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Abstract 
This mini-review describes developments over the last ~30 years in characterizing the 
nucleation & growth of epitaxially-supported metal nanoclusters (NCs) or islands during 
vapor deposition, as well as their post-deposition coarsening. A beyond-mean-field 
treatment for homogeneous nucleation & growth corrects the deficiencies of traditional 
treatments in describing, e.g., the island size distribution, but also necessitates 
consideration of the spatial distribution of islands and their capture zones. We discuss 
advances in modeling capabilities, including those based upon on an ab-initio level 
treatment of periphery diffusion kinetics, for description of the non-equilibrium growth 
shapes of these NCs, mainly for 2D NCs. For post-deposition coarsening of arrays of 
NCs, there is generally a competition between Ostwald Ripening (OR) and 
Smoluchowski Ripening (SR). SR is also known as Particle Migration & Coalescence. 
For 2D NCs in homoepitaxial systems, conventional OR is observed on pristine fcc(111) 
surfaces, dramatically enhanced OR in the presence of even trace amounts of 
chalcogens for Cu(111) and Ag(111), and anomalous OR on anisotropic fcc(110) 
surfaces. The unexpected discovery of SR for fcc(100) homoepitaxial systems 
prompted extensive analysis of the underlying diffusivities of 2D NCs as a function of 
size, as well as of NC coalescence dynamics. A comprehensive understanding of these 
processes is now available. Self-assembly of 3D NCs during deposition, issues related 
to heterogeneous nucleation, directed assembly, and NC structure selection are 
addressed. For SR of 3D epitaxial NCs, shortcomings of the standard a mean-field 
treatment of the size-dependence of diffusivity are also revealed. 
 

1. Introduction 
 

In the first 30 years of surface science beginning in the 60’s, studies of supported 
3D metal nanoclusters (NCs) or “islands” formed by vapor deposition on non-metallic 
single-crystal substrates (alkali metal chlorides, graphite, oxides, etc.) effectively 
exploited Transmission Electron Microscopy (TEM) [1]. Real-scale images from TEM 
allowed characterization of individual NC growth morphologies, and also the distribution 
of NCs in size and space which resulted from the process of nucleation & growth (i.e., 
self-assembly) during deposition [1,2]. Post-deposition coarsening processes were also 
explored [1,2], where there was particular interest in coarsening pathways associated 
with the degradation of supported 3D metal NC catalysts [3]. A long-standing question 
was whether Ostwald Ripening (OR) or Smoluchowski Ripening (SR) [aka Particle 
Migration & Coalescence (PMC)] dominates. For these vapor deposition processes, 
there is generally a clear separation of time scales for NC formation during deposition 
and post-deposition coarsening (in contrast to analogous solution-phase processes). 
These early studies of NC formation prompted development of what we characterize as 
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mean-field (MF)-type theories for the homogeneous nucleation & growth of (either 2D or 
3D) NCs by Zinsmeister, Venables, and others [4,5] which in particular describe the 
dependence of NC or island density on deposition flux, F, and surface temperature, T.  

In the second 30 years, the ready availability of Scanning Tunneling Microscopy 
(STM) from the late 80’s facilitated real-space imaging of epitaxial metal-on-metal 
systems in ultra-high vacuum where 2D NCs form due to strong adhesion of the 
deposited metal to the substrate [6-8]. In particular, studies of homoepitaxial systems 
focused on fundamental questions regarding film growth [9,10]. Analogous studies were 
performed for semiconductor systems, e.g., for Si/Si(100) [11]. These studies involved 
detailed investigation of far-from-equilibrium NC growth morphologies, and a 
quantitative assessment of self-assembly via homogeneous nucleation & growth 
(exploiting the feature that perfect that defect free surfaces can be prepared on a 
sufficiently large length scale, thus avoiding heterogeneous nucleation). Shortcomings 
of traditional MF nucleation theories in predicting the island size distribution (ISD) were 
revealed and explained [12,13] leading to development of beyond-MF treatments [10]. 
Post-deposition coarsening was also explored for homoepitaxy (again on a slower time 
scale than deposition) [14-16], where the unexpected dominance of SR for 2D islands 
rather than OR was found in some cases [17], and well as dramatic acceleration of OR 
in the presence of certain trace “additives” [18]. For these systems, a comprehensive 
understanding of behavior was often achieved by predictive atomistic-level stochastic 
modeling and Kinetic Monte Carlo (KMC) simulation capturing behavior on the 
appropriate time and length scales (in contrast to MD studies) [9,10]. These successes 
are highlighted in this contribution. 

In the following, Sec. 2 reviews developments in homogeneous nucleation 
theory. Growth shapes formed during nucleation & growth of 2D metal-on-metal NCs 
are described in Sec. 3. Coarsening in 2D metal-on-metal NC systems is described in 
Sec. 4. In this contribution, the focus is on the case of 2D islands. However, in Sec. 5, 
we more discuss more briefly the formation and coarsening of 3D metal NCs on more 
weakly adhering supports. Conclusions are provided in Sec. 6. 
 

2. Theory of homogeneous nucleation & growth during deposition 
 

First, in Figure 1, we present a schematic highlighting the key features of self-
assembly of supported NCs or islands via homogeneous nucleation & growth 
[10,19,20]. Figure 1 is based on KMC simulation of the irreversible formation of near-
square 2D NCs or islands, but the same basic features apply for 3D NCs. Desorption is 
assumed inactive corresponding to the regime of “complete condensation”. The basic 
picture is that adatoms are deposited randomly on the surface, undergo rapid diffusive 
hopping across the surface, and aggregate into islands or NCs, which then grow by 
incorporation of subsequently deposited atoms. In the early “transient regime”, the 

adatom density, N1, builds up being roughly equal to the deposited coverage, . Once 
stable islands have nucleated, adatom depletion zones (DZ) grow about them (as each 
island periphery provides a sink for deposited diffusing adatoms). Subsequently, N1 
continues to increase while these DZs spread across the surface leading to their 
collision, which forms portions of so-called capture zone (CZ) boundaries. At the end of 
the transient regime, the DZs are transformed into a network of CZs which cover and 
tessellate the entire surface (with one island per CZ), and N1 no longer increases. This 
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marks the onset of the steady-state regime where there is a rough balance between the 
gain of adatoms due to deposition, and the loss due primarily to capture by islands. It 
should be emphasized that nucleation of new islands continues, primarily close to CZ 
boundaries where the local N1 is highest [19,20]. In fact, most islands are formed during 
the steady-state regime. CZs are so-named based on the picture that atoms deposited 
within a CZ are typically captured by the associated island within it. 
 

 
 

Figure 1. Schematic of homogeneous nucleation & growth (from simulations for irreversible 
formation of 2D square islands). Refined with permission from Ref. [10]. Copyright 2006 Elsevier. 
 

2.1 Rate equations for the island density, Nisl, and adatom density, N1  
 

The density per adsorption site of NCs or islands of size s (in atoms) is denoted 

by Ns (1). A critical size, i, is assigned such that islands with size s (in atoms) are 

stable only for s > i, so that the density of stable islands is given by Nisl = s>i Ns. 

Subcritical clusters with s  i are locally equilibrated with the adatom density, yielding 

the Walton relation Ni = exp(-Ei)(N1)i where Ei < 0 is the binding energy of a cluster of i 

atoms, and  = 1/(kBT) for surface temperature T and Boltzmann constant kB. Below, F 

denotes the deposition flux (per adsorption site), and h =  exp(-Ed) denotes the hop 
rate for terrace diffusion of adatoms with barrier Ed. The key parameter, h/F, is typically 

large given generally rapid surface diffusion. Note that the coverage satisfies  =        

s1 sNs = Ft for deposition time t. For nucleation rate, Knuc, and rate of aggregation with 
stable islands, Kagg, one has that [4,10] 
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d/dt N1 = b()F – Kagg – (i+1)Knuc and d/dt Nisl = Knuc,        (1) 
 

where Knuc = i h N1 Ni and Kagg = isl h N1 Nisl, and isl (i) denotes the “capture 

number” for stable islands (for critical clusters of size i). Also b() denotes the bare 

fraction of the substrate not covered by islands at coverage  (so that b() = 1 -  for 2D 

islands), but below for simplicity we set b()  1. Early transient regime behavior, Nisl                       

i+2 exp(-Ei)(h/F), follows immediately using N1  . Steady-state behavior follows from 

using the relation F  Kagg, and yields the central result of nucleation theory 
 

Nisl  1/(i+2) exp[-Ei/(i+2)](h/F)- with scaling exponent  = i/(i+2).    (2) 
 

Thus, if Nisl ~ exp(-Eeff), one has that Eeff = (i Ed + Ei)/(i+2). Matching expressions for 
Nisl in the transient and steady-state regimes shows that crossover occurs for very low 

coverages  = *  exp[Ei/(i+3)](h/F)-2/(i+3). Another quantity of basic interest is the 

mean island size, sav = /Nisl, which is readily obtained from Nisl. 
A schematic summary of the behavior of Nisl and N1 is provided in Figure 2. The 

coverage scaling in (2) is significantly modified above low  by effects of finite island 
extent. The variation with h/F or with T is invaluable to extract information on critical size 
and the underlying energetics. Some refinement to the above formulation is required for 
strongly anisotropic surface diffusion [12] (revising [11]), or if smaller stable clusters 
have significant mobility [10]. For example, if i = 1 (irreversible island formation), but 

there is significant dimer mobility with hop rate h, then one has that Nisl  (h h/F2)1/5 
[9,10]. 
 

