Continued performance
improvement and
integration of MOOSE’s
thermal-hydraulics
capabilities

M3 Milestone Report

SEPTEMBER 2024

Peter German

Oana Marin
Guillaume L. Giudicelli
Joshua E. Hansel
Alexander D. Lindsay
Daniel C. Yankura

Lise Charlot

Computational Frameworks

Ramiro O. Freile
Mauricio E. Tano

Thermal Fluids Systems Methods and Analysis

INL/RPT-24-80844

Revision 1

Nuclear Energy Advanced Mod-
eling and Simulation (NEAMS)

0

7
NL

ldaho National Laboratory

Battelle Energy Alliance manages INL for the U.S. Department of Energy’s Office of Nuclear Energy

DISCLAIMER

This information was prepared as an account of work sponsored by
an agency of the U.S. Government. Neither the U.S. Government nor
any agency thereof, nor any of their employees, makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness, of any information, appara-
tus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. References herein to any specific com-
mercial product, process, or service by trade name, trade mark, man-
ufacturer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the U.S. Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the U.S. Government or any
agency thereof.

INL/RPT-24-80844
Revision 1

Continued performance improvement and integration of
MOOSE’s thermal-hydraulics capabilities

M3 Milestone Report

Peter German
Oana Marin
Guillaume L. Giudicelli
Joshua E. Hansel
Alexander D. Lindsay
Daniel C. Yankura
Lise Charlot
Computational Frameworks

Ramiro O. Freile
Mauricio E. Tano
Thermal Fluids Systems Methods and Analysis

September 2024

Idaho National Laboratory
Department of Computational Frameworks
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

http://www.inl.gov

Page intentionally left blank

ABSTRACT

This work introduces performance, robustness and workflow improvements to Multiphysics Object-
Oriented Simulation Environment (MOOSE)-based thermal-hydraulics solvers. It presents work related to
the acceleration of segregated fluid dynamics algorithms, which show approximately a factor of 10 speedup
compared to the preceding implementation. Additionally, we discuss approaches to use advanced, Schur
complement-based, field split preconditioners for monolithic solution algorithms relying on the finite
volume method. The presence of the Rhie-Chow interpolation makes the utilization of this preconditioner
challenging, but the results indicate that for a moderately large problem a factor of 3.4 speedup can be
achieved in conjunction with a factor of 3.5 reduction in memory usage. Furthermore, we introduce several
pseudo-time stepping approaches to MOOSE for the robust convergence for cases when steady-state
solves don’t converge due to the initial guesses being too far from the solution in Newton’s method. Every
MOOSE-based application has access to this algorithm and can benefit from its use. Moreover, several new
avenues have been presented for importing meshes from commercial software which make meshing easier.
Lastly, the Component system within the Thermal-Hydraulics Module (THM) of MOOSE is abstracted by
separating geometry- and physics-related properties.

iii

SUMMARY

The work in this report covers multiple performance- and robustness-related improvements on Multi-
physics Object-Oriented Simulation Environment (MOOSE)-based thermal-hydraulics solvers together with
improvements of the meshing workflow and advances on component abstraction. More specifically:

* A new assembly algorithm has been implemented for the acceleration of finite volume-based segregated
solution routines. This resulted in an order of magnitude faster simulations, enabling the utilization of
the tool for the engineering purposes.

* New preconditioning techniques have been provided for the monolithic, Newton’s method-based solution
algorithms that rely on the finite volume method. This differs from previous attempts because the
effectiveness of the preconditioner changes with the existing pressure diagonal matrix which is the
result of the application of the Rhie-Chow interpolation. The suggested Schur complement-based field
split preconditioners showcased significant speedup in computation time and reduction in memory
consumption.

* A pseudo-time marching algorithm has been added to MOOSE with multiple approaches for time step
selection. Based on the first tests, these approaches yield robust, many times better convergence than
the existing naive time stepping approaches.

» Several new mesh import paths have been explored using advanced simulation and meshing tools such
as StarCCM+®.

* The component system in the thermal-hydraulics module of MOOSE has been changed to split geometry-
and physics-related functionalities. This enables a common layer for MOOSE-based system codes.

iv

ACKNOWLEDGMENTS

This report was authored by a contractor of the U.S. Government under Contract DE-AC07-05ID14517.
Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for U.S. Government purposes. Funding was
provided by the Nuclear Energy Advanced Modeling and Simulation program.

This research made use of the resources of the High Performance Computing Center at Idaho National
Laboratory, which is supported by the Office of Nuclear Energy of the U.S. Department of Energy and the
Nuclear Science User Facilities under Contract No. DE-AC07-051D14517.

Page intentionally left blank

vi

CONTENTS

ABSTRACT

SUMMARY

ACKNOWLEDGMENTS

ACRONYMS

iii

iv

X1

1. INTRODUCTION

2. IMPROVEMENT OF SEGREGATED FLUID DYNAMICS SOLVERS IN MOOSE

2.1 The SIMPLE algorithmin MOOSE
2.2 Limitations of the previous implementation
2.3 Implementation details for the improved assembly algorithm
24 Results. oL e

24.1 Flowinawavy piPe v v v i i e e e e e e e e

2.4.2 Flowin amolten saltreactorloop
25 Future work oL e

3. FIELD SPLIT PRECONDITIONING FOR FVM-BASED FLUID DYNAMICS SYSTEMS WITH

RHIE-CHOW INTERPOLATION

3.1 Schur complement-based preconditioning
3.2 Application of field split capabilities to finite volume problems
33 Futurework

IMPROVEMENT OF SOLVER ROBUSTNESS

4.1 Approaches for time step selection
42 Results. e

IMPROVEMENT OF MESHING WORKFLOW

5.1 Native meshing capabilitiesin MOOSE
5.2 Importing meshes generated by third-party software
5.3 Futurework
5.3.1 Leveraging new capabilities from Netgen
5.3.2 Polyhedral element support

GEOMETRY AND PHYSICS ABSTRACTION FOR COMPONENTS

6.1 Abstract Componentdesign
6.2 The Physicssystem

CONCLUSIONS

REFERENCES

vii

11
11
12
14

16
16
17

19
19
19
23
23
23

25
25
26

27

28

Figure 1.

Figure 2.
Figure 3.

Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.

Figure 14.
Figure 15.

Table 1.

Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

Table 7.

FIGURES

Geometry of the 3D T-junction (left) and the reference velocity solution obtained using the
Navier-Stokes module of MOOSE (right) [1]..
The contribution of the assembly process to the total runtime for the 3D T-junction [1].
Geometry and mesh of the 3D pipe with dimensions in [m]. (Inlet on the left, outlet on the
TIgh) . . o o e e
Reference velocity results of the 3D wavy pipe case. The locations of the cuts are z = 0.6 m,
z=19mandz =316m.
Geometry and mesh of the 3D Molten Chloride Reactor Experiment (MCRE)-prototype
with dimension in [m] [2]. (red: piping, green: pump and heat exchanger, gray: core cavity)
Velocity magnitude at the middle plane of a Molten Chloride Reactor Experiment (MCRE)-
prototype from different solvers [2]. (left - OpenFOAM® , middle - MOOSE, right -
StarCCM+®) . . L . e e e
Geometry (left) and mesh (right) of the 3D T-junction with dimensions in [m].
Pressure field in the T-junction with weighted average (left) and Rhie-Chow interpolation
(right) for the advecting face velocities.,
Examples of meshes of reactors generated using MOOSE. (left: High-Temperature Test
Facility (HTTF) [3], right: 2D-RZ model of a Pebble Bed Modular Reactor 400 (PBMR-400)
[AD). . e e
Summary of currently supported third-party software meshing workflows.
StarCMM+-generated mesh using the Directed Mesh scheme of a swirling curved pipe
imported into MOOSE [2,5]. e
Successively refined Cubit-generated meshes for a molten salt reactor imported into MOOSE

Mesh for the simulation of flow through the valve of the Advanced Test Reactor [6].
3D mesh of the Molten Salt Reactor Experiment MSRE) [2].
THM Component base class hierarchy.

TABLES

Comparison of run times and memory usage between different Finite Volume Method
(FVM)-based solutions algorithms in MOOSE for the 3D wavy pipe case. For the wall
time, the achieved speedup factor, while for memory usage, the achieved reduction factor is
presented in parentheses. e e e e
Comparison of run times and memory usage between different Finite Volume Method
(FVM)-based software for the 3D wavy pipetestcase.
Comparison of run times and memory usage between different Finite Volume Method

(FVM)-based software for the 3D Molten Chloride Reactor Experiment (MCRE)-prototype.

