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enhanced memristive and synaptic
functionality for neuromorphic computing
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Manisha Rajput1, Sameer Kumar Mallik 2,3, Sagnik Chatterjee1, Ashutosh Shukla1, Sooyeon Hwang 4,
Satyaprakash Sahoo2,3, G. V. Pavan Kumar1 & Atikur Rahman 1

Two-dimensional transition metal dichalcogenides (TMDs)-based memristors are promising
candidates for realizing artificial synapses in next-generation computing. However, practical
implementation faces several challenges, suchashigh non-linearity andasymmetry in synapticweight
updates, limited dynamic range, and cycle-to-cycle variability. Here, utilizing optimal-power argon
plasma treatment, we significantly enhance the performance matrix of memristors fabricated from
monolayer MoS2. Our approach not only improves linearity and symmetry in synaptic weight updates
but also increases the number of available synaptic weight updates and enhances Spike-Time
Dependent Plasticity. Notably, it broadens the switching ratio by two orders,minimizes cycle-to-cycle
variability, reduces non-linear factors, and achieves an energy consumption of ~30 fJ per synaptic
event. Implementation of these enhancements is demonstrated through Artificial Neural Network
simulations, yielding a learning accuracy of ~97% on the MNIST hand-written digits dataset. Our
findings underscore the significance of defect engineering as apowerful tool in advancing the synaptic
functionality of memristors.

Conventional computing, based on Von Neumann’s architecture, has been
the cornerstone of computing systems for several decades. This traditional
computing paradigm, combined with complementary metal-oxide semi-
conductor (CMOS) technology, has been paramount in laying the foun-
dation of high-performance computing and driving technological
innovation across various fields. However, traditional computers encounter
difficulties in processing massive amounts of data efficiently because of the
physical separation between the central processing unit (CPU) and the
memory unit. The constant movement of data between memory and pro-
cessing units is a core issue that results in considerable latency and energy
consumption, a problem commonly referred to as the Von Neumann
bottleneck. In recent years, the explosive growth of data, driven by
advancements in machine learning applications, artificial intelligence (AI),
and various sources such as online platforms, scientific research, and the
Internet of Things, has posed significant challenges for conventional com-
puting architectures1. The further advancement of conventional computing
is also hindered by the slowing down ofMoore’s Law2,3, which predicted the
doubling of transistor counts on integrated circuits every 2 years4 and has
been the driving force behind the exponential growth in computing.
However, as transistor size approaches physical limits, sustaining the

exponential growth in computing capabilities becomes increasingly
challenging5,6. As a result, there is a pressing need for novel computing
approaches to address the inefficiencies of conventional systems and meet
the growing demands of data-intensive applicationswhilemitigating energy
consumption6,7. This is where brain-inspired neuromorphic computing has
gained prominence to overcome the limitations of conventional
computing8,9. The brain’s inherent features, such as massive parallelism, in-
memory computing, high integrationdensity, and synaptic plasticity, enable
it to process vast amounts of information efficiently, exhibiting remarkable
abilities such as learning, recognition, decision-making, and adaptability, all
while minimizing energy consumption10.

Over the years, artificial neural networks (ANNs) have been developed
to overcome the Von Neumann bottleneck inherent in conventional
computing architectures, leading to significant advancements in the
field11,12. However, challenges remain in reducing computation costs and
achieving brain-like efficiency because the algorithms of ANNs and asso-
ciated software are executed on conventional computers, leading to certain
drawbacks. One of the main issues is the considerable power consumption
of these computers when running AI applications, which far exceeds the
energy efficiency of the human brain. For example, the AlphaGo system,
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which consists of 1200 CPUs and 180 image processors (GPUs), consumes
several hundred thousand Watts13. While the human brain, with ~1011

neurons and 1015 synapses14, consumes only 20Watts of power, with each
stimulus requiring an operation consumption of only 1–100 femto joules15.
Synaptic plasticity is fundamental to the brain’s computational capabilities,
referring to the ability of synapses to adjust their strength based on neuronal
spiking activity14, including long-term plasticity, short-term plasticity, and
spike-timing-dependent plasticity (STDP), etc. In the neural system, short-
term plasticity is responsible for computational functions associated with
spatiotemporal information16, while long-term plasticity establishes the
fundamental framework for memory and learning17, and STDP, which
follows the principles of theHebbian theory represents the learning rule and
includes various forms such as asymmetric STDP, symmetric STDP, and
anti-STDP18–20. Emulating synaptic plasticity at the device level promises to
achieve energy-efficient, higher-performance, and scalable neuromorphic
computing. Different device architectures, including CMOS transistors,
memristors, gate-tunable transistors, and ferroelectric transistors, have been
utilized to emulate the functionality of biological synapses through elec-
tronic and optoelectronic devices.

Among these,memristors21–24, initially conceptualized by LeonChua25,
and later experimentally observed in HP labs, have immense potential for
emulating synaptic plasticity based on their conductivity modulation from
past history programming15,26. These two-terminal electronic devices exhibit
similar functionality to synapses and offer advantages such as excellent
scalability, simple geometry, low fabrication cost, non-volatility, analog
switching, low power consumption, faster switching speed, CMOS com-
patibility, and high integration density. Furthermore, they can be seamlessly
integrated into large-scale crossbar arrays, crucial for essential vector-matrix
multiplication in neuromorphic computing. A large variety of material-
based memristors, including binary oxide (TiOX

27–29, SiOX
30,31, NiOX

32,33,
etc.), perovskites (MAPbI3

34,35, (C4H9NH3)2PbBr4
36, MAPbBr3

37 etc.),
organic materials (organic small molecules SU-838, monochloro copper
phthalocyanine (ClCuPc)39, fluoropolymer40, etc.) and 2D materials41–44