 
 

Figure 2. Schematic behavior of Nisl and N1 where the figure is geared to smaller i (as for bigger 
i, N1 can dominate Nisl in the steady-state). Slopes on this log-log plot are indicated in red. 

Boltzmann factors involving Ei are ignored. Deviation from simple -scaling behavior (dashed 
lines) in the steady state is due to finite island extent. See [10] for corresponding plots based 
upon data from KMC simulations. 
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It remains to assign the critical size, i, which should increase with T. Traditionally, 
this is done by adapting the concepts of Classical Nucleation Theory (CNT) [21]. 
Assuming local equilibration of all subcritical clusters with the adatom density (which 

itself is determined by the deposition process), one as that Ns  exp(-Es)(N1)s for s  i, 
where Es < 0 is the binding energy for a cluster of size s. The critical size corresponds to 

the minimum Ns [4,5]. For 2D epitaxial clusters on isotropic surfaces where  > 0 is the 
effective nearest-neighbor (NN) bond strength, a reasonable approximation is that Es =  

-Ms  so Ns  exp(Ms )(N1)s where Ms is the number of NN bonds in the lowest energy 
ground-state configuration of a cluster of s atoms. Thus, one has that M1 = 0 for an 
adatom, M2 = 1 for a dimer, but Ms>2 depend on epitaxial geometry. See Table I. For low-
T, the increase in the Boltzmann factor in Ns will dominate the decrease in (N1)s with 

increasing s, so that N1  Ns>1 and i = 1 (irreversible island formation). The transition to 
reversible island formation with i > 1 occurs when T increases sufficiently so that N2 

decreases to equal N1 [i.e., when N1 = exp(-)]. More detailed analysis reveals that for 
{100} epitaxy, there is a transition directly from i = 1 (stable dimers) to i = 3 (stable 
square tetramers), and for {111} epitaxy from i = 1 (stable dimers) to i = 2 (stable 
triangular trimers) and then to i = 6 (stable hexagonal heptamers). See the 
supplementary materials (SM). More generally, this approach is traditionally used to 
map out regimes of i versus T [4,5].   
 

Table I. Number of NN bonds, Ms, for clusters of size s atoms for fcc {100} and {111} epitaxy. In 
some cases, cluster shapes are indicated (e.g., a square tetramer for fcc(100) when s = 4). 
 

fcc(100) M1 = 0 M2 = 1 M3 = 2 ∟,-- M4 = 4  M5 = 5 M6 = 7 M7 = 8 

fcc(111) M1 = 0 M2 = 1 M3 = 3  M4 = 5 ◊ M5 = 7 M6 = 9 M7 = 12 
 

 More recently, an alternative (but equivalent) kinetic formulation has been utilized 
producing “practical criterion” for the transition from i = 1 to i > 1 [22]. Here, the focus is 

on the relative magnitude of the aggregation rate of monomers with each dimer, Kagg  

2 h N1, and the rate of dissociation of each dimers, Kdiss  h exp(-). The regime i = 1 
corresponds to Kagg > Kdiss, i.e., dimers are stable on the time scale of aggregation, and 
the transition (starts to) occur when these rates are roughly equal. This criterion 
matches that above (if one neglects the capture number, or if one implements a more 
rigorous formulation which uses detailed-balance to show that the effective Kdiss also 

involves a factor of 2 [23]). Thus, a natural parameter tracking the crossover from i = 1 
to i > 1 is the ratio Rd/a = Kdiss/Kagg. Using the steady-state relation to express N1 in 
terms in Nisl, one finds that 
 

Rd/a  Y2/3 where Y = (/F) exp[-(Ed + 3/2 )].      (3) 
 
Thus, Y provides a practical crossover-variable where the onset of reversible island 

formation occurs for Y  1 - 10. However, contrasting the traditional picture of sharp 
transitions in critical size, there is a broad transition regime beyond i= 1 before one finds 
a regime corresponding (it seems only for a narrow window of Y) to i = 3 for {100} 
epitaxy [22,24,25]. See Figure 3. Analogous behavior applies for the transition from i = 
1 to i = 2 for {111} epitaxy [26,27]. As a further illustration of the utility of (3), in Table II, 
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we provide corresponding estimates of the temperature, Trev, associated with the onset 
of the transition to reversible island formation for various metal homoepitaxial systems. 
 

 
 

Figure 3. Variation of the scaling exponent, , for the island density as a function of the 
crossover parameter Y for the transition from irreversible island formation i = 1 to i = 3 for {100} 

epitaxy. Recall that nominally  = i/(i+2). Results are shown from KMC simulation in [24] (closed 
symbols) and [25] (open symbols), and from a simple MF treatment [22]. The existence of a 
substantial well-defined regime with i = 3 is not so evident from (precise) KMC simulation. 
Refined with permission from Ref. [10]. Copyright 2006 Elsevier. 

 
Table II. Estimates of Trev for the transition to reversible island formation in metal homoepitaxy 

based upon Y = 10 choosing F = 0.01 ML/s and  = 1012.5/s, so that Trev = 373.3(Ed + 3/2). *An 
estimate of the onset temperature, Tmob, where dimer mobility impacts Nisl comes from replacing 

/2 in Trev by Ed- Ed, where Ed is the barrier for dimer mobility [10]. Thus, the relevant case Tmob 

< Trev applies when Ed- Ed < /2 which applies for Pt(111) with Ed  0.37 eV so Tmob ~ 220 K. 
 

 Ag(100) Ag(111) Cu(100) Cu(111) Pt(111)* Fe(100) 

Ed,   (in eV) 0.45, 0.26 0.08, 0.22 0.48, 0.33 0.05, 0.27 0.26, 0.63 0.45, 0.50 

    Trev 315 K 150 K 365 K 170 K 445 K 450 K 

 
2.2 Rate equations for the island size distribution (ISD): Ns vs s 
 

The evolution of the density, Ns, of stable islands of size s > i satisfy standard 
Becker-Doering type population dynamics equations 
 

d/dt Ns = h s-1 N1 Ns-1 – h s N1 Ns  … for s > i.      (4) 
 

where s denotes the capture number for islands of size s. These are supplemented for 
the Walton relation for Ni and the above equation for N1. Clearly, the form of Ns versus s 

will depend on the s-dependence of s. Most interest is in the scaling regime of large 
h/F and large sav, where one anticipates scaling form  
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Ns  (Nisl/sav) f(x) where x = s/sav with dx f = dx x f = 1,    (5) 
 

neglecting any -dependence of f. Also adopting a scaling form for s = isl C(x) [28], 

and neglect -dependence of C, then one obtains the exact relation [10] 
 

f(x) = f(0) exp[0<y<x [(2z-1) – dC(y)/dy]/[C(y) – zy],     (6) 
 

where sav  z and z = (i+1)/(i+2) for low  (with deviations for larger ). 
 

 
 
Figure 4. Scaling functions, f(x), for the ISD obtained for 2D compact islands. Insets show 
scaling functions, C(x) = a(x), for the capture number (or CZ area) versus island size. KMC 
results are compared with those from standard and refined Geometry-Based Simulation. 
Refined with permission from Ref. [20]. Copyright 2003 Elsevier. 

 
 The form of the scaling function C(x) for capture numbers is required to explicitly 
evaluate f(x). C(x) has contributions from direct deposition on top of the islands, and 
from diffusive aggregation, but we emphasize the latter here. Traditional MF treatments 
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took considerable care to develop of self-consistent evaluation of s versus s solving an 
appropriate deposition-diffusion equation for the capture of deposited atoms accounting 
for the mean environment of the “island sink”. The corresponding C(x) initially increases 
quickly like 1/|ln(x)| as x increases above zero, but then sub-linearly roughly like x1/2 for 

larger x. This results in a divergence of f(x) at x = xs where C(xs) = zxs, and where f(x)  
0 for x > xs. For finite h/F, this singularity is smoothed out. However, the fundamental 
flaw in this MF treatment is the neglect of a significant non-MF dependence of the local 
environment of islands on their size. Specifically, KMC simulation and experimental 
analysis shows that larger islands are more distant from their neighbors. As a result, 
C(x) increases quasi-linearly for with x, and the singularity in (5) is averted. This non-MF 
form of C(x) is confirmed not just by KMC simulation [10,13,19,20], but also by analysis 
of experimental data [26,27]. Examples of scaling functions, f(x), and the corresponding 
C(x) are shown in Figure 4 for models with prescribed critical size i = 1, 2, 3, and 6. 
Note that the scaled ISD sav Ns/Nisl versus s/sav produce a family of curves with higher 
peaks and lower left shoulders for increasing h/F, and where strictly (5) corresponds to 

limiting behavior for h/F  . Finally, it should be emphasized that (4-6) do not provide 
a complete beyond-MF theory of the ISD, as they do not provide the form of C(x). For a 
more complete theory, see Sec. 2.5. 

A key feature of the ISD is that f(0) > 0 most clearly for small critical sizes. This is 
also reflected in the relation C(0) f(0) = 1-z [13]. In contrast, a popular form of Amar & 

Family [31] for f(x)  xi exp(-iai x1/ai), where ai is determined by dx x f = 1, sets f(0) = 0. 

Their simulations for i =1 involved fractal islands with fixed  which suppressed f(x) for 
small x relative to compact islands. Also, there is often a delay between experimental 
imaging and the end of deposition during which the higher mobility of small clusters 
which aggregate with larger clusters can suppress f(x) for small x [32].  

The availability of precise experimental ISD data is limited even for metal 
homoepitaxy, although data does exist for Fe/Fe(100) and Ag/Ag(100) [10]. For the 
latter, mobility of small clusters after deposition and before imaging does deplete the 
population of small islands relative to theory predictions in Sec. 2.  
 
