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Two-dimensional transition metal dichalcogenides (TMDs)-based memristors are promising
candidates for realizing artificial synapses in next-generation computing. However, practical
implementation faces several challenges, such as high non-linearity and asymmetry in synaptic weight
updates, limited dynamic range, and cycle-to-cycle variability. Here, utilizing optimal-power argon
plasma treatment, we significantly enhance the performance matrix of memristors fabricated from
monolayer MoS,. Our approach not only improves linearity and symmetry in synaptic weight updates
but also increases the number of available synaptic weight updates and enhances Spike-Time
Dependent Plasticity. Notably, it broadens the switching ratio by two orders, minimizes cycle-to-cycle
variability, reduces non-linear factors, and achieves an energy consumption of ~30 fJ per synaptic

event. Implementation of these enhancements is demonstrated through Artificial Neural Network
simulations, yielding a learning accuracy of ~97% on the MNIST hand-written digits dataset. Our
findings underscore the significance of defect engineering as a powerful tool in advancing the synaptic

functionality of memristors.

Conventional computing, based on Von Neumann’s architecture, has been
the cornerstone of computing systems for several decades. This traditional
computing paradigm, combined with complementary metal-oxide semi-
conductor (CMOS) technology, has been paramount in laying the foun-
dation of high-performance computing and driving technological
innovation across various fields. However, traditional computers encounter
difficulties in processing massive amounts of data efficiently because of the
physical separation between the central processing unit (CPU) and the
memory unit. The constant movement of data between memory and pro-
cessing units is a core issue that results in considerable latency and energy
consumption, a problem commonly referred to as the Von Neumann
bottleneck. In recent years, the explosive growth of data, driven by
advancements in machine learning applications, artificial intelligence (AI),
and various sources such as online platforms, scientific research, and the
Internet of Things, has posed significant challenges for conventional com-
puting architectures'. The further advancement of conventional computing
is also hindered by the slowing down of Moore’s Law™’, which predicted the
doubling of transistor counts on integrated circuits every 2 years* and has
been the driving force behind the exponential growth in computing.
However, as transistor size approaches physical limits, sustaining the

exponential growth in computing capabilities becomes increasingly
challenging™. As a result, there is a pressing need for novel computing
approaches to address the inefficiencies of conventional systems and meet
the growing demands of data-intensive applications while mitigating energy
consumption®’. This is where brain-inspired neuromorphic computing has
gained prominence to overcome the limitations of conventional
computing&g. The brain’s inherent features, such as massive parallelism, in-
memory computing, high integration density, and synaptic plasticity, enable
it to process vast amounts of information efficiently, exhibiting remarkable
abilities such as learning, recognition, decision-making, and adaptability, all
while minimizing energy consumption'’.

Over the years, artificial neural networks (ANNs) have been developed
to overcome the Von Neumann bottleneck inherent in conventional
computing architectures, leading to significant advancements in the
field'"'"”. However, challenges remain in reducing computation costs and
achieving brain-like efficiency because the algorithms of ANNs and asso-
ciated software are executed on conventional computers, leading to certain
drawbacks. One of the main issues is the considerable power consumption
of these computers when running Al applications, which far exceeds the
energy efficiency of the human brain. For example, the AlphaGo system,
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which consists of 1200 CPUs and 180 image processors (GPUs), consumes
several hundred thousand Watts"’. While the human brain, with ~10"!
neurons and 10" synapses', consumes only 20 Watts of power, with each
stimulus requiring an operation consumption of only 1-100 femto joules".
Synaptic plasticity is fundamental to the brain’s computational capabilities,
referring to the ability of synapses to adjust their strength based on neuronal
spiking activity', including long-term plasticity, short-term plasticity, and
spike-timing-dependent plasticity (STDP), etc. In the neural system, short-
term plasticity is responsible for computational functions associated with
spatiotemporal information'’, while long-term plasticity establishes the
fundamental framework for memory and learning”, and STDP, which
follows the principles of the Hebbian theory represents the learning rule and
includes various forms such as asymmetric STDP, symmetric STDP, and
anti-STDP'**’. Emulating synaptic plasticity at the device level promises to
achieve energy-efficient, higher-performance, and scalable neuromorphic
computing. Different device architectures, including CMOS transistors,
memristors, gate-tunable transistors, and ferroelectric transistors, have been
utilized to emulate the functionality of biological synapses through elec-
tronic and optoelectronic devices.

Among these, memristors” ™, initially conceptualized by Leon Chua®,
and later experimentally observed in HP labs, have immense potential for
emulating synaptic plasticity based on their conductivity modulation from
past history programming'**°. These two-terminal electronic devices exhibit
similar functionality to synapses and offer advantages such as excellent
scalability, simple geometry, low fabrication cost, non-volatility, analog
switching, low power consumption, faster switching speed, CMOS com-
patibility, and high integration density. Furthermore, they can be seamlessly
integrated into large-scale crossbar arrays, crucial for essential vector-matrix
multiplication in neuromorphic computing. A large variety of material-
based memristors, including binary oxide (TiOx”" ™, SiOx’*", NiOx >,
etc.), perovskites (MAPbI;***, (C,HoNH;),PbBrs*, MAPbBr;” etc.),
organic materials (organic small molecules SU-8%, monochloro copper
phthalocyanine (ClCuPc)”, fluoropolymer®, etc.) and 2D materials*' ™
(graphene, hBN, 2D TMDs, etc.), have been extensively explored. Amongall
these, 2D TMDs emerge as exceptionally desirable materials, positioned as
essential components across a broad spectrum of electronic and optoelec-
tronic devices. This is particularly notable in the context of cutting-edge
memristive and synaptic devices tailored for the advancements in Neuro-
morphic Computing. Due to their nearly atomic thickness and reduced
screening effects, 2D TMDs offer tunable physical properties through
diverse techniques, including electrostatic doping”, defect-engineering™,
chemical intercalation”, and strain-engineering®. Various mechanisms,
including interface electrostatic modulation, charge transfer, phase change,
energy band shifts enabled by gate tunability, and defect migration, facilitate
the realization of memristive behavior and synaptic plasticity in these
materials. 2D TMDs-based memristors have successfully emulated crucial
synapse functions, including long-term potentiation (LTP)****~*', long-term
depression (LTD)*"', and STDP***'~**. However, existing challenges per-
sist, including non-linearity and asymmetry in synaptic weight updates,
limited dynamic range, high programming current, and variability from
cycle to cycle and device to device. To achieve brain-like efficiency, it is
imperative to address these challenges. An ideal synaptic device should
possess attributes such as a wide dynamic range, linear and symmetric
synaptic weight updates, low programming current, and minimal variability
both within cycles and across devices. These traits are pivotal for ensuring
accurate and efficient neural network operations closely mimicking the
human brain’s functioning. Addressing these hurdles through physics-
driven device engineering could pave the way for improved synaptic
functionality.

Here, we studied the influence of on-chip Argon (Ar) plasma treatment
on the memristive behavior and synaptic plasticity of chemical vapor
deposition (CVD)-grown polycrystalline MoS, monolayer devices. Plasma
treatment has arisen as a versatile method for modifying 2D materials on a
large scale, providing a time-efficient and cost-effective approach™ . Ar
plasma treatment has been utilized to achieve controlled atomic layer

thinning of MoS, flakes and induce desulfurization of MoS, flakes, all
without the introduction of external atoms or chemical doping”®*™. Ar-
plasma treatment has been used previously to improve the performance
matrix, such as dynamic range and linearity of synaptic weight updates of
exfoliated few-layer MoS, based memristor®’. Here, we have shown that
optimal-power Ar plasma can significantly enhance the performance matrix
of CVD-grown polycrystalline monolayer MoS, based memristor. Our
work first reveals that memristors fabricated from as-grown polycrystalline
MoS, monolayers exhibit limitations, including a poor switching ratio (less
than 10%), non-linearity and asymmetry in synaptic weight updates, sub-
stantial cycle-to-cycle variability of switching ratio, and poor STDP beha-
vior. Following the application of optimal-power plasma treatment, leading
to a sulfur vacancy density of ~3.4x10"cm™ in as-grown MoS,, we
observed significant improvements in the performance of memristors.
These improvements included a significantly expanded switching ratio
(10°-10%, more linear and symmetric synaptic weight updates, a reduced
non-linear factor (NLF) from 21.79 to 2.81, and enhanced STDP behavior.
Furthermore, employing a three-layer ANN simulation with plasma-treated
memristors shows learning accuracy of ~97% for recognizing hand-written
MNIST digits. Our approach to enhancing resistive switching and synaptic
functionality in 2D semiconductor devices opens up exciting possibilities for
further research and development in the realm of synaptic devices.

