Formation and coarsening of epitaxially-supported metal nanoclusters
Yong Han,'? Da-Jiang Liu,! King C. Lai,»?" Patricia A. Thiel,»3% and James W. Evans'?

1Ames National Laboratory USDOE, Ames, lowa 50011
2Department of Physics & Astronomy, lowa State University, Ames, lowa 50011
SDepartment of Chemistry, lowa State University, Ames, lowa 50011

Abstract

This mini-review describes developments over the last ~30 years in characterizing the
nucleation & growth of epitaxially-supported metal nanoclusters (NCs) or islands during
vapor deposition, as well as their post-deposition coarsening. A beyond-mean-field
treatment for homogeneous nucleation & growth corrects the deficiencies of traditional
treatments in describing, e.g., the island size distribution, but also necessitates
consideration of the spatial distribution of islands and their capture zones. We discuss
advances in modeling capabilities, including those based upon on an ab-initio level
treatment of periphery diffusion kinetics, for description of the non-equilibrium growth
shapes of these NCs, mainly for 2D NCs. For post-deposition coarsening of arrays of
NCs, there is generally a competition between Ostwald Ripening (OR) and
Smoluchowski Ripening (SR). SR is also known as Particle Migration & Coalescence.
For 2D NCs in homoepitaxial systems, conventional OR is observed on pristine fcc(111)
surfaces, dramatically enhanced OR in the presence of even trace amounts of
chalcogens for Cu(111) and Ag(111), and anomalous OR on anisotropic fcc(110)
surfaces. The unexpected discovery of SR for fcc(100) homoepitaxial systems
prompted extensive analysis of the underlying diffusivities of 2D NCs as a function of
size, as well as of NC coalescence dynamics. A comprehensive understanding of these
processes is now available. Self-assembly of 3D NCs during deposition, issues related
to heterogeneous nucleation, directed assembly, and NC structure selection are
addressed. For SR of 3D epitaxial NCs, shortcomings of the standard a mean-field
treatment of the size-dependence of diffusivity are also revealed.

1. Introduction

In the first 30 years of surface science beginning in the 60’s, studies of supported
3D metal nanoclusters (NCs) or “islands” formed by vapor deposition on non-metallic
single-crystal substrates (alkali metal chlorides, graphite, oxides, etc.) effectively
exploited Transmission Electron Microscopy (TEM) [1]. Real-scale images from TEM
allowed characterization of individual NC growth morphologies, and also the distribution
of NCs in size and space which resulted from the process of nucleation & growth (i.e.,
self-assembly) during deposition [1,2]. Post-deposition coarsening processes were also
explored [1,2], where there was particular interest in coarsening pathways associated
with the degradation of supported 3D metal NC catalysts [3]. A long-standing question
was whether Ostwald Ripening (OR) or Smoluchowski Ripening (SR) [aka Particle
Migration & Coalescence (PMC)] dominates. For these vapor deposition processes,
there is generally a clear separation of time scales for NC formation during deposition
and post-deposition coarsening (in contrast to analogous solution-phase processes).
These early studies of NC formation prompted development of what we characterize as
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mean-field (MF)-type theories for the homogeneous nucleation & growth of (either 2D or
3D) NCs by Zinsmeister, Venables, and others [4,5] which in particular describe the
dependence of NC or island density on deposition flux, F, and surface temperature, T.

In the second 30 years, the ready availability of Scanning Tunneling Microscopy
(STM) from the late 80’s facilitated real-space imaging of epitaxial metal-on-metal
systems in ultra-high vacuum where 2D NCs form due to strong adhesion of the
deposited metal to the substrate [6-8]. In particular, studies of homoepitaxial systems
focused on fundamental questions regarding film growth [9,10]. Analogous studies were
performed for semiconductor systems, e.g., for Si/Si(100) [11]. These studies involved
detailed investigation of far-from-equilibrium NC growth morphologies, and a
guantitative assessment of self-assembly via homogeneous nucleation & growth
(exploiting the feature that perfect that defect free surfaces can be prepared on a
sufficiently large length scale, thus avoiding heterogeneous nucleation). Shortcomings
of traditional MF nucleation theories in predicting the island size distribution (ISD) were
revealed and explained [12,13] leading to development of beyond-MF treatments [10].
Post-deposition coarsening was also explored for homoepitaxy (again on a slower time
scale than deposition) [14-16], where the unexpected dominance of SR for 2D islands
rather than OR was found in some cases [17], and well as dramatic acceleration of OR
in the presence of certain trace “additives” [18]. For these systems, a comprehensive
understanding of behavior was often achieved by predictive atomistic-level stochastic
modeling and Kinetic Monte Carlo (KMC) simulation capturing behavior on the
appropriate time and length scales (in contrast to MD studies) [9,10]. These successes
are highlighted in this contribution.

In the following, Sec. 2 reviews developments in homogeneous nucleation
theory. Growth shapes formed during nucleation & growth of 2D metal-on-metal NCs
are described in Sec. 3. Coarsening in 2D metal-on-metal NC systems is described in
Sec. 4. In this contribution, the focus is on the case of 2D islands. However, in Sec. 5,
we more discuss more briefly the formation and coarsening of 3D metal NCs on more
weakly adhering supports. Conclusions are provided in Sec. 6.

2. Theory of homogeneous nucleation & growth during deposition

First, in Figure 1, we present a schematic highlighting the key features of self-
assembly of supported NCs or islands via homogeneous nucleation & growth
[10,19,20]. Figure 1 is based on KMC simulation of the irreversible formation of near-
square 2D NCs or islands, but the same basic features apply for 3D NCs. Desorption is
assumed inactive corresponding to the regime of “complete condensation”. The basic
picture is that adatoms are deposited randomly on the surface, undergo rapid diffusive
hopping across the surface, and aggregate into islands or NCs, which then grow by
incorporation of subsequently deposited atoms. In the early “transient regime”, the
adatom density, N1, builds up being roughly equal to the deposited coverage, 6. Once
stable islands have nucleated, adatom depletion zones (DZ) grow about them (as each
island periphery provides a sink for deposited diffusing adatoms). Subsequently, N1
continues to increase while these DZs spread across the surface leading to their
collision, which forms portions of so-called capture zone (CZ) boundaries. At the end of
the transient regime, the DZs are transformed into a network of CZs which cover and
tessellate the entire surface (with one island per CZ), and N1 no longer increases. This
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marks the onset of the steady-state regime where there is a rough balance between the
gain of adatoms due to deposition, and the loss due primarily to capture by islands. It
should be emphasized that nucleation of new islands continues, primarily close to CZ
boundaries where the local N1 is highest [19,20]. In fact, most islands are formed during
the steady-state regime. CZs are so-named based on the picture that atoms deposited
within a CZ are typically captured by the associated island within it.

(a) Early transient regime (b) Crossover regime

)

Just nucleated NC

Q0

N, = 0 outside DZs

(c) Early steady-state regime (d) Late steady-state regime

Figure 1. Schematic of homogeneous nucleation & growth (from simulations for irreversible
formation of 2D square islands). Refined with permission from Ref. [10]. Copyright 2006 Elsevier.

2.1 Rate equations for the island density, Nis;, and adatom density, N1

The density per adsorption site of NCs or islands of size s (in atoms) is denoted
by Ns (<1). A critical size, i, is assigned such that islands with size s (in atoms) are
stable only for s > i, so that the density of stable islands is given by Nisi = > s>i Ns.
Subcritical clusters with s < i are locally equilibrated with the adatom density, yielding
the Walton relation Ni = exp(-BEi)(N1)' where E;i < 0 is the binding energy of a cluster of i
atoms, and 3 = 1/(keT) for surface temperature T and Boltzmann constant ks. Below, F
denotes the deposition flux (per adsorption site), and h = v exp(-BEd) denotes the hop
rate for terrace diffusion of adatoms with barrier Eq. The key parameter, h/F, is typically
large given generally rapid surface diffusion. Note that the coverage satisfies 0 =
2s>1 SNs = Ft for deposition time t. For nucleation rate, Knuc, and rate of aggregation with
stable islands, Kagg, One has that [4,10]



d/dt N1 = b(6)F — Kagg — (i+1)Knuc and d/dt Nisi = Knuc, 1)

where Knuc = oi h N1 Ni and Kagg = oisi h N1 Nisi, and oisi (i) denotes the “capture
number” for stable islands (for critical clusters of size i). Also b(6) denotes the bare
fraction of the substrate not covered by islands at coverage 6 (so that b(6) =1 - 6 for 2D
islands), but below for simplicity we set b(0) ~ 1. Early transient regime behavior, Nisi ~
02 exp(-BEi)(h/F), follows immediately using N1 ~ 0. Steady-state behavior follows from
using the relation F ~ Kagg, and yields the central result of nucleation theory

Nisi ~ 0Y0+2) exp[-BEi/(i+2)](h/F)* with scaling exponent y = i/(i+2). (2)

Thus, if Nisi ~ exp(-BEeff), one has that Eeff = (i Eq + Ei)/(i+2). Matching expressions for
Nisi in the transient and steady-state regimes shows that crossover occurs for very low
coverages 0 = 0* ~ exp[BEi/(i+3)](h/F)-?(*3). Another quantity of basic interest is the
mean island size, sav = 0/Nis;, which is readily obtained from Nisi.

A schematic summary of the behavior of Nisi and Nz is provided in Figure 2. The
coverage scaling in (2) is significantly modified above low 6 by effects of finite island
extent. The variation with h/F or with T is invaluable to extract information on critical size
and the underlying energetics. Some refinement to the above formulation is required for
strongly anisotropic surface diffusion [12] (revising [11]), or if smaller stable clusters
have significant mobility [10]. For example, if i = 1 (irreversible island formation), but
there is significant dimer mobility with hop rate h’, then one has that Nisi ~ (hh'/F2)1/5
[9,10].

N1~e* ———————— -

Transient i Steady-state
| _

Y =if(i+2) < =(i+1)/(i+3)

«— O* ~ (h/F)-Zl(i+3)

In(0)

Figure 2. Schematic behavior of Niss and N1 where the figure is geared to smaller i (as for bigger
i, N1 can dominate N in the steady-state). Slopes on this log-log plot are indicated in red.
Boltzmann factors involving E; are ignored. Deviation from simple 6-scaling behavior (dashed
lines) in the steady state is due to finite island extent. See [10] for corresponding plots based
upon data from KMC simulations.




It remains to assign the critical size, i, which should increase with T. Traditionally,
this is done by adapting the concepts of Classical Nucleation Theory (CNT) [21].
Assuming local equilibration of all subcritical clusters with the adatom density (which
itself is determined by the deposition process), one as that Ns ~ exp(-BEs)(N1)s for s <1,
where Es < 0 is the binding energy for a cluster of size s. The critical size corresponds to
the minimum Ns [4,5]. For 2D epitaxial clusters on isotropic surfaces where ¢ > 0 is the
effective nearest-neighbor (NN) bond strength, a reasonable approximation is that Es =
-Ms ¢ so Ns ~ exp(BMs ¢)(N1)s where Ms is the number of NN bonds in the lowest energy
ground-state configuration of a cluster of s atoms. Thus, one has that M1 = 0 for an
adatom, Mz = 1 for a dimer, but Ms>2 depend on epitaxial geometry. See Table I. For low-
T, the increase in the Boltzmann factor in Ns will dominate the decrease in (N1)° with
increasing s, so that N1 < Ns>1and i = 1 (irreversible island formation). The transition to
reversible island formation with i > 1 occurs when T increases sufficiently so that N2
decreases to equal N1 [i.e., when N1 = exp(-B¢)]. More detailed analysis reveals that for
{100} epitaxy, there is a transition directly from i = 1 (stable dimers) to i = 3 (stable
square tetramers), and for {111} epitaxy from i = 1 (stable dimers) to i = 2 (stable
triangular trimers) and then to i = 6 (stable hexagonal heptamers). See the
supplementary materials (SM). More generally, this approach is traditionally used to
map out regimes of i versus T [4,5].

Table I. Number of NN bonds, Ms, for clusters of size s atoms for fcc {100} and {111} epitaxy. In
some cases, cluster shapes are indicated (e.g., a square tetramer for fcc(100) when s = 4).

fcc(100) |[Mi=0 [ M2=1 [ Ms=21L - |[Ms=4[ Ms=5 |[Msg=7 |[M;=8
fcc(111) |Mi=0 | M2=1 | M3=3A My=50 Ms=7 |Me=9 |M7=12

More recently, an alternative (but equivalent) kinetic formulation has been utilized
producing “practical criterion” for the transition from i =1to i > 1 [22]. Here, the focus is
on the relative magnitude of the aggregation rate of monomers with each dimer, Kagg ~
o2 h N1, and the rate of dissociation of each dimers, Kdiss ~ h exp(-B¢). The regime i =1
corresponds to Kagg > Kadiss, i.€., dimers are stable on the time scale of aggregation, and
the transition (starts to) occur when these rates are roughly equal. This criterion
matches that above (if one neglects the capture number, or if one implements a more
rigorous formulation which uses detailed-balance to show that the effective Kaiss also
involves a factor of o2 [23]). Thus, a natural parameter tracking the crossover fromi=1
toi>1is the ratio Raa = Kaiss/Kagg. Using the steady-state relation to express N1 in
terms in Nisi, one finds that

Raa ~ Y22 where Y = (v/F) exp[-B(Ed + 3/2 ¢)]. (3)

Thus, Y provides a practical crossover-variable where the onset of reversible island
formation occurs for Y ~ 1 - 10. However, contrasting the traditional picture of sharp
transitions in critical size, there is a broad transition regime beyond i= 1 before one finds
a regime corresponding (it seems only for a narrow window of Y) to i = 3 for {100}
epitaxy [22,24,25]. See Figure 3. Analogous behavior applies for the transition from i =
1toi=2for {111} epitaxy [26,27]. As a further illustration of the utility of (3), in Table II,



we provide corresponding estimates of the temperature, Trev, associated with the onset
of the transition to reversible island formation for various metal homoepitaxial systems.
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Figure 3. Variation of the scaling exponent, y, for the island density as a function of the
crossover parameter Y for the transition from irreversible island formation i = 1 to i = 3 for {100}
epitaxy. Recall that nominally y = i/(i+2). Results are shown from KMC simulation in [24] (closed
symbols) and [25] (open symbols), and from a simple MF treatment [22]. The existence of a
substantial well-defined regime with i = 3 is not so evident from (precise) KMC simulation.
Refined with permission from Ref. [10]. Copyright 2006 Elsevier.

Table Il. Estimates of Ty for the transition to reversible island formation in metal homoepitaxy
based upon Y = 10 choosing F = 0.01 ML/s and v = 10*?%/s, so that Ty = 373.3(Eq + 3¢/2). *An
estimate of the onset temperature, Tmob, Where dimer mobility impacts Niss comes from replacing
¢/2 in Trev by Ed'- Eq, where E4' is the barrier for dimer mobility [10]. Thus, the relevant case Tmob
< Trev applies when E4'- Eq < ¢/2 which applies for Pt(111) with Eq' ~ 0.37 €V S0 Tmob ~ 220 K.

Ag(100) [Ag(111) [Cu(100) [Cu(111) [Pt111)* [ Fe(100)
Eq, ¢ (ineV) | 0.45,0.26 | 0.08,0.22 | 0.48,0.33 | 0.05,0.27 | 0.26,0.63 | 0.45, 0.50
Trev 315K 150 K 365 K 170 K 445 K 450 K

2.2 Rate equations for the island size distribution (ISD): Ns vS s

The evolution of the density, Ns, of stable islands of size s > i satisfy standard
Becker-Doering type population dynamics equations

d/dt Ns = h 651 N1 Ns-1 —h s N1 Ns ... for s > i. (4)

where cs denotes the capture number for islands of size s. These are supplemented for
the Walton relation for Ni and the above equation for Ni1. Clearly, the form of Ns versus s
will depend on the s-dependence of os. Most interest is in the scaling regime of large
h/F and large sav, Wwhere one anticipates scaling form



Ns =~ (Nisi/Sav) f(X) where x = s/sav with Jdx f = Jdx x f = 1, (5)

neglecting any 6-dependence of f. Also adopting a scaling form for os = cisi C(X) [28],
and neglect 6-dependence of C, then one obtains the exact relation [10]

f(x) = f(0) expllosy<x [(22-1) — dC(y)/dy}/[C(y) — zy], (6)

where sav ~ 6% and z = (i+1)/(i+2) for low 6 (with deviations for larger 6).
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Figure 4. Scaling functions, f(x), for the ISD obtained for 2D compact islands. Insets show
scaling functions, C(x) = a(x), for the capture number (or CZ area) versus island size. KMC
results are compared with those from standard and refined Geometry-Based Simulation.
Refined with permission from Ref. [20]. Copyright 2003 Elsevier.

The form of the scaling function C(x) for capture numbers is required to explicitly

evaluate f(x). C(x) has contributions from direct deposition on top of the islands, and
from diffusive aggregation, but we emphasize the latter here. Traditional MF treatments
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took considerable care to develop of self-consistent evaluation of os versus s solving an
appropriate deposition-diffusion equation for the capture of deposited atoms accounting
for the mean environment of the “island sink”. The corresponding C(x) initially increases
quickly like 1/|In(x)| as x increases above zero, but then sub-linearly roughly like x*? for
larger x. This results in a divergence of f(x) at x = xs where C(xs) = zxs, and where f(x) =
0 for x > xs. For finite h/F, this singularity is smoothed out. However, the fundamental
flaw in this MF treatment is the neglect of a significant non-MF dependence of the local
environment of islands on their size. Specifically, KMC simulation and experimental
analysis shows that larger islands are more distant from their neighbors. As a result,
C(x) increases quasi-linearly for with x, and the singularity in (5) is averted. This non-MF
form of C(x) is confirmed not just by KMC simulation [10,13,19,20], but also by analysis
of experimental data [26,27]. Examples of scaling functions, f(x), and the corresponding
C(x) are shown in Figure 4 for models with prescribed critical size i =1, 2, 3, and 6.
Note that the scaled ISD sav Ns/Nisi versus s/sav produce a family of curves with higher
peaks and lower left shoulders for increasing h/F, and where strictly (5) corresponds to
limiting behavior for h/F — . Finally, it should be emphasized that (4-6) do not provide
a complete beyond-MF theory of the ISD, as they do not provide the form of C(x). For a
more complete theory, see Sec. 2.5.

A key feature of the ISD is that f(0) > 0 most clearly for small critical sizes. This is
also reflected in the relation C(0) f(0) = 1-z [13]. In contrast, a popular form of Amar &
Family [31] for f(x) ~ x' exp(-iai x'/2), where ai is determined by Jdx x f = 1, sets f(0) = 0.
Their simulations for i =1 involved fractal islands with fixed 6 which suppressed f(x) for
small x relative to compact islands. Also, there is often a delay between experimental
imaging and the end of deposition during which the higher mobility of small clusters
which aggregate with larger clusters can suppress f(x) for small x [32].

The availability of precise experimental ISD data is limited even for metal
homoepitaxy, although data does exist for Fe/Fe(100) and Ag/Ag(100) [10]. For the
latter, mobility of small clusters after deposition and before imaging does deplete the
population of small islands relative to theory predictions in Sec. 2.

2.3. Exact and approximate Capture Zones (CZ)

First, we elaborate further on the concept of CZs illustrated in Figure 1 where
atoms deposited within a CZ are typically captured by the associated island. The basic
concept was advanced in the earlier literature [33,34]. In principle, capture zones can be
constructed so that the rate of growth of an island is exactly equal to the deposition flux
times the CZ area. This is achieved by solving the steady-state deposition-diffusion
equation for the island and those in its vicinity with zero adatom density at island edges
which act as “sinks”. This allows determination of the field lines for the surface diffusion
flux, and following these from all points within the CZ lead to the associated island. See
Figure 5a. In fact, exact CZs can well-approximated from a simpler Voronoi-type
construction where CZ boundaries are equidistant from nearby island edges. See
Figure 5b. See Ref. [29,30]. In addition, in the context of ISD analysis, it is instructive to
let As denote the mean CZ area for islands of size s. Then, for the exact CZs, it follows
that the rate of aggregation with islands of size s is given by h N1 os = F As [which can
be used to recast (4)]. Then the scaling function for capture numbers and these CZ



areas coincide, i.e., As = Aav a(x), where Aav = 1/Nisl, then a(x) = C(x). Thus, C(x) can be
determined from a CZ area analysis.
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Figure 5. Capture zones for Ag islands on Ag(100) with the island distribution extracted from

STM [30]: (a) exact analysis; (b) modified Voronoi construction. Note that for the exact CZs in
(a), contours of equal steady-state adatom density are shown, and CZs are also decomposed
into sub-CZs for each island edge (see dashed lines). Refined with permission from Ref. [30].
Copyright 1999 American Physical Society.

2.4. Capture Zone area Distribution (CZD): Na vs A

From the 60’s through the 90’s, there was considerable focus on analysis of the
ISD. However, subsequently interest developed in detailed characterization of the
capture zone (area) distribution (CZD), Na, versus A, where Na is the density of islands
with CZ area A, so that Nisi = 2.A Na. Thus, one anticipates a scaling form

Na =~ (Nisi/Aav) g(c)) where a = A/Aav with [da g = [da ag = 1, (7)

neglecting any 6-dependence of g. A heuristic formulation [35] of Na suggested a
Gaussian tail for large A, and that behavior for small A was controlled by the critical size
for nucleation, where the latter specific prediction was later corrected [36,37]. Our
perspective was to develop a theory for Na based upon the fundamental exact evolution
equation which is represented schematically in Figure 6. The population, Na, can
increase if a new CZ is formed with area A, or if creation of a new CZ by nucleation
nearby and thus overlapping with an existing CZ with area larger than A reduced its
area to A. The population Na can decrease if nucleation nearby a CZ of area of A
creates a new overlapping CZ thus reducing the area of the existing CZ below A. See



the 39, 2" and 1t terms in Figure 6, respectively. Thus, it is clear that rigorous
analysis of Na requires characterization of the finer details of nucleation, the absence of
which precludes complete analysis. Some relevant quantities are the mean number, Mo
~ 4-5, of existing CZ’s overlapped by a new CZ. Also, if a new CZ overlaps an existing
CZ, the mean fraction of area overlapped is pav ~ 0.1 at 0.1 ML [36,37].

Figure 6. Schematic for evolution of the population, Na, of islands with CZ area A. Refined with
permission from Ref. [37]. Copyright 2016 American Institute of Physics.

Even without a complete analysis for Na or g(a), one can however provide insight
into behavior for small A or a.. Let P*(A) denote the probability of nucleation a new CZ of
area A, where we naturally adopt the scaling form P*(A) = (Aav)! p*(a) with [do p* = 1.
For small A, we first assume that the 3" term in Figure 6 which is given by P* dNis/dt,
dominates, so that [36,37]

d/dt Na =~ P*(A) dNis/dt yielding 2g(a) + o dg(a)/do ~ p*(ct). (8)

Adopting the form g(a) ~ o for small a, it follows that g(a) =~ (2+B)* p*(a), i.e., the form
of g(a) is directly determined from that for p*(a) for small o.. We first focus on the
scenario where small CZs can be formed by nucleation along a CZ boundary between
pairs of existing nearby islands of finite extent, neither of which need have a small CZ.
See Figure 7a. (A small CZ also results from nucleation within group of three or more
nearby islands, but with lower probability.) Let risi ~ (Aav)¥?2 measure the mean
separation between islands. Then, the separation, r, of nearby islands associated with
the formation of CZs with small o scales like r/risi ~ a2, Evaluation of p* = ppair Pnuc Mmust
account for both the relative probability of finding a nearby pair of islands, ppair ~ (r/ris))*?,
and the relative probability of nucleation in the small confined space between islands,
Pnuc ~ (r/ris1)?*4. See the SM for details. Since g(a) ~ p*(a), one obtains

g(c) ~ of with B = 3i/2 + 3. (9)

(a) new small CZ (b)

‘nucleation site

I)?(r

new CZ
boundary

Figure 7. Schematics for the formation of CZs with small area A << Aig or a << 1.
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A second scenario to create small CZ is shown in Figure 7b. This corresponds to
the second term in Figure 6 (contrasting the above assumption that the third term
dominates). Here, one starts with a nearby triple of islands, none of which necessarily
has a small CZ. The probability of this configuration scales like puiple ~ (t/ris1)?*3 [37]. In
addition, a fourth island must nucleate a distance r << risi from one of these converting
its large CZ into a small CZ. This nucleation probability is pnuc: ~ (r/ris))*2 which differs
from pnuc as here nucleation does not occur in a confined space between nearby islands
[37]. See the SM. Using that g(a) ~ priple Pnuct, ONe actually recovers (9). While there
remains some uncertainty in this analysis of 3, it seems to agree reasonably with
simulation results (see below).

r 3 s M. —n=175p=35
1.0 ds
0.8 -
3 0.0+
= 0.6+ 00 05 1.0 15 20 25 3.0
0.4 i=1
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Figure 8. KMC simulation results for the scaled CZ area distribution, g(ca), versus a. = A/Aa for
2D square islands with i = 1. Data is fit to a GG distribution, ges(a) = a o exp(-ba"). Refined
with permission from Ref. [37]. Copyright 2016 American Institute of Physics.

Simulation data for g(a) is typically fit with a generalized gamma (GG)
distribution, gec(a) ~ a P exp(-ba"), where a and b are determined in terms of B and n
from Jdo g = Jdo ag = 1. (We emphasize that this is a just convenient form with the
flexibility to capture a variety of behavior for both small and large a, but it should not
correspond precisely to the solution of the exact evolution equation for Na.) Figure 8
shows results for 2D square islands with i = 1 at 6 = 0.1 ML where the best fits are
compatible with § = 3.5-4. Similar analysis for i = 0 (corresponding to mobile adatoms
converting at a fixed rate immobile seeds for nucleation as suggested for Fe/Cu(100)
[38]), best fits are compatible with § = 2.75-3 [37]. Thus, there is reasonable agreement
with the above theory, although some uncertainty remains [39]. It seems reasonable to
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rule out early predictions of B =i+ 1 ori + 2 [35,40]. A key driver of this theory for the
CZD [35] is the potential to extract the critical size from experimental CZD data,
although there are practical issues with limited data for small a. Another issue is the
prediction of a Gaussian tail to g(a) for large o [35]. This is plausibly compatible with the
simulation data in Figure 8 [37]. One simulation study questioned the existence of a
Gaussian tail for large o [39], whereas another suggested its existence except for small
h/F [41]. Distinct behavior for low h/F is reasonable as when h = O for low coverages,
CZs correspond to a standard Poisson-Voronoi tessellation where the area distribution
for large sizes exhibits exponential decay [42].
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20 1.5
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Figure 9. KMC simulation results for: (a) the scaling function F(x, o) for the JPD for island sizes
and CZ areas for i = 1 (and for i = 2 in the inset, but where limited data cannot capture the finite
population for smaller sizes); (b) the scaling function Gla - a(x)] = F(x, a)/f(x) for JPD
factorization when i = 1. (a) Refined with permission from Ref. [20]. Copyright 2003 Elsevier.
(b) Reprinted with permission from Ref. [45]. Copyright 2002 American Institute of Physics.

2.5 Joint Probability Distribution (JPD) for NC size and CZ area: Nsa

The above analysis reveals that the island size distribution is determined by the
size-dependence of capture numbers which corresponds to that of the CZ area on size.
This suggests that a comprehensive theory of nucleation & growth should be based on
analysis of the joint probability distribution (JPD), Nsa, of island sizes, s, and CZ areas,
A. The initial such study by Mulheran & Robbie [43] constituted a significant conceptual
advance. With x = s/sav and o = A/Aav as above, one anticipates a scaling form

NsA ~ {Nisi/(Sav Aav)} F(X, o) where [dx Jda x o F =1 foriorj=0or 1. (10)

In addition, one has that f(x) = [da F, g(a) = Jdx F, and f(x)a(x) = [da o F where

[dx f(x)a(x) = 1. In principle, one can develop exact evolution equations for Nsa [44,45].
However, these require as input a detailed characterization of the nucleation process
including the probability that nucleation of a new island which creates a new CZ impacts
an existing CZ or area A associated with an island of size s, and the fraction of the CZ
area which is overlapped by the new CZ (which in part reflects the mean number Mo =
4-5 of existing CZs overlapped by the new CZ). Initial studies assumed that nucleation
just fragmented an existing CZ into two (i.e. Mo = 1) [43], and a later study assumed all
new CZs have the average area, and ignored the impact of nucleation on existing CZs
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[46]. An effort has been made to incorporate a realistic treatment of nucleation [44,45],
which does lead to reasonable predictions for the ISD, and for the key scaling function
a(x), but a satisfactory complete theory remains an open challenge. In Figure 9, we just
show results for the JPD from KMC simulation for i = 1 and i =2, which support a
factorization relation, F(x, o) = G[a. - a(x)] f(x) [45].

2.6 Simulation approaches

In KMC simulation of stochastic lattice-gas (LG) models, atoms reside at a
periodic array of epitaxial adsorption sites, and various processes (deposition, terrace
diffusion, periphery diffusion) are implemented with probabilities proportional to their
physical rates. At least for small critical sizes, i, KMC incorporating a rejection-free Bortz
type algorithm [47] can handle large variations in rates (e.g., h/F exceeds 107 for
Ag(100) homoepitaxy with F = 0.01 ML/s at room temperature, and is far higher for
Ag(111) homoepitaxy). While adatoms undergoing terrace diffusion hop rapidly, there
are few of them recalling that N1 ~ (h/F)?(*2), so total rates for deposition and hopping
are not as different as might be expected. However, for larger critical size and a large
population of rapidly hopping terrace adatoms, direct KMC simulation is not viable. To
illustrate this issue, Table I, reports the how the CPU time, 1i, increases with critical
size i for simulation with h/F = 10° up to 6 = 0.1-0.2 ML [48].

Table Il. Dependence of simulation time t; on critical size i for h/F = 10°.

t2lt1 talt2 t4lt3 t5/t4
~32 |~19 ~8 ~5.5

To address this challenge patrticularly for large i, hybrid approaches might be
considered which treat the terrace diffusion in a continuum (or other more efficient)
formalism, but retain an atomistic treatment of island structure. One quasi-continuum
KMC (QCMC) approach solved the continuum deposition-diffusion equation but used
the input to stochastically attach/detach adatoms from islands, thus correctly retaining
fluctuations and potential shape instability in island growth (see Sec. 3) [49]. Another
approach enhanced simulation efficiency by coarse-graining the hopping dynamics in
terrace diffusion [50]. Yet another strategy adopted a fully continuum level-set treatment
for 2D islands. The level set is a continuum field evolved by a partial differential
equation (PDE) where its contours at a specific threshold value corresponds to
periphery of the islands [51], and this PDE is coupled to the continuum deposition-
diffusion equation. There is, however, a challenge in capturing island growth shapes as
discretization of the PDEs artificially smooths the periphery, edge diffusion was often
neglected, and in any case the appropriate form for non-equilibrium edge diffusion flux
(which differs from the standard Mullins quasi-equilibrium flux) is not so clear [10].

One other approach, termed (stochastic) Geometry Based Simulation (GBS)
[19,20], has been particularly effective in allowing, e.g., efficient determination of the
ISD for larger critical size, i. The physically motivated GBS approach is based upon the
picture in Figure 1. The main features are as follows: (i) islands are simply grown at a
rate determined by the area of their CZs; (ii) new islands are nucleated near the
boundaries of the CZs where the local adatom density, and thus the nucleation rate, is
highest. An appropriate approximate analytic treatment determines the value of this
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nucleation rate, and its variation along the CZ boundaries. The simplest treatment
implementing nucleation right on the CZ boundaries fails to accurately capture the pair
distribution function for islands, but this deficiency is resolved in a refined treatment
(rGBS) allowing some deviation in nucleation locations from the CZ boundaries. Figure
4 shows results from GBS simulation for the ISD matching those from KMC simulation.

3. 2D epitaxial metal-on-metal NCs: Growth shapes and structures

In this section, we focus on the growth shapes and structure of individual NCs or
islands during deposition, and shape transitions with varying deposition T. We compare
STM and KMC results. As is generally the case for self-assembly of NCs [52], during
the growth of NCs or islands during deposition, growth shapes are determined by a
competition between aggregation (which produces a DLA or Mullins-Sekerka type
shape instability in the case of diffusion-mediated growth) and relaxation or restructuring
of atoms within the aggregate (in our case primarily via edge or periphery diffusion). The
relative magnitude of growth and relaxation rates will determine how far growth shapes
deviate from equilibrium forms. From Sec.2, it is clear that the growth rate is simply
determined by the CZ area (and F). Thus, the main challenge is to precisely describe
the rates for relaxation, i.e., periphery diffusion rates for a diversity of local step edge
environments, and intermixing rates for multicomponent NCs.

However, digressing briefly from this main theme, we emphasize that the
homogeneous nucleation & growth process, particularly for 2D epitaxial metal NCs on
defect-free single-component crystalline substrates, is captured precisely by the
concepts of Sec. 2. Multiple experimental studies for such systems have explored the
transition from i = 1 to reversible island formation (or to a regime with significant dimer
mobility) [9,10]. It is appropriate to note at least some indirect connection between the
nucleation process and island structure focusing on metal{111} epitaxy (with rapid
terrace diffusion and inhibited periphery diffusion) where island shapes tend to exhibit a
fractal or dendritic shape instability at low T. Certainly for i = 1, this shape instability can
be manifested. However, even for i = 2 where triangular trimers but not dimers are
stable, this should be possible. Why? A barrier of Eq + ¢ must be surmounted for
reversible island formation (see Sec. 2). However, to quench the shape instability, not
only is it necessary for diffusion along straight close-packed step edges to be operative,
but also kink or corner rounding [53]. The barrier for latter is generally expected to
exceed Ed + ¢. However, for i >2, a barrier of Eq + 2¢p must be surmounted which is likely
higher than that for kink rounding. Thus, in the regime of i > 2, one does not anticipate
fractal or dendritic islands. Finally, we also note some influence of growth shape on the
local environment of island, at least for inhibited periphery diffusion. This is perhaps
most clearly reflected in a decomposition of CZs for 2D polygonal islands into sub-CZs
associated with individual edges, where those edges with the largest sub-CZs will grow
fastest introducing a directionality into island growth [29,30].

3.1. Predictive modeling of growth shapes and structures

Generic prescriptions of periphery diffusion barriers (Initial Value Approximation
or bond-breaking, symmetric Brgnsted-Evans-Polyani, etc.) fail for metal systems
[10,54]. Earlier successful modeling for specific systems tended to build simple tailored
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models geared to capture the key features of periphery diffusion for those systems, or
through incorporation “by hand” of appropriate values for key periphery diffusion
processes [9,10]. Recent efforts have exploited what may be termed an Unconventional
Interaction — Conventional Interaction (UICI) formalism [54-56]. This approach exploits
the feature that the activation barrier for hopping has the form, Eact = Evs - Einit, where
Einit is the energy associated with the hopping atom in its initial adsorption site, and Ets
is the energy in the transition state between initial and final adsorption sites. For 2D
epitaxial NCs, Einit can be determined by conventional lateral interactions between
adatoms at adsorption sites, familiar from equilibrium lattice-gas models. These
interactions can be decomposed via a cluster expansion into pair, triplet, etc.,
components. Evs is determined from unconventional (pair, triplet, etc.) lateral
interactions, between the hopping atom at the transition state and nearby atoms at
epitaxial adsorption sites (e.g., for a bridge site TS and hollow adsorption sites). Ers
also includes an additional component relative to Einit corresponding to the single atom
diffusion barrier. (As an aside, a modified version of this formalism considers interlayer
as well as lateral interactions and applies more readily for 3D NCs [54].) Both sets of
interactions can be obtained from Density Functional Theory (DFT) analysis and
tabulated, allowing ready determination of barriers for any local environment.

We note that the UICI formalism is readily implemented, at least for short-range
pairwise interactions (with similar ease to that for the above mentioned generic
formalisms). However, UICI facilitates a far more realistic description of the relevant
barriers. It is also the case that the UICI formalism is readily extended to describe
intermixing in more complex multicomponent systems, where the intermixing process
typically involves vacancy-mediated diffusion (described by barriers for a different
diverse class of local environments than for periphery diffusion).

3.2. Selected experimental examples

Far-from-equilibrium growth shapes are perhaps most clearly manifested by
fractal or dendritic structures reflecting the DLA shape instability for strongly inhibited
periphery diffusion. The classic example of 2D fractal epitaxial metal islands is provided
by an early STM study for Au on Ru(0001) where image analysis extracted a Hausdorff
dimension of dr = 1.72 + 0.07 consistent with simulations of DLA aggregates [57].
However, the width of the “arms” of these fractal NCs far exceeds that for diffusion-
mediated growth of DLA fractals incorporating a hit-and-stick mechanism. This feature
was captured by a simple stochastic model where the rate of periphery diffusion was
incorporated as an adjustable parameter [53]. Henceforth, we focus on fcc(111) metal
homoepitaxy where not only are irregular islands observed at low T, but dramatic shape
transitions occur upon increasing the deposition temperature, T. Note that in fcc(111)
systems, periphery diffusion is strongly inhibited relative to terrace diffusion, but the
opposite applies for fcc(100) homoepitaxy [10,54].

Figure 10a-c shows results for 2D NC shape versus T for Pt/Pt(111) [9]. Islands
exhibit a fractal structure at 300 K, but a near-perfect triangular structure at 400 K, and
an arrow-head form at 500 K. These shapes are distinct from the equilibrium shape
which corresponds to a distorted hexagon with longer {111}-microfaceted B-steps
versus {100}-microfaceted A-steps (see the inset at 500 K). These dramatic shape
transitions prompted multiple modeling efforts, and also various proposals as to the
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mechanism underlying the formation of triangular shapes. The latter issue was clarified
in Ref. [9] where the triangles were appropriately described as a “kinetic exaggeration”
of the equilibrium shapes. The lower step energy for B- vs A-steps implies weaker
binding of adatoms to those B-steps, and thus a lower equilibrium density of adatoms
along those B-steps. The difference in binding energies matches the difference in
effective barriers for corner rounding with lower barrier for B—A that A—B. The
imbalance in barriers counterbalances the imbalance in densities to ensure equal fluxes
in both directions in equilibrium. However, during growth, the supersaturated edge
adatom densities are more equal, and the lower B—A barrier ensures a net flux from B
to A steps. This leads to the disappearance of A steps. See Figure 11 for a schematic.
Another feature of the Pt/Pt(111) system is the extreme sensitivity of growth shapes to
the presence of trace amounts of CO which can, e.g., invert the direction of the triangles
shown in Figure 10b for the CO-free case [9]. The general case with varying amounts
of CO has been modeled exploiting DFT to provide key information on the relevant
energetics [58].

500 K

200

Figure 10. STM images revealing transitions in non-equilibrium island shapes of fcc(111) metal
homoepitaxy. Pt/Pt(111) with no CO: (a) 78 x 78 nm?; (b,c) 156 x 156 nm?. Insets: (a) fcc(111)
surface and step structure; (b) modeling from [58]; (c) equilibrium shape @ 700 K.

(d-f) Ag/Ag(111). 300 x 300 nm?2. Insets: KMC simulation: (d) 60 x 60 nm?; (e,f) 100 x 100 nm?,
(a-c) Refined with permission from Ref. [9]. Copyright 2004 Springer. (b) inset reprinted with
permission from Ref. [58]. Copyright 2002 American Physical Society. (d-f) Refined with
permission from Ref. [59]. Copyright 2005 American Physical Society.

Figure 10d-f show results for Ag/Ag(111) [59]. Islands exhibit a dendritic
structure with 3-fold symmetry at 135 K, an irregular structure at 165 K, and a distorted
hexagonal form at 200 K [10,59]. The equilibrium shape corresponds to a near-perfect
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hexagon due to almost identical energies for A- and B-steps. The occurrence of
dendrites with 3-fold symmetry at low T in this system, and also for Ag/Pt(111) [60] was
attributed to an asymmetry in adatom diffusion from singly-coordinated sites at corners
between A- and B- steps. Such atoms hop more readily to higher-coordinated sites on
A-step edges than on B-step edges [9,10]. (This is the opposite of that shown in Figure
11 for Pt/Pt(111). See also Ref. [61].) Results of KMC simulation based on a model
utilizing information on edge diffusion energetics from the Embedded Atom Method is
shown in the insets to Figure 10d-f [59]. This model ignored second layer deposition
and subsequent downward transport. Consequently, it failed to recover the longer A-
steps observed at 200 K in STM. This deficiency was resolved by refined modeling
which did include second layer deposition, but which necessarily also included a lower
Ehrlich-Schwoebel barrier for downward transport at B- versus A-steps (enhancing the
tendency to eliminate B-steps) [62]. Due to this step-selective interlayer transport, near
triangular Ag islands could also be formed around 180 K for higher sub-monolayer
coverages [62], a quite different mechanism than that for Pt/Pt(111) triangle formation.
See Fig. 1 in Ref. [62].
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Figure 11. Schematic reflecting “kinetic exaggeration” of the somewhat distorted equilibrium
hexagonal shapes towards triangular shapes for Pt/Pt(111). Reprinted with permission from Ref.
[16]. Copyright 2019 American Chemical Society.

Above, data is shown for a much higher T-range for Pt than Ag. One could
regard this as just reflecting the higher cohesive energy for Pt (5.84 eV) than Ag (2.95
eV). Regarding other fcc(111) homepitaxial systems, transitions from fractal to dendritic
to triangular shapes have been observed for Al/Al(111) and described by modeling
incorporating DFT input [9]. Shape transitions have also been studied for Ir/Ir(111) [63]
and are quite similar to those for Pt/Pt(111).

Anisotropic surfaces on which 2D metal islands often have near-rectangular
equilibrium shapes provide another example of “kinetic exaggeration”. Figure 12a
shows rectangular Ag islands formed on Ag(110) with aspect ratios in the range R =
3.5-5.5 at 240 K (and where R is higher at lower T) [64] significantly exceeding the
equilibrium value of Req = 1.9 [65]. See the SM. There has been extensive modeling of
these non-equilibrium shapes [66]. Here, we note that the situation is analogous to that
for Pt/Pt(111). Now, there is weaker binding of edge atoms on the longer (L) versus
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shorter (S) edges, and a lower effective barrier for L—S versus S—L corner rounding.
Thus, for supersaturated edge atom densities during deposition, the flux for L»S
exceeds that for S—L producing islands with R > Req.

A similar scenario applies for Ag on NiAl(110) where there is an almost perfect
match of unit cells. However, here quantum size effects induce a preference for bilayer
over monolayer rectangular Ag(110) islands [67,68]. See Figure 12b. Nonetheless, the
aspect ratio of islands formed at 200-250 K significantly exceeds the equilibrium value,
which we estimate as Req = 2.5. See the SM. Other features of interest for Ag/NiAI(110)
are: (i) the presence of heterogeneous nucleation at surface defects competing with
homogeneous nucleation at least at higher T [69]; and (ii) facile bilayer formation
kinetics even at low T ~ 130 K aided by the anisotropic interactions (atoms at 1%t layer
kink sites which climb to the 2" layer have only one strong in-layer bond) [67]. Note that
in these anisotropic systems, NC growth shapes are primarily controlled not by
anisotropic terrace diffusion, but rather by anisotropic step energies associated with
anisotropic lateral interactions between adatoms.

Figure 12. (a) Ag deposition on Ag(110 at 240 K. Insets show the equilibrium island shape and
fcc(110) surface structure. (b) Ag deposition on NiAl(110) at 200-250 K revealing the formation
of bilayer Ag(100) islands (lower panels). Surface and Ag(110) island structure (upper panel).
(a) Reprinted with permission from Ref. [64]. Copyright 2013 American Physical Society. STM
inset reprinted with permission from Ref. [65]. Copyright 1999 American Physical Society. (b)
Reprinted with permission from Ref. [68]. Copyright 2011 National Academy of Sciences. STM
inset reprinted with permission from Ref. [69]. Copyright 2010 American Physical Society.

Next, we illustrate the capabilities of the UICI modeling strategy [54-56] to treat
with ab-initio level kinetics (as well as thermodynamics) Ni and Ni + Al deposition on the
binary alloy substrate NiAl(110). For Ni/NiAl(110), one finds a sequence of transitions
from irregular to diamond to hexagonal to distorted octagonal island shapes with
increasing T [70]. See Figure 13. The ability for modeling to recover, and thus provide
deeper understanding, of these shapes, requires precise description of periphery
diffusion in this more complicated bimetallic system. Figure 14 illustrates the
conventional (solid lines) and unconventional (dashed lines) interactions in the UICI
approach associated with the hopping edge atom at adsorption sites and TS,
respectively, thereby mapping out the associated complete potential energy surface
(PES) along the step edge. One thereby obtains insights into, e.g., anisotropic corner
rounding inducing hexagonal (versus octahedral) shapes at 400 K. As an aside for

18



Ni/NiAl(110), analogous to Ag/NiAl(110), heterogeneous nucleation of Ni islands is
dominant above 300 K.

(a) 200 Kge. 4 |(b) 300 K (c) 400K W(d) 500 K ooy

25 x 25 nm’

[001]

50 x 50 nmé 25 x 25 nm?

Figure 13. STM images (a-d) and associated UICI KMC simulation results (e-h) illustrating a
series of transitions in growth shapes for Ni on NiAl(110). Reprinted with permission from Ref.
[70]. Copyright 2011 American Institute of Physics.
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Figure 14. Schematic of the description of edge diffusion in the UICI formalism for Ni/NiAl(110)
elucidating anisotropy in corner rounding. Reprinted with permission from Ref. [70]. Copyright
2011 American Institute of Physics.

Finally, extending the previous example, we consider stoichiometric co-
deposition of Ni and Al on NiAI(110). At high enough T, this must result in stoichiometric
self-growth of the NiAl alloy propagating the bulk structure. Thus, in the submonolayer
regime, 2D islands with perfect alternating Al-Ni order would form. However, for co-
deposition at around room temperature, deviations from perfect order will occur even for
simultaneous co-deposition [55,71], and certainly for sequential co-deposition [68]. The
latter case is illustrated in Figure 15 where core-ring structures tend to form. Note the
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robustness of the Al core in ‘Al then Ni deposition’ contrasts the fragility of the Ni core
for ‘Ni then Al deposition’, where in the latter case one finds a nanoscale Kirkendall
voiding type phenomenon. This behavior is readily understood by examination of
associated barriers in the UICI formalism [68]. As an aside at 500 K, simultaneous co-
deposition produces reasonably ordered of islands. However, for sequential Ni then Al
co-deposition at 500 K, there is still significant Al ring around a predominantly Ni core,
and a tendency in the intermixing part of the core to form a novel NizsAl ordering [55].
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Figure 15. STM images (25 x 25 nm?) of Al then Ni deposition (A), and Ni then Al deposition (B)
at 300 K. Images from KMC simulation (C) corresponding to (A), and (D) to (B). Reprinted with
permission from Ref. [68]. Copyright 2011 National Academy of Sciences.

4. 2D metal-on-metal NCs: Post-deposition coarsening

Figure 16 collates STM images and related schematics for coarsening in pristine
Ag homoepitaxial systems. Ag/Ag(111) at around 300 K provides an example of classic
Ostwald Ripening (OR) in 2D mediated by terrace diffusion, i.e., in the absence of an
adatom attachment barrier to islands [72]. In contrast, Ag/Ag(110) below about 220 K
provides an example of anomalous OR exhibiting a 1D decay mode for rectangular
islands at lower T where they shrink (or grow) in length while maintaining constant width
[64,65]. Contrasting both the above cases, Ag/Ag(100) at around 300 K exhibits
Smoluchowski Ripening (SR) or PMC [17,73]. It is appropriate to emphasize that
theoretical analysis reveals a crossover between OR and SR depending on typical
island size with OR favored for larger sizes [15]. In addition for OR, the default
expectation is by adatom diffusion. However, another mass transport pathway via 2D
vacancies in the top layer of the substrate can potentially dominate opening additional
possibilities for crossover between coarsening pathways. Indeed, for Cu/Cu(100), one
finds SR at 300 K, but OR mediated by 2D vacancy diffusion at 343-413 K [74].
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Figure 16. STM images for: (a-b) classic OR for Ag/Ag(111); (d-e) anomalous OR for
Ag/Ag(110); and (g-h) SR for Ag/Ag(100). (c) Schematic of classic OR. (d) Simulation of adatom
density with anisotropic attachment & diffusion. Yellow (dark blue) is 1.6 (1.3) times the
equilibrium density at an extended step. (d) Diffusion path of an Ag island on Ag(100).

(a-c) Refines with permission from Ref. [72]. Copyright 1999 Elsevier. (d-f) Reprinted with
permission from Ref. [64]. Copyright 2013 American Physical Society. (g-i) Reprinted with
permission from Ref. [15]. Copyright 2009 American Chemical Society.

4.1 OR in pristine metal homoepitaxial systems.

For Ag/Ag(111) where classic OR applies, individual islands are assumed to be
locally equilibrated with chemical potentials satisfying Gibbs-Thompson condition, u(R)
= Eform + YQ/R for an island of radius R. Here, Efom is that adatom formation energy, y is
the step energy per unit length, and Q is the area of the surface unit cell. Thus, the
equilibrium adatom density, Ceq(R) = exp[-Bu(R)] at island edges is higher for smaller R
(as indicated in Figure 16c¢) leading to a mass flow from smaller to larger islands.
System evolution then follows from a Burton-Cabrera-Frank (BCF) type analysis of the
steady-state diffusion equation for the adatom density exploiting the above Dirichlet
boundary condition, C = Ceq, at island edges quantifying the mass flow between islands.
The effective barrier for OR satisfies Eor = Ed + Eform With Ed ~ 0.08 eV and Eform ~ 3¢ ~
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0.66 eV for Ag/Ag(111), compatible with the value obtained by monitoring the decay of a
small island inside a monolayer pit [14]. Morgenstern et al. [72] have shown that the
above formulation can be applied to effectively describe the growth and decay rates of
individual islands in Figure 16a,b undergoing OR. Analogous OR behavior has been
observed and quantified for Cu/Cu(111) [75].

For Ag/Ag(110) which also undergoes OR, coarsening is “anomalous” at lower T
[65] as noted above. Below, we let || indicate the x-direction along the rows on the {110}
surface, and L the orthogonal y-direction. Since the length of rectangular islands
evolves with fixed width during OR, the classic OR assumption of equilibrated islands
cannot be applied. One can instead introduce the concept of partial chemical potentials,
the most relevant of which is associated varying island length for fixed width pend = poo +
vend Q/W, where yend is the substantial step energy associated with the end of the island,
and W is the island width [76]. The partial equilibrium adatom density at the end of the
island is Cend = exp(-Buend). An analogous treatment applies for the chemical potential
and equilibrium adatom density for the sides of the islands which have much lower step
energy, yside. Then, one solves the steady-state diffusion equation with appropriate
anisotropic diffusion, and incorporating general Chernov type boundary conditions

+D); 0C/0x = Kend(C — Cend) and D1 0C/dy = kside(C — Cside),

where k denote kinetic coefficients for attachment of adatoms to step edges. In the case
of no additional energetic barrier to attachment, standard BCF theory sets k = «
recovering a Dirichlet boundary condition. However, a refined BCF theory shows that for
low kink density along a step, there is a high effective barrier for attachment to steps
[77]. From this perspective, we set kside = 0 as the long sides of the Ag islands have few
kinks, but set kend = o0 since there is a high kink density at the ends of the islands and no
energetic barrier to attachment. With this formalism there is no mass flux to or from the
long island sides, so their width is constant. However, there is a mass flux at the ends.
The form pend = poo + yend Q/W means that narrower islands (with smaller W) have
higher chemical potential and higher equilibrium adatom density, so mass flows from
these narrower islands to wider ones. Figure 16f illustrates results from numerical
analysis of this refined BCF formalism which recovers experimentally observed rates of
island growth or shrinkage.

4.2 Chalcogen additive-enhanced OR on coinage metals

In the context of degradation of supported metal catalysts, there has long been a
perception that presence of certain chemical species, X, can lead to the formation of
volatile metal — X complexes which facilitate mass transport during coarsening. The
same effect was observed in coinage metal homoepitaxial systems where X = O in early
studies [18]. A detailed study of the effect of X =S on OR for Cu/Cu(111) revealed a
remarkable acceleration of OR by two orders of magnitude for even trace amounts of S
below 10 mML [78]. That study adopted the perspective that a Cu-S complex was
formed on terraces, the complexes efficiently transport Cu across terraces with a net
flux from smaller to larger Cu islands, and dissociate near larger island edges delivering
Cu to those islands. The initial proposal was the complex was a decorated trimer, CusSs
[79]. Although CusSs is less mobile than Cu adatoms, it also has a much lower
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formation energy and thus a much higher quasi-equilibrium population on terraces,
enhancing its capability as a mass carrier.

With respect to theory, Ref. [78] recognized that complex-mediated OR should
be described by reaction-diffusion equations (RDE) (rather than the standard diffusion
equation), where the RDE describe the formation of complexes on terraces, their
diffusion across terraces, and dissociation when delivering the metal to islands. A
simplified linearized version of these equations for a single complex was considered in
Ref. [78]. This formulation highlighted the importance of a “reaction length”, Lin, the
typical length that metal adatoms diffuse before forming a complex, and the existence of
different regimes of OR behavior. For example, if Lixn < L (the typical separation
between islands), then the presence of complexes will not significantly impact OR.
However, a predictive analysis for specific systems must start with the appropriate non-
linear RDEs generally involving multiple complexes (which might be involved in
formation of the dominant mass carrier) [80]. These non-linear RDEs can be linearized
about quasi-equilibrium populations of adatoms and complexes on the surface leading
to quantitative values for, e.g., reaction lengths [80-82]. This type of analysis brings into
guestion whether CusSs can be the dominant mass carrier (due to kinetic factors).

Additional DFT analysis explored the formation energies for a variety of Cu-S
complexes including those shown in Figure 17a. There are multiple cases other than
CusSs with low formation energies [83]. Cu2Ss is the only one of these complexes which
has been definitively imaged with low-T STM [81]. See Figure 17b. A necessary
condition for enhanced mass transport is that the effective barrier Eor = Ed + Eform (the
sum of the relevant diffusion barrier and formation energy) for complexes is below that
for adatoms. This applies for CuS2, CuSs, Cu2Ss, CusSs,..., (see Table lll), but at least
the latter two are ruled out based on kinetic considerations [81]. It does seem that the
CuS:2 complex formed via trimolecular surface reaction Cu+ S + S — CuS:2 could
provide a viable pathway for enhanced surface mass transport [82].

P
o

Figure 17. (a) M-S complexes analyzed by DFT; (b) low-T STM image of Cu,Ss. Reprinted with
permission from Ref. [81]. Copyright 2015 American Physical Society.
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CuUEom |0.82 |066 |010 |0.94 [0.11 |-0.06 |0.11
Cu Eq 0.05 [0.33 [0.05 - 036 [035 [0.36
AQEom |0.62 |059 [001 [0.86 [0.13 [-0.19 |-0.12
Ag Eq 008 |~0.15 |[~0.1 [0.11 - - ~0.3

Table Ill. Formation energies and diffusion barriers for M-S complexes on M{111} surfaces.
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Considering other systems, S + Ag/Ag(111) with around 10 mML S exhibits a
similar degree of enhancement of OR as S + Cu/Cu(111) [80], but S + Au/Au(111)
exhibits much less enhancement [84]. An effort has been made to provide a
comprehensive analysis of energetics for M-S complexes on {111} and {100} coinage
metal surfaces, e.g., to explain the weak enhancement of coarsening observed for {100}
versus {111} surfaces of Ag and Cu [83,85]. See again Table IIl.

Finally, the above analysis for S + Cu/Cu(111) was predicated on the picture
proposed of complexes forming on terraces [78], which presumably anticipated a large
additional barrier for complex attachment and detachment at step edges (which would
contribute to Eor). However, a recent theoretical analysis exploiting machine-learned
potentials retaining DFT accuracy [82] suggested the existence of pathways for facile
detachment of CuS:2 from S-decorated steps, where STM and DFT analysis supports
such step decoration [81,82]. See Figure 18. The picture for S coverages where there
is also a population of S adatoms on the terrace is as follows. Mobile Cu is passed from
a kink site at the S-decorated step edge to pairs and triples of relatively immobile S
(with E4(S) = 0.15 eV) on the terrace, ultimately forming CuS:2 detached from the step
edge. The overall barrier for the detachment pathway shown is 0.43 eV, well below
Eor(Cu) ~ 0.87 eV. The transition state for detachment is around images b-c in Figure
18, where it appears that a CuSs motif may play a role. Perhaps this is related to an
observed scaling of the enhanced coarsening rate with the cube of S coverage [78]. A
definitive analysis remains elusive.

d e f

Figure 18. Facile pathway for detachment of CuS, from S-decorated steps in Cu(111).
Reprinted with permission from Ref. [82]. Copyright 2022 American Vacuum Society.

4.3 Cluster diffusion and coalescence in SR

The discovery of significant mobility of large clusters underlying SR in metal(100)
homoepitaxy was first identified for Ag [73]. A detailed characterization of the cluster
diffusion coefficient, Dn versus size N (in atoms) at 295 K for N = O(102?) was provided
subsequently for both Cu and Ag [86]. It should be emphasized that this size-
dependence of Dn controls the SR kinetics as determined by the Smoluchowski
equation [15,16]. A simple mean-field picture of cluster diffusion mediated by random
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independent hopping of edge atoms implies that Dn ~ H (8Rcwm)? where H is the total hop
rate of edge atoms, and 6Rcwm ~ 1/N is the shift in center of mass (CM) position upon
each hop of an edge atom. As one has H ~ he Ce N¥2 where he is the typical hop rate
and Ce the density of edge atoms, it follows that Dn ~ he Ce NP with B = 3/2. The
observation of apparent deviation of  ~ 1.14-1.24 [86] from 3/2 prompted extensive
theoretical analysis. However, we now argue that this was just crossover behavior
between the large-size regime with § = 3/2 and distinct behavior in a moderate size
regime (where the kink separation on step edges exceeded the linear cluster size) [87].

To elucidate behavior, some preliminary comments are instructive. There is a
sequence of “perfect” sizes N = Np = LxL or Lx(L+1) with unique close-shell ground
state square or near-square shapes. General sizes will be labeled as N = Np + n with n
=1,2,..., and we will find oscillatory behavior between consecutive Np. Note that for N =
Lx(L+j) with j > 2, there are multiple ground-state shapes, and such N can be written as
N = Np + n for suitable Np and n. Cluster diffusion requires not just diffusion of periphery
atoms, but disruption of the “core” of the cluster so that the entire cluster is translated
across the surface. This requires nucleation of dimers on otherwise straight close-
packed edges of clusters in their near-square ground state configuration followed by
transfer of atoms to complete that new edge. See Figure 19.
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Figure 19. “Direct” pathways for cluster diffusion for sizes N = Np, Np+1, Np+2, and Np+3.

For guantitative analysis, we adopt a simple LG model with NN interaction of
strength ¢ > 0, barrier for diffusion along close packed edges of Ee and associated hop
rate he = v exp(-BEe), and a possible additional KESE barrier, 8, for kink or corner
rounding. For clusters with size Np +1 or Np +2, the rate controlling step is extracting an
atom from a kink or corner site, edge diffusion and corner rounding. Thus, the effective
barrier for “facile” cluster diffusion in these cases is Eeff = Ee + ¢ + 6. For sizes Np, Np +3,
Np +4,..., the system passes through an energetically excited state with a single “first”
edge atom on one side, with probability per site of exp(-B¢). It is necessary to extract a
“second” atom from a kink or corner site, and transport this atom to the first atom to
nucleate a dimer before the first atom before the first atom diffuses returning the system
to the initial ground state. This step is indicated by the red asterisk in Figure 19. In these
cases, one has the higher barrier of Eett = Ee + 2¢ + . Simulation results for Dn versus
N in this model with ¢ = 0.24 eV and 6 = 0 at 300 K are shown in Figure 20. (The basic
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features do not change with 6 > 0 [87].) As might be expected, Dn for facile sizes Np +1
and Np +2 are highest in the moderate size regime. Perfect sizes Np have much lower
Dn than N = Np +1, as anticipated in an early study [88]. However, Ref. [88] seemed to
imply that N = Np -1 would also be faster (which is not the case), and certainly did not
anticipate the surprising result that diffusion for N = Np +3 is the slowest.
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Figure 20. Dy versus N for a simple model with ¢ = 0.24 eV and 6 = 0 at 300 K. Reprinted with
permission from Ref. [87]. Copyright 2017 American Physical Society.

There are in fact many novel features of the results in Figure 20 worthy of further
analysis and elucidation: the rapid decrease of Dn with N for moderate N = Np +1; the
merging of different “branches” of behavior before N = 200; the systematic increase in
Dn for N = Np +3, Np +4,... The latter is not tied to Eer which adopts a single value in
this range. Rather all of these features reflect entropic effects, which, e.g., smear
distinctions between different branches for larger sizes. In this respect, we note that
Figure 19 is perhaps misleading showing only the most direct pathway to achieve
translation of a cluster preserving its shape, and involving only ground state and first
excited state configurations of the cluster. Let QOn(0), Qn(1),.. denote the degeneracy of
the ground state, first excited state,... of a cluster of size N, where these quantities can
be conveniently estimated exploiting “partitions of integers” concepts in number theory
[87]. Here, we just make two observations. First, for facile sizes Np +1, diffusion can
occur via evolution through ground state configurations, but their degeneracy, Qn(0) ~
N26 increases quickly with N. However, the cluster wandering through this large phase
space must repeatedly return to the first configuration shown in Figure 19. The return
time scales like Qn(0), and we argue that Dn ~1/Qn(0) recovering observed behavior
[87]. Second, to explain the increase in Dn for increasing N = Np +3, Np +4,... we argue
that a primary factor is the decrease in Qn(0) with increasing N. Higher degeneracy
reflects many configurations which multiple atoms shifted from corner sites, and thus
many kinks, which inhibit nucleation of a dimer leading to complete of a new outer edge.

Note that most experimental data in Ref. [86] corresponded to sizes N > 100
where the distinction between facile and non-facile behavior is less clear. Again, the
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values of B < 1.5 observed in experiment just correspond to a crossover regime, as is
evident from Figure 20. Also, we note that there may be some cluster size fluctuation in
experiment which would smear out fine structure in Dn versus N.

Note that cluster diffusion leads to coalescence in the SR coarsening pathway.
The most prominent case is roughly corner-to-corner coalescence of near-square 2D
islands. This phenomenon has been studied extensively in experiment and via modeling
[15,16]. A key observation was a deviation from the prediction of a Mullins continuum
prediction for the reshaping time, © ~ L#", versus linear feature size L with B* = 4
(following from a dimensional analysis of the periphery diffusion equation). Significantly
lower values of §* in the presence of a kink rounding barrier § > 0 have been observed
and explained in the experimental size range [89-92], whereas B* — 4 for larger sizes.

5. 3D supported metal NCs: Formation and coarsening

As noted in Sec.1, early TEM studies explored metal deposition and 3D NC
formation (reflecting the Volmer-Weber growth mode) on a variety of relatively weakly
adhering substrates including NaCl, KCI, graphite, MoSz, and oxides [1]. The selected
metals prominently include Au and Ag, but also Pt-group metals. See Ref.s [3,93] for
reviews of metals on oxides, and Ref. [94] for a recent review for metals on graphite.
The extensive studies of metals on oxides, and on ultra-thin oxide films, have been
motivated as these systems constitute model catalysts [3,95,96]. Another active area
involves metal deposition and NC formation on supported graphene [97,98], as well as
on other 2D materials such as MoS2 [99-101].

5.1. Nucleation and growth shapes for supported 3D NCs.

There are few detailed studies of nucleation in contrast to metal-on-metal
systems. However, considering metals on oxides, it is reasonable to expect that
heterogeneous nucleation may often play a significant role associated with trapping at
oxygen vacancy defect sites. One system which was studied extensively by experiment
and modeling is Pd/MgO(100) [102-104]. A plateau exists in island density, Nisi, versus
T up to about 565 K before a sudden drop for higher T. See Figure 21. This drop does
not correspond to a transition from i = 1 to i > 1 which would occur at Trev = 680 K
corresponding to Y =10in (3) (and using Ea=0.2eV, ¢ =1.2eV,F=1033st and v =
10125 51 [104]). Instead, this behavior reflects heterogeneous nucleation where all
defects are saturated with islands below 565 K. However, subsequent KMC modeling
incorporating DFT energetics also highlighted the role of small cluster mobility across
the surface in the nucleation process. This picture of defect mediated heterogeneous
nucleation likely applies for many metals on MgO(100) [105], in particular for
Ag/MgO(100) where there is a good lattice match and it was proposed that NC growth
shapes are {100} epitaxially supported truncated pyramids [106,107].