2.3. Exact and approximate Capture Zones (CZ) 
 

First, we elaborate further on the concept of CZs illustrated in Figure 1 where 
atoms deposited within a CZ are typically captured by the associated island. The basic 
concept was advanced in the earlier literature [33,34]. In principle, capture zones can be 
constructed so that the rate of growth of an island is exactly equal to the deposition flux 
times the CZ area. This is achieved by solving the steady-state deposition-diffusion 
equation for the island and those in its vicinity with zero adatom density at island edges 
which act as “sinks”. This allows determination of the field lines for the surface diffusion 
flux, and following these from all points within the CZ lead to the associated island. See 
Figure 5a. In fact, exact CZs can well-approximated from a simpler Voronoi-type 
construction where CZ boundaries are equidistant from nearby island edges. See 
Figure 5b. See Ref. [29,30]. In addition, in the context of ISD analysis, it is instructive to 
let As denote the mean CZ area for islands of size s. Then, for the exact CZs, it follows 

that the rate of aggregation with islands of size s is given by h N1 s = F As [which can 
be used to recast (4)]. Then the scaling function for capture numbers and these CZ 
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areas coincide, i.e., As = Aav a(x), where Aav = 1/Nisl, then a(x) = C(x). Thus, C(x) can be 
determined from a CZ area analysis.  
 

 
 
Figure 5. Capture zones for Ag islands on Ag(100) with the island distribution extracted from 
STM [30]: (a) exact analysis; (b) modified Voronoi construction. Note that for the exact CZs in 
(a), contours of equal steady-state adatom density are shown, and CZs are also decomposed 
into sub-CZs for each island edge (see dashed lines). Refined with permission from Ref. [30]. 
Copyright 1999 American Physical Society. 

 
2.4. Capture Zone area Distribution (CZD): NA vs A 
 

 From the 60’s through the 90’s, there was considerable focus on analysis of the 
ISD. However, subsequently interest developed in detailed characterization of the 
capture zone (area) distribution (CZD), NA, versus A, where NA is the density of islands 

with CZ area A, so that Nisl = A NA. Thus, one anticipates a scaling form  
 

NA  (Nisl/Aav) g() where  = A/Aav with d g = d g = 1,     (7) 
 

neglecting any -dependence of g. A heuristic formulation [35] of NA suggested a 
Gaussian tail for large A, and that behavior for small A was controlled by the critical size 
for nucleation, where the latter specific prediction was later corrected [36,37]. Our 
perspective was to develop a theory for NA based upon the fundamental exact evolution 
equation which is represented schematically in Figure 6. The population, NA, can 
increase if a new CZ is formed with area A, or if creation of a new CZ by nucleation 
nearby and thus overlapping with an existing CZ with area larger than A reduced its 
area to A. The population NA can decrease if nucleation nearby a CZ of area of A 
creates a new overlapping CZ thus reducing the area of the existing CZ below A. See 
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the 3rd, 2nd, and 1st terms in Figure 6, respectively.  Thus, it is clear that rigorous 
analysis of NA requires characterization of the finer details of nucleation, the absence of 
which precludes complete analysis. Some relevant quantities are the mean number, M0 

 4-5, of existing CZ’s overlapped by a new CZ. Also, if a new CZ overlaps an existing 

CZ, the mean fraction of area overlapped is av  0.1 at 0.1 ML [36,37]. 
 

 
 

Figure 6. Schematic for evolution of the population, NA, of islands with CZ area A. Refined with 
permission from Ref. [37]. Copyright 2016 American Institute of Physics. 
 

 Even without a complete analysis for NA or g(), one can however provide insight 

into behavior for small A or . Let P*(A) denote the probability of nucleation a new CZ of 

area A, where we naturally adopt the scaling form P*(A) = (Aav)-1 p*() with d p* = 1. 
For small A, we first assume that the 3rd term in Figure 6 which is given by P* dNisl/dt, 
dominates, so that [36,37] 
 

d/dt NA  P*(A) dNisl/dt  yielding 2g() +  dg()/d  p*().     (8) 
 

Adopting the form g()   for small , it follows that g()  (2+)-1 p*(), i.e., the form 

of g() is directly determined from that for p*() for small . We first focus on the 
scenario where small CZs can be formed by nucleation along a CZ boundary between 
pairs of existing nearby islands of finite extent, neither of which need have a small CZ. 
See Figure 7a. (A small CZ also results from nucleation within group of three or more 

nearby islands, but with lower probability.) Let risl  (Aav)1/2 measure the mean 
separation between islands. Then, the separation, r, of nearby islands associated with 

the formation of CZs with small  scales like r/risl  1/2. Evaluation of p* = ppair pnuc must 

account for both the relative probability of finding a nearby pair of islands, ppair  (r/risl)i+2, 
and the relative probability of nucleation in the small confined space between islands, 

pnuc  (r/risl)2i+4. See the SM for details. Since g()  p*(), one obtains  
 

g()   with  = 3i/2 + 3.         (9) 
 

 
 

Figure 7. Schematics for the formation of CZs with small area A << Aisl or  << 1. 
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A second scenario to create small CZ is shown in Figure 7b. This corresponds to 

the second term in Figure 6 (contrasting the above assumption that the third term 
dominates). Here, one starts with a nearby triple of islands, none of which necessarily 
has a small CZ. The probability of this configuration scales like ptriple ~ (r/risl)2i+3 [37]. In 
addition, a fourth island must nucleate a distance r << risl from one of these converting 
its large CZ into a small CZ. This nucleation probability is pnuc* ~ (r/risl)i+3 which differs 
from pnuc as here nucleation does not occur in a confined space between nearby islands 

[37]. See the SM. Using that g() ~ ptriple pnuc*, one actually recovers (9). While there 

remains some uncertainty in this analysis of , it seems to agree reasonably with 
simulation results (see below).   
 

 
 

Figure 8. KMC simulation results for the scaled CZ area distribution, g(), versus  = A/Aav for 

2D square islands with i = 1. Data is fit to a GG distribution, gGG()  a  exp(-bn). Refined 
with permission from Ref. [37]. Copyright 2016 American Institute of Physics. 

 

Simulation data for g() is typically fit with a generalized gamma (GG) 

distribution, gGG()  a  exp(-bn), where a and b are determined in terms of  and n 

from d g = d g = 1. (We emphasize that this is a just convenient form with the 

flexibility to capture a variety of behavior for both small and large , but it should not 
correspond precisely to the solution of the exact evolution equation for NA.) Figure 8 

shows results for 2D square islands with i = 1 at  = 0.1 ML where the best fits are 

compatible with  = 3.5-4. Similar analysis for i = 0 (corresponding to mobile adatoms 
converting at a fixed rate immobile seeds for nucleation as suggested for Fe/Cu(100) 

[38]), best fits are compatible with  = 2.75-3 [37]. Thus, there is reasonable agreement 
with the above theory, although some uncertainty remains [39]. It seems reasonable to 
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rule out early predictions of  = i + 1 or i + 2 [35,40]. A key driver of this theory for the 
CZD [35] is the potential to extract the critical size from experimental CZD data, 

although there are practical issues with limited data for small . Another issue is the 

prediction of a Gaussian tail to g() for large  [35]. This is plausibly compatible with the 
simulation data in Figure 8 [37]. One simulation study questioned the existence of a 

Gaussian tail for large  [39], whereas another suggested its existence except for small 
h/F [41]. Distinct behavior for low h/F is reasonable as when h = 0 for low coverages, 
CZs correspond to a standard Poisson-Voronoi tessellation where the area distribution 
for large sizes exhibits exponential decay [42].  
 

 
 

Figure 9. KMC simulation results for: (a) the scaling function F(x, ) for the JPD for island sizes 
and CZ areas for i = 1 (and for i = 2 in the inset, but where limited data cannot capture the finite 

population for smaller sizes); (b) the scaling function G[ - a(x)] = F(x, )/f(x) for JPD 
factorization when i = 1. (a) Refined with permission from Ref. [20]. Copyright 2003 Elsevier.    
(b) Reprinted with permission from Ref. [45]. Copyright 2002 American Institute of Physics. 
 

2.5 Joint Probability Distribution (JPD) for NC size and CZ area: Ns,A  
 

The above analysis reveals that the island size distribution is determined by the 
size-dependence of capture numbers which corresponds to that of the CZ area on size. 
This suggests that a comprehensive theory of nucleation & growth should be based on 
analysis of the joint probability distribution (JPD), Ns,A, of island sizes, s, and CZ areas, 
A. The initial such study by Mulheran & Robbie [43] constituted a significant conceptual 

advance. With x = s/sav and  = A/Aav as above, one anticipates a scaling form  
 

Ns,A  {Nisl/(sav Aav)} F(x, ) where dx d xi j F = 1 for i or j = 0 or 1.   (10) 
 

In addition, one has that f(x) = d F, g() = dx F, and f(x)a(x) = d  F where           

dx f(x)a(x) = 1. In principle, one can develop exact evolution equations for Ns,A [44,45]. 
However, these require as input a detailed characterization of the nucleation process 
including the probability that nucleation of a new island which creates a new CZ impacts 
an existing CZ or area A associated with an island of size s, and the fraction of the CZ 

area which is overlapped by the new CZ (which in part reflects the mean number M0  
4-5 of existing CZs overlapped by the new CZ). Initial studies assumed that nucleation 
just fragmented an existing CZ into two (i.e. M0 = 1) [43], and a later study assumed all 
new CZs have the average area, and ignored the impact of nucleation on existing CZs 
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[46]. An effort has been made to incorporate a realistic treatment of nucleation [44,45], 
which does lead to reasonable predictions for the ISD, and for the key scaling function 
a(x), but a satisfactory complete theory remains an open challenge. In Figure 9, we just 
show results for the JPD from KMC simulation for i = 1 and i =2, which support a 

factorization relation, F(x, ) = G[ - a(x)] f(x) [45].  
 