Results and discussion

For the present study, polycrystalline monolayers of MoS, were synthesized
on a SiO,/Si substrate using the CVD technique (see Methods for details).
The synthesized materials were characterized using Raman Spectroscopy,
photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), atomic
resolution high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM), and optical microscopy. Optical micrograph
and Raman spectroscopy of the as-grown polycrystalline MoS, monolayer
are presented in Fig. 1a, b, respectively. The Raman spectrum showed two
prominent peaks: the in-plane vibration mode ElZg at ~386 cm " and the
out-of-plane mode A;gat ~404 cm ™. In addition, a third peak at ~378 cm™"
was also observed, attributed to a disorder-induced peak(‘z. The difference
between the Aj, and E',, peak positions was found to be ~18.5cm™,
confirming the monolayer nature of the synthesized MoS,”. Figure 1c
displays the PL with a peak observed at ~1.82 eV attributed to A excitons®.
Figure 1d depicts the HAADE-STEM image of MoS, monolayer. The image
reveals that the Mo and S atoms are arranged in a hexagonal pattern,
indicating the presence of a hexagonal crystal structure within the MoS,
monolayer. Figure le presents the fast Fourier transform (FFT) analysis of
the HAADF-STEM image. The FFT image demonstrates the hexagonal
symmetry of the MoS, crystal, confirming the arrangement observed in
Fig. 1d. Figure 1f provides additional information by indicating an inter-
planar distance of 0.27 nm, corresponding to the 100 planes. Figure 1g
represents the Inverse Fast Fourier Transform (IFFT) image of Fig. 1d.
Figure 1h is the zoomed image of the selected area in Fig. 1g, and the inset
shows the atomic model of MoS,. Figure 1i shows the intensity profile along
the line in Fig. 1h. Additionally, XPS analysis of CVD-grown MoS, is
detailed in Supplementary Fig. S1. We have confirmed the thickness of as-
grown MoS, using atomic force microscopy (AFM). Supplementary Fig. S2a
presents the AFM image of CVD-grown MoS, flake, while Supplementary
Fig. S2b displays the corresponding height profile, revealing the thickness of
the as-grown MoS, to be 0.65 nm, confirming its monolayer nature. The
memristors were fabricated in a field effect geometry using the poly-
crystalline MoS, monolayer as the semiconducting channel material.
Source/drain electrodes were patterned using photo-lithography, followed
by Cr/Au electrode deposition through thermal vapor deposition and a
subsequent lift-off process. In addition, the heavily doped Si substrate was
utilized as the back gate electrode. It should be noted that we have fabricated
devices on monolayer MoS, flakes shaped like four-point and six-point
stars. Figure la and Supplementary Fig. S3 illustrate the various shapes of
our CVD-grown MoS; flakes, including six-point, five-point, four-point,
and three-point stars. It is well known that six-point, five-point, and
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Fig. 1 | Structural characterization of CVD-Grown MoS,. a Optical image of
CVD-grown polycrystalline MoS, (scale bar 20 um). b Raman and (c) Photo-
luminescence (PL) of CVD-grown MoS,. d HAADF-STEM image and (e)
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corresponding FFT pattern. f Interplanar spacing corresponding to 100 planes is
shown. gIFFT of (d). h Zoomed image of selected area marked in (g). Inset shows the
atomic model of MoS, (Mo: yellow, S: green). i Intensity profile along the line in (h).

four-point stars have grain boundaries (GBs)*****’. Zheng et al. employed
second harmonic generation microscopy to examine these GBs in CVD-
grown MoS, flakes and determined that only the three-point star MoS,
flakes are single crystals, while the other shapes are inherently
polycrystalline”’. Figure 2a represent the device schematic showing the
channel length 5 pm and width 25 um and Supplementary Fig. S3b shows
the optical image of the fabricated device. Figure 2b presents the output
characteristics, i.e., the drain current (Ip) versus drain voltage (Vpg) for
different back gate voltages (Vs). It is evident that there is a good linear
relationship between Ip and Vpg, which indicates that the field effect
transistor (FET) device possesses ohmic contacts. Figure 2¢ displays the
transfer characteristic, demonstrating the drain current (Ip) versus gate
voltage (V) in linear and logarithmic scale at Vg = 0.5 V. It shows that the
fabricated device is n-type, and the field-effect mobility is found to be
~16 cm’V~'s™". Figure 2d exhibits the hysteresis observed in the transfer
characteristics, i.e., Ip versus Vg at Vpg = 0.5 V. Several potential causes for
the observed hysteresis in transfer characteristics have been identified,
including electron trapping and de-trapping by adsorbed molecules on the

MosS, surface®, charge trapping at the SiO,/MoS, interface®, and intrinsic
defects within the MoS, material”’.

We first studied the switching behavior of pristine devices, as depicted
in Fig. 3. Figure 3a shows the current-voltage (I-V) characteristics at 0 gate
voltage. Initially, the device starts in a high resistance state (HRS) when the
drain voltage (Vp) is swept from 0 to 10 V (sweep 1). As the voltage sweep
progresses, the device gradually transitions to a low resistance state (LRS)
and maintains this state during the sweep from 10 V back to 0 V (sweep 2).
Subsequently, during the sweep from 0V to —10V (sweep 3), the device
resets to the HRS state. Finally, the device remains in the HRS state during
the sweep from —10V to 0V (sweep 4), the corresponding logarithmic
graph is given in Supplementary Fig. S4. The observed behavior exhibits a
non-linear pinched hysteresis loop in the I-V characteristics, a distinctive
feature of memristive behavior™*. As shown, the hysteresis loops exhibit a
counterclockwise direction in both the right and left branches. It should be
noted that the MoS, memristor does not require an electroforming process.
The underlying mechanisms of resistive switching phenomenon in lateral
TMDs-based memristors are still debated, with different types of switching
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Fig. 2 | Electrical characteristics of CVD-grown a b 1200 . .
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mechanisms proposed based on experimental results. One mechanism
involves the dynamics of charging and discharging of trap states, which can
originate from defects in the channel material, gate oxide, or
semiconductor-electrode interfaces. These states can capture and release
electrons or holes based on the applied voltage and, therefore modify the
electrostatic potential, free charge carrier density, and contact barriers” "
Lee et al. reported a dual-gated MoS, memtransistor using Al,Oj as the top
gate and SiO, as the back gate, attributing the memristive loop to traps filling
and emptying at the MoS,/Al,O; interface’’. Yang et al. observed mem-
ristive behavior in monocrystalline MoS, FETs using HfO, as a gate
dielectric, attributing this behavior to charge trapping and de-trapping at the
MoS,/HfO, interface”. When the device length is close to or shorter than
1 pm, a high drain bias increases the electric field strength, providing suf-
ficient energy for injected carriers to overcome the channel bandgap and
become trapped in the mid-gap states of Al,O5 or HfO, dielectric. In both
cases, the resistive switching effects were associated with transport behaviors
primarily controlled by space-charge-limited current and trap-filled limit
(TFL)™”. Another mechanism involves charged point defects that are
mobile enough to move when an external electric field is applied. Experi-
ments have demonstrated that sulfur vacancies accumulate and migrate
along GBs in the conducting channels of lateral monolayer MoS, devices,
leading to changes in channel resistance and causing hysteresis in the In-Vp,
curve®. Electrostatic force microscopy and cryogenic transport measure-
ments revealed dynamic variations in the Schottky barrier height (SBH) in
polycrystalline CVD-grown MoS, monolayer-based memtransistors®.
Based on these experimental results, the origin of hysteresis in the Ip-Vp
curve was hypothesized that local redistribution of defects under external
field, facilitated by GBs, causes the variation in the dopants density near the
contact edge”. These changes result in the dynamics variation of SBH by
image-charge lowering, resulting in a pinched hysteresis loop in the In-Vp
curve®”. Li et al. performed a systematic investigation into the switching
characteristics of lateral memristors based on mechanically printed few-
layer MoS,. Their study identified two distinct DC-programmed switching
modes: rectification-mediated and conductance-mediated. These modes