Comparison of run times and memory usage between different preconditioning algorithms
in MOOSE for the 3D T-junction using weighted average face velocity interpolation.
Comparison of run times and memory usage between different preconditioning algorithms
in MOOSE for the 3D T-junction using Rhie-Chow face velocity interpolation.
Comparison of pseudo transient time stepping strategies for the 2D MSFR model with
VISCOSItY TAMPING. o o v v et e e e e e e e e e e e e
Comparison of pseudo transient time stepping strategies for the 2D MSFR model without
VISCOSItY TAMPING. . . . o . o o v v et e e e e e e e e e e e e e e e

viii

21

8

18

18

Table 8. Summary of Physics implemented in MOOSE and different MOOSE modules and applications. 26

iX

Page intentionally left blank

CFD
DOE
FVM
HPDDM
INL
LSC
MCRE
MOOSE
NEAMS
PETSc
SIMPLE
VTB

ACRONYMS

Computational Fluid Dynamics

Department of Energy

Finite Volume Method

High-Performance unified framework for Domain Decomposition Methods
Idaho National Laboratory

Least Squares Commutator

Molten Chloride Reactor Experiment

Multiphysics Object-Oriented Simulation Environment
Nuclear Energy Advanced Modeling and Simulation
Portable Extensible Toolkit for Scientific Computation
Semi-Implicit Method for Pressure Linked Equations
Virtual Test Bed

X1

Page intentionally left blank

Xii

Continued performance improvement and integration of
MOOSE’s thermal-hydraulics capabilities

M3 Milestone Report

1. INTRODUCTION

The simulation of fluid flows is a critical component of the design and operation of advanced nuclear
reactors. The thermal-hydraulics codes under the umbrella of the Nuclear Energy Advanced Modeling and
Simulation (NEAMS) program of the Department of Energy (DOE) provide a wide variety of simulation
approaches, ranging from lumped parameter, one-dimensional system-level tools to high-fidelity multi-
dimensional Computational Fluid Dynamics (CFD) tools. The main objective of the work presented in this
report is to enhance the performance and robustness of the MOOSE-based [7] thermal-hydraulics codes and
also to explore pathways to simplify the meshing workflows for faster model generation.

The performance- and robustness-related improvements target critical applications such as the simulation
of Molten Salt Reactors (MSRs). They introduce improvements in the system assembly routines of the segre-
gated solution algorithms and the preconditioning of the monolithic solution algorithms. Both improvements
pertain to solvers that rely on the Finite Volume Method (FVM) for spatial discretization. The new assembly
algorithm for the segregated solver involves enabling the assembly of linear systems directly in MOOSE
without relying on any of the machinery required for solving the Navier-Stokes equations using Newton’s
method. This embraces a new paradigm for MOOSE, which directly assembles system matrices and right hand
sides instead of Jacobians and residuals. With this new assembly methodology, the choice of how to linearize
a given problem is now given to the application developer. The preconditioning of the monolithic Jacobian
resulting from applying Newton’s method to the incompressible and weakly-compressible Navier-Stokes
equations is a challenging task, considering that the equations pose a saddle point problem. The Schur
complement-based field split preconditioning has been investigated for finite element spatial discretization in
[1]. However, the Schur complement preconditioners discussed in [1] do not translate well to the finite volume
realm due to the Rhie-Chow interpolation [8] that introduces a diagonal block for the pressure variable. For
this reason, in this paper, we present additional preconditioning techniques that result in considerable gains in
computation time and memory usage compared to direct solution-based algorithms.

To improve the robustness of the thermal-hydraulics solvers, we introduce a pseudo-time continuation
algorithm for Newton’s method for steady-state simulations [9]. This marches towards the steady-state of
the problem using a transient simulation. Typical applications for this algorithm are cases where the initial
guess is too far from the solution and Newton’s method experiences convergence issues. The key challenge in
this scenario is the determination of the pseudo-time step length at each iteration. Several approaches have
been implemented including the Switched Evolution Relaxation (SER) and the Residual Difference Method
(RDM) algorithms which rely on the evolution of the residuals. This feature has been added directly to the
MOGOSE framework, therefore it is available to every MOOSE-based application.

The meshing of complex geometries is a significant portion of the model development for nuclear reactors.
To accelerate development workflows, we explored several new pathways to import meshes that were generated
by advanced CAD-based meshing tools such as StarCCM+[10] and Ansys Meshing[11]. These pathways are
important for future developments that target polyhedral element support within MOOSE.

Lastly, we introduce the separation of the geometry- and physics-related functionalities in the Component
system of MOOSE’s thermal-hydraulics module [12]. This paves the path towards improved code reusability
between MOOSE-based system codes.

The report is partitioned as follows: Section 2 discusses the improvement in the assembly routines of
the segregated solves; Section 3 presents different preconditioning techniques for the monolithic solution
approach; Section 4 showcases the new pseudo-time marching algorithms; while Sections 5 and 6 cover the
meshing workflow related work and the component abstraction, respectively.

2. IMPROVEMENT OF SEGREGATED FLUID DYNAMICS SOLVERS IN MOOSE

This section provides a brief review of previous segregated solution methodologies for fluid dynamics
problems in MOOSE, discussing both the advantages and limitations with respect to required computational re-
sources. Subsequently, we discuss strategies to enhance solver efficiency, specifically through the optimization
of the assembly procedure for individual linear systems. The improvements are demonstrated quantitatively
with two case studies:

1. the analysis of a canonical flow within a three-dimensional wavy pipe,

2. the analysis of the flow through a molten salt reactor loop.

2.1. The SIMPLE algorithm in MOOSE

Recent advancements in the MOOSE framework have introduced features that enable the separation of
multiple partial differential equations in the same problem into corresponding linear/nonlinear systems instead
of including all of them into one, monolithic system. These developments enabled the implementation of
conventional, segregated solution algorithms for fluid dynamics problems in the Navier-Stokes module of
MOOSE [13, 14]. Currently, the module provides a steady-state fluid dynamics solver using the Semi-Implicit
Method for Pressure Linked Equations (SIMPLE) algorithm [15] which is discussed using the notation
described in [16] for the Navier-Stokes equations in the following form:

V-(pu@u):V-<y (Vu+(Vu)T)>—Vp+pg, (la)
V- (pu) =0, (1b)

where u and p are the velocity and the pressure fields, respectively, while denotes the dynamic viscosity,
p the density, and g the gravitational acceleration vector. We take the momentum equation and linearize it
by lagging the advective mass flux. With this, we can express the equation in a semi-discretized form with
iteration index #:

A (u”’l) u"+H (u”’1> = —Vp, (2)

where A (u”fl) describes the diagonal terms of the linearized momentum equation computed using the
previous velocity iterate u”~!, while H (u”_l) includes the off-diagonal terms multiplied by the previous
velocity iterate and every source term besides the pressure gradient on the right-hand side. For the sake
of clarity, the notation of the solution dependence of the A and H operators is dropped in the subsequent
expressions. Next, we multiply Eq. (2) by the density and the inverse of the diagonal matrix A (which can be
computed easily):

ou"” +pA'H = —pA~'Vp. (3)
Then, the continuity constraint (V - (pu”) = 0) is enforced to get:
v (pA—lﬂ) =-V. (pA_1Vp) .)

With this, we have two equations: an equation for momentum and another equation for pressure. These two
equations can be solved in an iterative manner described in Algorithm 1. Based on [15], the algorithm can
exhibit convergence issues if the pressure solution update is not relaxed, as in step 4 of the algorithm. The
iteration is carried out until we hit a maximum number of iterations (Nyay) or nonlinear residuals of the
equations are below certain tolerances (||Rmom|| > Tmom or ||Rp|| > 7p). Although it is not explicitly stated
in the algorithm, the momentum equation is relaxed as well to preserve matrix positivity which helps iterative
convergence [17].

Algorithm 1. The SIMPLE algorithm [15, 16].

while ||Rmom|| > Tmom or [|Rp|| > Tp and n < Nppax do
1. Solve Eq. (2) to predict a velocity u*, using p”il and the previous face mass flux guess (pu)?_1
2. Solve Eq. (4) for the intermediate pressure guess p*.
3. Correct the face mass fluxes using the rearranged form of Eq. (3) together with a face interpolation:

(ou)f = — (A’lH) i (A’IVP*) X)

4. Relax the pressure update to get the new pressure guess using A € (0, 1]:
pr=Apt+ (1= A", (©)

end while

2.2. Limitations of the previous implementation

The SIMPLE algorithm has been implemented in the Navier-Stokes module of MOOSE reusing as much
of the original system assembly routines as possible [13]. However, the original assembly routines have
been tailored towards building finite element Jacobian matrices and residual vectors for Newton’s method
which incurred a considerable overhead for iterative methods such as SIMPLE which typically require more
iterations for convergence. To quantify this overhead, a simple 3D T-junction test case is used. The geometry
is presented in Figure 1. The problem is characterized by a Reynolds number of 110, indicating laminar fluid
flow. The computational domain consists of 109,375 cells, which corresponds to a system of 437,500 degrees
of freedom altogether [1]. We measured the contribution of the existing assembly process to the total runtime

Figure 1. Geometry of the 3D T-junction (left) and the reference velocity solution obtained using the Navier-
Stokes module of MOOSE (right) [1].

utilizing Google’s gperftools! package. The simulations ran for 200 iterations of the SIMPLE algorithm (see
Algorithm 1). The effect of changing the number of processors allocated for the simulation on the contribution
of the assembly process to the total runtime has also been investigated. The results are presented in Figure 2.

It can be observed that the assembly process takes approximately 80% of the runtime if we use 1-8
processors. Beyond this, due to the increasing parallel communication costs, the contribution of the assembly
decreases to 50%. Based on the results presented here, we conclude that the reduction of assembly costs is a
priority for reducing the runtime of fluid dynamics simulations that rely on segregated solvers.

thttps://github.com/gperftools/gperftools (Accessed 08/29/2024)

10* 100
—&— Total Walltime
I Assembly contribution

80

I 60

10%

Total Walltime (s)

I 40

Assembly contribution (%)

I 20

102 - T kO
10° 10 10%
Number of processors

Figure 2. The contribution of the assembly process to the total runtime for the 3D T-junction [1].