2.6 Simulation approaches 
 

 In KMC simulation of stochastic lattice-gas (LG) models, atoms reside at a 
periodic array of epitaxial adsorption sites, and various processes (deposition, terrace 
diffusion, periphery diffusion) are implemented with probabilities proportional to their 
physical rates. At least for small critical sizes, i, KMC incorporating a rejection-free Bortz 
type algorithm [47] can handle large variations in rates (e.g., h/F exceeds 107 for 
Ag(100) homoepitaxy with F = 0.01 ML/s at room temperature, and is far higher for 
Ag(111) homoepitaxy). While adatoms undergoing terrace diffusion hop rapidly, there 
are few of them recalling that N1 ~ (h/F)-2/(i+2), so total rates for deposition and hopping 
are not as different as might be expected. However, for larger critical size and a large 
population of rapidly hopping terrace adatoms, direct KMC simulation is not viable. To 

illustrate this issue, Table II, reports the how the CPU time, i, increases with critical 

size i for simulation with h/F = 106 up to  = 0.1-0.2 ML [48].  
 

 Table II. Dependence of simulation time i on critical size i for h/F = 106. 
 

2/1 3/2 4/3 5/4 

~ 32 ~19 ~8 ~5.5 
 

To address this challenge particularly for large i, hybrid approaches might be 
considered which treat the terrace diffusion in a continuum (or other more efficient) 
formalism, but retain an atomistic treatment of island structure. One quasi-continuum 
KMC (QCMC) approach solved the continuum deposition-diffusion equation but used 
the input to stochastically attach/detach adatoms from islands, thus correctly retaining 
fluctuations and potential shape instability in island growth (see Sec. 3) [49]. Another 
approach enhanced simulation efficiency by coarse-graining the hopping dynamics in 
terrace diffusion [50]. Yet another strategy adopted a fully continuum level-set treatment 
for 2D islands. The level set is a continuum field evolved by a partial differential 
equation (PDE) where its contours at a specific threshold value corresponds to 
periphery of the islands [51], and this PDE is coupled to the continuum deposition-
diffusion equation. There is, however, a challenge in capturing island growth shapes as 
discretization of the PDEs artificially smooths the periphery, edge diffusion was often 
neglected, and in any case the appropriate form for non-equilibrium edge diffusion flux 
(which differs from the standard Mullins quasi-equilibrium flux) is not so clear [10].  

One other approach, termed (stochastic) Geometry Based Simulation (GBS) 
[19,20], has been particularly effective in allowing, e.g., efficient determination of the 
ISD for larger critical size, i. The physically motivated GBS approach is based upon the 
picture in Figure 1. The main features are as follows: (i) islands are simply grown at a 
rate determined by the area of their CZs; (ii) new islands are nucleated near the 
boundaries of the CZs where the local adatom density, and thus the nucleation rate, is 
highest. An appropriate approximate analytic treatment determines the value of this 



14 
 

nucleation rate, and its variation along the CZ boundaries. The simplest treatment 
implementing nucleation right on the CZ boundaries fails to accurately capture the pair 
distribution function for islands, but this deficiency is resolved in a refined treatment 
(rGBS) allowing some deviation in nucleation locations from the CZ boundaries. Figure 
4 shows results from GBS simulation for the ISD matching those from KMC simulation. 
 

3. 2D epitaxial metal-on-metal NCs: Growth shapes and structures  
 

In this section, we focus on the growth shapes and structure of individual NCs or 
islands during deposition, and shape transitions with varying deposition T. We compare 
STM and KMC results.  As is generally the case for self-assembly of NCs [52], during 
the growth of NCs or islands during deposition, growth shapes are determined by a 
competition between aggregation (which produces a DLA or Mullins-Sekerka type 
shape instability in the case of diffusion-mediated growth) and relaxation or restructuring 
of atoms within the aggregate (in our case primarily via edge or periphery diffusion). The 
relative magnitude of growth and relaxation rates will determine how far growth shapes 
deviate from equilibrium forms. From Sec.2, it is clear that the growth rate is simply 
determined by the CZ area (and F). Thus, the main challenge is to precisely describe 
the rates for relaxation, i.e., periphery diffusion rates for a diversity of local step edge 
environments, and intermixing rates for multicomponent NCs. 

However, digressing briefly from this main theme, we emphasize that the 
homogeneous nucleation & growth process, particularly for 2D epitaxial metal NCs on 
defect-free single-component crystalline substrates, is captured precisely by the 
concepts of Sec. 2. Multiple experimental studies for such systems have explored the 
transition from i = 1 to reversible island formation (or to a regime with significant dimer 
mobility) [9,10]. It is appropriate to note at least some indirect connection between the 
nucleation process and island structure focusing on metal{111} epitaxy (with rapid 
terrace diffusion and inhibited periphery diffusion) where island shapes tend to exhibit a 
fractal or dendritic shape instability at low T. Certainly for i = 1, this shape instability can 
be manifested. However, even for i = 2 where triangular trimers but not dimers are 

stable, this should be possible. Why? A barrier of Ed +  must be surmounted for 
reversible island formation (see Sec. 2). However, to quench the shape instability, not 
only is it necessary for diffusion along straight close-packed step edges to be operative, 
but also kink or corner rounding [53]. The barrier for latter is generally expected to 

exceed Ed + . However, for i >2, a barrier of Ed + 2 must be surmounted which is likely 
higher than that for kink rounding. Thus, in the regime of i > 2, one does not anticipate 
fractal or dendritic islands. Finally, we also note some influence of growth shape on the 
local environment of island, at least for inhibited periphery diffusion. This is perhaps 
most clearly reflected in a decomposition of CZs for 2D polygonal islands into sub-CZs 
associated with individual edges, where those edges with the largest sub-CZs will grow 
fastest introducing a directionality into island growth [29,30].  
 

3.1. Predictive modeling of growth shapes and structures 
 

Generic prescriptions of periphery diffusion barriers (Initial Value Approximation 
or bond-breaking, symmetric Brønsted-Evans-Polyani, etc.) fail for metal systems 
[10,54]. Earlier successful modeling for specific systems tended to build simple tailored 
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models geared to capture the key features of periphery diffusion for those systems, or 
through incorporation “by hand” of appropriate values for key periphery diffusion 
processes [9,10]. Recent efforts have exploited what may be termed an Unconventional 
Interaction – Conventional Interaction (UICI) formalism [54-56]. This approach exploits 
the feature that the activation barrier for hopping has the form, Eact = ETS - Einit, where 
Einit is the energy associated with the hopping atom in its initial adsorption site, and ETS 
is the energy in the transition state between initial and final adsorption sites. For 2D 
epitaxial NCs, Einit can be determined by conventional lateral interactions between 
adatoms at adsorption sites, familiar from equilibrium lattice-gas models. These 
interactions can be decomposed via a cluster expansion into pair, triplet, etc., 
components. ETS is determined from unconventional (pair, triplet, etc.) lateral 
interactions, between the hopping atom at the transition state and nearby atoms at 
epitaxial adsorption sites (e.g., for a bridge site TS and hollow adsorption sites). ETS 
also includes an additional component relative to Einit corresponding to the single atom 
diffusion barrier. (As an aside, a modified version of this formalism considers interlayer 
as well as lateral interactions and applies more readily for 3D NCs [54].) Both sets of 
interactions can be obtained from Density Functional Theory (DFT) analysis and 
tabulated, allowing ready determination of barriers for any local environment. 

We note that the UICI formalism is readily implemented, at least for short-range 
pairwise interactions (with similar ease to that for the above mentioned generic 
formalisms). However, UICI facilitates a far more realistic description of the relevant 
barriers. It is also the case that the UICI formalism is readily extended to describe 
intermixing in more complex multicomponent systems, where the intermixing process 
typically involves vacancy-mediated diffusion (described by barriers for a different 
diverse class of local environments than for periphery diffusion).  
 

3.2. Selected experimental examples 
 

Far-from-equilibrium growth shapes are perhaps most clearly manifested by 
fractal or dendritic structures reflecting the DLA shape instability for strongly inhibited 
periphery diffusion. The classic example of 2D fractal epitaxial metal islands is provided 
by an early STM study for Au on Ru(0001) where image analysis extracted a Hausdorff 

dimension of df = 1.72  0.07 consistent with simulations of DLA aggregates [57]. 
However, the width of the “arms” of these fractal NCs far exceeds that for diffusion-
mediated growth of DLA fractals incorporating a hit-and-stick mechanism. This feature 
was captured by a simple stochastic model where the rate of periphery diffusion was 
incorporated as an adjustable parameter [53]. Henceforth, we focus on fcc(111) metal 
homoepitaxy where not only are irregular islands observed at low T, but dramatic shape 
transitions occur upon increasing the deposition temperature, T. Note that in fcc(111) 
systems, periphery diffusion is strongly inhibited relative to terrace diffusion, but the 
opposite applies for fcc(100) homoepitaxy [10,54]. 