were associated with variations in MoS,/Ti Schottky barriers and the
redistribution of ionic vacancies within the MoS, channels. Their findings
were supported by results from Kelvin probe force microscopy, Auger
electron spectroscopy, and electronic characterization’’. While Spetzler et al.
introduced a semi-classical charge transport model to study the role of
defect dynamics in the switching process, the model was validated with
experimental data from lateral memristive devices based on exfoliated few-
layer MoS,”. The results based on this model the hysteresis in I-V curves is
attributed to the dynamics of mobile charged vacancies which leads the
formation and annihilation of a vacancy depletion region. Additionally, it
has been demonstrated that the I-V curve is significantly affected by
Schottky barrier lowering. However, it does not have a notable impact on the
hysteresis area. This model effectively explains the I-V curve and pulse
behavior, including distinct features such as different hysteresis directions,
hysteresis crossing, and asymmetry observed experimentally”’. Regardless of
the cause of hysteresis in MoS, memtransistors, this article focuses on
engineering it to enhance memristive and synaptic functionality. Figure 3b
shows the endurance characteristic of the MoS, memristor that was swit-
ched 180 times between HRS and LRS using full-sweep cycles. Notably,
around the 70th cycle, we observed a sudden drop in the drain current (Ip).
This phenomenon might be attributed to the release of oxide-related traps
activated by the high electric field at the source electrode®. Previous studies
have linked such dip and rise patterns in endurance curves to the combined
effects of gas or water molecule absorption/desorption and charge trapping
and de-trapping at the semiconductor-dielectric interface’. Considerable
cycle-to-cycle variability is evident in both the HRS and LRS, and the
switching ratio remains below 10* at V= 0.5 V. During the online training
of neural networks, the utilization of devices exhibiting cycle-to-cycle var-
iation leads to escalated training costs and significant accuracy deterioration.
Because training requires a large number of writing and erasing operations,
often exceeding millions of repetitions”. Figure 3¢ shows the LTP-LTD
characteristics of the device, which imitate the excitatory and inhibitory
behavior of biological synapses. For a positive pulse (set pulse), the post-
synaptic (Ip) current increases similar to the facilitation of synaptic strength
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—20 V amplitude with an on-off time of 1 ms for depression have been applied, then
source-drain current (Ip) was measured at read voltage (Vp) =0.1 V. d The mea-
sured change in synaptic weight as a function of the time interval (At) between paired
pulses 0of 20 Vand —20 V, both pulses on time was 1 ms, the current was measured at
each time interval after the pulse pair by applying a source-drain bias. The solid lines
are exponential fits. Vg is set to 0 V for all the measurements.

of biological synapses, and for a negative pulse (reset pulse), the current
decreases similar to depression of synaptic strength of the biological
synapses. Here, we applied set pulses of 420 V amplitude, with an on-off
time of 1 ms, reset pulses of —20 V amplitude with an on-off time of 1 ms,
and measured the current after the pulses at a DC bias Vp, (read voltage) of
0.1 V. Our pristine MoS, synaptic devices exhibited non-linearity and
asymmetry in weight updates. The processes of weight increase (LTP) and
weight decrease (LTD) progress differently, causing asymmetry. Initially,
conductance undergoes gradual changes, but saturation takes place as the
number of applied pulses increases, imposing a limit on the dynamic range
and the number of attainable synaptic weight states. Dynamic range refers to
the ratio of the highest to the lowest conductance in LTP-LTD character-
istics. Synaptic devices with limited dynamic ranges often suffer from
diminished learning accuracy in neural network applications™*". Most
neuro-inspired algorithms utilize analog synaptic weight updates to learn
patterns and extract features. A higher number of multilevel states (e.g.,
exceeding hundreds of levels) contribute to improved learning capability
and enhance network robustness”. Linearity in weight updates signifies the
linear alteration of conductance with the number of applied pulses®. The
non-linearity of potentiation (or depression) makes it challenging to fine-
tune the conductance to the target value, resulting in poor convergence rates
during training and diminished learning accuracy®*. A significant aspect of
using a memristor as an artificial synapse in the latest AI technology, such as
spiking neural network, is their ability to mimic STDP, which represents a
temporally asymmetric manifestation of Hebbian learning, triggered by the
timing correlation between spikes from pre-synaptic and post-synaptic

neurons. If the pre-synaptic spike occurs before the post-synaptic spike, the
synaptic weight (or strength) increases (potentiation). Conversely, if the pre-
synaptic spike occurs after the post-synaptic spike, the synaptic weight
decreases (depression). The effect of correlated spiking on synaptic strength
diminishes rapidly as the time interval between the spikes increases. Here,
we mimicked indirect STDP (Fig. 3d) in our device by applying a pair of
electrical spikes separated by a time interval At**. Specifically, a positive
pair of pulses induces positive change (LTP), while a negative pair induces a
negative change (LTD) in synaptic weight (conductance). We have quan-
tified these changes by plotting the percentage change in synaptic weight,
denoted as AW %, as a function of the time difference At. AW% is calculated
as follows

Wﬁnal — Winitial x 100

AW% =
Winitial

)

Where Wipitia and Wy, are the channel conductance before applying
pulses and after applying pulses, respectively. To determine the time con-
stants for potentiation and depression, we fitted the STDP data from Fig. 3d
(represented by black solid lines) using the following mathematical model®.

AWO({

if At>0
if At<0

exp(— ),

2
—exp(), @
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Fig. 4 | Defect-engineering of CVD-grown MoS,.
a A visual representation of Ar plasma treatment.

b XPS of Mo 3d core level of pristine MoS, (c) XPS of
Mo 3d core level of optimal-power plasma-treated
MoS,. d XPS of S 2p core level of pristine MoS, (e)
XPS of S 2p core level of optimal-power plasma-
treated MoS,.
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Here, 7 and 7 are the characteristic time between spikes for which
there is a significant change in synaptic weight. We found these values to be
17 ms and 20 ms for potentiation and depression, respectively. Positive
pulses pair show =30% change in synaptic weight while negative change
shows around 100%. Typically, in the emulation of brain-like STDP,
synaptic weight change is more pronounced when the time interval between
spikes is less. As time progresses, this change should eventually saturate.
However, in pristine MoS,, the weight change for positive spike pairs does
not adhere to this pattern. Further, to address the limitations observed, such
as low switching ratio, nonlinearity, and asymmetry of synaptic weight
updates in the pristine device memristor, we explored a promising avenue
for enhancement: on-chip optimal-power Ar plasma treatment. Deter-
mining the power of Ar plasma is crucial for creating sulfur vacancies in the
MoS,. We observed that low-power Ar plasma does not generate sulfur
vacancies, while high-power can potentially damage the sample. More
details are given in the Supplementary information. S atoms and Ar" ions
have comparable masses, and Ar* ions present within the moderate power
plasma generally possess sufficient energy, which is insufficient for knocking
off Mo atoms and enough to remove sulfur atoms”. Consequently, this
process selectively sputters S atoms and creates sulfur vacancies, leaving Mo
atoms unaffected. Figure 4a illustrates the schematic of the Ar plasma
treatment process. Raman, PL, and XPS spectroscopy were performed to
examine the effect of Ar Plasma at different power levels. Following low-
power Ar plasma treatment, no obvious change was observed in Raman
(Supplementary Fig. S5a), PL (Supplementary Fig. S5b), and XPS spectra
(Supplementary Fig. S6), even after 60s of plasma treatment. These
observations conclusively confirm that low-power plasma does not induce

