resonance (Medina et al. 2023). Integrating the gas
adsorption and NMR data shows how supercritical CO; injection alters the pore-size distribution for pore
sizes <1 nm to T mm. Results provide insights on how the pore structure and mass transport properties of
different shale lithologies may evolve during storage of supercritical CO».

5.4 How does sorption interplay with transport to determine permeability and mechanical
properties? We unraveled the fundamental details of coupled sorption, transport, and
mechanics across length scales with coordinated experiments, modeling, and upscaling. CMC-
UF researchers endeavored to work on identical or similar samples providing substantial
leveraging of measurements and the provision of data for model development and calibration.
The pulse decay method (i.e., gas expansion) of interrogating the transport properties of tight
media measures flow dynamics of CO; in shale under reactive conditions (Lyu et al. 2021),
displacement of resident gases such as methane, and the interplay of transport and adsorption
all under conditions of stress. X-ray computed tomography of the dynamics of CO>, movement
relates macroscopic location and distribution of CO; to microscopic details of shale fabric (Elkady
et al. 2020). Overarching results indicate that moist shales containing carbonate minerals are
reactive in the presence of CO, and subject to mechanical weakening (Kamali-Asl et al. 2021 &
2022). Dual continuum models (i.e., those that consider the fracture network and shale matrix as
separate interacting continua) effectively represent the dynamics and adsorption of gases in
mesoporous and microporous segments of shale within an upscaled model as shown in Fig. 4 (Lyu
et al. 2021, Lyu et al. 2023).
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Fig. 4. Pressure pulse decay experiments (points) and dual porosity model predictions (lines) for a CO,-shale
system (Lyu et al. 2023). Results from separate low- and high-pressure experiments shown. The shale
sample consists of natural fractures, microcracks, mesopores, and micropores. A modified analytical
approach is used to evaluate the mass transfer rate in microcracks and mesopores. A triple-porosity model
is then utilized to estimate the remaining parameters: the effective gas permeability in the fracture, the mass
transfer rates in micropores, and the volume split between mesopores and micropores. Adsorption of CO,
is included.

5.5 How do the many interfacial processes in heterogeneous solid-liquid and solid-gas phase
systems control dissolution, adsorption, deposition, and failure?

The CMC-UF team measured and modeled chemical reactions at mineral/organic
matter/hydraulic fracture fluid (HFF) interfaces because they play major roles in the extraction
of hydrocarbons from unconventional oil/gas shales as well as control the long-term
performance of seals overlying carbon dioxide storage formations. We find that interfaces in
shales are exceptional microenvironments governed by far-from-equilibrium reactive conditions
(Khan et al. 2021, Jew et al. 2022). The pH of fluids delivered to these interfaces may be negative
on the log scale and such fluids may spontaneously imbibe into unsaturated shale at rates of as
high as 10 mm/s across a narrow depth into the shale interior (NGel et al. 2023). At these acidities
and velocities, reactive alteration creates measurable changes to shale flow and mechanical
properties. Reactions of acidic fluid with inorganic and organic phases in unconventional shales
resultin (1) dissolution of mineral phases such as pyrite (FeS,), calcite (CaCOs3), and barite (BaSO4)
(from drilling muds), which releases Fe?*, Ca?*, and Ba?* cations (and trace amounts of heavy
metals) and increases porosity and permeability, particularly in carbonate-rich shales; (2)
oxidation of aqueous Fe?* to Fe3* and of aqueous S* to SO4%; and (3) (re)precipitation of Fe3*-
(oxyhydr)oxide, calcite, barite, strontianite (SrCOs), and celestite (SrSQa) in the fracture network,
that reduces pore connectivity and permeability (Medina 2022, Medina-Rodriguez et al. 2023).
Mineral solubilization increases permeability and may lead to matrix weakening while attendant
mineral precipitation and sorption decrease permeability and impede fluid penetration. The
competition among dissolution and precipitation mechanisms ultimately determines the
transport and mechanical properties (Kamali-Asl et al. 2021, Murugesu et al 2023). These
reactions also impact the release and sequestration of trace levels of heavy metal contaminants
(Cr, Ni, Cu, Zn, Se, and U) that are common in many organic-rich black shales (Jew et al. 2020).