Figure 10a-c shows results for 2D NC shape versus T for Pt/Pt(111) [9]. Islands 
exhibit a fractal structure at 300 K, but a near-perfect triangular structure at 400 K, and 
an arrow-head form at 500 K. These shapes are distinct from the equilibrium shape 
which corresponds to a distorted hexagon with longer {111}-microfaceted B-steps 
versus {100}-microfaceted A-steps (see the inset at 500 K). These dramatic shape 
transitions prompted multiple modeling efforts, and also various proposals as to the 
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mechanism underlying the formation of triangular shapes. The latter issue was clarified 
in Ref. [9] where the triangles were appropriately described as a “kinetic exaggeration” 
of the equilibrium shapes. The lower step energy for B- vs A-steps implies weaker 
binding of adatoms to those B-steps, and thus a lower equilibrium density of adatoms 
along those B-steps. The difference in binding energies matches the difference in 

effective barriers for corner rounding with lower barrier for BA that AB. The 
imbalance in barriers counterbalances the imbalance in densities to ensure equal fluxes 
in both directions in equilibrium. However, during growth, the supersaturated edge 

adatom densities are more equal, and the lower BA barrier ensures a net flux from B 
to A steps. This leads to the disappearance of A steps. See Figure 11 for a schematic. 
Another feature of the Pt/Pt(111) system is the extreme sensitivity of growth shapes to 
the presence of trace amounts of CO which can, e.g., invert the direction of the triangles 
shown in Figure 10b for the CO-free case [9]. The general case with varying amounts 
of CO has been modeled exploiting DFT to provide key information on the relevant 
energetics [58].  

 

 
 

Figure 10. STM images revealing transitions in non-equilibrium island shapes of fcc(111) metal 
homoepitaxy. Pt/Pt(111) with no CO: (a) 78 x 78 nm2; (b,c) 156 x 156 nm2. Insets: (a) fcc(111) 
surface and step structure; (b) modeling from [58]; (c) equilibrium shape @ 700 K.  
(d-f) Ag/Ag(111). 300 x 300 nm2. Insets: KMC simulation: (d) 60 x 60 nm2; (e,f) 100 x 100 nm2. 
(a-c) Refined with permission from Ref. [9]. Copyright 2004 Springer. (b) inset reprinted with 
permission from Ref. [58]. Copyright 2002 American Physical Society. (d-f) Refined with 
permission from Ref. [59]. Copyright 2005 American Physical Society. 
 

Figure 10d-f show results for Ag/Ag(111) [59]. Islands exhibit a dendritic 
structure with 3-fold symmetry at 135 K, an irregular structure at 165 K, and a distorted 
hexagonal form at 200 K [10,59]. The equilibrium shape corresponds to a near-perfect 
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hexagon due to almost identical energies for A- and B-steps. The occurrence of 
dendrites with 3-fold symmetry at low T in this system, and also for Ag/Pt(111) [60] was 
attributed to an asymmetry in adatom diffusion from singly-coordinated sites at corners 
between A- and B- steps. Such atoms hop more readily to higher-coordinated sites on 
A-step edges than on B-step edges [9,10]. (This is the opposite of that shown in Figure 
11 for Pt/Pt(111). See also Ref. [61].) Results of KMC simulation based on a model 
utilizing information on edge diffusion energetics from the Embedded Atom Method is 
shown in the insets to Figure 10d-f [59]. This model ignored second layer deposition 
and subsequent downward transport. Consequently, it failed to recover the longer A-
steps observed at 200 K in STM. This deficiency was resolved by refined modeling 
which did include second layer deposition, but which necessarily also included a lower 
Ehrlich-Schwoebel barrier for downward transport at B- versus A-steps (enhancing the 
tendency to eliminate B-steps) [62]. Due to this step-selective interlayer transport, near 
triangular Ag islands could also be formed around 180 K for higher sub-monolayer 
coverages [62], a quite different mechanism than that for Pt/Pt(111) triangle formation. 
See Fig. 1 in Ref. [62]. 
 

 
 

Figure 11. Schematic reflecting “kinetic exaggeration” of the somewhat distorted equilibrium 
hexagonal shapes towards triangular shapes for Pt/Pt(111). Reprinted with permission from Ref. 
[16]. Copyright 2019 American Chemical Society. 
 

 Above, data is shown for a much higher T-range for Pt than Ag. One could 
regard this as just reflecting the higher cohesive energy for Pt (5.84 eV) than Ag (2.95 
eV). Regarding other fcc(111) homepitaxial systems, transitions from fractal to dendritic 
to triangular shapes have been observed for Al/Al(111) and described by modeling 
incorporating DFT input [9]. Shape transitions have also been studied for Ir/Ir(111) [63] 
and are quite similar to those for Pt/Pt(111).  

Anisotropic surfaces on which 2D metal islands often have near-rectangular 
equilibrium shapes provide another example of “kinetic exaggeration”. Figure 12a 
shows rectangular Ag islands formed on Ag(110) with aspect ratios in the range R = 

3.5-5.5 at 240 K (and where R is higher at lower T) [64] significantly exceeding the 

equilibrium value of Req  1.9 [65]. See the SM. There has been extensive modeling of 

these non-equilibrium shapes [66]. Here, we note that the situation is analogous to that 
for Pt/Pt(111). Now, there is weaker binding of edge atoms on the longer (L) versus 
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shorter (S) edges, and a lower effective barrier for LS versus SL corner rounding. 

Thus, for supersaturated edge atom densities during deposition, the flux for LS 

exceeds that for SL producing islands with R > Req.  

A similar scenario applies for Ag on NiAl(110) where there is an almost perfect 
match of unit cells. However, here quantum size effects induce a preference for bilayer 
over monolayer rectangular Ag(110) islands [67,68]. See Figure 12b. Nonetheless, the 
aspect ratio of islands formed at 200-250 K significantly exceeds the equilibrium value, 

which we estimate as Req  2.5. See the SM. Other features of interest for Ag/NiAl(110) 

are: (i) the presence of heterogeneous nucleation at surface defects competing with 
homogeneous nucleation at least at higher T [69]; and (ii) facile bilayer formation 

kinetics even at low T  130 K aided by the anisotropic interactions (atoms at 1st layer 
kink sites which climb to the 2nd layer have only one strong in-layer bond) [67]. Note that 
in these anisotropic systems, NC growth shapes are primarily controlled not by 
anisotropic terrace diffusion, but rather by anisotropic step energies associated with 
anisotropic lateral interactions between adatoms.  
 

 
 

Figure 12. (a) Ag deposition on Ag(110 at 240 K. Insets show the equilibrium island shape and 
fcc(110) surface structure. (b) Ag deposition on NiAl(110) at 200-250 K revealing the formation 
of bilayer Ag(100) islands (lower panels). Surface and Ag(110) island structure (upper panel). 
(a) Reprinted with permission from Ref. [64]. Copyright 2013 American Physical Society. STM 
inset reprinted with permission from Ref. [65]. Copyright 1999 American Physical Society. (b) 
Reprinted with permission from Ref. [68]. Copyright 2011 National Academy of Sciences. STM 
inset reprinted with permission from Ref. [69]. Copyright 2010 American Physical Society.   
 

 Next, we illustrate the capabilities of the UICI modeling strategy [54-56] to treat 
with ab-initio level kinetics (as well as thermodynamics) Ni and Ni + Al deposition on the 
binary alloy substrate NiAl(110). For Ni/NiAl(110), one finds a sequence of transitions 
from irregular to diamond to hexagonal to distorted octagonal island shapes with 
increasing T [70].  See Figure 13. The ability for modeling to recover, and thus provide 
deeper understanding, of these shapes, requires precise description of periphery 
diffusion in this more complicated bimetallic system. Figure 14 illustrates the 
conventional (solid lines) and unconventional (dashed lines) interactions in the UICI 
approach associated with the hopping edge atom at adsorption sites and TS, 
respectively, thereby mapping out the associated complete potential energy surface 
(PES) along the step edge. One thereby obtains insights into, e.g., anisotropic corner 
rounding inducing hexagonal (versus octahedral) shapes at 400 K. As an aside for 
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Ni/NiAl(110), analogous to Ag/NiAl(110), heterogeneous nucleation of Ni islands is 
dominant above 300 K. 
 

 
 

Figure 13. STM images (a-d) and associated UICI KMC simulation results (e-h) illustrating a 
series of transitions in growth shapes for Ni on NiAl(110). Reprinted with permission from Ref. 
[70]. Copyright 2011 American Institute of Physics. 
 

 
 

Figure 14. Schematic of the description of edge diffusion in the UICI formalism for Ni/NiAl(110) 
elucidating anisotropy in corner rounding. Reprinted with permission from Ref. [70]. Copyright 
2011 American Institute of Physics. 
 

Finally, extending the previous example, we consider stoichiometric co-
deposition of Ni and Al on NiAl(110). At high enough T, this must result in stoichiometric 
self-growth of the NiAl alloy propagating the bulk structure. Thus, in the submonolayer 
regime, 2D islands with perfect alternating Al-Ni order would form. However, for co-
deposition at around room temperature, deviations from perfect order will occur even for 
simultaneous co-deposition [55,71], and certainly for sequential co-deposition [68]. The 
latter case is illustrated in Figure 15 where core-ring structures tend to form. Note the 
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robustness of the Al core in ‘Al then Ni deposition’ contrasts the fragility of the Ni core 
for ‘Ni then Al deposition’, where in the latter case one finds a nanoscale Kirkendall 
voiding type phenomenon. This behavior is readily understood by examination of 
associated barriers in the UICI formalism [68]. As an aside at 500 K, simultaneous co-
deposition produces reasonably ordered of islands. However, for sequential Ni then Al 
co-deposition at 500 K, there is still significant Al ring around a predominantly Ni core, 
and a tendency in the intermixing part of the core to form a novel Ni3Al ordering [55].  
 