sulfur vacancies in the channel. However, significant changes were observed
in Raman, PL, and XPS spectroscopy after optimal-power plasma treat-
ment. Figure 4b, ¢ show the XPS spectra of Mo 3d core level before and after
optimal-power plasma treatment, respectively. The dual peaks arising from
Mo*" 3ds/, and 3ds,, were deconvoluted into two peaks to enhance the
fitting process, employing Gaussian-Lorentzian (GL) mixing and Shirley
backgrounds. Before plasma treatment (Fig. 4b), higher binding energy
peaks at 229.9 and 232.8 eV signify the stoichiometric intrinsic MoS, (i-
MoS,), and lower binding energies peaks at 229.2 and 232.3 eV, corresponds
to defective or sub-stoichiometric MoS, (d-MoS,) featuring sulfur
vacancies”’. Additionally, the third peak, situated below the Mo*" 3ds,
doublet at around ~233 eV, and the broader peak at ~236.0 eV, represent
the Mo®" 3ds/, and 3ds;, doublets of MoO; or sub-oxides of MoO,,
respectively. After optimal-power plasma treatment, observable modifica-
tions are apparent in the XPS spectra (Fig. 4c). The doublet peaks of Mo**
3ds/, and 3ds/, shift towards lower binding energies (Fig. 4c and Supple-
mentary Fig. S7). The observed shift to lower binding energies in the Mo 3d
peaks signifies a change in the electrostatic environment surrounding the
Mo atoms. This change is a consequence of the reduction of neighboring S
atoms, to which the Mo atoms were initially bonded®. This behavior aligns
with previous findings where sulfur was selectively sputtered from MoS,™*
Also, there is a reduction in the contribution of i-MoS,, accompanied by an
increase in the contribution of defective components (d-MoS,), confirming
the introduction of more sulfur vacancies than the pristine sample®’.
Additionally, the diminished integrated area of the S 2s peak relative to the
Mo 3d peaks suggests a decrease in the overall sulfur content compared to
the pristine sample. Figure 4d, e represent the XPS spectra of S 2s core level
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Fig. 5 | Optical and electrical characterization after plasma treatment. a PL
spectra of pristine MoS, (b) PL spectra of optimal-power plasma treated MoS, (c)
Raman spectra of MoS, before and after optimal-power plasma treatment (d) In-Vp

loop comparison before and after optimal-power plasma treatment at Vg =0V and
scan rate 0.5 Vs~

before and after optimal-power plasma treatment, respectively. Moreover,
the expanded FWHM of all peaks after plasma treatment indicates the
introduction of disorder in the system”. We also found that contribution of
the MoO3/MoO,, peak becomes larger in the plasma-treated sample,
reflecting the oxidation of MoS, flakes”, which is inevitable during the
microfabrication process. However, Oxygen elements can not migrate into
the MoS, channel under an external field”. Figure 5a, b display the PL
spectra before and after optimal-power plasma treatment, respectively. Both
the A-exciton and B-exciton peaks were fitted with a Voigt function. The
ratio of the A and B-emission intensities can qualitatively indicate non-
radiative recombination; a lower B/A ratio reflects fewer defects and better
sample quality®’. After optimal-power plasma treatment, the B/A ratio
increases compared to the pristine sample, suggesting introducing defects in
the plasma-treated sample. Additionally, Raman spectra following optimal-
power plasma treatment reveal a red shift in the E';, peak and a smaller blue
shift in the A, peak, along with a broader full width at half maximum
(FWHM) for both peaks (Fig. 5¢), indicating the presence of sulfur
vacancies”". Also, Supplementary Fig. S8 shows the fitted Raman spectra
after optimal-power plasma treatment, showing two defect-induced peaks
at ~377 cm 'and ~411 cm™'*. Supplementary Figs. S9 and S10 present the
optical and HAADF-STEM images of MoS, following optimal-power
plasma treatment. After high-power plasma treatment, no Raman and PL
signals were observed, as depicted in Supplementary Fig. S11a, b. The optical
image (Supplementary Fig. S12) after the high-power plasma treatment
reveals a noticeable etching of MoS,. While Supplementary Fig. S13 shows
the comparison of transfer characteristics before and after optimal-power
plasma treatment which reveals that optimal-power plasma does not
damage the sample. Therefore, optimal-power Ar plasma was utilized to
introduce sulfur vacancies deliberately. The defect concentration in both
pristine and optimal-power plasma treated MoS, is obtained by performing
stoichiometry calculations using the core level spectra of S 2s and Mo 3d.

The stoichiometry of MoS, is determined from the following calculations™.

®

Os2s
Tnozas /2

S(at.%)
Mo(at. %)~ (

(€)

)

here, S (at.%) and Mo (at.%) represent the atomic per cent (at.%) of sulfur (S)
and molybdenum (Mo), respectively. Isy; and Iyzy345/, denotes the integrated
intensity of the S 2s peak and the Mo 3ds,, peak, respectively. Additionally,
s, and oy, 5, Tepresent the photoionization cross-sections at a photon
energy of 1.5keV, modeled by Scofield, where o5 = 1.9066 and
oy, = 7- 4630”". In the case of pristine MoS,, the calculated stoichio-
metry is determined to be MoS; g, resulting in a defect density of 1%. In the
ideal superstructure of 1H MoS,, the sulfur-sulfur distance is 3.162 A7
leading to a density of sulfur atoms in monolayer MoS, of ~2.3 x 10"* cm ™.
With a defect concentration of 1%, the defect density is estimated to be
~2.3 x 10" cm ™, which aligns with values reported for pristine samples™.
For the optimal-power plasma-treated MoS,, stoichiometry is MoS; ; with a
defect concentration of ~15%, corresponding to a sulfur vacancy density of
34x10"cm™,

Next, we explored the switching characteristics and synaptic plasticity
of the device after optimal plasma treatment. We compared the memristive
loops of the pristine device and the plasma-treated device under identical
conditions, including the Vp range and sweep rate. It is important to
mention that the comparison of switching characteristics and synaptic
functionality was conducted on the same device before and after plasma
treatment. A significant opening of hysteresis in Ip-Vp curve has been
observed after the plasma treatment (Fig. 5d). We have discussed above that
optimal-power Ar plasma treatment introduces more sulfur vacancies in the
MoS, channel, which can be attributed to the pronounced opening of
hysteresis in the Ip-Vp curve after the plasma treatment. The memristive

OMo3ds/2
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Fig. 6 | Synaptic functionality of plasma-treated MoS, memristor. Switching
characteristics and emulation of synaptic function in optimal-power plasma-treated
MoS, memristor. a I, versus V, characteristics of optimal-power plasma-treated MoS,
memristor at Vi =0V, arrows show the sweep direction, scan rate was kept 2 Vs,
b Endurance of HRS (sweep 1) and LRS (sweep 2) state at Vi, =0.5V over 100 cycles.
¢ Endurance of switching ratio (I;rs/Iurs) Vp = 0.5V over 100 cycles. d Post-synaptic
current (I,) versus pulse number, showing long-term potentiation and depression, set
pulse amplitude was +20 V with an on-off time of 1 ms, and reset pulse amplitude was
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—20 V with an on-off time of 1 ms; and current was measured at source-drain bias Vp, at
0.1 V. e Post-synaptic current versus pulse number, set pulse amplitude was +-20 V with
an on-off time of 1 ms, and reset pulse amplitude was —20 V with an on-off time of 1 ms;
the current was measured at source-drain bias Vp,at 0.01 V for 20 switching cycles. f The
measured change in synaptic weight as a function of the time interval (Af) between paired
pulses of 20 V.and —20 V with on time 1 ms, blue data points are for positive pulse pair
and red data points are for negative pulse pair and the solid lines are exponential fits.
Vi =0V for all measurements.

loop shown in Fig. 6a for V, scan +40 V exhibits broad hysteresis char-
acteristics, and the corresponding logarithmic scale graph is given in Sup-
plementary Fig. S14. Notably, Fig. 6b demonstrates a substantial
enhancement in the endurance of the HRS state (sweep 1) and the LRS state
(sweep 2) at 0.5 V. Following plasma treatment, a significant reduction in
Iiygs is observed. At 0.5V read voltage, Iyygs is found to be around 1 pA
(Fig. 6b) after plasma treatment, while before plasma treatment, it was
nearly 1 nA (Fig. 3b). If the memristor is used as a selector device, then
standby power consumption is given by the following equation™

p standby — I HRS Vread (4)

After plasma treatment, the standby power consumption decreased sig-
nificantly from ~0.5nW to 0.5pW. This reduction in off-state current

contributes to enhanced energy efficiency. Additionally, a low off-current
minimizes parasitic power consumption in large crossbar arrays’’. More-
over, the switching ratio (Fig. 6¢) has been increased significantly from 10* to
10*, with minimal cycle-to-cycle variability. Figure 6d shows the LTP and
LTD curves for 100 number of identical pulses. The pulse parameter and
read voltage were kept the same as for the pristine devices. The observed
variation in current with the number of pulses indicates a larger number of
available synaptic weight states and increased dynamic range compared to
the pristine device. LTP and LTD curves follow the same trajectory. Also,
linearity and symmetry, the two most crucial attributes for evaluating
synaptic devices, have been significantly improved. Floating gate-type
synaptic devices have already been explored to enhance linearity and
symmetry” . However, these devices require the incorporation of a
charged store layer and a blocking oxide, adding complexity to the
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Table 1 | Comparison of different memristive devices based on MoS,