A major component of our study was reactive transport modeling of these processes, with the
aim of developing a new model of reactive imbibition that allows us to examine the major
variables controlling element transport during hydraulic fracturing of unconventional shales in a
guantitative, predictive fashion. At the core scale, we tracked the impact of interface alterations
using coordinated tests for permeability before, during, and after exposure to nonequilibrated
fluids such as brine saturated with supercritical CO,. We created the protocols necessary for shale
embedded microfluidics, see Fig. 5, demonstrating the utility of this important emerging
methodology to monitor the reaction progression and irreversible changes to shale fabric under
flow conditions at resolutions appropriate to detail the fluid-shale interface (Ling et al. 2021, Ling
et al. 2022). Importantly, we used microfluidics to understand achievement of mechanistic
control, as described next.
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Fig. 5. Results from a shale-embedded microfluidics device that was designed to probe and quantify
interfacial processes (Ling et al. 2022). (A) Prereaction scanning electron microscope backscattered
electron (SEM-BSE) images of the four samples (image width = 1.38 mm). Blue boxes (image width ~0.5 mm)
correspond to select regions prereaction and postreaction images in B-D. (B) Prereaction composite
elemental maps for the select region. (C) Postreaction SEM-BSE images of the same region. Insets show
albite and quartz crystals exposed after the dissolution of surrounding calcite. (D) Corresponding
postreaction composite elemental maps. Samples are ordered from carbonate-poor on the left to
carbonate-rich on the right. The interfacial dissolution zones with newly developed porosity are indicated by
dashed lines. The dashed region for WC 2-5H corresponds to calcite dissolved from both sides of the
fracture. The colors indicate individual elements as listed for each composite element image.



5.6 How do we achieve mechanistic control of interfaces and transport in extreme environments?

We developed and used models to assimilate experimental and theoretical knowledge about
both flow and the chemical reactivity processes that either enhance or decrease permeability
in shales. Deep subsurface energy systems rely upon controlled stimulation of host rock using
hydraulic fluids to enable exchange of heat, CO,, or hydrocarbons. In the process, injection of
fluids initiates a tapestry of fluid-rock reactions, that inevitably leads to dissolution and
subsequent mineral scale precipitation, mechanical weakening of fracture faces, and ultimately,
closure of pore throats and fractures (Ling et al. 2022, Murugesu et al. 2023). Reactive transport
models (RTMs) are increasingly important for developing mechanistic controls of interfacial
chemistry and transport in shales (N6el et al. 2023). To provide experimental data needed to build
next-generation flow and RT models, we made experimental observations across scales, from
nano- to millimeters through a series of interlinked collaborative activities. CMC-UF team
members published three interconnected papers that advance fundamental understanding of
this reactive transport in shales: (a) We used Scanning Electron Microscopy (SEM), Focused lon
Beam Scanning Electron microscopy (FIB-SEM) and Scanning Transmission Electron Microscopy
(STEM) to perform a correlative cross-scale study of porosity and pore connectivity (Froute et al,
2020). (b) This information then informed the development of the first microfluidic model to span
from Darcy to pore scales as shown in Fig. 5, (1 um to 100 mm) (Ling et al, 2021). This direct-
observation flow system was instrumental to explore the combined impacts of scaling behavior
and network geometry on fluid transport. (3) To further understand and model the coupling
between fast flow events such as imbibition and chemistry, we used synchrotron X-ray
fluorescence mapping to directly and simultaneously image fluid transport and evolving chemical
reaction fronts at the microfracture scale as shown in Fig. 6 (micrometers to centimeters) (Noél
et al., 2023). Assimilation of processes and data observed in these studies is currently driving a
rapid expansion of model simulation capabilities and transformed our ability to control
mechanistically shale interfaces.

Schema of reactive . Fig. 6. Schematic representation (left) and x-ray
imbibition X-ray mapping imaging of bromide tracers (right) reveals a
previously unknown type of reactive transport
in shale, termed “reactive imbibition” (Noel et
al. 2023). Calcite dissolution is triggered and
proceeds at roughly the same rate as rapid
spontaneous imbibition of acidic stimulation
fluids, allowing the two processes to interact in
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5.7 How are experimental and simulation data transformed into information?