(graphene, hBN, 2DTMDs, etc.), have been extensively explored.Amongall
these, 2D TMDs emerge as exceptionally desirable materials, positioned as
essential components across a broad spectrum of electronic and optoelec-
tronic devices. This is particularly notable in the context of cutting-edge
memristive and synaptic devices tailored for the advancements in Neuro-
morphic Computing. Due to their nearly atomic thickness and reduced
screening effects, 2D TMDs offer tunable physical properties through
diverse techniques, including electrostatic doping45, defect-engineering46,
chemical intercalation47, and strain-engineering48. Various mechanisms,
including interface electrostatic modulation, charge transfer, phase change,
energy band shifts enabled by gate tunability, and defectmigration, facilitate
the realization of memristive behavior and synaptic plasticity in these
materials. 2D TMDs-based memristors have successfully emulated crucial
synapse functions, including long-termpotentiation (LTP)32,49–51, long-term
depression (LTD)49–51, and STDP49,51–54. However, existing challenges per-
sist, including non-linearity and asymmetry in synaptic weight updates,
limited dynamic range, high programming current, and variability from
cycle to cycle and device to device. To achieve brain-like efficiency, it is
imperative to address these challenges. An ideal synaptic device should
possess attributes such as a wide dynamic range, linear and symmetric
synapticweight updates, lowprogramming current, andminimal variability
both within cycles and across devices. These traits are pivotal for ensuring
accurate and efficient neural network operations closely mimicking the
human brain’s functioning. Addressing these hurdles through physics-
driven device engineering could pave the way for improved synaptic
functionality.

Here,we studied the influenceof on-chipArgon (Ar)plasma treatment
on the memristive behavior and synaptic plasticity of chemical vapor
deposition (CVD)-grown polycrystalline MoS2 monolayer devices. Plasma
treatment has arisen as a versatile method for modifying 2Dmaterials on a
large scale, providing a time-efficient and cost-effective approach55–57. Ar
plasma treatment has been utilized to achieve controlled atomic layer

thinning of MoS2 flakes and induce desulfurization of MoS2 flakes, all
without the introduction of external atoms or chemical doping58,58–60. Ar-
plasma treatment has been used previously to improve the performance
matrix, such as dynamic range and linearity of synaptic weight updates of
exfoliated few-layer MoS2 based memristor61. Here, we have shown that
optimal-powerArplasmacan significantly enhance theperformancematrix
of CVD-grown polycrystalline monolayer MoS2 based memristor. Our
work first reveals that memristors fabricated from as-grown polycrystalline
MoS2 monolayers exhibit limitations, including a poor switching ratio (less
than 102), non-linearity and asymmetry in synaptic weight updates, sub-
stantial cycle-to-cycle variability of switching ratio, and poor STDP beha-
vior. Following the application of optimal-power plasma treatment, leading
to a sulfur vacancy density of ~3.4 × 1014 cm−2 in as-grown MoS2, we
observed significant improvements in the performance of memristors.
These improvements included a significantly expanded switching ratio
(102–104), more linear and symmetric synaptic weight updates, a reduced
non-linear factor (NLF) from 21.79 to 2.81, and enhanced STDP behavior.
Furthermore, employing a three-layerANNsimulationwithplasma-treated
memristors shows learning accuracy of ~97% for recognizing hand-written
MNIST digits. Our approach to enhancing resistive switching and synaptic
functionality in 2D semiconductor devices opensup excitingpossibilities for
further research and development in the realm of synaptic devices.

Results and discussion
For the present study, polycrystallinemonolayers ofMoS2 were synthesized
on a SiO2/Si substrate using the CVD technique (see Methods for details).
The synthesized materials were characterized using Raman Spectroscopy,
photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), atomic
resolution high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM), and opticalmicroscopy.Opticalmicrograph
and Raman spectroscopy of the as-grown polycrystalline MoS2 monolayer
are presented in Fig. 1a, b, respectively. The Raman spectrum showed two
prominent peaks: the in-plane vibration mode E1

2g at ~386 cm−1 and the
out-of-planemodeA1gat ~404 cm

−1. Inaddition, a third peak at ~378 cm−1

was also observed, attributed to a disorder-induced peak62. The difference
between the A1g and E1

2g peak positions was found to be ~18.5 cm−1,
confirming the monolayer nature of the synthesized MoS2

63. Figure 1c
displays the PL with a peak observed at ~1.82 eV attributed to A excitons64.
Figure 1ddepicts theHAADF-STEMimage ofMoS2monolayer. The image
reveals that the Mo and S atoms are arranged in a hexagonal pattern,
indicating the presence of a hexagonal crystal structure within the MoS2
monolayer. Figure 1e presents the fast Fourier transform (FFT) analysis of
the HAADF-STEM image. The FFT image demonstrates the hexagonal
symmetry of the MoS2 crystal, confirming the arrangement observed in
Fig. 1d. Figure 1f provides additional information by indicating an inter-
planar distance of 0.27 nm, corresponding to the 100 planes. Figure 1g
represents the Inverse Fast Fourier Transform (IFFT) image of Fig. 1d.
Figure 1h is the zoomed image of the selected area in Fig. 1g, and the inset
shows the atomicmodel ofMoS2. Figure 1i shows the intensity profile along
the line in Fig. 1h. Additionally, XPS analysis of CVD-grown MoS2 is
detailed in Supplementary Fig. S1. We have confirmed the thickness of as-
grownMoS2using atomic forcemicroscopy (AFM). SupplementaryFig. S2a
presents the AFM image of CVD-grown MoS2 flake, while Supplementary
Fig. S2b displays the corresponding height profile, revealing the thickness of
the as-grown MoS2 to be 0.65 nm, confirming its monolayer nature. The
memristors were fabricated in a field effect geometry using the poly-
crystalline MoS2 monolayer as the semiconducting channel material.
Source/drain electrodes were patterned using photo-lithography, followed
by Cr/Au electrode deposition through thermal vapor deposition and a
subsequent lift-off process. In addition, the heavily doped Si substrate was
utilized as the back gate electrode. It should be noted that we have fabricated
devices on monolayer MoS2 flakes shaped like four-point and six-point
stars. Figure 1a and Supplementary Fig. S3 illustrate the various shapes of
our CVD-grown MoS2 flakes, including six-point, five-point, four-point,
and three-point stars. It is well known that six-point, five-point, and
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four-point stars have grain boundaries (GBs)45,65,66. Zheng et al. employed
second harmonic generation microscopy to examine these GBs in CVD-
grown MoS2 flakes and determined that only the three-point star MoS2
flakes are single crystals, while the other shapes are inherently
polycrystalline67. Figure 2a represent the device schematic showing the
channel length 5 μm and width 25 μm and Supplementary Fig. S3b shows
the optical image of the fabricated device. Figure 2b presents the output
characteristics, i.e., the drain current (ID) versus drain voltage (VDS) for
different back gate voltages (VGS). It is evident that there is a good linear
relationship between ID and VDS, which indicates that the field effect
transistor (FET) device possesses ohmic contacts. Figure 2c displays the
transfer characteristic, demonstrating the drain current (ID) versus gate
voltage (VGS) in linear and logarithmic scale atVDS= 0.5 V. It shows that the
fabricated device is n-type, and the field-effect mobility is found to be
~16 cm2V−1s−1. Figure 2d exhibits the hysteresis observed in the transfer
characteristics, i.e., ID versusVG atVDS = 0.5 V. Several potential causes for
the observed hysteresis in transfer characteristics have been identified,
including electron trapping and de-trapping by adsorbed molecules on the