We briefly note that a distinct form of nucleation and growth, which is not defect-
mediated, occurs for 3D metal NCs on metal-supported graphene, where the graphene
sheet generally exhibits a periodically rumpled moiré structure due to lattice mismatch
with the support. In this case, directed-assembly resulting in a periodic array of NCs due
to preferential nucleation in a specific region of the moiré cell. A classic example is
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provided by formation of Ir NCs on Ir(111) supported graphene [98]. Effective stochastic
atomistic modeling and KMC simulation was achieved accounting for the periodically
modulated PES for deposited atoms on the nm scale associated with the moiré cell
structure [97,108].
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Figure 21. Nig versus T for Pd/MgO(100) where insets are AFM images. Reprinted with
permission from Ref. [102]. Copyright 2000 American Physical Society.

With regard to NC growth shapes, a detailed discussion can be found in the
review by Henry focused on facetted polyhedral shapes [109]. NC shapes generally
deviates from the equilibrium Winterbottom form, and can be regarded as being
determined by the relative growth rates of different facets, with slower growing facets
becoming more prominent. This picture corresponds to the geometry-based Frank’s
model of growth shapes, where these shapes are quantified by a so-called kinematic
Wulff construction [110]. TEM imaging provides some valuable information on NC
shapes, as illustrated in Figure 22 for Au on MgO(100) [109]. Of note is the coexistence
of different NC shapes, as evidenced by triangular versus rectangular footprints. These
two cases corresponds to fcc{111} versus fcc{100} epitaxy, respectively. Coexistence of
different NC shapes, and possibly also distinct crystal structures (as recently found for
Fe on MoS:2 [101]) is expected to reflect similar energetics of these distinct structures, at
least for small sizes at the onset of growth. The NCs are plausibly fluxional for small
sizes and can transition between different structures. However, they presumably
become locked-in to a specific structure for larger sizes during growth.

We mention another notable study of growth shapes was for 3D Pb NCs on
graphite where these shapes are characterized by sharper facets than seen in
equilibrium [110,111]. Also, in part for comparison with our discussion of 2D NC growth
shapes in Sec. 3, we note that not just geometric growth shapes as occur in the above
examples, but also dendritic structures have also been observed for 3D NCs, e.g., in the
case of Au NCs on graphite [1]. Finally, we emphasize that currently there is limited
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realistic and predictive atomistic-level stochastic modeling for the growth shapes of 3D
NCs (in contrast to the 2D case).
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Figure 22. TEM image of Au NCs on MgO(100) [109]. A = fcc(100) epitaxy; B,C = fcc(111)
epitaxy. Insets: theoretical analysis of Au NC epitaxy [107]. red = O, white = Mg, yellow = Au.
Reprinted with permission from Ref. [109]. Copyright 2005 Elsevier. Insets reprinted with
permission from Ref. [107]. Copyright 2000 American Institute of Physics.

5.2. OR versus SR coarsening pathways

A long-standing question for supported 3D metal NCs, particularly in the context
of applications to catalysis, was whether coarsening is dominated by OR or SR (i.e.,
PMC). This controversy can now be resolved by examination of TEM “movies” (i.e., a
sequence of images) of system evolution [112], analogous to insights extracted from
STM movies for the 2D case. There have been detailed studies of OR considering in
detail the size-dependence of the chemical potential for atoms in 3D NCs [113], and
also assessing factors which can be utilized to inhibit OR and enhance stability of
supported catalytic NCs [114]. Another recent study explored factors controlling the
selection of OR versus SR [115]. We have noted previously the perception that the
mass transport underling OR can be enhanced by the presence of species such as O
which can create volatile complex involving the metal [116], a process which has been
modeled for Pt nanoparticles in an oxygen environment [117].

Finally, paralleling the analysis in Sec. 4.3 for 2D NCs, here we consider the
size-dependence of diffusion of supported 3D epitaxial NCs which controls SR kinetics.
The commonly accepted mean-field picture of cluster diffusion mediated by random
independent hopping of surface atoms sets Dn ~ H (8Rcwm)? with total hop rate H, and
lateral CM shift per hop of dRcm ~ 1/N (analogous to 2D clusters). However, now one
has H ~ hs Ce N?3, with typical hop rate hs, and surface atom density Ce, so that Dn ~
hs Ce N with B = 4/3. With hs = v exp(-BEd) and Ce = exp(-BEform) where Efom is the
formation energy for surface atoms, it follows that the effective barrier for cluster
diffusion satisfies Eeff = Ed + Eform. More refined treatments include a size-dependent
contribution to Eform associated with a Gibbs-Thompson effect [118], but it should be
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noted that Eform, and thus the mean-field Eett, have well-defined finite limiting values as N
— o0,

There have been few detailed atomistic level studies of 3D NC diffusion [119-
121] to assess the mean-field picture. Here, we briefly describe an analysis for {100}-
epitaxially supported faceted fcc NCs, as for Ag/MgO(100) [107]. This analysis reveals a
fundamental breakdown of the mean-field picture (even after accounting for the feature
that there are distinct adatom densities and diffusivities on different facets, and after
precisely calculating Efm for each size [121]). The model implemented includes NN
interactions of strength ¢ between metal atoms, and realistic surface diffusion kinetics
with parameters selected for Ag [120]. The strength of adhesion to the substrate is
selected so that the continuum equilibrium Winterbottom shape is a truncated pyramid,
a discrete version of which is shown in Figure 23b for an NC with size N = 50 atoms
[cf. Ref. [106] for Ag/Mg(100)]. KMC simulation results for Dn versus N shown in Figure
23a reveal an oscillatory form with local minima mostly corresponding to closed-shell
sizes for truncated pyramids (sizes indicated by vertical grey lines in the figure).
Determination of Dn versus T in the range 700-900 K allows extraction of the effective
barrier, Ee#(N), for diffusion as a function of N. See Figure 23a. In marked contrast to
the cases of 2D metal(100) homoepitaxial NC where there are just two values of Eef,
here the detailed oscillatory variation of Eest with N tracks that of Dn with N.
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Figure 23. Diffusion of {100}-epitaxially supported truncated pyramidal fcc NCs with parameters
for Ag where ¢ = 0.225 eV: (a) KMC results for Dy versus N from 700-900 K, and the associated
effective barrier, Eer; (b) Schematic of the underlying mechanism of disassembly & assembly of
outer layers of size facets. (a) Reprinted with permission from Ref. [120]. Copyright 2019 Royal
Society of Chemistry. (b) Reprinted with permission from Ref. [121]. Copyright 2023 Royal
Society of Chemistry.
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The above results reflect a fundamental breakdown of the mean-field picture.
Rather than independent random motion of surface atoms, NC diffusion is mediated by
the disassembly of the outer layer of atoms on one side facet and assembly of an outer
layer on a different side facet. See Figure 23b. This process can be regarded as a
involving the nucleation & growth of new outer layers. The energy of the system as a
function of the number of atoms transferred first increases, passes through a maximum,
and then decreases. Evaluation of the maximum in the energy profiles versus N tracks
well with Eett extracted from KMC simulation [120]. It is also the case that Eeft increases
without bound as N increases, in contrast to the mean-field prediction. As a final aside,
we note that a picture of nucleation-mediated evolution would also apply to the
reshaping of non-equilibrium faceted growth shapes of 3D NCs back to their equilibrium
Winterbottom shapes [16,122].

6. Conclusions

The last 30 years have seen major advances in the characterization, high-fidelity
atomistic-level stochastic modeling, and understanding of the nucleation & growth of 2D
epitaxial NCs, particularly for homoepitaxial systems, as well as of their often far-from-
equilibrium growth shapes. Although not discussed here, this has facilitated detailed
understanding of kinetic roughening and mound formation in multilayer homoepitaxial
growth [9,10]. In particular, for the case of large Ehrlich-Schwoebel barriers for
downward interlayer transport, multilayer mounds are built on platforms of individual
submonolayer islands. A classic case is provided by multilayer fractal or dendritic
wedding-cake mounds in multilayer Ag(111) homoepitaxy which are built upon
submonolayer dendritic Ag islands [10]. With regard to post-deposition coarsening,
submonolayer Ag/Ag(111) provides a classic example of terrace diffusion mediated OR
in a well-controlled pristine system. The potential for anomalous OR even in simple
homoepitaxial systems is provided by the anisotropic Ag/Ag(110) system al lower T
where rectangular islands shrink or grow in length while maintaining constant width (so
traditional theories of OR must be refined). The dramatic enhancement of OR in some
coinage metal(111) systems due to the presence of even trace amounts of additives
connects with long-held views regarding enhanced degradation of performance in
catalytic nanopatrticle systems. For metal(100) homoepitaxial systems, the dominance
of SR rather than OR induced much interest in characterizing the size-dependence of
2D NC diffusion where comprehensive understanding was achieved only recently.
Detailed analysis, incorporating high-fidelity atomistic-level stochastic modeling, is far
less developed for 3D epitaxial NCs even with regard to such basic issues as elucidating
growth shapes. In this respect, many opportunities await which would connect with
current interest in solution-phase shape-controlled synthesis of metallic NCs [123].
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