Scientific discovery involves the formulation of theory to explain observed experimental data
and, importantly, the design and execution of experiments to test and evolve theory.
Transformation of data into useful information was achieved through integrating data
interpretation, modeling constrained by experimental data, and machine learning (Wang and
Battiato 2021, Anderson et al. 2021, Huang et al. 2022). Combining experimental and simulation
(based on the theory) data provides crucial information to better constrain our understanding
and prediction of fluid-solid interactions, transport fluid/gas inside rock (Wang and Aryana 2021,
Liu et al. 2021), and mechanics. Dynamic and static imaging, spectroscopy, microscopy and
relaxation time were among the most powerful data types for probing in situ processes that we
pursued (Perez Claro et al. 2021). We incorporated the outcomes of such measurements into at-
scale computations using density functional theory, molecular dynamics, lattice Boltzmann
method, direct numerical simulation, micromechanical, and other continuum scale techniques to
probe fundamental physical processes. In many cases, we use both multiscale data and models
to translate between length scales using formal upscaling/downscaling, Minkowski functionals,
and machine learning techniques.

5.8 How is a predictive understanding of subsurface system behavior developed that embraces
multi-scale complexity, dynamics, and reactivity across approximately ten orders of magnitude
length scale?

Our approach was holistic and was characterized by comprehension that at-scale shale
features, physics, and chemistry are intimately coupled and that effects cascade across the
length scales defining the system. This understanding was critical for appropriate model selection
and development at larger scales, as well as for model parameter estimation, necessary to
achieve predictive understanding (Lyu et al. 2023). Important physical and chemical features
cascade across length scales and so does our research approach (Mehmani et al. 2021). Scale
translation remains the ultimate challenge. Much of the physics and chemistry of shale-fluid
interactions occurs within the nanoporous regions including sorption and reaction (Edgin et al.
2021, Medina-Rodriguez 2021, Medina-Rodriguez 2023), while the emergent behavior occurs
over geological formations characterized by km-scale distances between wells. Intermediate
length scales of the fractured domain are important for transport of acidic fluids and mixing with
the resident brines. The critical question is how physics at the nanoscale are appropriately
accounted for at the larger scale. Our model development effort was directly guided by the
natural system. We used SEM/TEM/XAS/NMR as appropriate methods to help understand the
smaller scales and the linkages among scales (Frouté et al. 2023, Medina-Rodriguez et al. 2023).
The experimental techniques are complemented by molecular simulation methods such as MD,
GCMC, DFT, and so on, supporting development of both computationally efficient and physically
accurate models at larger scales. Lattice Boltzmann method simulations provide a link from the
nanoporous to the pore network scale and, hence, continuum effects, thereby incorporating
nanoporous dynamics at larger scales (Liu et al. 2024). The integrated result of nanoporous
transport and reaction mechanisms was measured using micro and clinical tomography (CT and
PET) coupled with time-resolved solute generation and reactive transport model development
(Zahasky et al. 2019, Zahasky et al. 2023, Murugesu et al. 2024a). These approaches give insight
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into sorption and solubilization at larger scales, gas transport and displacement, matrix softening,
and, importantly, transport through microcracks and fractures (Kurotori et al. 2023).
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Fig. 6. lllustration of the cascade of length scales of interest in shale formations (Mehmani et al. 2021). From
the upper right: water/clay interactions in a 10 nm wide slit pore where water is shaded in blue; nanoCT
image of shale structure illustrating minerals, kerogen, and outgassed pores; microfractures filled with
barite scale; matrix-to-fracture mass transfer; zones of enhanced ductility.

5.9 How are robust predictive models developed for highly complex, multiphase, heterogeneous,
and reactive natural systems?