MoS2 surface
68, charge trapping at the SiO2/MoS2 interface

69, and intrinsic
defects within the MoS2 material70.

We first studied the switching behavior of pristine devices, as depicted
in Fig. 3. Figure 3a shows the current-voltage (I-V) characteristics at 0 gate
voltage. Initially, the device starts in a high resistance state (HRS) when the
drain voltage (VD) is swept from 0 to 10 V (sweep 1). As the voltage sweep
progresses, the device gradually transitions to a low resistance state (LRS)
and maintains this state during the sweep from 10V back to 0 V (sweep 2).
Subsequently, during the sweep from 0V to −10 V (sweep 3), the device
resets to the HRS state. Finally, the device remains in the HRS state during
the sweep from −10 V to 0 V (sweep 4), the corresponding logarithmic
graph is given in Supplementary Fig. S4. The observed behavior exhibits a
non-linear pinched hysteresis loop in the I-V characteristics, a distinctive
feature of memristive behavior25,26. As shown, the hysteresis loops exhibit a
counterclockwise direction in both the right and left branches. It should be
noted that theMoS2memristor does not require an electroforming process.
The underlying mechanisms of resistive switching phenomenon in lateral
TMDs-basedmemristors are still debated, with different types of switching

Fig. 1 | Structural characterization of CVD-Grown MoS2. a Optical image of
CVD-grown polycrystalline MoS2 (scale bar 20 μm). b Raman and (c) Photo-
luminescence (PL) of CVD-grown MoS2. d HAADF-STEM image and (e)

corresponding FFT pattern. f Interplanar spacing corresponding to 100 planes is
shown. g IFFT of (d).hZoomed image of selected areamarked in (g). Inset shows the
atomic model ofMoS2 (Mo: yellow, S: green). i Intensity profile along the line in (h).
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mechanisms proposed based on experimental results. One mechanism
involves the dynamics of charging and discharging of trap states, which can
originate from defects in the channel material, gate oxide, or
semiconductor-electrode interfaces. These states can capture and release
electrons or holes based on the applied voltage and, therefore modify the
electrostatic potential, free charge carrier density, and contact barriers71–73

Lee et al. reported a dual-gatedMoS2 memtransistor using Al2O3 as the top
gate andSiO2 as the back gate, attributing thememristive loop to trapsfilling
and emptying at the MoS2/Al2O3 interface

74. Yang et al. observed mem-
ristive behavior in monocrystalline MoS2 FETs using HfO2 as a gate
dielectric, attributing this behavior to charge trapping andde-trapping at the
MoS2/HfO2 interface

75. When the device length is close to or shorter than
1 μm, a high drain bias increases the electric field strength, providing suf-
ficient energy for injected carriers to overcome the channel bandgap and
become trapped in the mid-gap states of Al2O3 or HfO2 dielectric. In both
cases, the resistive switching effectswere associatedwith transport behaviors
primarily controlled by space-charge-limited current and trap-filled limit
(TFL)74,75. Another mechanism involves charged point defects that are
mobile enough to move when an external electric field is applied. Experi-
ments have demonstrated that sulfur vacancies accumulate and migrate
along GBs in the conducting channels of lateral monolayer MoS2 devices,
leading to changes in channel resistance and causing hysteresis in the ID-VD

curve65. Electrostatic force microscopy and cryogenic transport measure-
ments revealed dynamic variations in the Schottky barrier height (SBH) in
polycrystalline CVD-grown MoS2 monolayer-based memtransistors45.
Based on these experimental results, the origin of hysteresis in the ID-VD

curve was hypothesized that local redistribution of defects under external
field, facilitated by GBs, causes the variation in the dopants density near the
contact edge45. These changes result in the dynamics variation of SBH by
image-charge lowering, resulting in a pinched hysteresis loop in the ID-VD

curve45. Li et al. performed a systematic investigation into the switching
characteristics of lateral memristors based on mechanically printed few-
layer MoS2. Their study identified two distinct DC-programmed switching
modes: rectification-mediated and conductance-mediated. These modes

were associated with variations in MoS2/Ti Schottky barriers and the
redistribution of ionic vacancies within the MoS2 channels. Their findings
were supported by results from Kelvin probe force microscopy, Auger
electron spectroscopy, and electronic characterization76.While Spetzler et al.
introduced a semi-classical charge transport model to study the role of
defect dynamics in the switching process, the model was validated with
experimental data from lateral memristive devices based on exfoliated few-
layer MoS2