2.3. Implementation details for the improved assembly algorithm

To accelerate the assembly process, several new features have been implemented in MOOSE and the
Navier-Stokes module:

1. The ability to create purely linear systems within MOOSE without any machinery connecting them to
nonlinear solvers based on Newton’s method. This was achieved by utilizing the LinearImplicitSystem
class from 1ibMesh [18]. With this, the users have input file level control over the creation of multiple
nonlinear and linear systems together in the same problem. This feature is available in every MOOSE-

based application, and can be potentially used for segregated solution algorithms in system codes as
well.

2. The ability to populate a linear system using FVM. This means that two new assembly loops have been
added to populate the system matrix and right hand side: one that loops over the faces to add face flux
contributions and another that loops over the elements to add volumetric contributions. These assembly
loops utilize user-facing objects called LinearFVKernels, LinearFVBCs and LinearFVVariables.

3. LinearFVVariables allow a considerable speedup when it comes to the assembly routine but still
behave as traditional variables in MOOSE when it comes to postprocessing and manipulation using
the auxiliary system. This ensures that the new finite volume system remains natively coupleable with
other moose applications.

4. Considering that the SIMPLE algorithm requires significantly more iterations for convergence, we
adopted the following, commonly used strategies for the finite volume systems:

* We use a system matrix which is as sparse as possible. Each row of the system matrix has one
entry for the diagonal, and one entry for each degree of freedom that represents a neighboring
cell. This means that every term that would require access to degrees of freedom associated
with the other neighbors of the neighbors is treated explicitly. Typical examples include: the
nonorthogonal correction term in the discretized form of the diffusion operator, the gradient terms
in certain advected quantity interpolation schemes.

* The terms involving gradients are lagged, the gradients are computed using the previous iterate. A
typical example is the the nonorthogonal correction term in the discretized form of the diffusion
operator. The gradients for the variables are computed in advance using a new loop which is
dedicated to computing gradients for every element in one sweep.

* The previous implementation of FVM in MOOSE relied on automatic differentiation [19] for
computing the entries of the system matrix (traditionally the Jacobian). The new assembly system
does not rely on this feature, considering that it comes with a computational overhead and the
carried derivatives would not be utilized.

During the development process of the new capabilities, special attention has been paid to be numerically
equivalent to the previous implementation within MOOSE. Within this effort we added a comparison case
and additional method of manufactured solutions (MMS)-based verification cases to ensure the code solves
the Navier-Stokes equations. These comparison and verification cases are openly available in the test suite? of
the Navier-Stokes module of MOOSE.

2.4. Results

In this section, we present two three-dimensional models to showcase the improvements in the execution
time compared to previous, finite volume-based implementations in MOOSE. Additionally, for comparison,
we present execution times compared to other FVM-based open-source and commercial CFED solvers as well.

2.4.1. Flowin a wavy pipe

The geometry and the mesh of the wavy pipe used in this study is presented in Figure 3. The mesh has
been prepared using CUBIT [20] based on the extrusion of a two-dimensional unstructured mesh. The mesh
consists of approximately 305,000 cells yielding approximately 1.2 million degrees of freedom. We assume
an inlet-outlet problem. On one side of the pipe we prescribe a uniform inlet velocity profile with [u| = 1.0 %,

whereas on the other side we assume a gauge outlet pressure boundary condition of p = 0 Pa. Withp =1 %
and y = 0.001 Pa - s, we expect a Reynold number of 100, indicating laminar flow regime. The reference
solution for these conditions is shown in Figure 4. First, we investigate the gains in execution time from the
new assembly algorithm. For this, we run the same problem with the previous and current implementations of
the SIMPLE algorithm for 200 iterations. The results shown in Table 1 have been obtained using 48 parallel
processes on a AMD EPYC® 9654 CPU. To get a clear picture, two more execution times are included for
comparison:

1. The execution time for 200 iterations of the upgraded SIMPLE algorithm, with loading the data for
initialization instead of initializing everything. This means that the mesh is split and computed for
every processor before the simulation. With this, we get a clear picture on how much of the time spent
is actually spent in solving the problem.

2. The execution time for a solve with the monolithic system solved using Newton’s method. We run
the monolithic solve with a similar relative residual level (Ryonojithic < 2 X 107%) that the SIMPLE
algorithm achieves in 200 iterations to get a somewhat fair comparison. We note that the residual
definition used for the monolithic and SIMPLE algorithms slightly different, therefore the comparison
is not entirely fair in this sense.

2https://github.com/idaholab/moose/tree/next/modules/navier_stokes (Accessed 08/29/2024)

0.35¢
0.25¢
0.15+
005[—»~'"”"”117i7 ;1::" ‘ y
0055 : g
0.15+

-0.25+

-0.35+ ‘ ‘ - . ‘ ‘
0.00 025 050 075 100 125 150 175 |200 225 250 275 300 325 350 375 400

-0.05 5 —
-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

Figure 3. Geometry and mesh of the 3D pipe with dimensions in [m]. (Inlet on the left, outlet on the right)

Velocity Magnitude [m/s]
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

—— : : e

Figure 4. Reference velocity results of the 3D wavy pipe case. The locations of the cuts are z = 0.6 m,
z=195mand z = 3.16 m.

Based on the results, we conclude that the new assembly algorithm results in a considerable speedup (factor
of 6-10) compared to the previous implementation of the SIMPLE algorithm. Furthermore, we also note
that the latest segregated solver in MOOSE is more than 45x faster than the monolithic Newton solver, and

Table 1. Comparison of run times and memory usage between different FVM-based solutions algorithms in
MOOSE for the 3D wavy pipe case. For the wall time, the achieved speedup factor, while for memory usage,
the achieved reduction factor is presented in parentheses.

Solution algorithm \ Total wall time (s) \ Total memory usage (GB) ‘
Monolithic Newton — LU 1356 (1x) 134 (1x)
SIMPLE with previous assembly 286 (4.7x) 48 (0.36x)
SIMPLE with new assembly 43 (32x) 47 (0.35%)
SIMPLE with new assembly and split mesh 28 (48x) 3.6 (0.03x)

that the segregated solution algorithm requires about a third of the memory used by the monolithic solver.
However, for the sake of completeness, we note that the comparison case favors the segregated solver due to:

* The number of cells in the domain is favorable for the segregated solver. It is known that the SIMPLE
algorithm needs an increasing number of velocity-pressure iterations with increasing number of cells in
the domain[21]. This means that for lower tolerances, considerably more iterations would be needed.
The monolithic Newton solver does not suffer from this behavior.

* The monolithic Newton solver uses a direct solver (LU preconditioning) due to the saddle point problem
posed by the Navier-Stokes equations. This requires more computation time and memory for the solution
of the problem. Recently, a field split preconditioning technique has been developed in MOOSE which
utilizes the Schur complement and performs a velocity-pressure iteration in a discrete sense. This
has shown considerable reduction in computation time and memory usage for the monolithic solver.
However, the current implementation does not support FVM with Rhie-Chow interpolation. For more
information, we refer the reader to Section 3.

Following this, we compare the performance of the SIMPLE solver for 200 iterations with the same
algorithm in OpenFoam® [16] and StarCCM+® [10], an open-source and commercial tool for solving fluid
dynamics problems, respectively. We used 48 parallel processes for every code, however the codes were run on
machines with slightly different configurations which introduces some bias into this comparison. The reason
behind the utilization of different machines is that not all of the machines are capable of running StarCCM+® in
the INL high-performance computing complex. Furthermore, to make the comparison more fair (problem
formulation closer to the formulation used in MOOSE) OpenFOAM’s rhoSimpleFoam solver was used with
slight modifications to exclude the energy equation and compressibility effects. Due to this custom version,
OpenFOAM® was run using 48 processes on local machine with an AMD Ryzen® Threadripper 3990x chip.
The results are summarized in Table 2 together with the used CPU types. The same linear solver tolerances
were used with selecting the same types of solvers for the pressure and momentum systems whenever possible.
We see that both OpenFOAM® and StarCCM+® are approximately 2-2.5x faster than MOOSE.

Table 2. Comparison of run times and memory usage between different FVM-based software for the 3D wavy
pipe test case.

Total wall | Total memory
Software CPU type time (s) usage (GB)
StarCCM+® Intel Xeon® Platinum 8268, 2.9 GHz 13 8.7
OpenFOAM® | AMD Ryzen® Threadripper 3990x 2.9 GHz 12 0.9
MOOSE AMD EPYC® 9654 2.4 GHz 28 3.6

2.4.2. Flow in a molten salt reactor loop

The second example presents a 3D model of a prototype for the Molten Chloride Reactor Experiment
(MCRE) built using openly available data[22]. The geometry with its dimensions is depicted in Figure 5. The
mesh has been prepared with CUBIT [20] for the purposes of investigating turbulence models in [2]. The
geometry is split into approximately 1.57M hexahedral elements. In this work, a laminar flow is assumed
with approximately Re=150 in the core cavity. This was achieved by using the nominal density of 3279 %
but a dynamic viscosity of 1 Pa - s with a volumetric pumping power of 5700 % within the green block of
the mesh embedded in the piping at the top of the reactor. The same problem with the same discretization

-0.2-0.1 00 0.1 02 03 0.4 05 0.6 07 08 09 10 1.1 1.2 1.3 14 15 1.6 1.7 1.8 1!