Our models were built from the bottom up as well as from the top down to decode the coupled
behavior of complex nonlinear systems under conditions where it is impractical, or impossible,
to create experimental conditions with outcomes that can be measured directly. Seal materials
and shales are inherently multiscale with features cascading upward in length scale from pores to
microcracks to fractures, Fig. 6. Fractures span from the scale of grain boundaries (nm) to
formation boundaries (m) and may evolve in time as a result of mechanical or reactive processes.
State of the art procedures for upscaling/downscaling, such as homogenization, fail due to lack
of scale separation (Mehmani et al. 2021). Phenomena such as multiphase transport, phase
behavior, geochemistry, and geomechanics, act in tandem and in complex patterns as illustrated
in Fig. 7. The intricate interdependencies and feedback across scales, gives rise to macroscale
behavior. We developed new algorithms to account properly for across-scale coupling when
classical upscaled formulations are invalid, as is typical in reactive processes that involve
precipitation and clogging (Wang and Battiato 2020 & 2021). We use robust models, informed by
physical measurements, to untangle methodically the various mechanisms. We also use such
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models in predictive mode to integrate physics. The bases for combination across scales are image
data, molecular dynamics, Minkowski functionals (geometric descriptors of porous media such as
porosity, curvature, connectivity), and lattice Boltzmann simulations (Simeski et al. 2020, Boelens
and Tchelepi 2021, Wang and Aryana 2019, Wang and Aryana 2021). Transport at microscale, and
molecular interactions, is examined using atomistic scale simulation. Mesoscopic simulation
techniques, such as the lattice Boltzmann method (LBM), are used as a means to link and translate
the physics in fluids across scales by capturing the essential physics and tracking the collective
behavior of the system (Frouté et al. 2020). This is done in computational domains that reflect
the finely resolved characterization of pore spaces obtained using measurements from SEM and
TEM (Liu et al. 2024). To date, we have expanded LBM to account accurately for complex
geometries and confined phase behavior in nanopores. Phase behavior and transport are coupled
in LBM via development of a confined extension of Peng Robinson cubic Equation of State (CEoS)
and using this extension to inform intermolecular forces in confined systems in the LBM
framework via a pseudopotential model (Wang and Aryana 2021, Liu et al. 2022). The LBM model
is tuned and validated based on benchmark atomistic simulation data, and its use is extended to
complex networks via the use of a preconditioner (Liu et al. 2021). Scalable implementations of
LBM (Frouté et al. 2020, Rustamov et al. 2022) are then used to obtain input for continuum-scale
models. The final picture emerging from examination of the interplay between different physical
aspects, e.g., reactive transport and geomechanics, is that it is necessary to honor the full
complexity of multiphase fluids within heterogeneous and reactive natural hierarchical
permeable media.
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(a) Pre-reactive fluid flow (b) Post-reactive fluid flow

27 pm X 27 pm x 27 ym

27 uym x 27 pm x 27 pm

Fracture  Length Thickness  Width Area Volume Fracture  Length Thickness  Width Area Volume
(mm) (mm) (mm)  (mm?) (mm?) (mm) (mm) (mm)  (mm?) (mm?3)
1 41.42 0.68 10.15  1295.02 53.44 1 43.66 0.43 9.65 1190.22 3212
2 29.94 0.59 548 928.81 38.49 2 27.31 0.53 342 897.28 23.81
2a 12.87 0.25 317 100.85 2.85 2a 9.96 0.24 218 66.26 1.15
3 2517 0.77 5.56 709.01 24.58 3 25.33 0.60 3.81 551.76 12.56
3a 17.97 0.44 4.99 183.65 5.85 3a 14.44 0.18 265 154.85 3.78
3b 16.12 0.32 3.66 189.91 6.05 3b 15.34 0.29 4.41 97.56 2.16
30.10 0.31 2.95 333.14 9.11 4 20.43 0.33 2.59 195.88 3.19
5 23.98 0.89 4.92 354.30 823 5 17.03 0.40 3.48 131.35 2.03
Total Volume 148.60 Total Volume 80.80

Fig. 7. X-ray micro computed tomography images of a fractured shale core subjected to acidic reactive fluid
under confining stress as an analogy to brine acidified with carbonic acid (Murugesu et al. 2024): (a) pre-
reactive flow shows ample fractures identified and numbered and (b) post-reactive flow shows that fracture
width, area, and volume decrease as a result of reactive transport processes under stress that closes
fractures. Sample permeability decreased by a factor of 4 between images (a) and (b).

5.10 How are numerical algorithms advanced to reach across traditional mathematical
boundaries to provide computer models of sophisticated, coupled, multiscale phenomena and
experiments to understand the data?

We bridged boundaries through the development and application of machine learning
methods. Image super-resolution models are integrated with experiments to enhance dynamic
imaging of reactive transport processes at the fracture and macropore scale (Wang and Battiato
2021, Murugesu et al. 2024). This approach may be further integrated with simulation models to
calibrate model parameters. In doing so, we provide a link across length and time scales between
coarse-grid low-resolution image data acquired by experiment and fine-grid simulation data.
Image data generation models allow for synthesis of image data across domains and scales
(Anderson et al. 2021). Synthetic images are used in tandem with digital rock physics techniques
to estimate and quantify uncertainty for morphological and petrophysical properties of samples
when only limited or destructive imaging data are available. Furthermore, jointly synthesizing
multimodal/multiscale data provides a link across data domains and scales that can then be
correlated to simulated or experimentally observed transport properties in one of the domains
or scales (Liu et al. 2024).
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5.11 How are theory, computation, and experiment combined to probe the structure, chemistry,
mechanics, and response of complex natural systems?

Imaging of nanopores in 3D provides a basis to probe coupled processes in complex nanoporous
geological media. Experiments, theory, and computations have been combined to obtain
fundamental understanding of transport, phase behavior, mechanics, and reaction within and
outside nanopores as summarized in Fig. 8. Scanning transmission electron microscopy (STEM)
provides superior resolution of the size, shape, and 3D connectivity of nanoporous networks
(Frouté et al. 2023). Using such 3D pore network images, we have combined molecular dynamics
with lattice Boltzmann method simulations to transform image data into information and to
translate physics across length and time scales. For instance, direct estimation of nanoDarcy
matrix permeability from image data has been obtained (Frouté et al. 2020). In addition, theory
and computation were combined in our study of the Minkowski functionals (Boelens and Tchelepi
2021a). For a 3D porous medium the Minkowski functionals are related to the pore volume,
surface area, integral mean curvature, and the Euler characteristic (i.e., connectivity) (Boelens
and Tchelepi 2021b). For thermodynamical properties derived from a free energy, the Minkowski
functionals are used to provide a complete description of the geometrical parameter space of a
system. Both classical density functional theory and molecular dynamics simulations showed that
these functionals are useful to describe accurately capillary condensation under tight
confinement in porous media (Simeski et al. 2021). This opens new opportunities to better
understand the effect of topology on sorption phenomena and to upscale molecular scale

simulations to the experimental scale.
Bulk reference data of nPT relationship

Validate MS force field via NPT ensemble in pure fluid systems ]

l Bulk nPT relationship from MS results

Find optimized FC values via GCMC-MD simulations
in pure fluid systems

l FC values at specified PT conditions

Adsorption simulations in nano-slits via GCMC-MD simulations ]

l Adsorption density distributions in nano-slits

Conduct LB adsorption simulations via free energy model by
benchmarking against GCMC-MD simulation results in nano-slits

l Values of wall-fluid interaction parameter

Extend LB simulation scheme to investigate
adsorption behavior in complex domains

3
i 1650 nm Fluid quantity contained in the domains
End

Fig. 8. lllustration of scale-translation framework (Liu et al. 2024): (a) Pore network of shale sample obtained
via STEM (scanning transmission electron microscope) computed tomography and (b) flow chart of
framework where MS is molecular simulation, GCMC is grand canonical Monte Carlo, MD is molecular
dynamics, LB is lattice Boltzmann. The framework is capable of simulating transport on STEM images.
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6. Other Impacts

Other notable accomplishments of CMC-UF include (i) extensive training opportunities for
students in the geosciences and (ii) the collection, curation, and publication of unique image
datasets as detailed in the Products section. CMC-UF had a nonscientific goal to create a highly
trained, diverse, and empowered scientific workforce whose members possess depth in multiple
areas sufficient to collaborate across geoscience and engineering science fields. Our collaborators
include graduate students, postdoctoral scholars, and research staff. The table below summarizes
the number of trainees supported throughout the lifetime of CMC-UF and gives some details on
the succeeding professional positions that they filled.

Table 1. Summary of trainees.

No. of | Notable next positions
Alumni
Graduate students 42 Faculty: T.S. Alshafloot

Postdoc: J. Sun, B. Medina Rodriguez (subsequently
faculty), Y. Wang (subsequently faculty)

US Gov't Lab: K. Guan, K. Rehmeier (nee Covington)
Employment in Industry: Y. Aitosaffah, Y. Elkady, A.
Singh, F. Guo, J. McKinzie, M.P. Murugesu
Progressed into PhD: J. Bracci, R. T. Garza, Y. Perez-
Claro, M. Sodwatana

Postdoctoral 10 Faculty: B. Ling, C. Zahasky, H. Khan, B. Medina
scholars Rodriguez
Postdoc: A. Kamali Asl, T.Kurotori
Technical staff 9 Faculty: Y. Mehmani
Undergraduate 3
researchers
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