 
 

Figure 15. STM images (25 x 25 nm2) of Al then Ni deposition (A), and Ni then Al deposition (B) 
at 300 K. Images from KMC simulation (C) corresponding to (A), and (D) to (B). Reprinted with 
permission from Ref. [68]. Copyright 2011 National Academy of Sciences. 

 

4. 2D metal-on-metal NCs: Post-deposition coarsening  
 

Figure 16 collates STM images and related schematics for coarsening in pristine 
Ag homoepitaxial systems. Ag/Ag(111) at around 300 K provides an example of classic 
Ostwald Ripening (OR) in 2D mediated by terrace diffusion, i.e., in the absence of an 
adatom attachment barrier to islands [72]. In contrast, Ag/Ag(110) below about 220 K 
provides an example of anomalous OR exhibiting a 1D decay mode for rectangular 
islands at lower T where they shrink (or grow) in length while maintaining constant width 
[64,65]. Contrasting both the above cases, Ag/Ag(100) at around 300 K exhibits 
Smoluchowski Ripening (SR) or PMC [17,73]. It is appropriate to emphasize that 
theoretical analysis reveals a crossover between OR and SR depending on typical 
island size with OR favored for larger sizes [15]. In addition for OR, the default 
expectation is by adatom diffusion. However, another mass transport pathway via 2D 
vacancies in the top layer of the substrate can potentially dominate opening additional 
possibilities for crossover between coarsening pathways. Indeed, for Cu/Cu(100), one 
finds SR at 300 K, but OR mediated by 2D vacancy diffusion at 343-413 K [74].  
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Figure 16. STM images for: (a-b) classic OR for Ag/Ag(111); (d-e) anomalous OR for 
Ag/Ag(110); and (g-h) SR for Ag/Ag(100). (c) Schematic of classic OR. (d) Simulation of adatom 
density with anisotropic attachment & diffusion. Yellow (dark blue) is 1.6 (1.3) times the 
equilibrium density at an extended step. (d) Diffusion path of an Ag island on Ag(100).  
(a-c) Refines with permission from Ref. [72]. Copyright 1999 Elsevier. (d-f) Reprinted with 
permission from Ref. [64]. Copyright 2013 American Physical Society. (g-i) Reprinted with 
permission from Ref. [15]. Copyright 2009 American Chemical Society. 

 
4.1 OR in pristine metal homoepitaxial systems. 
 

For Ag/Ag(111) where classic OR applies, individual islands are assumed to be 

locally equilibrated with chemical potentials satisfying Gibbs-Thompson condition, (R) 

= Eform + /R for an island of radius R. Here, Eform is that adatom formation energy,  is 

the step energy per unit length, and  is the area of the surface unit cell. Thus, the 

equilibrium adatom density, Ceq(R) = exp[-(R)] at island edges is higher for smaller R 
(as indicated in Figure 16c) leading to a mass flow from smaller to larger islands. 
System evolution then follows from a Burton-Cabrera-Frank (BCF) type analysis of the 
steady-state diffusion equation for the adatom density exploiting the above Dirichlet 
boundary condition, C = Ceq, at island edges quantifying the mass flow between islands. 

The effective barrier for OR satisfies EOR = Ed + Eform with Ed  0.08 eV and Eform  3  
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0.66 eV for Ag/Ag(111), compatible with the value obtained by monitoring the decay of a 
small island inside a monolayer pit [14]. Morgenstern et al. [72] have shown that the 
above formulation can be applied to effectively describe the growth and decay rates of 
individual islands in Figure 16a,b undergoing OR. Analogous OR behavior has been 
observed and quantified for Cu/Cu(111) [75].  
 For Ag/Ag(110) which also undergoes OR, coarsening is “anomalous” at lower T 
[65] as noted above. Below, we let || indicate the x-direction along the rows on the {110} 

surface, and  the orthogonal y-direction. Since the length of rectangular islands 
evolves with fixed width during OR, the classic OR assumption of equilibrated islands 
cannot be applied. One can instead introduce the concept of partial chemical potentials, 

the most relevant of which is associated varying island length for fixed width end =  + 

end /W, where end is the substantial step energy associated with the end of the island, 
and W is the island width [76]. The partial equilibrium adatom density at the end of the 

island is Cend = exp(-end). An analogous treatment applies for the chemical potential 
and equilibrium adatom density for the sides of the islands which have much lower step 

energy, side. Then, one solves the steady-state diffusion equation with appropriate 
anisotropic diffusion, and incorporating general Chernov type boundary conditions  
 

D|| C/x = kend(C – Cend) and D C/y = kside(C – Cside), 
 

where k denote kinetic coefficients for attachment of adatoms to step edges. In the case 

of no additional energetic barrier to attachment, standard BCF theory sets k =  
recovering a Dirichlet boundary condition. However, a refined BCF theory shows that for 
low kink density along a step, there is a high effective barrier for attachment to steps 
[77]. From this perspective, we set kside = 0 as the long sides of the Ag islands have few 

kinks, but set kend =  since there is a high kink density at the ends of the islands and no 
energetic barrier to attachment. With this formalism there is no mass flux to or from the 
long island sides, so their width is constant. However, there is a mass flux at the ends. 

The form end =  + end /W means that narrower islands (with smaller W) have 
higher chemical potential and higher equilibrium adatom density, so mass flows from 
these narrower islands to wider ones. Figure 16f illustrates results from numerical 
analysis of this refined BCF formalism which recovers experimentally observed rates of 
island growth or shrinkage. 
 
4.2 Chalcogen additive-enhanced OR on coinage metals 
 

In the context of degradation of supported metal catalysts, there has long been a 
perception that presence of certain chemical species, X, can lead to the formation of 
volatile metal – X complexes which facilitate mass transport during coarsening. The 
same effect was observed in coinage metal homoepitaxial systems where X = O in early 
studies [18]. A detailed study of the effect of X = S on OR for Cu/Cu(111) revealed a 
remarkable acceleration of OR by two orders of magnitude for even trace amounts of S 
below 10 mML [78]. That study adopted the perspective that a Cu-S complex was 
formed on terraces, the complexes efficiently transport Cu across terraces with a net 
flux from smaller to larger Cu islands, and dissociate near larger island edges delivering 
Cu to those islands. The initial proposal was the complex was a decorated trimer, Cu3S3 
[79]. Although Cu3S3 is less mobile than Cu adatoms, it also has a much lower 
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formation energy and thus a much higher quasi-equilibrium population on terraces, 
enhancing its capability as a mass carrier.  

With respect to theory, Ref. [78] recognized that complex-mediated OR should 
be described by reaction-diffusion equations (RDE) (rather than the standard diffusion 
equation), where the RDE describe the formation of complexes on terraces, their 
diffusion across terraces, and dissociation when delivering the metal to islands. A 
simplified linearized version of these equations for a single complex was considered in 
Ref. [78]. This formulation highlighted the importance of a “reaction length”, Lrxn, the 
typical length that metal adatoms diffuse before forming a complex, and the existence of 
different regimes of OR behavior. For example, if Lrxn < L (the typical separation 
between islands), then the presence of complexes will not significantly impact OR. 
However, a predictive analysis for specific systems must start with the appropriate non-
linear RDEs generally involving multiple complexes (which might be involved in 
formation of the dominant mass carrier) [80]. These non-linear RDEs can be linearized 
about quasi-equilibrium populations of adatoms and complexes on the surface leading 
to quantitative values for, e.g., reaction lengths [80-82]. This type of analysis brings into 
question whether Cu3S3 can be the dominant mass carrier (due to kinetic factors).  

Additional DFT analysis explored the formation energies for a variety of Cu-S 
complexes including those shown in Figure 17a. There are multiple cases other than 
Cu3S3 with low formation energies [83]. Cu2S3 is the only one of these complexes which 
has been definitively imaged with low-T STM [81]. See Figure 17b. A necessary 
condition for enhanced mass transport is that the effective barrier EOR = Ed + Eform (the 
sum of the relevant diffusion barrier and formation energy) for complexes is below that 
for adatoms. This applies for CuS2, CuS3, Cu2S3, Cu3S3,…, (see Table III), but at least 
the latter two are ruled out based on kinetic considerations [81]. It does seem that the 

CuS2 complex formed via trimolecular surface reaction Cu + S + S  CuS2 could 
provide a viable pathway for enhanced surface mass transport [82].  
 

 
 

Figure 17. (a) M-S complexes analyzed by DFT; (b) low-T STM image of Cu2S3. Reprinted with 
permission from Ref. [81]. Copyright 2015 American Physical Society. 
 