Figure 5. Geometry and mesh of the 3D MCRE-prototype with dimension in [m] [2]. (red: piping, green:
pump and heat exchanger, gray: core cavity)

options was run in MOOSE, OpenFOAM® and StarCCM+® for 1000 momentum-pressure iterations. This
resulted in residuals in every variable below 1 x 10~%. The same CPUs were used as for the previous case.
The reference results from the three codes are plotted in Figure 6. We see an overall good match in the results
from the three codes. The runtime comparison is shown in Table 3. It takes approximately four times longer
with MOOSE compared to StarCCM+® . The difference between MOOSE and OpenFOAM® is only a
factor of 2x. In terms of memory utilization, we see that both MOOSE and OpenFOAM® use less memory
than StarCCM+® .

Table 3. Comparison of run times and memory usage between different FVM-based software for the 3D
MCRE-prototype.

Software Total wall time (min) \ Total memory usage (GB) ‘
StarCCM+® 3 31
OpenFOAM® 6 2.6
MOOSE 12 15

Velocity magnitude (OpenFOAM) [m/s] Velocity magnitude (MOOSE) [m/s] Velocity magnitude (StarCCM+)
0.000 0.1 02 0.3 04 0488 0.000 0.1 02 03 04 0488 0.000 0.1 0.2 03 04 0488
; oo wm—— D oo ‘

Figure 6. Velocity magnitude at the middle plane of a MCRE-prototype from different solvers [2]. (left -
OpenFOAM® , middle - MOOSE, right - StarCCM+®)

2.5. Future work

We see that even though there is significant progress regarding the performance of the segregated fluid
dynamics solvers in MOOSE, the runtimes are still longer than those experienced with the other tools in this
work. Nevertheless, a MOOSE-native fluid dynamics solver is directly coupleable with other MOOSE-based
applications for multiphysics modeling of nuclear systems. The runtimes are now comparable to other CFD
tools, making the solver usable for engineering applications. Furthermore, based on preliminary profiling, the
following improvements would bring the performance of the MOOSE-based solvers even closer to industry
standard:

* The assembly of the momentum system is still relatively expensive, especially for simulations in 3D. It
contributes to approximately 24% of the runtime in the case of the molten salt reactor loop example.
The reason behind this is that we assemble system matrices for all momentum components separately.
Industry codes, on the other hand, utilize the fact that the bulk of the system matrix is the same for
all components. Therefore, a considerable speedup could be achieved if the differing parts (such as
boundary condition contributions) could be stored and applied right before solve time. This could also
reduce the memory footprint, considering that only one matrix would be stored.

* The computation of cell gradients takes up a significant portion of the runtime (approximately 8%).
Partially because the assembly loops are reinitialized and operate on local data which is allocated before
the assembly. The allocation costs for this local data can be saved if the loops are reinitialized only
when the mesh changes so that the local storage is reused every time we assemble the same system. An
alternative approach could be to save the gradient operator in a sparse matrix and compute gradients
using a simple matrix-vector multiplication.

* The face fluxes are stored in a map-based functor object, which incurs overhead when the values are
retrieved. This could be simplified if the functor’s underlying storage is replaced with a container with
faster access.

Lastly, we note that currently MOOSE only supports the SIMPLE algorithm which is a steady-state solver.
Future work involves the extension of this to transient simulations by combining it with PISO [23].

10

3. FIELD SPLIT PRECONDITIONING FOR FVM-BASED FLUID DYNAMICS
SYSTEMS WITH RHIE-CHOW INTERPOLATION

One of the major computational bottlenecks encountered for the monolithic, FVM-based fluid dynamics
solver in MOOSE is the preconditioning of the Jacobian matrix. In essence, the challenge is posed by the
Navier-Stokes equations presented in Egs. (1a)—(1b) yielding a saddle point problem. The resulting monolithic
matrix is not diagonally dominant meaning that users are limited to the use of direct solution algorithms (e.g.
LU-decomposition) whose solve time and memory requirement rapidly scale with the number of unknowns
in the problem. This challenge has been addressed in the fluid dynamics community by the utilization of
Schur complement-based preconditioning techniques which require the splitting of the Jacobian matrix and
residual vector into variable-wise blocks [24-26]. MOOSE utilizes the field split preconditioning interface
provided by Portable Extensible Toolkit for Scientific Computation (PETSc) [27] for this purpose, and it has
been demonstrated in [1] that it yields a significant reduction in memory costs and runtime for finite element
problems. In this work, we expand on the existing capabilities to provide efficient and scalable preconditioning
options for the monolithic, FVM-based nonlinear systems.

3.1. Schur complement-based preconditioning

First, we briefly review our solution algorithm using Newton’s method with Schur complement-based
preconditioning for the linearized Newton iteration. We start from the standard formulation of Newton’s
method with J(x) denoting the Jacobian matrix, and R(x) being the residual vector:

J(x)dx = —R(x). (7

We can split this discretized system into variable-wise blocks:

A G\ (du) _ (R,)
D C)\dp) R,)’
where A denotes the momentum diagonal matrix with the discretized momentum advection and the stress
tensor operators, while G and D denote the discretized gradient and divergence operators, respectively. Block
matrix C is 0 in the traditional incompressible formulation, but depending on the spatial discretization and

stabilization techniques, it may hold nonzero entries. In case of FVM, due to the Rhie-Chow interpolation
method [8], it does contain nonzero entries. In PETSc, this matrix is factorized into the following, simpler

matrices [28]:
I 0\ (A 0\[/I A'G\ [du\ _ (R, 9
DA™Y 1)\0 Ss)\0 I dp) — \R,)’ 2

where S = C — DA™!G is the Schur complement. Naturally, the ideal preconditioner would be the inverse
of the factorized matrix in a form of:

I —A71G\ /A1 0 I 0
6) (o)

The solution algorithm using this preconditioner is discussed in Algorithm 2 in detail. We see that this
preconditioner involves two solves with matrix A and one solve with matrix S, all requiring their own
preconditioners. Additionally, we note that there is another linear solve with A within the Schur complement

11

every time it is applied to a vector. Preconditioning S is a challenging task, considering it is a dense matrix
and can be expensive to compute. In most cases, the Schur complement is not stored explicitly, only its
action and inverse action are used through the factorized forms in Eqgs. (9) and (10). For Stokes problem, it is
known that the pressure mass matrix is spectrally equivalent to the Schur complement and thus can be used
as an efficient preconditioner, but for Navier-Stokes problem, more advanced techniques, such as the Least
Squares Commutator (LSC) [26] have also been studied. The main advantages of this algorithm over the
direct solution techniques include:

* It has a smaller memory footprint, considering that we don’t need to store the dense matrices associated
with an LU decomposition. Even though the Schur complement is a dense matrix, it is not stored
explicitly.

* The solution algorithm scales better than direct solvers, leading to shorter runtimes for large problems.

Algorithm 2. The Schur complement-based field split preconditioning algorithm.

Assume initial conditions: u®, p°

while |R| > T or 1 < Npax do
1. Compute the following Jacobian and rh.s. blocks using the current solution: A, G, D, C, Ry, Ry
2. Compute an intermediate source for the pressure equation:

ry=—R,+DA 'R, (11)
3. Solve the pressure update equation using the Schur complement:
dp = S’lr;. (12)
4. Solve for the velocity update using the known pressure update:
du= A1 (R, — Gdp) (13)
5. Update the velocity and pressure solutions:

u"l = u" +du

14
pn+1 — pn —|—dp ()

end while

3.2. Application of field split capabilities to finite volume problems

In this work, we investigate if the existing Schur complement-based preconditioning techniques in MOOSE
are applicable to finite volume problems. To showcase the usability of current options, we select a case
involving flow in a T-junction. We assume a uniform inlet velocity of 1 %, fluid density of p = 1 %, and
dynamic viscosity of = 0.01 Pa - s. These result in an approximate Reynolds number of 100. The geometry
of the T-junction is depicted in Figure 7. We prepared two meshes containing 10* and 10° cells, respectively.

As a first attempt, we use an average interpolation method to determine the advecting velocity at the
faces of the control volumes. This ensures that the C matrix block is 0, bringing it closer to the finite
element realm where the preconditioning of the Schur complement is better understood. Table 4 summarizes

12

runtimes and memory usage for different solver settings using 8 processes on a MacBook Pro 2021. For the
field split preconditioning, we utilized an inexact LU preconditioner based on low-rank compression for the
velocity block [29] and a LSC preconditioner for the Schur complement. BoomerAMG [30] was used as
a preconditioner for the Laplacian operators within LSC. We see that the simple LU preconditioner on the

e 40

7.0 6.0 50 40 30 20 10 080
Figure 7. Geometry (left) and mesh (right) of the 3D T-junction with dimensions in [m].

monolithic system outperforms the Schur complement-based field split preconditioner for the case with lower
number of cells. However, with the increasing number of cells, the difference in scaling between the two
algorithms becomes notable with the field split preconditioner resulting in simulations approximately 11 times
faster than the simple LU preconditioner. Furthermore, we also note that the field split preconditioner requires
approximately one quarter of the memory needed for a run with the LU preconditioner. However, with a

Table 4. Comparison of run times and memory usage between different preconditioning algorithms in MOOSE
for the 3D T-junction using weighted average face velocity interpolation.

Number of cells | Preconditioning | Total runtime (s) ‘ Total memory usage (MB) ‘

10* Monolithic LU 14 966

10* Field split 18 1,104
10° Monolithic LU 1269 20,800
10° Field split 114 5,600

weighted average interpolation method for the face velocities, the cell-centered finite volume method applied
to the Navier-Stokes equations can exhibit numerical checkerboarding in the pressure field [8]. This effect
is presented in Figure 8 comparing the results with a pressure field obtained by employing the Rhie-Chow
interpolation.

This numerical checkerboarding is an undesirable effect, therefore we investigate if the field split precon-
ditioner can be used in conjunction with the Rhie-Chow interpolation. This is a more challenging problem
because matrix C in Eq. (8) is not 0. In this scenario, the preconditioning of the Schur complement could
not be achieved by LSC. For this reason a Successive Over-Relaxation (SOR) preconditioner was created
using matrix C. This approach successfully resulted in converging simulations, even though the convergence
rate was considerably degraded compared to the case with weighted average interpolation. Furthermore, a
preconditioner based on High-Performance unified framework for Domain Decomposition Methods (HPDDM)
[24, 31] was also succesfully applied to the Schur complement. The comparison of runtimes and memory
usage for the different preconditioning techniques is presented in Table 5. We see that similarly to the weighted
average interpolation case, the simple monolithic LU preconditioning outperforms the field split-based tech-
niques for the coarse mesh. However, as we increase the problem size the field split techniques result in a

13

Pressure (Pa) Pressure (Pa)
-3.8e-02 0.4 0.8 1.2 1.6 2.0 2.6e+00 -3.8e-02 0.4 0.8 1.2 1.6 2.0 2.6e+00
.

— ‘ ‘ O — ' ‘ ‘ —

Figure 8. Pressure field in the T-junction with weighted average (left) and Rhie-Chow interpolation (right) for
the advecting face velocities.

considerable decrease in computation time and memory usage. The HPDDM-based preconditioner seems to
result in slightly faster simulations.

Table 5. Comparison of run times and memory usage between different preconditioning algorithms in MOOSE
for the 3D T-junction using Rhie-Chow face velocity interpolation.

‘ Number of cells ‘ Preconditioning ‘ Total runtime (s) ‘ Total memory usage (MB) ‘
10* Monolithic LU 20 1,040
10* Field split (HPDDM) 55 1,136
10% Field split (using C with SOR) 48 1,104
10° Monolithic LU 2,776 23,200
10° Field split (HPDDM) 767 6,560
10° Field split (using C with SOR) 800 6,400

3.3. Future work

Even though it was demonstrated that the Schur complement-based field split preconditioning can be
used for systems using FVM and Newton’s method, the scalability of the method with cases utilizing the
Rhie-Chow interpolation can still be improved. We propose two directions for improvement:

* The utilization of more advanced preconditioners based on the literature, such as the one recently
developed and discussed in [25] for a grad-div stabilized equal order finite element discretization

(resulting in a non-zero C block):

P=— 1 Mmac, (15)

Y+ H

where M is the pressure mass matrix and 7y is the grad-div stabilization parameter. For stable finite
element pairs (C = 0), grad-div or augmented Lagrange stabilization is typically used to force the
Schur complement to become spectrally equivalent to the pressure mass matrix as for Stokes flow. In
the future, we may explore addition of augmented Lagrange terms (like is done in [32]) to our finite
volume discretization such that Eq. (15) may be an effective preconditioner for our Schur complement.

14

* The fine tuning of the HPDDM algorithm for the preconditioning of the full Schur complement. The
multilevel domain decomposition in HPDDM has many tunable parameters which could be used to
enhance its performance for a given problem.

15

4. IMPROVEMENT OF SOLVER ROBUSTNESS

Solver robustness is defined as the ability for the solver to yield the correct solution in spite of various
general difficulties such as:

* The initial guess may be poor and far from the solution causing convergence issues with Newton’s
method.

* Time step length may be ill-chosen and violate the Courant-Friedrich-Levy conditions for the discretiza-
tion scheme.

* A combination of material properties resulting in conditions where the given preconditioning techniques
don’t work.

Several mechanisms have been implemented in MOOSE to increase the solver robustness over the years. The
most commonly used in transient simulations is simply to recover from a failed time step solve by cutting the
time step and trying to solve again. The cut in the time step results in larger diagonal term, which leads to
better-conditioned systems.

The resiliency of MOOSE based thermal-hydraulics and fluid dynamics codes is a priority to the mission
of the NEAMS program. Several approaches were suggested, including different nonlinear solver implementa-
tions, optimal time stepping strategies, transient viscosity ramp down, and adaptive convergence assessments.
This work discusses optimal time stepping strategies developed for pseudo transients to reach steady state for
fluid dynamics problems.

4.1. Approaches for time step selection

The pseudo-transient continuation algorithm for Newton’s method, based on [9], is presented in Algo-
rithm 3. The key aspect of the transient continuation scheme is the computation of a pseudo time step which is

Algorithm 3. Pseudo-transient continuation with Newton’s method

Assume initial conditions: x°, Afy.

while ’Rsteady| > Torn < Nmax do
1. Compute the steady-state Jacobian and residual objects: J(x"~1), R(x"~1).
2. compute a mass matrix: M.

-1
3. Solve the following system for the solution update: dx = — (ﬁM +](x”_l)) R(x"1).

4. Update the solution: x"” = x"~1 + dx.
5. Compute the new residual R(x") and recompute Af,,.
end while

optimal in a sense that it results in robust transients marching towards steady-state, given that the initial time
step is small enough. The change in time step is determined by the steady-state residual behavior from one
iteration to another, i.e., a decrease in residual indicates larger time steps are allowed. In contrast, significant
increase in the residual indicates a time step decrease is necessary. Following [33], three time step selection
approaches have been implemented: Switched Evolution Relaxation, Residual Difference Method, and the
Exponential Progression methods. All methods require a parameter «, which controls how sensitive the time
step length is with respect to residual changes. The user is also required to supply the initial time step length

16

Aty. Specific choices for a and At for fluid dynamics problems are available in [33] or [34]. For the above
mentioned methods, the time step in the next iteration can be selected using the following strategies:

1. Switched Evolution Relaxation (SER):

R B 0
Aty = At - <1’§k5) , (16)

where « is a user chosen parameter, Ry is the L2-norm of the steady-state residual at step k, and the
residual at £ iterations before is denoted as Rj_,.

2. Residual Difference Method (RDM):

Re—1—Rg

Aty = Aty - Re1 (17)

3. Exponential progression (EXP):
Aty = At - aF, (18)

Based on the discussion in [33], the Exponential progression method has an infinite growth, therefore
specifying a maximum time step length is recommended. Alternatively the user can utilize the automatic
steady-state detection in MOOSE.

4.2. Results

We present results for pseudo-transients with different time step selection algorithms for a 2D-RZ model of
the Molten Salt Fast Reactors (MSFR) [35] from the Virtual Test Bed (VTB) [36]. We use pseudo transients to
obtain a steady-state solution because the nonlinear solver is unable to solve the steady-state problem, despite
our best efforts, with uniform initial fields. We only solve for pressure and velocity without considering
temperature. We use an initial time step size of Aty = 1 s. The first time step is a very difficult solve,
with close to 20 nonlinear iterations required to reach convergence for a traditional Newton solve. 20 is
chosen as the maximum amount of nonlinear iterations allowed before re-trying the time step with traditional
iteration-based time steppers. Every failed time step will therefore incur a 20 nonlinear iteration cost if the
residual is stagnating. For the pseudo-time steppers, only one Newton solve is used per time step, as described
in Algorithm 3. The convergence of the solution is determined using the following condition:

[|x" —x"71|| <1077 - ||x"||. (19)

The results presented in Table 6 have been obtained using 8 parallel processes a Macbook Pro M1 Max 2021.
IterationAdaptiveDT results use first the default settings, where the time step is grown by a factor of 2 as
long as it succeeds. We also include results obtained by increasing the grow factor to 3 and 4. We see that
using a growth factor of 2 results in the most robust and fastest convergence with 0 failed time steps and 43
nonlinear iterations altogether. These values are used as basis for comparison with the pesudo-time stepping
algorithms. We carried out the numerical experiments with two different values of the & parameter (1.5 and
2.0) for all three approaches. Based on the results, we conclude that all but one pseudo-transient simulations
yield better results than those obtained with IterationAdaptiveDT. The best results were obtained using
the residual difference method, saving almost 50% in computation time. The exponential progression method,
however, did not converge with &« = 2 with an initial time step size of 1 s. Further investigation revealed that
it converges with Atg = 0.5 s in approximately 12 s. This is not surprising, considering that the exponential

17

Table 6. Comparison of pseudo transient time stepping strategies for the 2D MSFR model with viscosity
ramping.

Strategy Totgl number .Nun?ber of Tot.al number .of Solve time
of time steps | failed time steps | nonlinear iterations (s)
Constant At =1s 35 3 194 95
Iteration adaptive - factor 2x 5 0 43 21
Iteration adaptive - factor 3x 7 0 57 27
Iteration adaptive - factor 4x 8 1 74 38
SER «=1.5 14 0 14 11
SER a=2 23 0 23 17
RDM «a=1.5 16 0 16 12
RDM «a=2 13 0 13 10
EXP a=1.5 13 0 13 10
EXP a=2 - - - -

progression method doesn’t use residual information but provides a monotonic increase in the time step length.
We note an important feature of the pseudo-time transients: unlike other adaptive time steppers in MOOSE, it
does not restart the simulation from a previous step if the solve fails. This means that for diverging cases, one
is recommended to decrease the initial time step size.

The march to steady-state for the 2D MSFR model involves an increased viscosity at the beginning which
is continuously decreased throughout the simulation to help convergence. As a next step, we investigate
if removing the viscosity ramp-down strategy influences the convergence results. For this, we start the
simulation from Aty = 0.5 s. The results obtained with different time steppers are summarized in Table 7.
We see that SER yields similar results to the default iteration-based time stepper. On the other hand the
RDM-based algorithm yields considerably faster convergence. The exponential progression-based method
does not converge with this initial time step size.

Table 7. Comparison of pseudo transient time stepping strategies for the 2D MSFR model without viscosity
ramping.

Strategy Totgl number _Number of Tot.al nurpber _of Solve time
of time steps | failed time steps | nonlinear iterations (s)
Constant At =0.5s 59 3 246 125
Iteration adaptive - factor 2x 10 0 60 29
SER «=1.5 42 0 42 30
RDM a=1.5 28 0 28 20
EXP a=1.5 — — — —

18

5. IMPROVEMENT OF MESHING WORKFLOW

Generating high quality meshes for fluid dynamics problems is a critical step of the simulation workflow.
Low quality meshes can result in convergence issues or incorrect results. Therefore, a large portion of the
model development phase is spent creating adequate meshes. MOOSE supports several workflows for meshing
geometries for various nuclear reactor simulations. It provides native mesh generators for simple problems
together with import capabilities for complex meshes generated by third-party software. The focus of this
work is to explore robust, easy-to-use meshing workflows for three-dimensional fluid dynamics simulations in
MOOSE. The main motivation behind this effort is to minimize the time spent in the meshing phase of the
model development. Primarily, we focus on importing meshes from advanced tools with automatic mesh
generation options such as StarCCM+® [10].

5.1. Native meshing capabilities in MOOSE

Meshing capabilities in MOOSE have grown enormously over the last few years, driven by the expansion
of the reactor module [37]. In-MOOSE meshing considerably facilitates optimization or uncertainty quan-
tification studies with regards to the geometry. The ability to generate mesh on-the-fly with perturbations
to the dimensions is a key asset. The reactor module is focused on meshing advanced reactors with regular
lattice-based geometries, such as hexagonal lattices in sodium fast reactors and several micro-reactor designs.
For these reactors, the reactor module can generate meshes for pins, channels, assemblies, and the core, as
well as simple shapes for the top and bottom plenum. These meshes can be used for homogenized coarse-mesh
thermal hydraulics, as was done in [38]. In those simulations, the assemblies are homogenized in a few mesh
cells, with a porous medium containing the fuel, cladding and coolant. The friction coefficients are set using
correlations, which seek to reproduce the pressure drop across the real assembly. If ducts are present in each
assembly, then a high friction factor in the transverse direction can limit the cross-flow. Figure 9 shows two
examples for meshes generated by MOOSE for coarse mesh thermal-hydraulics simulations.

The capabilities of the reactor module can also be used for simple 2D shapes, for example 2D-RZ models
of pebble bed reactors with conical expansion regions. Vertical or angled planes can be defined using parsed
curve equations, and the region in between two curves can be filled with quadrilateral elements. The meshed
regions can be stitched together on the curves previously specified. MOOSE can currently only mesh using
quadrilateral elements in a limited number of configurations. For example, it can fill between the area between
two curves with the same number of nodes with quadrilateral elements. However, it can fill an arbitrary
region inside a single curve using triangle elements. These limitations make the native meshing of general
2D geometries a lengthy and careful process. The limitations are even more apparent when it comes to the
meshing of general geometries in 3D. However, we note that MOOSE also contains several native mesh
generators and manipulators routines that can modify and analyze meshes provided by third-party software.

5.2. Importing meshes generated by third-party software

For more complex geometries, especially in 3D, the users can import meshes from external, third-party
simulation and meshing tools. MOOSE supports importing a variety of mesh file formats, all of which are
specified on MOOSE’s website [39]. This capability enhances user flexibility, allowing them to select the most
appropriate mesh tailored for their specific application needs. Currently, MOOSE solvers support hexahedral,
pyramidal, prismatic, and tetrahedral elements. This work focuses on exploring pathways to import meshes
from software products that are easy to use.

19

Figure 9. Examples of meshes of reactors generated using MOOSE. (left: High-Temperature Test Facility
(HTTF) [3], right: 2D-RZ model of a Pebble Bed Modular Reactor 400 (PBMR-400) [4]).

A summary of the main meshing workflows for some of the most popular third-party meshing tools
is shown in Figure 10. The workflows begin with a CAD geometry file that is imported into the different
meshing software. Three of the five meshing software products presented in the figure can directly export
mesh files in formats supported by MOOSE. SALOME open-source platform [40], Gmsh open-source mesh
generator [41], and Cubit [20] can export the generated computational meshes in UNV (".unv’) and EXODUS
(.e’) files, respectively. These formats are supported by MOOSE, eliminating the need for any additional
file conversion. However, for popular CFD codes with advanced meshing capabilities such as StarCMM+
and ANSYS Meshing [11], the workflow requires and additional step. StarCMM+ provides the capability of
generating high quality swept hexahedral meshes through its Directed Mesh meshing tool. The generated
mesh is first exported from StarCMM+ in CGNS (’.cgns’) format and imported into ParaView, an open-source
visualization software. From ParaView, the mesh can be exported in Exodus (’.e’) format, which is then
compatible for direct use in MOOSE. ANSYS meshing software can produce hexahedral meshes in the MSH
(.msh’) format. However, the Fluent-generated .msh files are not directly readable by MOOSE. To address
this, Cubit can be used to convert the Fluent mesh to Exodus (’.e’) format, which is compatible with MOOSE.

Figure 11 presents a 3D mesh of a swirling curved pipe generated using StarCCM+. Using the directed
mesh scheme, the 2D inlet surface of the pipe is divided into five blocks: a central square and four evenly
distributed circular sections. Next, the edges defining the five blocks are subdivided to create rectangular
elements. Finally, the inlet surface is swept from the inlet to the outlet of the geometry, with axial divisions
specified in the sweep direction to generate hexahedral elements. The mesh is exported in CGNS format, read
into Paraview and ultimately exported in Exodus format.

20

Meshing_

A 4 A 4 A 4 A 4

| SALOME Gmsh Star-CCM+ ANSYS

CGNS msh

: v

Paraview Cubit

unv
msh

EXODUS

<

MOOSE

Figure 10. Summary of currently supported third-party software meshing workflows.

!

3
S
Wit

5
e
TS SSSEP
\\\\“\\‘:“o‘e’o":
R
A

Figure 11. StarCMM+-generated mesh using the Directed Mesh scheme of a swirling curved pipe imported
into MOOSE [2, 5].

Figure 12 presents cross sections of 3D meshes of the open source specifications of the Molten Chloride
Reactor Experiment (MCRE)[22] generated using Cubit. The 2D circular section of the piping system is
meshed using the pave scheme in Cubit, which produces an unstructured mesh composed by quadrilateral
elements. Additionally, boundary layers are defined near the pipe walls, which facilitate the creation of
structured meshes and enable the specification of the first element’s distance from the wall, crucial for
accurately applying turbulence wall functions. The resulting 2D mesh is then swept through the closed reactor
loop. Following this, the external part of the reactor core is meshed using a triprimitive mesh scheme,
which generates a triangular-prismatic mesh for surfaces with three logical sides. A subsequent 360-degree
sweep completes the formation of the hexahedral mesh for the reactor core.

21

At At 4

Ui
]
i1
it
i
i

AT
T

H jlnne

Figure 12. Successively refined Cubit-generated meshes for a molten salt reactor imported into MOOSE [2].

Figure 13 presents a 3D mesh of a valve of the Advanced Test Reactor (ATR). The mesh is cut at the
middle plane of the valve which is in a fully closed position. The valve has six holes. The mesh was generated
using directed mesh schemes with a 2D surface mesh in StarCCM+.

—————

S

e
SSOSSOS SO S

Figure 13. Mesh for the simulation of flow through the valve of the Advanced Test Reactor [6].

Figure 14 presents a 3D mesh of the Molten Salt Reactor Experiment (MSRE) prepared using the directed
mesh capabilities in Cubit. It has been used for two-phase fluid dynamics simulations in [2].

22

Figure 14. 3D mesh of the Molten Salt Reactor Experiment (MSRE) [2].

5.3. Future work

The current workflow for fluid dynamics simulations in MOOSE involves creating the geometry using
CAD software. This is unlikely to change in the future. The path forward for the general needs of thermal
hydraulics modeling in MOOSE must support CAD geometries. Additional prototyping of simple systems
needs may rely on direct definition of the geometry in MOOSE.

5.3.1. Leveraging new capabilities from Netgen

While the meshing capabilities continue to grow in MOOSE, they are unlikely to be able to mesh general
CAD geometries to the standard required by CFD simulations in the near term. MOOSE is able to leverage
Netgen [42] for meshing arbitrary 3D regions using tetrahedral elements. As such, coarse tetrahedral meshes
of general CAD are likely within reach. With existing element type conversion capabilities, and additional
mesh smoothing capabilities, this could be a new pathway to generating meshes for general geometries.

5.3.2. Polyhedral element support

LibMesh [18] supports hexahedral, pyramidal, prismatic, and tetrahedral 3D elements. In CFD, polyhedras
are also commonly used because of their capability for generating good quality meshes for arbitrary geometries.
This meshing can be performed automatically, while meshing with hexahedral elements typically involves the
user defining which surface to start from for every volume, or at least which algorithm to use for every region.

23

The quality of the simulations with polyhedral elements should be similar to using hexahedral meshes, but the
simplification in the meshing workflow would be considerable. Adding support for polyhedral elements in
libMesh would mean creating a new element class, as well as implementing many helper routines, quadrature
rules and shape functions for these new elements. Once polyhedral elements are supported in libMesh, at
least sufficiently for finite volume calculations, the next step should be to create readers for polyhedral mesh
formats. This will enable reading polyhedral meshes created by external meshing software, notably from
StarCCM+. While the Exodus format, commonly used in MOOSE, has been extended to support polyhedral
elements, it is not commonly used by commercial tools. Several tools such as meshlO and ParaView offer
format conversion options, so supporting a single additional format would likely be sufficient.

24

6. GEOMETRY AND PHYSICS ABSTRACTION FOR COMPONENTS

6.1. Abstract Component design

The Components system in MOOSE’s Thermal Hydraulics module (THM) [12] allows users to conve-
niently build simulations composed of multiple pieces. For example, large reactor systems are composed of a
network of pipes and reactor components and feature a variety of physical domains to model accurately. Each
Component in THM may do one or more of the following, for example:

e Create a mesh (1D, 2D, or 3D).
* Add equations, source terms, and/or boundary conditions.

* Couple Components using interface terms.

Originally, the Components system in THM was designed to support only its own flow model, but it has since
been sufficiently abstracted to allow applications to use the system with various models, whether they be flow
models or some other physics. The abstraction is achieved using a generic Component class hierarchy that
allows application developers to plug their own mesh and physics into Components. Figure 15 shows the
hierarchy of Component base classes, which are all agnostic of physics.

Component

GeometricalComponent‘ ‘ComponentlDConnection

‘GeneratedMeshComponent‘ ‘FileMeshComponent‘ ‘ComponentlDBoundary“ComponentlDJunction

‘ComponentlD“ComponentQD“FileMeshPhysicsComponent‘

Figure 15. THM Component base class hierarchy.

These base classes are summarized as follows:

* Component: The base class of all Components.

* GeometricalComponent: The base class of all Components that have a 1D, 2D, or 3D mesh.
* GeneratedMeshComponent: The base class of all Components that generate their own mesh.
* Component1D: The base class of all Components that generate their own 1D mesh.

* Component2D: The base class of all Components that generate their own 2D mesh.

* FileMeshComponent: The base class of all Components that provide their mesh via a file.

* FileMeshPhysicsComponent: The base class of all Components that provide their mesh via a file
and provide their physics via a Physics object (discussed later in this section).

25

* Componentl1DConnection: The base class of all Components that connect to end(s) of one or more
1D Components.

* Component1DBoundary: The base class of all Components that connect to one end of a 1D Component.

* ComponentiDJunction: The base class of all Components that connect to ends of two or more 1D
Components.

Thus Components are organized by their geometrical relationship. There are options for both generating
meshes and using existing meshes via files. With the exception of FileMeshPhysicsComponent, the classes
listed here do not supply any physics. Physics can either be supplied external to the Components system, or
one may inherit from one of these classes and add physics.

6.2. The Physics system

The Physics system, presented in [43] generally and [2] for Molten Salt Reactors physics, was designed
to standardize the definition of equations, for every module and for both the regular MOOSE input syntax and
the Component syntax. It is derived from the Action system. It has been widely deployed in the framework
and tested in thermal-hydraulic models on the Virtual Test Bed [36].

Physics can be defined in a regular MOOSE simulation to replace the traditional Variables, Kernels,
and BoundaryConditions objects. They can also be used in conjunction with aFileMeshPhysicsComponent
to add an equation to be solved on a component geometrically defined by an external mesh file. The Physics
available are shown in Table 8.

Table 8. Summary of Physics implemented in MOOSE and different MOOSE modules and applications.

Physics Status Notes
MOOSE
Finite volume diffusion available
Continuous Galerkin finite element (CGFE) diffusion available
Multi-species CGFE diffusion available
CGFE heat conduction available —
Finite volume heat conduction available
Single-species trapping pull request to TMAP8
Single-species migration pull request to TMAPS
Navier Stokes with FVM
Flow (mass and momentum equations) available Newton’s method only
energy conservation available Newton’s method only
scalar quantity conservation available Newton’s method only
turbulence k — € available Newton’s method only
Solid Mechanics
Quasi-Static equations available syntax only
Dynamics equations available syntax only
Line Element quasi-static available syntax only
Cohesize Zone Model available syntax only

A notable absence from this list are flow models for thermal hydraulics. Using the Physics abstraction
for flow models should be a priority for the upcoming fiscal year.

26

7. CONCLUSIONS

This work presents performance- and robustness-related improvements to the MOOSE-based thermal-
hydraulics solvers along with meshing and component abstraction-related efforts.

The improved assembly algorithm resulted in a roughly 10x speedup in computational time in the
segregated solution routines in MOOSE’s Navier-Stokes module. Even though the achieved speedup is
significant compared to previous implementations, the algorithm is still slower than other commercial and
open-source tools. The gap between these tools can be closed by several improvements, like assembling only
one momentum matrix for the three momentum components. Nevertheless, this improvement clears the path
towards using MOOSE for the engineering of Molten Salt Reactors (MSRs) which need higher-resolution
velocity fields for accurately capturing corrosion effects and hot spots.

We presented two preconditioning techniques that can be applied to the monolithic solution algorithm
with the finite volume method to reduce execution time and memory consumption. Both rely on the Schur
complement-based field split preconditioner provided by PETSc. The first uses the pressure diagonal matrix as
a preconditioner with a Successive Over-Relaxation algorithm. The second uses a HPDDM-based algorithm
on the action of the full Schur complement. Both algorithms resulted in significant speedup in computation
time and reduction in memory usage. These can enable scalable runs for larger problems using Newton’s
method.

The pseudo-time marching algorithm showed promising results as well. Two of the three implemented
time step selection algorithms performed equally good or better than already existing time steppers in MOOSE
in terms of computation time and robustness. At the same time, we note that the pseudo-time continuation
seemed to exhibit sensitivity to the initial timestep size.

The improvements in meshing workflow involved the investigation on pathways to import meshes from
StarCCM+, which allows the quick generation of high-quality meshing for complex domains. This accelerates
the engineering workflows by saving time on model preparation. This is also an investment, considering that
future work involves adding support for polyhedral meshes which can be automatically generated using these
advanced tools.

The component abstraction in the Component system of the thermal-hydraulics module of MOOSE has
been completed, effectively separating the geometry- and physics-related functionalities. This enables long
term goals of having a common basis for multiple MOOSE-based thermal-hydraulics codes.

27

[1]

[4]

[10]
[11]
[12]

[13]

[14]

8. REFERENCES

S. Schunert, A. Lindsay, P. German, J. Hansel, G. Giudicelli, M. Tano, L. Zou, and R. Hu, “Development
plan for a common numerical layer for moose-based thermal-hydraulics codes (internal report),” tech.
rep., Idaho National Laboratory, 2023.

M. Tano, R. Freile, V. C. Leite, M. Li, J. Hansel, G. Giudicelli, and L. Charlot, “Advancing thermal-
hydraulic modeling capabilities for molten salt reactors in pronghorn,” Tech. Rep. INL/RPT-24-80305,
Idaho National Laboratory, 2024.

M. E. Tano Retamales, V. Kyriakopoulos, and S. Schunert, “Modeling of prismatic high temperature
reactors in pronghorn,” tech. rep., Idaho National Laboratory (INL), Idaho Falls, ID (United States),
2023.

P. Balestra, S. Schunert, R. W. Carlsen, A. J. Novak, M. D. DeHart, and R. C. Martineau, “Pbmr-400
benchmark solution of exercise 1 and 2 using the moose based applications: Mammoth, pronghorn,” in
EPJ Web of Conferences, vol. 247, p. 06020, EDP Sciences, 2021.

P. Wu, Y. Ma, C. Gao, W. Liu, J. Shan, Y. Huang, J. Wang, D. Zhang, and X. Ran, “Evaluating turbulence
modeling for thermal-hydraulics analysis of molten salt reactors,” Nuclear Engineering and Design,
vol. 368, p. 110767, 2020.

D. Yankura and M. Anderson, “Butterfly valve performance factors using the multiphysics object oriented
simulation environment,” Annals of Nuclear Energy, 2025.

G. Giudicelli, A. Lindsay, L. Harbour, C. Icenhour, M. Li, J. E. Hansel, P. German, P. Behne, O. Marin,
R. H. Stogner, J. M. Miller, D. Schwen, Y. Wang, L. Munday, S. Schunert, B. W. Spencer, D. Yushu,
A. Recuero, Z. M. Prince, M. Nezdyur, T. Hu, Y. Miao, Y. S. Jung, C. Matthews, A. Novak, B. Langley,
T. Truster, N. Nobre, B. Alger, D. Andr§, F. Kong, R. Carlsen, A. E. Slaughter, J. W. Peterson, D. Gaston,
and C. Permann, “3.0 - MOOSE: Enabling massively parallel multiphysics simulations,” SoftwareX,
vol. 26, p. 101690, 2024.

C. M. Rhie and W.-L. Chow, “Numerical study of the turbulent flow past an airfoil with trailing edge
separation,” AIAA journal, vol. 21, no. 11, pp. 1525-1532, 1983.