Ref Material (thickness, growth) Device Geometry Channel Channel Switching Ratio  Switching Voltage
Length (um) Width (pm) Range (V)

45 Monolayer MoS,, CVD planer 5 100 10? +80V

31 Monolayer MoS,, CVD planer 0.9 0.7 10° +30V

108 Monolayer MoS,, CVD planer 8.5 6 10 +20V

76 few layer MoS,, Exfoliated planer 2 5 10 +20V

109 multi-layer MoS,, mechanically Planer NA NA 10 -05t02V
Exfoliated

75 Monolayer MoS,, CVD planer 0.6 2 10° +5V

Our work  Monolayer MoS,, CVD planer 25 10* +10V

fabrication process, especially when aiming for large-scale array applica-
tions. While strategies such as encoding the input pulses have been proposed
to address non-linearity and asymmetry, these methods often lead to added
intricacy in on-chip implementation, time delay, and additional energy
consumption”'"". Our approach, on the other hand, achieves high linearity
and symmetry using a straightforward two-terminal device and identical
pulses. This implies that the device can transition to a specific state by
employing a certain number of identical pulses. Subsequent application of
an equal number of similar pulses with opposite polarity can restore the
original state. This feature proves advantageous for neural network training.
In Fig. 6e, we have presented the cycle-to-cycle variability of potentiation
and depression for 20 cycles. Each of these cycles consists of a sequence of
ten identical positive pulses (+20 V, 1 ms) followed by ten negative pulses
(—20V, 1 ms). The response remains consistently linear and symmetric
throughout each cycle. We compared the In-Vp, characteristics and LTP-
LTD characteristics of 10 devices before and after optimal-power plasma
treatment (Supplementary Figs. S15-S24). Additionally, Supplementary
Figs. $25-S37 show the Ip-Vp characteristics for another 11 devices. We
observed the consistent opening of the hysteresis in the Ip-Vp, curve, as well
as improved linearity and symmetry in the LTP-LTD characteristics, with
reduced cycle-to-cycle variability compared to the pristine devices. Figure
S30a presents the Ip-Vp, characteristics over 80 cycles at +10 V, and Figure
S29b shows the same for 520 cycles after optimal-power plasma treatment
for the same device. Figures S31a and S31b illustrate the HRS and LRS with
sweep cycles at Vp=1V. It is evident that after optimal-power plasma
treatment, the switching ratio increased by two orders of magnitude with
less cycle to cycle variability, and the current at the HRS decreased. However,
we have observed device-to-device variability, such as hysteresis area and
asymmetry of hysteresis. This variability can be attributed to various factors,
such as the inhomogeneity of CVD-grown flakes* and defects introduced
during the fabrication process. Even slight variations in the Schottky barriers
(>0.04 eV) can significantly alter the I-V characteristics, affecting both the
area and symmetry of the hysteresis”. To assess the energy efficiency of our
synaptic transistor, it is important to consider the energy dissipation for each
pulse. This energy, denoted as E, is determined by the product of three key
factors: the average current during the pulse (I), the duration of the pulse
(tpuise)> and the source-drain bias voltage (V) of the pulse. This relationship
is expressed by the following equation™

E= ID x tpulse x VD (5)
We have observed a minimum energy dissipation of ~30 {] per pulse, a value
that aligns closely with the energy consumption per synaptic event in bio-
logical systems, which is around =10 {J'”. The STDP, shown in Fig. 6f,
closely resembles that of biological synapses. As for less time interval, weight
change islarger, and as time interval increases, weight change decreases with
an exponential decay pattern, resulting in a time constant of 20 ms for the
positive pair and 18 ms for the negative pair. Furthermore, the window for
weight updates has been extended compared to the pristine sample. The
alteration in synaptic weight is =~100%, signifying improvement of spike

time-dependent learning. Enhanced conductance variations enable well-
defined states and enhance the temporal sensitivity of the STDP behavior™.
Thus, a plasma-treated device shows better STDP emulation than the
pristine device. Table 1 provides an overview of recent advancements in
MoS,-based memristors, comparing our work with others in terms of
switching ratio and switching voltage range. While our results are
competitive, future improvements could explore scaling down the channel
length to achieve lower operating voltages and leveraging gate tunability for
enhanced performance.

The plasma treatment provides an upper hand in realizing linear
analog memory states in MoS,-based memristors, which can further be
utilized to recognize images or patterns accurately. Towards this study,
finally, we demonstrate an ANN network for hand-written digit classifica-
tion of Modified National Institute of Standards and Technology (MNIST)
datasets'” simulated using the open-source PyTorch package'™. As shown
in Fig. 7a, a three-layer fully connected ANN network with 784 input, 256
hidden, and 10 output nodes is conceived in an off-chip training procedure.
The input signals from the 60,000 MNIST images of 28 x 28 pixels are
employed to 784 input neurons, whereas the 10 output neurons correspond
to the output classes of MNIST digits ranging from 0 to 9. The normalized
conductance values extracted from the LTP/LTD curves can be treated as
the synaptic weights in the ANN module. The non-linear parameters from
the LTP curves are extracted using the following memristive switching
model,'” as shown in Fig. 7b.

((G;\n/lax - Gﬁm) Xw+ Gf’}ﬁn)i, if m#0

w
Glr\n/lin x <%§:> ’
Where Gyiax and Gy, are maximum and minimum conductance in our
LTP characteristics, w is a variable and m is the non-linearity coefficient of
the potentiation curve, whose value is 1 for the ideal device case. The value of
m from the fitted equation for 100 pulses is extracted to be 21.79 before
plasma treatment, and after plasma treatment, it has been improved to 2.81.
NLF for LTD characteristics 2.79 (Supplementary Fig. S38a), indicating that
LTP-LTD characteristics are highly symmetric. These coefficients, along
with other parameters such as asymmetric ratio and dynamic range, play a
crucial role in the high-accuracy training of such devices, as recently
reported'”'”. To simulate the network, we use a backpropagation
algorithm with cross-entropy loss as the cost function employing a
nonlinear rectified linear unit activation function for the propagation of
information. Figure 7c shows the recognition accuracy of the plasma-treated
MoS, devices over 50 epochs. Interestingly, a high training accuracy of
~97% is realized in our devices, which is also comparable to the software-
based calculations. Additionally, simulations incorporating the LTD curve
(Supplementary Fig. S38b) also show high training accuracy, ~97%. This
demonstrates the efficacy of the proposed devices towards the ANN
implementations using future crossbar architectures. Furthermore, we have
repeated the above simulations for various hidden nodes starting from 4 to
256 to study the dependence of classification accuracy of our ANN module

G= 6)

if m=0
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Fig. 7 | Demonstration of a three-layer ANN
model and performance metrics. a Demonstration
of a three-layer ANN model with 784 input, 256
hidden, and 10 output neurons using 28 x 28 pixel
MNIST datasets as input signals. b The extracted
non-linearity factors from the fitted potentiation
curves post-plasma treatment. ¢ The digit recogni-
tion training accuracy of our device compared with

(a)

software values. d Variation of training accuracy
with the increasing number of hidden neurons.

e Confusion matrix of handwritten digits from 0 to 9
where the diagonal represents high-accuracy
classification.
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based on MoS, memristors. The variation of accuracy with the increasing
number of hidden layers is represented in Fig. 7d, which is consistent with
previous reports'”. The confusion matrix is calculated as an additional step
to enhance the validation of our supervised learning process and assess our
ANN model’s effectiveness in distinguishing output classes, as depicted in
Fig. 7e. The values along the diagonal represent the normalized predictions
made by the ANN model, which correspond to the true labels found in the
test data. The prominently high values along the diagonal and the
correspondingly low values off the diagonal unmistakably demonstrate the
strong class separation capabilities inherent in our device-based ANN
implementation.

Conclusion

In summary, we have successfully introduced an experimental approach to
enhance the performance matrix of CVD-grown MoS, memristors for
neuromorphic applications. The main advantages of employing plasma
treatment include its high material selectivity for sputtering material, large-
scale modifications, postmetallization alteration, and a feasible technique.
Plasma-treated devices substantially show improved resistive switching,
endurance, and energy efficiency. These enhancements include an expan-
ded switching ratio (from 10° to 10%), significantly reduced cycle-to-cycle
variability, improved STDP behavior, and linear and symmetric weight
updates. NLF has been improved from 21.8 to 2.81. ANN simulations based
on plasma-treated devices reveal learning accuracy of ~97% on the MNIST

handwritten digits dataset. Furthermore, our observations of STDP beha-
vior suggest a promising increase in learning potential. This research sig-
nificantly advances the utilization of 2D semiconductors in future
neuromorphic devices.