 

M{111} M MS MS2 M2S2 MS3 M2S3 M3S3 

Cu Eform 0.82 0.66 0.10 0.94 0.11 -0.06 0.11 

Cu Ed 0.05 0.33 0.05    -- 0.36 0.35 0.36 
        

Ag Eform 0.62 0.59 0.01 0.86 0.13 -0.19 -0.12 

Ag Ed 0.08 ~0.15 ~0.1 0.11   --   -- ~0.3 
 

Table III. Formation energies and diffusion barriers for M-S complexes on M{111} surfaces. 
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Considering other systems, S + Ag/Ag(111) with around 10 mML S exhibits a 
similar degree of enhancement of OR as S + Cu/Cu(111) [80], but S + Au/Au(111) 
exhibits much less enhancement [84]. An effort has been made to provide a 
comprehensive analysis of energetics for M-S complexes on {111} and {100} coinage 
metal surfaces, e.g., to explain the weak enhancement of coarsening observed for {100} 
versus {111} surfaces of Ag and Cu [83,85]. See again Table III. 
 Finally, the above analysis for S + Cu/Cu(111) was predicated on the picture 
proposed of complexes forming on terraces [78], which presumably anticipated a large 
additional barrier for complex attachment and detachment at step edges (which would 
contribute to EOR). However, a recent theoretical analysis exploiting machine-learned 
potentials retaining DFT accuracy [82] suggested the existence of pathways for facile 
detachment of CuS2 from S-decorated steps, where STM and DFT analysis supports 
such step decoration [81,82]. See Figure 18. The picture for S coverages where there 
is also a population of S adatoms on the terrace is as follows. Mobile Cu is passed from 
a kink site at the S-decorated step edge to pairs and triples of relatively immobile S 
(with Ed(S) = 0.15 eV) on the terrace, ultimately forming CuS2 detached from the step 
edge. The overall barrier for the detachment pathway shown is 0.43 eV, well below 

EOR(Cu)  0.87 eV. The transition state for detachment is around images b-c in Figure 
18, where it appears that a CuS3 motif may play a role. Perhaps this is related to an 
observed scaling of the enhanced coarsening rate with the cube of S coverage [78]. A 
definitive analysis remains elusive. 
 

 
 

Figure 18. Facile pathway for detachment of CuS2 from S-decorated steps in Cu(111). 
Reprinted with permission from Ref. [82]. Copyright 2022 American Vacuum Society. 

 
4.3 Cluster diffusion and coalescence in SR 
 

 The discovery of significant mobility of large clusters underlying SR in metal(100) 
homoepitaxy was first identified for Ag [73]. A detailed characterization of the cluster 
diffusion coefficient, DN versus size N (in atoms) at 295 K for N = O(102) was provided 
subsequently for both Cu and Ag [86]. It should be emphasized that this size-
dependence of DN controls the SR kinetics as determined by the Smoluchowski 
equation [15,16]. A simple mean-field picture of cluster diffusion mediated by random 
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independent hopping of edge atoms implies that DN  H (RCM)2 where H is the total hop 

rate of edge atoms, and RCM  1/N is the shift in center of mass (CM) position upon 

each hop of an edge atom. As one has H  he Ce N1/2
, where he is the typical hop rate 

and Ce the density of edge atoms, it follows that DN  he Ce N- with  = 3/2. The 

observation of apparent deviation of   1.14-1.24 [86] from 3/2 prompted extensive 
theoretical analysis. However, we now argue that this was just crossover behavior 

between the large-size regime with  = 3/2 and distinct behavior in a moderate size 
regime (where the kink separation on step edges exceeded the linear cluster size) [87]. 
 To elucidate behavior, some preliminary comments are instructive. There is a 

sequence of “perfect” sizes N = Np = LL or L(L+1) with unique close-shell ground 
state square or near-square shapes. General sizes will be labeled as N = Np + n with n 
= 1,2,..., and we will find oscillatory behavior between consecutive Np. Note that for N = 

L(L+j) with j   2, there are multiple ground-state shapes, and such N can be written as 
N = Np + n for suitable Np and n.  Cluster diffusion requires not just diffusion of periphery 
atoms, but disruption of the “core” of the cluster so that the entire cluster is translated 
across the surface. This requires nucleation of dimers on otherwise straight close-
packed edges of clusters in their near-square ground state configuration followed by 
transfer of atoms to complete that new edge. See Figure 19.  
 

 
 

Figure 19. “Direct” pathways for cluster diffusion for sizes N = Np, Np+1, Np+2, and Np+3. 
 

For quantitative analysis, we adopt a simple LG model with NN interaction of 

strength  > 0, barrier for diffusion along close packed edges of Ee and associated hop 

rate he =  exp(-Ee), and a possible additional KESE barrier, , for kink or corner 
rounding. For clusters with size Np +1 or Np +2, the rate controlling step is extracting an 
atom from a kink or corner site, edge diffusion and corner rounding. Thus, the effective 

barrier for “facile” cluster diffusion in these cases is Eeff = Ee +  + . For sizes Np, Np +3, 
Np +4,…, the system passes through an energetically excited state with a single “first” 

edge atom on one side, with probability per site of exp(-). It is necessary to extract a 
“second” atom from a kink or corner site, and transport this atom to the first atom to 
nucleate a dimer before the first atom before the first atom diffuses returning the system 
to the initial ground state. This step is indicated by the red asterisk in Figure 19. In these 

cases, one has the higher barrier of Eeff = Ee + 2 + . Simulation results for DN versus 

N in this model with  = 0.24 eV and  = 0 at 300 K are shown in Figure 20. (The basic 
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features do not change with  > 0 [87].) As might be expected, DN for facile sizes Np +1 
and Np +2 are highest in the moderate size regime.  Perfect sizes Np have much lower 
DN than N = Np +1, as anticipated in an early study [88]. However, Ref. [88] seemed to 
imply that N = Np -1 would also be faster (which is not the case), and certainly did not 
anticipate the surprising result that diffusion for N = Np +3 is the slowest.  
 

 
 

Figure 20. DN versus N for a simple model with  = 0.24 eV and  = 0 at 300 K. Reprinted with 
permission from Ref. [87]. Copyright 2017 American Physical Society. 

 
There are in fact many novel features of the results in Figure 20 worthy of further 

analysis and elucidation: the rapid decrease of DN with N for moderate N = Np +1; the 
merging of different “branches” of behavior before N = 200; the systematic increase in 
DN for N = Np +3, Np +4,… The latter is not tied to Eeff  which adopts a single value in 
this range. Rather all of these features reflect entropic effects, which, e.g., smear 
distinctions between different branches for larger sizes. In this respect, we note that 
Figure 19 is perhaps misleading showing only the most direct pathway to achieve 
translation of a cluster preserving its shape, and involving only ground state and first 

excited state configurations of the cluster. Let N(0), N(1),.. denote the degeneracy of 
the ground state, first excited state,… of a cluster of size N, where these quantities can 
be conveniently estimated exploiting “partitions of integers” concepts in number theory 
[87]. Here, we just make two observations. First, for facile sizes Np +1, diffusion can 

occur via evolution through ground state configurations, but their degeneracy, N(0)  
N2.6 increases quickly with N. However, the cluster wandering through this large phase 
space must repeatedly return to the first configuration shown in Figure 19. The return 

time scales like N(0), and we argue that DN 1/N(0) recovering observed behavior 
[87]. Second, to explain the increase in DN for increasing N = Np +3, Np +4,… we argue 

that a primary factor is the decrease in N(0) with increasing N. Higher degeneracy 
reflects many configurations which multiple atoms shifted from corner sites, and thus 
many kinks, which inhibit nucleation of a dimer leading to complete of a new outer edge. 

Note that most experimental data in Ref. [86] corresponded to sizes N > 100 
where the distinction between facile and non-facile behavior is less clear. Again, the 
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values of  < 1.5 observed in experiment just correspond to a crossover regime, as is 
evident from Figure 20. Also, we note that there may be some cluster size fluctuation in 
experiment which would smear out fine structure in DN versus N. 

Note that cluster diffusion leads to coalescence in the SR coarsening pathway. 
The most prominent case is roughly corner-to-corner coalescence of near-square 2D 
islands. This phenomenon has been studied extensively in experiment and via modeling 
[15,16]. A key observation was a deviation from the prediction of a Mullins continuum 

prediction for the reshaping time,   L*, versus linear feature size L with * = 4 
(following from a dimensional analysis of the periphery diffusion equation). Significantly 

lower values of * in the presence of a kink rounding barrier  > 0 have been observed 

and explained in the experimental size range [89-92], whereas *  4 for larger sizes.  
 

5. 3D supported metal NCs: Formation and coarsening  
 

As noted in Sec.1, early TEM studies explored metal deposition and 3D NC 
formation (reflecting the Volmer-Weber growth mode) on a variety of relatively weakly 
adhering substrates including NaCl, KCl, graphite, MoS2, and oxides [1]. The selected 
metals prominently include Au and Ag, but also Pt-group metals. See Ref.s [3,93] for 
reviews of metals on oxides, and Ref. [94] for a recent review for metals on graphite. 
The extensive studies of metals on oxides, and on ultra-thin oxide films, have been 
motivated as these systems constitute model catalysts [3,95,96]. Another active area 
involves metal deposition and NC formation on supported graphene [97,98], as well as 
on other 2D materials such as MoS2 [99-101].  
 
5.1. Nucleation and growth shapes for supported 3D NCs. 
 

There are few detailed studies of nucleation in contrast to metal-on-metal 
systems. However, considering metals on oxides, it is reasonable to expect that 
heterogeneous nucleation may often play a significant role associated with trapping at 
oxygen vacancy defect sites. One system which was studied extensively by experiment 
and modeling is Pd/MgO(100) [102-104]. A plateau exists in island density, Nisl, versus 
T up to about 565 K before a sudden drop for higher T. See Figure 21. This drop does 

not correspond to a transition from i = 1 to i > 1 which would occur at Trev  680 K 

corresponding to Y = 10 in (3) (and using Ed = 0.2 eV,  = 1.2 eV, F = 10-3.3 s-1, and  = 
1012.5 s-1 [104]). Instead, this behavior reflects heterogeneous nucleation where all 
defects are saturated with islands below 565 K. However, subsequent KMC modeling 
incorporating DFT energetics also highlighted the role of small cluster mobility across 
the surface in the nucleation process. This picture of defect mediated heterogeneous 
nucleation likely applies for many metals on MgO(100) [105], in particular for 
Ag/MgO(100) where there is a good lattice match and it was proposed that NC growth 
shapes are {100} epitaxially supported truncated pyramids [106,107].   