C. T. Kelley and D. E. Keyes, “Convergence analysis of pseudo-transient continuation,” SIAM Journal
on Numerical Analysis, vol. 35, no. 2, pp. 508-523, 1998.

Siemens Digital Industries Software, “Simcenter STAR-CCM+, version 2402,” Siemens 2024.
J. E. Matsson, An introduction to ansys fluent 2023. Sdc Publications, 2023.

J. Hansel, D. Andrs, L. Charlot, and G. Giudicelli, “The MOOSE thermal hydraulics module,” Journal
of Open Source Software, vol. 9, no. 94, p. 6146, 2024.

P. German, A. D. Lindsay, M. E. Tano Retamales, R. O. Freile, S. Schunert, and G. L. Giudicelli,
“Development of Segregated Thermal-Hydraulics Solvers in MOOSE,” tech. rep., Idaho National
Laboratory (INL), Idaho Falls, ID (United States), 2024.

A. Lindsay, G. Giudicelli, P. German, J. Peterson, Y. Wang, R. Freile, D. Andrs, P. Balestra, M. Tano,
R. Hu, et al., “Moose navier—stokes module,” SoftwareX, vol. 23, p. 101503, 2023.

28

[15] S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer
in three-dimensional parabolic flows,” in Numerical prediction of flow, heat transfer, turbulence and
combustion, pp. 54-73, Elsevier, 1983.

[16] H. Jasak, Error analysis and estimation for the finite volume method with applications to fluid flows.
PhD thesis, Imperial College London (University of London), 1996.

[17] F. Juretic, Error analysis in finite volume CFD. PhD thesis, Imperial College London (University of
London), 2005.

[18] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “1ibMesh: A C++ Library for Parallel
Adaptive Mesh Refinement/Coarsening Simulations,” Engineering with Computers, vol. 22, no. 3—4,
pp. 237-254, 2006. https://doi.org/10.1007/s00366-006-0049-3.

[19] A. Lindsay, R. Stogner, D. Gaston, D. Schwen, C. Matthews, W. Jiang, L. K. Aagesen, R. Carlsen,
F. Kong, A. Slaughter, et al., “Automatic differentiation in MetaPhysicL and its applications in MOOSE,”
Nuclear Technology, vol. 207, no. 7, pp. 905-922, 2021.

[20] T.D. Blacker, S. J. Owen, M. L. Staten, W. R. Quadros, B. Hanks, B. W. Clark, R. J. Meyers, C. Ernst,
K. Merkley, R. Morris, et al., “CUBIT geometry and mesh generation toolkit 15.1 user documentation,”
tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2016.

[21] J.P. Van Doormaal and G. D. Raithby, “Enhancements of the simple method for predicting incompressible
fluid flows,” Numerical heat transfer, vol. 7, no. 2, pp. 147-163, 1984.

[22] D. Walter, T. Cisnero, S. Goodrich, and Z. Mausolff, “Mcre design description in support of external
model development,” TerraPower (Dec. 27, 2022), 2023.

[23] R. I Issa, “Solution of the implicitly discretised fluid flow equations by operator-splitting,” Journal of
computational physics, vol. 62, no. 1, pp. 40-65, 1986.

[24] F. Nataf and P.-H. Tournier, “A geneo domain decomposition method for saddle point problems,” Comptes
Rendus. Mécanique, vol. 351, no. S1, pp. 667-684, 2023.

[25] Y. He and M. Olshanskii, “A preconditioner for the grad-div stabilized equal-order finite elements
discretizations of the oseen problem,” arXiv preprint arXiv:2407.07498, 2024.

[26] H. Elman, V. E. Howle, J. Shadid, D. Silvester, and R. Tuminaro, “Least squares preconditioners for
stabilized discretizations of the navier—stokes equations,” SIAM Journal on Scientific Computing, vol. 30,
no. 1, pp. 290-311, 2008.

[27] S.Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout,
W. Gropp, et al., “PETSc users manual,” 2019.

[28] M. Benzi and A. J. Wathen, “Some preconditioning techniques for saddle point problems,” Model order
reduction: theory, research aspects and applications, pp. 195-211, 2008.

[29] P. Ghysels, X. S. Li, C. Gorman, and F.-H. Rouet, “Strumpack: Scalable preconditioning using low-rank
approximations and random sampling,” SC’16, 2016.

[30] U. M. Yang et al., “Boomeramg: A parallel algebraic multigrid solver and preconditioner,” Applied
Numerical Mathematics, vol. 41, no. 1, pp. 155-177, 2002.

29

https://doi.org/10.1007/s00366-006-0049-3

[31] P.Jolivet, F. Hecht, F. Nataf, and C. Prud’Homme, “Scalable domain decomposition preconditioners for
heterogeneous elliptic problems,” in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pp. 1-11, 2013.

[32] X. He, C. Vuik, and C. Klaij, “Block-preconditioners for the incompressible Navier—Stokes equations
discretized by a finite volume method,” Journal of Numerical Mathematics, vol. 25, no. 2, pp. 89-105,
2017.

[33] H. M. Biicker, B. Pollul, and A. Rasch, “On CFL evolution strategies for implicit upwind methods
in linearized Euler equations,” International journal for numerical methods in fluids, vol. 59, no. 1,

pp. 1-18, 2009.

[34] M. Ceze and K. Fidkowski, “Pseudo-transient continuation, solution update methods, and CFL strate-
gies for DG discretizations of the RANS-SA equations,” in 21st AIAA computational fluid dynamics
conference, p. 2686, 2013.

[35] A. Abou-Jaoude, S. Harper, G. Giudicelli, P. Balestra, S. Schunert, N.Martin, A. Lindsay, and M. Tano,
“A Workflow Leveraging MOOSE Transient Multiphysics Simulations to Evaluate the Impact of Ther-

mophysical Property Uncertainties on Molten-Salt Reactors,” Annals of Nuclear Energy, vol. 163,
p. 108546, 2021.

[36] G. L. Giudicelli, A. Abou-Jaoude, A. J. Novak, A. Abdelhameed, P. Balestra, L. Charlot, J. Fang,
B. Feng, T. Folk, R. Freile, T. Freyman, D. Gaston, L. Harbour, T. Hua, W. Jiang, N. Martin, Y. Miao,
J. Miller, I. Naupa, D. O’Grady, D. Reger, E. Shemon, N. Stauff, M. Tano, S. Terlizzi, S. Walker, and
C. Permann, “The virtual test bed (VTB) repository: A library of reference reactor models using neams
tools,” Nuclear Science and Engineering, vol. 0, no. 0, pp. 1-17, 2023.

[37] E. Shemon, Y. Miao, S. Kumar, K. Mo, Y. S. Jung, A. Oaks, S. Richards, G. Giudicelli, L. Harbour,
and R. Stogner, “MOQOSE Reactor Module: An Open-Source Capability for Meshing Nuclear Reactor
Geometries,” Nuclear Science and Engineering, vol. 0, no. 0, pp. 1-25, 2023.

[38] M. E. Tano Retamales, A. Karahan, A. Novak, and S. Schunert, “Development of a subchannel capability
for liquid-metal fast reactors in pronghorn,” tech. rep., Idaho National Laboratory (INL), Idaho Falls, ID
(United States), 2022.

[39] INL, “MOOSE File Mesh Generator.” https://mooseframework.inl.gov/source/
meshgenerators/FileMeshGenerator.html. [Online; accessed 09-16-2024].

[40] A.Ribes and C. Caremoli, “Salome platform component model for numerical simulation,” in 31st annual
international computer software and applications conference (COMPSAC 2007), vol. 2, pp. 553-564,
1IEEE, 2007.

[41] C. Geuzaine and J.-F. Remacle, “Gmsh: a three-dimensional finite element mesh generator with built-in
pre-and post-processing facilities,” 2008.

[42] J. Schoberl, “NETGEN An advancing front 2D/3D-mesh generator based on abstract rules,” Computing
and Visualization in Science, vol. 1, pp. 41-52, 1997.

[43] A. Lindsay, R. Stogner, G. Giudicelli, M. Li, L. Harbour, and C. Permann, “Increased accuracy of
multiphysics simulations through flexible execution, transient algorithms, and modular physics,” Tech.
Rep. INL/RPT-24-78792, Idaho National Laboratory, 2024.

30

https://mooseframework.inl.gov/source/meshgenerators/FileMeshGenerator.html
https://mooseframework.inl.gov/source/meshgenerators/FileMeshGenerator.html

	ABSTRACT
	SUMMARY
	ACKNOWLEDGMENTS
	ACRONYMS
	Introduction
	Improvement of segregated fluid dynamics solvers in moose
	The SIMPLE algorithm in MOOSE
	Limitations of the previous implementation
	Implementation details for the improved assembly algorithm
	Results
	Flow in a wavy pipe
	Flow in a molten salt reactor loop

	Future work

	Field Split Preconditioning for FVM-based fluid dynamics systems with Rhie-Chow interpolation
	Schur complement-based preconditioning
	Application of field split capabilities to finite volume problems
	Future work

	Improvement of solver robustness
	Approaches for time step selection
	Results

	Improvement of meshing workflow
	Native meshing capabilities in MOOSE
	Importing meshes generated by third-party software
	Future work
	Leveraging new capabilities from Netgen
	Polyhedral element support

	Geometry and Physics Abstraction for Components
	Abstract Component design
	The Physics system

	Conclusions
	References