Methods

Growth of polycrystalline monolayer MoS,

We synthesized polycrystalline MoS, monolayer on 285 nm SiO,/Si sub-
strates using the atmospheric pressure chemical vapor deposition (APCVD)
technique in a single zone CVD setup. Sulfur and molybdenum trioxide
(99.98% trace metal) powder, both purchased from Sigma-Aldrich, were
used as precursors. The SiO,/Si substrates underwent a 10-min bath soni-
cation in acetone and another 10-min sonication in isopropyl alcohol.
Subsequently, they were cleaned under O, plasma at ~400 mTorr for 5 min
with 40 W power applied to the radio frequency coil. For the synthesis
process, in a 3.5-cm-diameter quartz tube furnace, 400 mg of sulfur powder
was placed in an alumina boat ~18 cm upstream from the MoOs boat
(outside the furnace). The sulfur powder was heated independently using a
heating belt. The substrates were placed upstream on a different alumina
boat positioned on the other side of the MoO; boat ~5 cm away. The tube
furnace underwent purging with ultrahigh-purity Ar gas at 400 standard
cubic centimetres per minute (sccm) for 15 min, followed by a flow rate
adjustment to 20 sccm. The furnace temperature was then raised to 750 °C
(heating rate 5°Cmin '), and the reaction continued for 5min.

Communications Materials | (2024)5:190

10


www.nature.com/commsmat

https://doi.org/10.1038/s43246-024-00632-y

Article

Simultaneously, when the furnace temperature reached ~725 °C, the heating
belt around the sulfur boat was increased to 150 °C and maintained at that
temperature for 25 min. After the reaction, all the heaters were turned off,
and the furnace was allowed to cool to room temperature naturally.

Material characterization

Raman and photoluminescence spectroscopy. The coverage and
growth quality of polycrystalline MoS, was characterized using an optical
microscope (Nikon LV150N). Raman and PL spectra were collected
using a LabRAM HR, Horbia Jovin Yvon spectrometer with a
532 nm laser.

X-ray photoelectron spectroscopy(XPS). XPS was performed to verify
the chemical composition of the CVD-grown MoS, films using a Thermo
Scientific XPS instrument, which was equipped with a monochromatic
Ka Al X-ray line as the X-ray source. The X-ray beam had an approximate
diameter of 400 um and an energy of 1486.6 eV. To counter sample
charging, all spectra underwent charge correction against the C 1s
adventitious carbon peak at 284.8 eV.

High-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM). Atomic resolution high-angle annular
dark-field scanning transmission electron microscopy (HAADF-STEM)
images were acquired with Hitachi HD2700C dedicated STEM with Cs
probe corrector. Other microscopes were employed with an acceleration
voltage of 200 kV.

Device fabrication and electrical measurement

MoS, memristor was fabricated using a standard photo-lithography
method followed by thermal evaporation of metal (5nm Cr and 50 nm
Au) and lift-off in acetone. All electrical, endurance, and synaptic plasticity
measurements were carried out in a home-built probe station using a Kei-
thely 2636B dual channel source meter unit controller using LabVIEW
programs at ambient conditions.

Ar plasma-treatment

The Ar plasma treatment was conducted using a Diener Zepto plasma
cleaner. For low-power plasma treatment, the conditions included a pres-
sure of 0.3 mbar, a power of 5 W, and a treatment time of 60 s. optimal-
power plasma treatment was carried out with a pressure of 0.3 mbar, a
power of 10 W, and a treatment time of 5 s. High-power plasma treatment
was performed under the following conditions: a pressure of 0.3 mbar, a
power of 20 W, and a treatment time of 5 s.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding author upon reasonable request.

Received: 2 April 2024; Accepted: 5 September 2024;
Published online: 16 September 2024

References

1. Najafabadi, M. M. et al. Deep learning applications and challenges in
big data analytics. J. Big Data 2, 1 (2015).

2. Track, E., Forbes, N. & Strawn, G. The end of moore’s law. Comput.
Sci. Eng. 19, 4-6 (2017).

3. Kish, L. B. End of moore’s law: thermal (noise) death of integration in
micro and nano electronics. Phys. Lett. A 305, 144-149 (2002).

4. Moore, G. E. Cramming more components onto integrated circuits.
Proc. IEEE 86, 82-85 (1998).

5. Markov, I. L. Limits on fundamental limits to computation. Nature
512, 147-154 (2014).

6. Shalf, J. The future of computing beyond moore’s law. Philos. Trans.
A Math. Phys. Eng. Sci. 378, 20190061 (2020).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Shalf, J. M. & Leland, R. Computing beyond moore’s law. Computer
48, 14-23 (2015).

Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine
intelligence with neuromorphic computing. Nature 575,

607-617 (2019).

Monroe, D. Neuromorphic computing gets ready for the (really) big
time. Commun. ACM 57, 13-15 (2014).

Kendall, J. D. & Kumar, S. The building blocks of a brain-inspired
computer. Appl. Phys. Rev. 7, 011305 (2020).

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436-444 (2015).

Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification
with deep convolutional neural networks. In Advances in Neural
Information Processing Systems 25 (eds Pereira, F., Burges, C. J.C.,
Bottou, L. & Weinberger, K. Q.) 1097-1105. http://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf (Curran Associates, Inc., 2012).

Silver, D. et al. Mastering the game of go with deep neural networks
and tree search. Nature 529, 484-489 (2016).

Kandel, E. R. et al. Principles of neural science, Vol. 4 (McGraw-hill
New York, 2000).

Jeong, D. S., Kim, K. M., Kim, S., Choi, B. J. & Hwang, C. S.
Memristors for energy-efficient new computing paradigms. Adv.
Electron. Mater. 2, 1600090 (2016).

Fioravante, D. & Regehr, W. G. Short-term forms of presynaptic
plasticity. Curr. Opin. Neurobiol. 21, 269-274 (2011).

Ho, V. M., Lee, J.-A. & Martin, K. C. The cell biology of synaptic
plasticity. Science 334, 623-628 (2011).

Attneave, F., B., M. & Hebb, D. O. The organization of behavior: a
neuropsychological theory. https://api.semanticscholar.org/
CorpuslD:144400005 (1949).

Bi, G. & Poo, M. Synaptic modification by correlated activity: Hebb’s
postulate revisited. Annu. Rev. Neurosci. 24, 139-166 (2001).
Wang, S., Zhang, D. W. & Zhou, P. Two-dimensional materials for
synaptic electronics and neuromorphic systems. Sci. Bull. 64,
1056-1066 (2019).

Tdarel, z, Lee, J., Ma, X. & Likharev, K. Neuromorphic architectures for
nanoelectronic circuits. Int. J. Circuit Theory Appl. 32, 277 —

302 (2004).

Wang, J. et al. Handwritten-digit recognition by hybrid convolutional
neural network based on hfo2 menristive spiking-neuron. Sci. Rep.
8, 12546 (2018).

Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11,
860-864 (2012).

Qian, C. et al. Artificial synapses based on in-plane gate organic
electrochemical transistors. ACS Appl. Mater. interfaces 8,
26169-26175 (2016).

Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit
Theory 18, 507-519 (1971).

Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The
missing memristor found. Nature 453, 80-83 (2008).

Deng, T., Ye, C., Wu, J., He, P. & Wang, H. Improved performance of
ito/tio2/hfo2/pt random resistive accessory memory by nitrogen
annealing treatment. Microelectron. Reliab. 57, 34-38 (2016).
Banerjee, W. et al. Variability improvement of tiox/al203 bilayer
nonvolatile resistive switching devices by interfacial band
engineering with an ultrathin al203 dielectric material. ACS Omega 2,
6888-6895 (2017).

Zhang, R. et al. Role of oxygen vacancies at the tio2/hfo2 interface in
flexible oxide-based resistive switching memory. Adv. Electron.
Mater. 5, 1800833 (2019).

Choi, B. J. et al. Electrical performance and scalability of pt
dispersed sio2 nanometallic resistance switch. Nano Lett. 13,
3213-3217 (2013).