We briefly note that a distinct form of nucleation and growth, which is not defect-
mediated, occurs for 3D metal NCs on metal-supported graphene, where the graphene 
sheet generally exhibits a periodically rumpled moiré structure due to lattice mismatch 
with the support. In this case, directed-assembly resulting in a periodic array of NCs due 
to preferential nucleation in a specific region of the moiré cell. A classic example is 
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provided by formation of Ir NCs on Ir(111) supported graphene [98]. Effective stochastic 
atomistic modeling and KMC simulation was achieved accounting for the periodically 
modulated PES for deposited atoms on the nm scale associated with the moiré cell 
structure [97,108]. 
 

 
 

Figure 21. Nisl versus T for Pd/MgO(100) where insets are AFM images. Reprinted with 
permission from Ref. [102]. Copyright 2000 American Physical Society. 

 
 With regard to NC growth shapes, a detailed discussion can be found in the 
review by Henry focused on facetted polyhedral shapes [109]. NC shapes generally 
deviates from the equilibrium Winterbottom form, and can be regarded as being 
determined by the relative growth rates of different facets, with slower growing facets 
becoming more prominent. This picture corresponds to the geometry-based Frank’s 
model of growth shapes, where these shapes are quantified by a so-called kinematic 
Wulff construction [110]. TEM imaging provides some valuable information on NC 
shapes, as illustrated in Figure 22 for Au on MgO(100) [109]. Of note is the coexistence 
of different NC shapes, as evidenced by triangular versus rectangular footprints. These 
two cases corresponds to fcc{111} versus fcc{100} epitaxy, respectively. Coexistence of 
different NC shapes, and possibly also distinct crystal structures (as recently found for 
Fe on MoS2 [101]) is expected to reflect similar energetics of these distinct structures, at 
least for small sizes at the onset of growth. The NCs are plausibly fluxional for small 
sizes and can transition between different structures. However, they presumably 
become locked-in to a specific structure for larger sizes during growth.  

We mention another notable study of growth shapes was for 3D Pb NCs on 
graphite where these shapes are characterized by sharper facets than seen in 
equilibrium [110,111]. Also, in part for comparison with our discussion of 2D NC growth 
shapes in Sec. 3, we note that not just geometric growth shapes as occur in the above 
examples, but also dendritic structures have also been observed for 3D NCs, e.g., in the 
case of Au NCs on graphite [1]. Finally, we emphasize that currently there is limited 
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realistic and predictive atomistic-level stochastic modeling for the growth shapes of 3D 
NCs (in contrast to the 2D case).  
 

 
 
Figure 22. TEM image of Au NCs on MgO(100) [109]. A = fcc(100) epitaxy; B,C = fcc(111) 
epitaxy. Insets: theoretical analysis of Au NC epitaxy [107]. red = O, white = Mg, yellow = Au. 
Reprinted with permission from Ref. [109]. Copyright 2005 Elsevier. Insets reprinted with 
permission from Ref. [107]. Copyright 2000 American Institute of Physics. 

 
5.2. OR versus SR coarsening pathways 
 

A long-standing question for supported 3D metal NCs, particularly in the context 
of applications to catalysis, was whether coarsening is dominated by OR or SR (i.e., 
PMC). This controversy can now be resolved by examination of TEM “movies” (i.e., a 
sequence of images) of system evolution [112], analogous to insights extracted from 
STM movies for the 2D case. There have been detailed studies of OR considering in 
detail the size-dependence of the chemical potential for atoms in 3D NCs [113], and 
also assessing factors which can be utilized to inhibit OR and enhance stability of 
supported catalytic NCs [114]. Another recent study explored factors controlling the 
selection of OR versus SR [115]. We have noted previously the perception that the 
mass transport underling OR can be enhanced by the presence of species such as O 
which can create volatile complex involving the metal [116], a process which has been 
modeled for Pt nanoparticles in an oxygen environment [117].  
 Finally, paralleling the analysis in Sec. 4.3 for 2D NCs, here we consider the 
size-dependence of diffusion of supported 3D epitaxial NCs which controls SR kinetics. 
The commonly accepted mean-field picture of cluster diffusion mediated by random 

independent hopping of surface atoms sets DN  H (RCM)2 with total hop rate H, and 

lateral CM shift per hop of RCM  1/N (analogous to 2D clusters). However, now one 

has H  hs Ce N2/3
, with typical hop rate hs, and surface atom density Ce, so that DN    

hs Ce N- with  = 4/3. With hs =  exp(-Ed) and Ce = exp(-Eform) where Eform is the 
formation energy for surface atoms, it follows that the effective barrier for cluster 
diffusion satisfies Eeff = Ed + Eform. More refined treatments include a size-dependent 
contribution to Eform associated with a Gibbs-Thompson effect [118], but it should be 
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noted that Eform, and thus the mean-field Eeff, have well-defined finite limiting values as N 

 .  
There have been few detailed atomistic level studies of 3D NC diffusion [119-

121] to assess the mean-field picture. Here, we briefly describe an analysis for {100}-
epitaxially supported faceted fcc NCs, as for Ag/MgO(100) [107]. This analysis reveals a 
fundamental breakdown of the mean-field picture (even after accounting for the feature 
that there are distinct adatom densities and diffusivities on different facets, and after 
precisely calculating Eform for each size [121]). The model implemented includes NN 

interactions of strength  between metal atoms, and realistic surface diffusion kinetics 
with parameters selected for Ag [120]. The strength of adhesion to the substrate is 
selected so that the continuum equilibrium Winterbottom shape is a truncated pyramid, 
a discrete version of which is shown in Figure 23b  for an NC with size N = 50 atoms 
[cf. Ref. [106] for Ag/Mg(100)]. KMC simulation results for DN versus N shown in Figure 
23a reveal an oscillatory form with local minima mostly corresponding to closed-shell 
sizes for truncated pyramids (sizes indicated by vertical grey lines in the figure). 
Determination of DN versus T in the range 700-900 K allows extraction of the effective 
barrier, Eeff(N), for diffusion as a function of N. See Figure 23a. In marked contrast to 
the cases of 2D metal(100) homoepitaxial NC where there are just two values of Eeff, 
here the detailed oscillatory variation of Eeff with N tracks that of DN with N.  
 

 
 
Figure 23. Diffusion of {100}-epitaxially supported truncated pyramidal fcc NCs with parameters 

for Ag where  = 0.225 eV: (a) KMC results for DN versus N from 700-900 K, and the associated 
effective barrier, Eeff; (b) Schematic of the underlying mechanism of disassembly & assembly of 
outer layers of size facets. (a) Reprinted with permission from Ref. [120]. Copyright 2019 Royal 
Society of Chemistry. (b) Reprinted with permission from Ref. [121]. Copyright 2023 Royal 
Society of Chemistry. 
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 The above results reflect a fundamental breakdown of the mean-field picture. 
Rather than independent random motion of surface atoms, NC diffusion is mediated by 
the disassembly of the outer layer of atoms on one side facet and assembly of an outer 
layer on a different side facet. See Figure 23b. This process can be regarded as a 
involving the nucleation & growth of new outer layers. The energy of the system as a 
function of the number of atoms transferred first increases, passes through a maximum, 
and then decreases. Evaluation of the maximum in the energy profiles versus N tracks 
well with Eeff extracted from KMC simulation [120]. It is also the case that Eeff increases 
without bound as N increases, in contrast to the mean-field prediction. As a final aside, 
we note that a picture of nucleation-mediated evolution would also apply to the 
reshaping of non-equilibrium faceted growth shapes of 3D NCs back to their equilibrium 
Winterbottom shapes [16,122].  
 

6. Conclusions 
 

The last 30 years have seen major advances in the characterization, high-fidelity 
atomistic-level stochastic modeling, and understanding of the nucleation & growth of 2D 
epitaxial NCs, particularly for homoepitaxial systems, as well as of their often far-from-
equilibrium growth shapes. Although not discussed here, this has facilitated detailed 
understanding of kinetic roughening and mound formation in multilayer homoepitaxial 
growth [9,10]. In particular, for the case of large Ehrlich-Schwoebel barriers for 
downward interlayer transport, multilayer mounds are built on platforms of individual 
submonolayer islands. A classic case is provided by multilayer fractal or dendritic 
wedding-cake mounds in multilayer Ag(111) homoepitaxy which are built upon 
submonolayer dendritic Ag islands [10]. With regard to post-deposition coarsening, 
submonolayer Ag/Ag(111) provides a classic example of terrace diffusion mediated OR 
in a well-controlled pristine system. The potential for anomalous OR even in simple 
homoepitaxial systems is provided by the anisotropic Ag/Ag(110) system al lower T 
where rectangular islands shrink or grow in length while maintaining constant width (so 
traditional theories of OR must be refined). The dramatic enhancement of OR in some 
coinage metal(111) systems due to the presence of even trace amounts of additives 
connects with long-held views regarding enhanced degradation of performance in 
catalytic nanoparticle systems. For metal(100) homoepitaxial systems, the dominance 
of SR rather than OR induced much interest in characterizing the size-dependence of 
2D NC diffusion where comprehensive understanding was achieved only recently. 
Detailed analysis, incorporating high-fidelity atomistic-level stochastic modeling, is far 
less developed for 3D epitaxial NCs even with regard to such basic issues as elucidating 

growth shapes. In this respect, many opportunities await which would connect with 
current interest in solution-phase shape-controlled synthesis of metallic NCs [123]. 
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