76. The results based on this model the hysteresis in I-V curves is
attributed to the dynamics of mobile charged vacancies which leads the
formation and annihilation of a vacancy depletion region. Additionally, it
has been demonstrated that the I-V curve is significantly affected by
Schottky barrier lowering.However, it does not have anotable impact on the
hysteresis area. This model effectively explains the I-V curve and pulse
behavior, including distinct features such as different hysteresis directions,
hysteresis crossing, andasymmetryobserved experimentally77. Regardless of
the cause of hysteresis in MoS2 memtransistors, this article focuses on
engineering it to enhance memristive and synaptic functionality. Figure 3b
shows the endurance characteristic of the MoS2 memristor that was swit-
ched 180 times between HRS and LRS using full-sweep cycles. Notably,
around the 70th cycle, we observed a sudden drop in the drain current (ID).
This phenomenon might be attributed to the release of oxide-related traps
activated by the high electric field at the source electrode45. Previous studies
have linked such dip and rise patterns in endurance curves to the combined
effects of gas or water molecule absorption/desorption and charge trapping
and de-trapping at the semiconductor-dielectric interface78. Considerable
cycle-to-cycle variability is evident in both the HRS and LRS, and the
switching ratio remains below 102 atVD= 0.5 V. During the online training
of neural networks, the utilization of devices exhibiting cycle-to-cycle var-
iation leads to escalated training costs and significant accuracydeterioration.
Because training requires a large number of writing and erasing operations,
often exceeding millions of repetitions79. Figure 3c shows the LTP-LTD
characteristics of the device, which imitate the excitatory and inhibitory
behavior of biological synapses. For a positive pulse (set pulse), the post-
synaptic (ID) current increases similar to the facilitation of synaptic strength

Fig. 2 | Electrical characteristics of CVD-grown
monolayerMoS2. a Schematic of aMoS2memristor
using a 285 nm SiO2/Si substrate (b) Output char-
acteristics (ID versus VD) of the device, VG changes
from 0 V to 60 V in steps of 10 V. c Transfer char-
acteristics (ID versus VG) of the device left in loga-
rithmic scale and right in linear scale. dHysteresis in
transfer characteristics, ID versus VG at VD = 0.5 V,
black arrows show the sweeping direction.
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of biological synapses, and for a negative pulse (reset pulse), the current
decreases similar to depression of synaptic strength of the biological
synapses. Here, we applied set pulses of +20 V amplitude, with an on-off
time of 1ms, reset pulses of−20 V amplitude with an on-off time of 1 ms,
and measured the current after the pulses at a DC bias VD (read voltage) of
0.1 V. Our pristine MoS2 synaptic devices exhibited non-linearity and
asymmetry in weight updates. The processes of weight increase (LTP) and
weight decrease (LTD) progress differently, causing asymmetry. Initially,
conductance undergoes gradual changes, but saturation takes place as the
number of applied pulses increases, imposing a limit on the dynamic range
and thenumberof attainable synapticweight states.Dynamic range refers to
the ratio of the highest to the lowest conductance in LTP-LTD character-
istics. Synaptic devices with limited dynamic ranges often suffer from
diminished learning accuracy in neural network applications80,81. Most
neuro-inspired algorithms utilize analog synaptic weight updates to learn
patterns and extract features. A higher number of multilevel states (e.g.,
exceeding hundreds of levels) contribute to improved learning capability
and enhance network robustness82. Linearity in weight updates signifies the
linear alteration of conductance with the number of applied pulses83. The
non-linearity of potentiation (or depression) makes it challenging to fine-
tune the conductance to the target value, resulting in poor convergence rates
during training anddiminished learning accuracy80,84. A significant aspect of
using amemristor as an artificial synapse in the latestAI technology, such as
spiking neural network, is their ability to mimic STDP, which represents a
temporally asymmetric manifestation of Hebbian learning, triggered by the
timing correlation between spikes from pre-synaptic and post-synaptic

neurons. If the pre-synaptic spike occurs before the post-synaptic spike, the
synapticweight (or strength) increases (potentiation).Conversely, if thepre-
synaptic spike occurs after the post-synaptic spike, the synaptic weight
decreases (depression). The effect of correlated spiking on synaptic strength
diminishes rapidly as the time interval between the spikes increases. Here,
we mimicked indirect STDP (Fig. 3d) in our device by applying a pair of
electrical spikes separated by a time interval Δt45,85. Specifically, a positive
pair of pulses induces positive change (LTP), while a negative pair induces a
negative change (LTD) in synaptic weight (conductance). We have quan-
tified these changes by plotting the percentage change in synaptic weight,
denoted asΔW%, as a function of the time differenceΔt.ΔW% is calculated
as follows

ΔW% ¼ Wfinal �W initial

W initial
× 100 ð1Þ

WhereWinitial andWfinal are the channel conductance before applying
pulses and after applying pulses, respectively. To determine the time con-
stants for potentiation and depression, we fitted the STDP data fromFig. 3d
(represented by black solid lines) using the followingmathematicalmodel86.

ΔW / exp � Δt
τþ

� �
; if Δt > 0

� exp Δt
τ�
� �

; if Δt < 0

(
ð2Þ

Fig. 3 | Synaptic functionality of pristine MoS2 memristor. Switching character-
istics and emulation of synaptic function in optimal-power pristine MoS2 mem-
ristor. a ID versus VD characteristics of MoS2 memristor at VG = 0 V and scan rate
0.5 Vs−1 (b) Endurance of ILRS and IHRS state (top) and ILRS/IHRS (bottom) at
VD = 0.5 V in the HRS (sweep 1) and the LRS (sweep 2) for 180 sweep cycles. c LTP
and LTD characteristics, Post-Synaptic current (ID) versus Pulse number. Here,
pulses of 20 V amplitude with an on-off time of 1 ms for potentiation and pulses of

−20 V amplitude with an on-off time of 1 ms for depression have been applied, then
source-drain current (ID) was measured at read voltage (VD) = 0.1 V. d The mea-
sured change in synaptic weight as a function of the time interval (Δt) between paired
pulses of 20 V and −20 V, both pulses on timewas 1 ms, the currentwasmeasured at
each time interval after the pulse pair by applying a source-drain bias. The solid lines
are exponential fits. VG is set to 0 V for all the measurements.
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Here, τ+ and τ− are the characteristic time between spikes for which
there is a significant change in synaptic weight.We found these values to be
17 ms and 20ms for potentiation and depression, respectively. Positive
pulses pair show ≈30% change in synaptic weight while negative change
shows around 100%. Typically, in the emulation of brain-like STDP,
synapticweight change ismore pronouncedwhen the time interval between
spikes is less. As time progresses, this change should eventually saturate.
However, in pristine MoS2, the weight change for positive spike pairs does
not adhere to this pattern. Further, to address the limitations observed, such
as low switching ratio, nonlinearity, and asymmetry of synaptic weight
updates in the pristine device memristor, we explored a promising avenue
for enhancement: on-chip optimal-power Ar plasma treatment. Deter-
mining the power of Ar plasma is crucial for creating sulfur vacancies in the
MoS2. We observed that low-power Ar plasma does not generate sulfur
vacancies, while high-power can potentially damage the sample. More
details are given in the Supplementary information. S atoms and Ar+ ions
have comparable masses, and Ar+ ions present within the moderate power
plasmagenerally possess sufficient energy,which is insufficient for knocking
off Mo atoms and enough to remove sulfur atoms59. Consequently, this
process selectively sputters S atoms and creates sulfur vacancies, leavingMo
atoms unaffected. Figure 4a illustrates the schematic of the Ar plasma
treatment process. Raman, PL, and XPS spectroscopy were performed to
examine the effect of Ar Plasma at different power levels. Following low-
power Ar plasma treatment, no obvious change was observed in Raman
(Supplementary Fig. S5a), PL (Supplementary Fig. S5b), and XPS spectra
(Supplementary Fig. S6), even after 60 s of plasma treatment. These
observations conclusively confirm that low-power plasma does not induce

sulfur vacancies in the channel. However, significant changeswere observed
in Raman, PL, and XPS spectroscopy after optimal-power plasma treat-
ment. Figure 4b, c show the XPS spectra ofMo 3d core level before and after
optimal-power plasma treatment, respectively. The dual peaks arising from
Mo4+ 3d3/2 and 3d5/2 were deconvoluted into two peaks to enhance the
fitting process, employing Gaussian-Lorentzian (GL) mixing and Shirley
backgrounds. Before plasma treatment (Fig. 4b), higher binding energy
peaks at 229.9 and 232.8 eV signify the stoichiometric intrinsic MoS2 (i-
MoS2), and lower binding energies peaks at 229.2 and232.3 eV, corresponds
to defective or sub-stoichiometric MoS2 (d-MoS2) featuring sulfur
vacancies87. Additionally, the third peak, situated below the Mo4+ 3d3/2
doublet at around ~233 eV, and the broader peak at ~236.0 eV, represent
the Mo6+ 3d5/2 and 3d3/2 doublets of MoO3 or sub-oxides of MoOx,
respectively. After optimal-power plasma treatment, observable modifica-
tions are apparent in the XPS spectra (Fig. 4c). The doublet peaks of Mo4+

3d5/2 and 3d3/2 shift towards lower binding energies (Fig. 4c and Supple-
mentary Fig. S7). The observed shift to lower binding energies in theMo 3d
peaks signifies a change in the electrostatic environment surrounding the
Mo atoms. This change is a consequence of the reduction of neighboring S
atoms, to which theMo atoms were initially bonded88. This behavior aligns
with previousfindingswhere sulfurwas selectively sputtered fromMoS2

59,88.
Also, there is a reduction in the contribution of i-MoS2, accompanied by an
increase in the contribution of defective components (d-MoS2), confirming
the introduction of more sulfur vacancies than the pristine sample87.
Additionally, the diminished integrated area of the S 2s peak relative to the
Mo 3d peaks suggests a decrease in the overall sulfur content compared to
the pristine sample. Figure 4d, e represent the XPS spectra of S 2s core level

Fig. 4 | Defect-engineering of CVD-grown MoS2.
a A visual representation of Ar plasma treatment.
bXPS ofMo 3d core level of pristineMoS2 (c) XPS of
Mo 3d core level of optimal-power plasma-treated
MoS2. d XPS of S 2p core level of pristine MoS2 (e)
XPS of S 2p core level of optimal-power plasma-
treated MoS2.
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before and after optimal-power plasma treatment, respectively. Moreover,
the expanded FWHM of all peaks after plasma treatment indicates the
introduction of disorder in the system87.We also found that contribution of
the MoO3/MoOx peak becomes larger in the plasma-treated sample,
reflecting the oxidation of MoS2 flakes87, which is inevitable during the
microfabrication process. However, Oxygen elements can not migrate into
the MoS2 channel under an external field60. Figure 5a, b display the PL
spectra before and after optimal-power plasma treatment, respectively. Both
the A-exciton and B-exciton peaks were fitted with a Voigt function. The
ratio of the A and B-emission intensities can qualitatively indicate non-
radiative recombination; a lower B/A ratio reflects fewer defects and better
sample quality64. After optimal-power plasma treatment, the B/A ratio
increases compared to the pristine sample, suggesting introducing defects in
the plasma-treated sample. Additionally, Raman spectra following optimal-
power plasma treatment reveal a red shift in the E1

2g peak and a smaller blue
shift in the A1g peak, along with a broader full width at half maximum
(FWHM) for both peaks (Fig. 5c), indicating the presence of sulfur
vacancies60,89. Also, Supplementary Fig. S8 shows the fitted Raman spectra
after optimal-power plasma treatment, showing two defect-induced peaks
at ~377 cm−1 and ~411 cm−162. Supplementary Figs. S9 and S10 present the
optical and HAADF-STEM images of MoS2 following optimal-power
plasma treatment. After high-power plasma treatment, no Raman and PL
signalswere observed, as depicted in Supplementary Fig. S11a, b. Theoptical
image (Supplementary Fig. S12) after the high-power plasma treatment
reveals a noticeable etching of MoS2. While Supplementary Fig. S13 shows
the comparison of transfer characteristics before and after optimal-power
plasma treatment which reveals that optimal-power plasma does not
damage the sample. Therefore, optimal-power Ar plasma was utilized to
introduce sulfur vacancies deliberately. The defect concentration in both
pristine and optimal-power plasma treatedMoS2 is obtained by performing
stoichiometry calculations using the core level spectra of S 2s and Mo 3d.

The stoichiometry of MoS2 is determined from the following calculations90.

Sð at.%Þ
Moðat.%Þ ¼

IS2s
σS2s

� �

IMo3d5=2

σMo3d5=2

� � ð3Þ

here,S (at.%) andMo (at.%) represent the atomicper cent (at.%)of sulfur (S)
andmolybdenum(Mo), respectively. IS2s and IMo3d5/2 denotes the integrated
intensity of the S 2s peak and theMo 3d5/2 peak, respectively. Additionally,
σS2s and σMo3d5=2

represent the photoionization cross-sections at a photon
energy of 1.5 keV, modeled by Scofield, where σS2s ¼ 1:9066 and
σMo3d5=2

¼ 7:463091. In the case of pristine MoS2, the calculated stoichio-
metry is determined to beMoS1.98, resulting in a defect density of 1%. In the
ideal superstructure of 1H MoS2, the sulfur-sulfur distance is 3.162Å92,
leading to a density of sulfur atoms inmonolayerMoS2 of ~2.3 × 1015 cm−2.
With a defect concentration of 1%, the defect density is estimated to be
~2.3 × 1013 cm−2, which aligns with values reported for pristine samples93.
For the optimal-power plasma-treatedMoS2, stoichiometry isMoS1.7 with a
defect concentration of ~15%, corresponding to a sulfur vacancy density of
3.4 × 1014 cm−2.

Next, we explored the switching characteristics and synaptic plasticity
of the device after optimal plasma treatment.We compared the memristive
loops of the pristine device and the plasma-treated device under identical
conditions, including the VD range and sweep rate. It is important to
mention that the comparison of switching characteristics and synaptic
functionality was conducted on the same device before and after plasma
treatment. A significant opening of hysteresis in ID-VD curve has been
observed after the plasma treatment (Fig. 5d).We have discussed above that
optimal-powerArplasma treatment introducesmore sulfur vacancies in the
MoS2 channel, which can be attributed to the pronounced opening of
hysteresis in the ID-VD curve after the plasma treatment. The memristive

Fig. 5 | Optical and electrical characterization after plasma treatment. a PL
spectra of pristine MoS2 (b) PL spectra of optimal-power plasma treated MoS2 (c)
Raman spectra ofMoS2 before and after optimal-power plasma treatment (d) ID-VD

loop comparison before and after optimal-power plasma treatment at VG = 0 V and
scan rate 0.5 Vs−1.
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loop shown in Fig. 6a for VD scan ± 40 V exhibits broad hysteresis char-
acteristics, and the corresponding logarithmic scale graph is given in Sup-
plementary Fig. S14. Notably, Fig. 6b demonstrates a substantial
enhancement in the endurance of theHRS state (sweep 1) and the LRS state
(sweep 2) at 0.5 V. Following plasma treatment, a significant reduction in
IHRS is observed. At 0.5 V read voltage, IHRS is found to be around 1 pA
(Fig. 6b) after plasma treatment, while before plasma treatment, it was
nearly 1 nA (Fig. 3b). If the memristor is used as a selector device, then
standby power consumption is given by the following equation94

Pstandby ¼ IHRS ×V read ð4Þ

After plasma treatment, the standby power consumption decreased sig-
nificantly from ~0.5 nW to 0.5 pW. This reduction in off-state current

contributes to enhanced energy efficiency. Additionally, a low off-current
minimizes parasitic power consumption in large crossbar arrays31. More-
over, the switching ratio (Fig. 6c) has been increased significantly from102 to
104, with minimal cycle-to-cycle variability. Figure 6d shows the LTP and
LTD curves for 100 number of identical pulses. The pulse parameter and
read voltage were kept the same as for the pristine devices. The observed
variation in current with the number of pulses indicates a larger number of
available synaptic weight states and increased dynamic range compared to
the pristine device. LTP and LTD curves follow the same trajectory. Also,
linearity and symmetry, the two most crucial attributes for evaluating
synaptic devices, have been significantly improved. Floating gate-type
synaptic devices have already been explored to enhance linearity and
symmetry95–98. However, these devices require the incorporation of a
charged store layer and a blocking oxide, adding complexity to the

Fig. 6 | Synaptic functionality of plasma-treated MoS2 memristor. Switching
characteristics and emulation of synaptic function in optimal-power plasma-treated
MoS2 memristor. a ID versusVD characteristics of optimal-power plasma-treatedMoS2
memristor at VG = 0V, arrows show the sweep direction, scan rate was kept 2 Vs−1.
b Endurance of HRS (sweep 1) and LRS (sweep 2) state at VD = 0.5 V over 100 cycles.
c Endurance of switching ratio (ILRS/IHRS) VD = 0.5 V over 100 cycles. d Post-synaptic
current (ID) versus pulse number, showing long-term potentiation and depression, set
pulse amplitude was+20 V with an on-off time of 1 ms, and reset pulse amplitude was

−20Vwith an on-off time of 1ms; and currentwasmeasured at source-drain biasVD at
0.1 V. e Post-synaptic current versus pulse number, set pulse amplitudewas+20Vwith
anon-off timeof 1ms, and reset pulse amplitudewas−20 Vwith anon-off timeof 1ms;
the currentwasmeasured at source-drain biasVD at 0.01 V for 20 switching cycles. fThe
measuredchange in synapticweight as a functionof the time interval (Δt) betweenpaired
pulses of 20 V and −20Vwith on time 1ms, blue data points are for positive pulse pair
and red data points are for negative pulse pair and the solid lines are exponential fits.
VG = 0V for all measurements.
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fabrication process, especially when aiming for large-scale array applica-
tions.While strategies such as encoding the input pulseshavebeenproposed
to address non-linearity and asymmetry, these methods often lead to added
intricacy in on-chip implementation, time delay, and additional energy
consumption99–101. Our approach, on the other hand, achieves high linearity
and symmetry using a straightforward two-terminal device and identical
pulses. This implies that the device can transition to a specific state by
employing a certain number of identical pulses. Subsequent application of
an equal number of similar pulses with opposite polarity can restore the
original state. This feature proves advantageous for neural network training.
In Fig. 6e, we have presented the cycle-to-cycle variability of potentiation
and depression for 20 cycles. Each of these cycles consists of a sequence of
ten identical positive pulses (+20 V, 1ms) followed by ten negative pulses
(−20 V, 1ms). The response remains consistently linear and symmetric
throughout each cycle. We compared the ID-VD characteristics and LTP-
LTD characteristics of 10 devices before and after optimal-power plasma
treatment (Supplementary Figs. S15–S24). Additionally, Supplementary
Figs. S25–S37 show the ID-VD characteristics for another 11 devices. We
observed the consistent opening of the hysteresis in the ID-VD curve, as well
as improved linearity and symmetry in the LTP-LTD characteristics, with
reduced cycle-to-cycle variability compared to the pristine devices. Figure
S30a presents the ID-VD characteristics over 80 cycles at ±10 V, and Figure
S29b shows the same for 520 cycles after optimal-power plasma treatment
for the same device. Figures S31a and S31b illustrate the HRS and LRS with
sweep cycles at VD = 1V. It is evident that after optimal-power plasma
treatment, the switching ratio increased by two orders of magnitude with
less cycle to cycle variability, and the current at theHRSdecreased.However,
we have observed device-to-device variability, such as hysteresis area and
asymmetry of hysteresis. This variability can be attributed to various factors,
such as the inhomogeneity of CVD-grown flakes45 and defects introduced
during the fabricationprocess. Even slight variations in theSchottkybarriers
(>0.04 eV) can significantly alter the I-V characteristics, affecting both the
area and symmetry of the hysteresis77. To assess the energy efficiency of our
synaptic transistor, it is important to consider the energydissipation for each
pulse. This energy, denoted as E, is determined by the product of three key
factors: the average current during the pulse (ID), the duration of the pulse
(tpulse), and the source-drain bias voltage (VD) of the pulse. This relationship
is expressed by the following equation53

E ¼ ID × tpulse ×VD ð5Þ

Wehaveobserved aminimumenergydissipationof ≈30 fJ perpulse, a value
that aligns closely with the energy consumption per synaptic event in bio-
logical systems, which is around ≈10 fJ102. The STDP, shown in Fig. 6f,
closely resembles that of biological synapses. As for less time interval, weight
change is larger, and as time interval increases,weight change decreaseswith
an exponential decay pattern, resulting in a time constant of 20ms for the
positive pair and 18ms for the negative pair. Furthermore, the window for
weight updates has been extended compared to the pristine sample. The
alteration in synaptic weight is ≈100%, signifying improvement of spike

time-dependent learning. Enhanced conductance variations enable well-
defined states and enhance the temporal sensitivity of the STDP behavior53.
Thus, a plasma-treated device shows better STDP emulation than the
pristine device. Table 1 provides an overview of recent advancements in
MoS2-based memristors, comparing our work with others in terms of
switching ratio and switching voltage range. While our results are
competitive, future improvements could explore scaling down the channel
length to achieve lower operating voltages and leveraging gate tunability for
enhanced performance.

The plasma treatment provides an upper hand in realizing linear
analog memory states in MoS2-based memristors, which can further be
utilized to recognize images or patterns accurately. Towards this study,
finally, we demonstrate an ANN network for hand-written digit classifica-
tion of Modified National Institute of Standards and Technology (MNIST)
datasets103 simulated using the open-source PyTorch package104. As shown
in Fig. 7a, a three-layer fully connected ANN network with 784 input, 256
hidden, and 10 output nodes is conceived in an off-chip training procedure.
The input signals from the 60,000 MNIST images of 28 × 28 pixels are
employed to 784 input neurons, whereas the 10 output neurons correspond
to the output classes of MNIST digits ranging from 0 to 9. The normalized
conductance values extracted from the LTP/LTD curves can be treated as
the synaptic weights in the ANNmodule. The non-linear parameters from
the LTP curves are extracted using the following memristive switching
model,105 as shown in Fig. 7b.

G ¼
Gm
Max � Gm

Min

� �
×ωþ Gm

Min

� � 1
m; if m≠0

Gm
Min ×

GMax
GMin

� �ω
; if m ¼ 0

8<
: ð6Þ

Where GMax and GMin are maximum and minimum conductance in our
LTP characteristics, ω is a variable andm is the non-linearity coefficient of
the potentiation curve,whose value is 1 for the ideal device case. The value of
m from the fitted equation for 100 pulses is extracted to be 21.79 before
plasma treatment, and after plasma treatment, it has been improved to 2.81.
NLF for LTDcharacteristics 2.79 (Supplementary Fig. S38a), indicating that
LTP-LTD characteristics are highly symmetric. These coefficients, along
with other parameters such as asymmetric ratio and dynamic range, play a
crucial role in the high-accuracy training of such devices, as recently
reported105–107. To simulate the network, we use a backpropagation
algorithm with cross-entropy loss as the cost function employing a
nonlinear rectified linear unit activation function for the propagation of
information. Figure 7c shows the recognitionaccuracy of theplasma-treated
MoS2 devices over 50 epochs. Interestingly, a high training accuracy of
≈97% is realized in our devices, which is also comparable to the software-
based calculations. Additionally, simulations incorporating the LTD curve
(Supplementary Fig. S38b) also show high training accuracy, ~97%. This
demonstrates the efficacy of the proposed devices towards the ANN
implementations using future crossbar architectures. Furthermore, we have
repeated the above simulations for various hidden nodes starting from 4 to
256 to study the dependence of classification accuracy of our ANNmodule

Table 1 | Comparison of different memristive devices based on MoS2

Ref Material (thickness, growth) Device Geometry Channel
Length (μm)

Channel
Width (μm)

Switching Ratio Switching Voltage
Range (V)

45 Monolayer MoS2, CVD planer 5 100 102 ±80 V

31 Monolayer MoS2, CVD planer 0.9 0.7 103 ±30 V

108 Monolayer MoS2, CVD planer 8.5 6 10 ±20 V

76 few layer MoS2, Exfoliated planer 2 5 10 ±20 V

109 multi-layer MoS2, mechanically
Exfoliated

Planer NA NA 101 −0.5 to 2 V

75 Monolayer MoS2, CVD planer 0.6 2 105 ±5 V

Our work Monolayer MoS2, CVD planer 5 25 104 ±10 V
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based on MoS2 memristors. The variation of accuracy with the increasing
number of hidden layers is represented in Fig. 7d, which is consistent with
previous reports105. The confusionmatrix is calculated as an additional step
to enhance the validation of our supervised learning process and assess our
ANN model’s effectiveness in distinguishing output classes, as depicted in
Fig. 7e. The values along the diagonal represent the normalized predictions
made by the ANNmodel, which correspond to the true labels found in the
test data. The prominently high values along the diagonal and the
correspondingly low values off the diagonal unmistakably demonstrate the
strong class separation capabilities inherent in our device-based ANN
implementation.

Conclusion
In summary, we have successfully introduced an experimental approach to
enhance the performance matrix of CVD-grown MoS2 memristors for
neuromorphic applications. The main advantages of employing plasma
treatment include its high material selectivity for sputtering material, large-
scale modifications, postmetallization alteration, and a feasible technique.
Plasma-treated devices substantially show improved resistive switching,
endurance, and energy efficiency. These enhancements include an expan-
ded switching ratio (from 102 to 104), significantly reduced cycle-to-cycle
variability, improved STDP behavior, and linear and symmetric weight
updates. NLF has been improved from21.8 to 2.81.ANN simulations based
on plasma-treated devices reveal learning accuracy of ~97% on the MNIST

handwritten digits dataset. Furthermore, our observations of STDP beha-
vior suggest a promising increase in learning potential. This research sig-
nificantly advances the utilization of 2D semiconductors in future
neuromorphic devices.

Methods
Growth of polycrystalline monolayer MoS2

We synthesized polycrystalline MoS2 monolayer on 285 nm SiO2/Si sub-
strates using the atmospheric pressure chemical vapor deposition (APCVD)
technique in a single zone CVD setup. Sulfur and molybdenum trioxide
(99.98% trace metal) powder, both purchased from Sigma-Aldrich, were
used as precursors. The SiO2/Si substrates underwent a 10-min bath soni-
cation in acetone and another 10-min sonication in isopropyl alcohol.
Subsequently, they were cleaned under O2 plasma at ~400mTorr for 5min
with 40W power applied to the radio frequency coil. For the synthesis
process, in a 3.5-cm-diameter quartz tube furnace, 400mg of sulfur powder
was placed in an alumina boat ~18 cm upstream from the MoO3 boat
(outside the furnace). The sulfur powder was heated independently using a
heating belt. The substrates were placed upstream on a different alumina
boat positioned on the other side of the MoO3 boat ~5 cm away. The tube
furnace underwent purging with ultrahigh-purity Ar gas at 400 standard
cubic centimetres per minute (sccm) for 15min, followed by a flow rate
adjustment to 20 sccm. The furnace temperature was then raised to 750 ∘C
(heating rate 5 ∘Cmin−1), and the reaction continued for 5min.

Fig. 7 | Demonstration of a three-layer ANN
model and performance metrics. aDemonstration
of a three-layer ANN model with 784 input, 256
hidden, and 10 output neurons using 28 × 28 pixel
MNIST datasets as input signals. b The extracted
non-linearity factors from the fitted potentiation
curves post-plasma treatment. c The digit recogni-
tion training accuracy of our device compared with
software values. d Variation of training accuracy
with the increasing number of hidden neurons.
eConfusionmatrix of handwritten digits from 0 to 9
where the diagonal represents high-accuracy
classification.
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Simultaneously, when the furnace temperature reached~725 ∘C, the heating
belt around the sulfur boat was increased to 150 ∘C and maintained at that
temperature for 25min. After the reaction, all the heaters were turned off,
and the furnace was allowed to cool to room temperature naturally.

Material characterization
Raman and photoluminescence spectroscopy. The coverage and
growth quality of polycrystallineMoS2 was characterized using an optical
microscope (Nikon LV150N). Raman and PL spectra were collected
using a LabRAM HR, Horbia Jovin Yvon spectrometer with a
532 nm laser.

X-ray photoelectron spectroscopy(XPS). XPS was performed to verify
the chemical composition of the CVD-grownMoS2 films using a Thermo
Scientific XPS instrument, which was equipped with a monochromatic
KαAlX-ray line as theX-ray source. TheX-ray beamhad an approximate
diameter of 400 μm and an energy of 1486.6 eV. To counter sample
charging, all spectra underwent charge correction against the C 1s
adventitious carbon peak at 284.8 eV.

High-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM). Atomic resolution high-angle annular
dark-field scanning transmission electron microscopy (HAADF-STEM)
images were acquired with Hitachi HD2700C dedicated STEM with Cs
probe corrector. Other microscopes were employed with an acceleration
voltage of 200 kV.

Device fabrication and electrical measurement
MoS2 memristor was fabricated using a standard photo-lithography
method followed by thermal evaporation of metal (5 nm Cr and 50 nm
Au) and lift-off in acetone. All electrical, endurance, and synaptic plasticity
measurements were carried out in a home-built probe station using a Kei-
thely 2636B dual channel source meter unit controller using LabVIEW
programs at ambient conditions.

Ar plasma-treatment
The Ar plasma treatment was conducted using a Diener Zepto plasma
cleaner. For low-power plasma treatment, the conditions included a pres-
sure of 0.3 mbar, a power of 5W, and a treatment time of 60 s. optimal-
power plasma treatment was carried out with a pressure of 0.3 mbar, a
power of 10W, and a treatment time of 5 s. High-power plasma treatment
was performed under the following conditions: a pressure of 0.3mbar, a
power of 20W, and a treatment time of 5 s.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding author upon reasonable request.
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