Communications Materials | (2024)5:190

11


http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://api.semanticscholar.org/CorpusID:144400005
https://api.semanticscholar.org/CorpusID:144400005
https://api.semanticscholar.org/CorpusID:144400005
www.nature.com/commsmat

https://doi.org/10.1038/s43246-024-00632-y

Article

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Tsai, T. M. et al. Origin of hopping conduction in sn-doped silicon
oxide rram with supercritical fluid treatment. IEEE Electron Device
Lett. 33, 1693-1695 (2012).

Li, Y. et al. Analog and digital bipolar resistive switching in solution-
combustion-processed nio memristor. ACS Appl. Mater. Interfaces
10, 24598-24606 (2018).

Le, V. Q. et al. Van der waals heteroepitaxial azo/nio/azo/muscovite
(ana/muscovite) transparent flexible memristor. Nano Energy 56,
322-329 (2019).

Yang, J. Q. et al. Leaky integrate-and-fire neurons based on
perovskite memristor for spiking neural networks. Nano Energy 74,
104828 (2020).

Xiao, Z. & Huang, J. Energy-efficient hybrid perovskite memristors
and synaptic devices. Adv. Electron. Mater. 2, 1600100 (2016).
Kumar, M. et al. Switchable two-terminal transparent optoelectronic
devices based on 2d perovskite. Adv. Electron. Mater. 5,

1800662 (2019).

John, R. A. et al. Reconfigurable halide perovskite nanocrystal
memristors for neuromorphic computing. Nat. Commun. 13,

2074 (2022).

Subramanian, A., Tiwale, N., Kisslinger, K. & Nam, C.-Y. Reduced
stochastic resistive switching in organic-inorganic hybrid
memristors by vapor-phase infiltration. Adv. Electron. Mater. 8,
2200172 (2022).

Zhou, J. et al. A monochloro copper phthalocyanine memristor with
high-temperature resilience for electronic synapse applications.
Adv. Mater. 33, 2006201 (2021).

Song, Y.-W., Song, M.-K., Choi, D. & Kwon, J.-Y. Encapsulation-
enhanced switching stability of mos2 memristors. J. Alloy. Compd.
885, 161016 (2021).

Liu, C. et al. Two-dimensional materials for next-generation
computing technologies. Nat. Nanotechnol. 15, 545-557 (2020).
Huh,W., Lee, D. &Lee, C.-H. Memristors based on 2d materials as an
artificial synapse for neuromorphic electronics. Adv. Mater. 32,
2002092 (2020).

Cao, G. et al. 2d material based synaptic devices for neuromorphic
computing. Adv. Funct. Mater. 31, 2005443 (2021).

Kwon, K. C., Baek, J. H., Hong, K., Kim, S. Y. & Jang, H. W.
Memristive devices based on Two-Dimensional transition metal
chalcogenides for neuromorphic computing. Nanomicro Lett. 14,
58 (2022).

Sangwan, V. K. & Hersam, M. C. Electronic transport in two-
dimensional materials. Annu. Rev. Phys. Chem. 53, https://doi.org/
10.1146/annurev-physchem- (2018).

Lin, Z. et al. Defect engineering of two-dimensional transition metal
dichalcogenides. 2D Mater. 3, 022002 (2016).

Wan, J. et al. Tuning two-dimensional nanomaterials by
intercalation: materials, properties and applications. Chem. Soc.
Rev. 45, 6742-6765 (2016).

Dai, Z., Liu, L. & Zhang, Z. Strain engineering of 2d materials: issues
and opportunities at the interface. Adv. Mater. 31, 1805417 (2019).
Sangwan, V. K. et al. Multi-terminal memtransistors from
polycrystalline monolayer molybdenum disulfide. Nature 554,
500-504 (2018).

Yan, X. et al. Robust ag/zro2/ws2/pt memristor for neuromorphic
computing. ACS Appl. Mater. Interfaces 11, 48029-48038 (2019).
Lu, X. F. et al. Exploring low power and ultrafast memristor on p-type
van der waals sns. Nano Lett. 21, 8800-8807 (2021).

Xu, R. et al. Vertical mos2 double-layer memristor with
electrochemical metallization as an atomic-scale synapse with
switching thresholds approaching 100 mv. Nano Lett. 19,
2411-2417 (2019).

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Paul, T., Ahmed, T., Tiwari, K. K., Thakur, C. S. & Ghosh, A. A high-
performance mos2 synaptic device with floating gate engineering for
neuromorphic computing. 2D Mater. 6, 045008 (2019).

Yan, X. et al. Vacancy-induced synaptic behavior in 2d ws2
nanosheet-based memristor for low-power neuromorphic
computing. Small 15, 1901423 (2019).

Nan, H., Zhou, R., Gu, X., Xiao, S. & Ostrikov, K. K. Recent advances
in plasma modification of 2d transition metal dichalcogenides.
Nanoscale 11, 19202-19213 (2019).

Sovizi, S. et al. Plasma processing and treatment of 2d transition
metal dichalcogenides: tuning properties and defect engineering.
Chem. Rev. 123, 13869-13951 (2023).

Jadwiszczak, J., Kelly, D. J., Guo, J., Zhou, Y. & Zhang, H.

Plasma treatment of ultrathin layered semiconductors for
electronic device applications. ACS Appl. Electron. Mater. 3,
1505-1529 (2021).

Liu, Y. etal. Layer-by-layer thinning of mos2 by plasma. ACS Nano 7,
4202-4209 (2013).

Ma, Q. et al. Controlled argon beam-induced desulfurization of
monolayer molybdenum disulfide. J. Phys. Condens. Matter 25,
252201 (2013).

Li, T. et al. Reconfigurable, non-volatile neuromorphic photovoltaics.
Nat. Nanotechnol. 18, 1303-1310 (2023).

Li, D., Ryu, B., Yoon, J., Li, Z. & Liang, X. Improvement of analogue
switching characteristics of mos2 memristors through plasma
treatment. J. Phys. D: Appl. Phys. 53, 135305 (2020).

Mignuzzi, S. et al. Effect of disorder on Raman scattering of single-
layer Mo S 2. Phys. Rev. B 91, 195411 (2015).

Li, H. et al. From bulk to monolayer mos2: evolution of Raman
scattering. Adv. Funct. Mater. 22, 1385-1390 (2012).

McCreary, K. M., Hanbicki, A. T., Sivaram, S. V. &Jonker, B. T. A-and
B-exciton photoluminescence intensity ratio as ameasure of sample
quality for transition metal dichalcogenide monolayers. APL Mater.
6, 111106 (2018).

Sangwan, V. K. et al. Gate-tunable memristive phenomena mediated
by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10,
403-406 (2015).

Karvonen, L. et al. Rapid visualization of grain boundaries in
monolayer mos2 by multiphoton microscopy. Nat. Commun. 8,
15714 (2017).

Zheng, W. et al. Controlled growth of six-point stars mos2 by
chemical vapor deposition and its shape evolution mechanism.
Nanotechnology 28, 395601 (2017).

Li, T., Du, G., Zhang, B. & Zeng, Z. Scaling behavior of hysteresis in
multilayer MoS?2 field effect transistors. Appl. Phys. Lett. 105,
093107 (2014).

Park, Y., Baac, H. W., Heo, J. & Yoo, G. Thermally activated trap
charges responsible for hysteresis in multilayer MoS2 field-effect
transistors. Appl. Phys. Lett. 108, 083102 (2016).

Shu, J. et al. The intrinsic origin of hysteresis in mos2 field effect
transistors. Nanoscale 8, 3049-3056 (2016).

Sup Choi, M. et al. Controlled charge trapping by molybdenum
disulphide and graphene in ultrathin heterostructured memory
devices. Nat. Commun. 4, 1624 (2013).

Arnold, A. J. et al. Mimicking neurotransmitter release in chemical
synapses via hysteresis engineering in mos2 transistors. ACS Nano
11,3110-3118 (2017).

Guo, Y. et al. Charge trapping at the MoS2-SiO2 interface and its
effects on the characteristics of MoS2 metal-oxide-semiconductor
field effect transistors. Appl. Phys. Lett. 106, 103109 (2015).

Lee, H.-S. et al. Dual-gated mos2 memtransistor crossbar array.
Adv. Funct. Mater. 30, 2003683 (2020).

Communications Materials | (2024)5:190

12


https://doi.org/10.1146/annurev-physchem-
https://doi.org/10.1146/annurev-physchem-
https://doi.org/10.1146/annurev-physchem-
www.nature.com/commsmat

https://doi.org/10.1038/s43246-024-00632-y

Article

75. Yang, S.-T. et al. Submicron memtransistors made from
monocrystalline molybdenum disulfide. ACS Nano 18,

6936-6945 (2024).

76. Li, D. et al. Mos2 memristors exhibiting variable switching
characteristics toward biorealistic synaptic emulation. ACS Nano
12, 9240-9252 (2018).

77. Spetzler, B., Abdel, D., Schwierz, F., Ziegler, M. & Farrell, P. The role
of vacancy dynamics in two-dimensional memristive devices. Aadv.
Electron. Mater. 10, 2300635 (2024).

78. Ding, G. et al. Reconfigurable 2d wse2-based memtransistor for
mimicking homosynaptic and heterosynaptic plasticity. Small 17,
2103175 (2021).

79. Burr, G. W. et al. Experimental demonstration and tolerancing of a
large-scale neural network (165 000 synapses) using phase-change
memory as the synaptic weight element. IEEE Trans. Electron
Devices 62, 3498-3507 (2015).

80. Chen, P. et al. Mitigating effects of non-ideal synaptic device
characteristics for on-chip learning. In 2015 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 2015 194-199
(Institute of Electrical and Electronics Engineers Inc., 2016).
Conference date: 02-11-2015 Through 06-11-2015.

81. Kim, S. et al. Pattern recognition using carbon nanotube synaptic
transistors with an adjustable weight update protocol. ACS Nano 11,
2814-2822 (2017).

82. Yu, S. Neuro-inspired computing with emerging nonvolatile
memorys. Proc. IEEE 106, 260-285 (2018).

83. Chen, P.-Y., Peng, X. & Yu, S. Neurosim+: An integrated device-to-
algorithm framework for benchmarking synaptic devices and array
architectures. In 2017 IEEE International Electron Devices Meeting
(IEDM), 6.1.1-6.1.4 (IEEE, 2017).

84. Zhao, M., Gao, B., Tang, J., Qian, H. & Wu, H. Reliability of analog
resistive switching memory for neuromorphic computing. Appl.
Phys. Rev. 7, 011301 (2020).

85. Mohta, N., Mech, R. K., Sanjay, S., Muralidharan, R. & Nath, D. N.
Artificial synapse based on back-gated mos2 field-effect transistor
with high-k ta205 dielectrics. Phys. Status Solidi (a) 217,

2000254 (2020).

86. Song, S., Miller, K. D. & Abbott, L. F. Competitive hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci.
3, 919-926 (2000).

87. Kim,I. S. etal. Influence of stoichiometry on the optical and electrical
properties of chemical vapor deposition derived mos2. ACS Nano 8,
10551-10558 (2014).

88. Baker, M., Gilmore, R., Lenardi, C. & Gissler, W. Xps investigation of
preferential sputtering of s from mos2 and determination of mosx
stoichiometry from mo and s peak positions. Appl. Surf. Sci. 150,
255-262 (1999).

89. Parkin, W. M. et al. Raman shifts in electron-irradiated monolayer
mos2. ACS Nano 10, 4134-4142 (2016).

90. Zhu, Y. et al. Room-temperature photoluminescence mediated by
sulfur vacancies in 2d molybdenum disulfide. ACS Nano 17,
13545-13553 (2023).

91.  Scofield, J. H. Theoretical photoionization cross sections from 1 to
1500 keV. Technical Report UCRL-51326 (Lawrence Livermore
Laboratory, California University, 1973).

92. Kolobov, A. V. & Tominaga, J. Two-Dimensional Transition-Metal
Dichalcogenides Vol. 239 (Springer, 2016).

93. Hong, J. et al. Exploring atomic defects in molybdenum disulphide
monolayers. Nat. Commun. 6, 6293 (2015).

94. Shi, Y. et al. Electronic synapses made of layered two-dimensional
materials. Nat. Electron. 1, 458-465 (2018).

95. Park, E. et al. A 2d material-based floating gate device with linear
synaptic weight update. Nanoscale 12, 24503-24509 (2020).

96. Seo, S. etal. The gate injection-based field-effect synapse transistor
with linear conductance update for online training. Nat. Commun.
13, 6431 (2022).

97. Tang, J. et al. A reliable all-2d materials artificial synapse for high
energy-efficient neuromorphic computing. Adv. Funct. Mater. 31,
2011083 (2021).

98. Krishnaprasad, A. et al. Graphene/mos2/siox memristive synapses
for linear weight update. npj 2D Mater. Appl. 7, 22 (2023).

99. Ma, W. C.-Y. et al. Demonstration of synaptic characteristics of

polycrystalline-silicon ferroelectric thin-film transistor for application

of neuromorphic computing. Semicond. Sci. Technol. 37,

045003 (2022).

Jerry, M. et al. A ferroelectric field effect transistor based synaptic

weight cell. J. Phys. D Appl. Phys. 51, 434001 (2018).

101. Kuzum, D., Jeyasingh, R. G. D., Lee, B. & Wong, H.-S. P.

Nanoelectronic programmable synapses based on phase change

materials for brain-inspired computing. Nano Lett. 12,

2179-2186 (2012).

Kuzum, D., Yu, S. & Wong, H.-S. P. Synaptic electronics: materials,

devices and applications. Nanotechnology 24, 382001 (2013).

Deng, L. The mnist database of handwritten digitimages for machine

learning research [best of the web]. IEEE Signal Process. Mag. 29,

141-142 (2012).

Paszke, A. et al. Pytorch: an imperative style, high-performance

deep learning library. Proceedingsof the 33rd International

Conference on Neural Information Processing Systems 721,

8026-8037 (2019).

Mallik, S. K. et al. Thermally driven multilevel non-volatile memory

with monolayer mos, for for brain-inspired artificial learning. ACS

Appl. Mater. Interfaces 15, 36527-36538 (2023).

Mallik, S. K. et al. lonotronic WS2 memtransistors for 6-bit storage

and neuromorphic adaptation at high temperature. npj 2D Mater.

Appl. 7, 63 (2023).

Jena, A. K. et al. Bipolar resistive switching in tio2 artificial synapse

mimicking pavlov’s associative learning. ACS Appl. Mater.

Interfaces 15, 3574-3585 (2023).

Jadwiszczak, J. et al. Mos2 memtransistors fabricated by localized

helium ion beam irradiation. ACS Nano 13, 14262-14273 (2019).

Huh, W. et al. Heterosynaptic mos2 memtransistors emulating

biological neuromodulation for energy-efficient neuromorphic

electronics. Adv. Mater. 35, 2211525 (2023).

100.

102.

108.

104.

105.

106.

107.

108.

109.

Acknowledgements

The authors acknowledge funding support froma DST SERB grant no. CRG/
2021/005659, and partial support from the National Mission on
Interdisciplinary Cyber-Physical Systems (NM-ICPS) of the DST, Govern-
ment of India, through the I-HUB Quantum Technology Foundation, Pune,
India. Manisha Rajput acknowledges DST, Government of India, for the
INSPIRE fellowship (IF190124). This research used the electron microscopy
facilities of the Center for Functional Nanomaterials (CFN), which is a U.S.
Department of Energy Office of Science User Facility at Brookhaven National
Laboratory under Contract No. DE-SC0012704.

Author contributions

M.R. and A.R. designed the experiment. M.R. synthesized the samples,
performed the electrical measurements, and analyzed the data. M.R.,
S.KM,, S.S., G.V.P.K,, and A.R. wrote the manuscript. S.K.M. and S.S.
carried out the simulations. S.C. and A.S. carried out the optical
measurements. S.H. helped in TEM measurement and analysis. All the
authors discussed the results and contributed to finalizing the manuscript.

Competing interests
The authors declare no competing interests.

Communications Materials | (2024)5:190

13


www.nature.com/commsmat

https://doi.org/10.1038/s43246-024-00632-y

Article

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43246-024-00632-y.

Correspondence and requests for materials should be addressed to
Atikur Rahman.

Peer review information Communications Materials thanks Shuiyuan
Wang and the other anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available. Primary Handling Editor:
Aldo Isidori

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material
is notincludedin the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

Communications Materials | (2024)5:190

14


https://doi.org/10.1038/s43246-024-00632-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsmat

