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Abstract—Several works have been documented in the litera-
ture to study the societal effect of power outages and to analyze
their correlation with the Social Vulnerability Index (SVI).
However, the relationship between National Risk Index (NRI) and
power outages is yet to be explored. This work analyzes the NRI
indices such as Risk, Expected Annual Loss, Social Vulnerability,
and Community Resilience with several resilience metrics such
as event duration, impact duration, recovery duration, impact
level, impact rate, recovery rate, recovery to impact ratio, and
area under the outage curves to see the correlation of NRI
indices with the resilience metrics. The results show that NRI
indices such as Risk and Expected Annual Loss increase with
the increase of event duration, impact duration, and recovery
duration. All Other metrics are indifferent to the change in
the Risk and EAL ratings. The results also show that there is
no strong relationship between all the metrics and community
resilience and social vulnerability. This work also performed the
sensitivity analysis of the extreme event selection process. This
sensitivity analysis reveals that the way of identifying extreme
events has a significant impact on the evaluation of the events.

Index Terms—EAGLE-I, power outage, National Risk Indices,
and resilience metrics

I. INTRODUCTION

Extreme weather events have been causing significant dis-
ruptions in the power grid system, resulting in widespread
power outages and severe infrastructure (e.g., substations,
transmission and distribution lines, and generation plants)
damage, leading to interruptions in critical services (e.g.,
health care, transportation, and national security), severe eco-
nomic losses, and adverse effects on the well being of commu-
nities [1]–[4]. Every year, major power outage events result in
billions of dollars in losses (25 to 70 billion [5]) to the United
States economy. Therefore, analysis of the social, economic,
and technical impacts on communities and different regions
by extreme weather events is important to strengthen and
develop grid resilience while taking the appropriate emer-
gency response. This also aligns with the Department of
Energy’s (DOE) recent 3.5 Billion dollar announcement for
improving the electric grid resilience and reliability against
extreme weather events and climate change across the United
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States as a part of Grid Resilience and Innovation Partnership
program [6]. The GRIP projects aim to build community cli-
mate resilience by tackling energy reliability and affordability
impacted by extreme weather events and climate change.

To analyze the effect of these major events, the DOE collects
power outage data for major power system events [7]. DOE
mandates that the utility companies in the United States submit
their major power outage information, which DOE publishes
in the OE-417 report. Major events are those that cause power
outages above 50,000 customers or 300 MW of power demand
disruption. Using DOE’s major event information, several
analyses have been documented in the literature. For example,
[8], [9] studied the effect of these events on power delivery in
the United States.

In addition to technical analysis of power outages, studying
the relations between National Risk Index (NRI) and power
outages is important as strong correlations between these two
could indicate that counties with higher NRI may also be
more prone to longer power outages. Such insights are im-
portant for revealing disproportionate burdens and informing
policy decisions regarding infrastructure investment, disaster
preparedness, and energy policy, ensuring that they address
the needs of the most natural hazards prone populations.
Some recent works has performed the analysis of power
outages and social aspects. For example, work presented in
[10] performs socioeconomic vulnerability impact analysis of
selected weather-related power outages. The social vulnera-
bility of power outages has been studied in [11]. However,
the relationship between the NRI and the power outage is
yet to be explored. The NRI covers community resilience
and expected annual loss beyond the social vulnerability.
Therefore, the relationship between NRI and power outages
reveals several aspect of a community and county which
may not not be explicitly revealed when considering social
vulnerability analysis of the power outages.

In this work, we perform a detailed analysis of power
outages and the National Risk Index (NRI) nationwide at
county-level resolution. We also performed the sensitivity
analysis of the threshold used to identify if a power outage
is caused by an extreme event. First, we chooses different
percentage of customer impacted as a threshold to identify
if an event is caused by an extreme event. Based on the
sensitivity analysis of the threshold, we picked a suitable
threshold to distinguish the outages caused by the extreme
events. Then, we have evaluated the resilience of these outages
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using the evaluation metrics such as event duration, impact
duration, recovery duration, impact level, recovery rate, impact
rate, recovery to impact ratio, and area under the curve. Finally,
the relationship between these evaluation metrics and the
NRI indices such as Risk, Expected annual loss, community
resilience, and social vulnerability is examined.

The rest of this paper is presented as follows. Section II
provides the overview of the data source and data process-
ing. Section III elucidates power system resilience evaluation
metrics and threshold computation. The results and discussion
of the proposed work are provided in IV. The paper culmi-
nates with section V which provides concluding remarks and
insights developed from this work.

II. DATA SOURCE AND DATA PROCESSING

This section provides the source of the data and demon-
strates data processing for the proposed work. In this work,
we use power outage data from the Environment for Analysis
of Geo-Located Energy Information (EAGLE-I) platform and
NRI data from the Federal Emergency Management system.

A. Power Outage Data: EAGLE-I Data

This work leverages the publicly available power outage
data for the United States obtained from the Oak Ridge
National Laboratory EAGLE-I platform1. EAGLE-I is an
interactive geographic information system that allows users to
view and map the nation’s energy infrastructure and obtain
near real-time information updates concerning the electric,
petroleum, and natural gas sectors within one visualization
platform. The EAGLE-I platform has been collecting county-
level power outage datasets based-on voluntary participation
from the United States power grid since 2014. EAGLE-I
datasets are available for academic research. Because data are
more complete from 2018, we use 2018–2022 EAGLE-I data
for our analysis. EAGLE-I datasets are collected based on
the voluntary participation of utility companies in the United
States. The participation of electric utilities has been increasing
over the years, making the dataset more reliable and useful.
Figure 1 shows the state-wide average coverage ratio. The
coverage ratio (ratio between the total number of electric
customers who share data to the total number of electric
customers) of the EAGLE-I dataset is 0.875.

Figure 2 shows the monthly number of customers affected
by power outages (from any cause—weather, operation, cyber,
etc.) in the United States from 2018–2022. (Although EAGLE-
I started data collection in 2014, data for some states were not
available until 2017; therefore, we analyze only the 2018–
2022 dataset, complete 2023 data were still not available
during this work as well). This figure shows that a maximum
number of cumulative power outages occurred in August,
followed by September and October. The possible reason for
this trend could be that the outages coincide with tropical
storms, thunderstorms, and heat waves. This trend could also
be the result of more industry demand (as businesses ramp

1https://eagle-i.doe.gov/
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Fig. 1. Average coverage ratio (2018–2022) for different states.
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Fig. 2. Number of customers affected by power outages in the United States
from 2018–2022 by month.

up after summer breaks), pushing the infrastructure capacity
limits toward or above the limit boundary.

Figure 3 shows the yearly number of customers affected by
power outages in the United States by state from 2018–2022.
The figure shows that the maximum number of cumulative
power outages occur in Texas, followed by California and
Louisiana. A possible explanation for the maximum number
of outages in Texas and California could be the significant
number of weather events, power grids running near to or
above their capacities, and these states being significantly more
populous states (more population means more customers could
be affected).

Although the number of customers affected by power out-
ages has changed over the years, drawing conclusions with
limited data obtained from scraping utility websites would be
premature. Therefore, more data will be required to draw a
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Fig. 3. Number of customers affected by power outages by state from 2018–
2022.



concrete conclusion.

B. National Risk Index (NRI) Data

The National Risk Index (NRI) data are obtained from the
Federal Emergency Management Agency2. A brief overview
of the National Risk Index and its relevant terms is provided
as follows [12].

a) Risk: Risk has been defined as the probability of an
event happening multiplied by the expected consequence if the
event happens as shown by Eq. (1). Risk in the NRI has three
components: a natural hazard risk component, a consequence-
enhancing component, and a consequence reduction compo-
nent. Expected annual loss (EAL) accounts for the natural
hazard risk component.

Risk = Expected Annual Loss × Community Risk Factor
(1)

Community Risk Factor = f(
Social Vulnerability

Community Resilience
) (2)

b) Expected Annual Loss (EAL): Expected Annual Loss
(EAL) is average annual economic loss due to natural hazards
each year. EAL is calculated for each type of the hazard for
its consequences (e.g. building, population, and/or agriculture)
each year. EAL is only calculated for relevant quantity. For
example, loss due to draught is relevant for agriculture. For
details on calculation of EAL, please refer to [12].

c) Social Vulnerability: NRI leverages the Social Vulner-
ability Index (SVI) data from the Center for Disease Control
and Prevention/Agency for Toxic Substances and Disease Reg-
istry (CDC/ATSDR) SVI [13]. The CDC/ATSDR has defined
social vulnerability as “Community’s ability to prevent human
suffering and financial loss in the event of disaster.” The main
purpose of the SVI is to help communities better prepare
before, during, and after hazardous events (extreme weather
events, disease outbreaks, and chemical exposure). It pro-
vides community-specific and spatially relevant information
to health officers and emergency responders.

d) Community Resilience: NRI has adopted the defini-
tion of the community resilience from National Institute of
Standards and Technology (NIST). NIST defines the commu-
nity resilience as the ability of a community to prepare for
anticipated natural hazards, adapt to changing conditions, and
withstand and recover rapidly from disruptions3. In National
Risk Index, Community Resilience is the consequence reduc-
tion risk factor and represents the relative level of community
resilience in comparison to all other communities at the same
level.

In this work, we have used Risk rating, EAL rating, Social
vulnerability rating, and Community resilience rating of NRI
for our analysis. These rating range from 0− 100.

2https://www.fema.gov/flood-maps/products-tools/national-risk-index
3https://www.nist.gov/community-resilience

III. EVALUATION METHOD FOR POWER OUTAGES

This section provides overview of power outage evaluation
method. Specifically, evaluation metrics for the evaluation
of resilience of the power system of the United States is
discussed in this section. It also discusses the threshold used
to distinguish a certain event as an extreme event.
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Fig. 4. Power outage curve of an extreme event. Lower threshold is taken
as 5% and the higher threshold is taken as 25% in this plot. Please refer to
section III-A for details on the evaluation metrics.

A. Evaluation Metrics

Evaluation metrics such as provided by [3] are used for
evaluation of the resilience of the power system of the United
States. We have also leveraged the area under the curve (AUC)
developed in our previous work [14] to account the duration of
the power outage and the customer impacted together. Please
refer to Fig. 4 to visualize some of these metrics in an outage
curve. These metrics are computed only of the extreme events
obtained based-on the threshold calculated as described in
III-B. Note that all of these metrics are quantified based-on
the lower threshold as the baseline customer outage level.

• Event Duration (Te): Time between the start (based on the
lower threshold) and end of an extreme event as shown
in Fig. 4.

• Impact Duration (Ti): Time between the start of an event
and time when it impacts maximum number of customers
as shown in Fig. 4.

• Recovery Duration (Tr): Time between when an even
impacts maximum number of customers and end of the
event as shown in Fig. 4.

• Impact Level (IL): Maximum number of customer im-
pacted due to an extreme event as shown in Fig. 4.

• Recovery Rate (Rr): This is the ratio of the Impact level
to the Recovery duration.

• Impact Rate (Ri): This is the ratio between the impact
level to the impact duration.

• Recovery/Impact Ratio (Rri): This is the ratio between
the recovery duration to the impact duration.

• Area Under the Curve (AUC): Area under the power
outage curve, it includes both the number of customers



impact and the duration of the outages due to an extreme
event as shown in Fig. 4.

B. Threshold Computation

Before evaluating the resilience of power outages, it is
necessary to distinguish if the outage is caused by an extreme
event using a certain threshold. This is because generally
the power system resilience is considered to account for
longer outage duration of widespread nature caused by the
extreme events such as hurricane, tornado’s, flooding, and
cyber-attack. Although clearly not distinguished, this work
assumes to considers the power outages cause by extreme
weather events. If we do not consider a threshold, there can
be many insignificant events which are not worth investigating
from the available resource prospective at least at the national
scale.

The threshold calculation follows similar procedure as that
of [3]. There are two thresholds in this process, the high
threshold is to identify if an outage is related to an extreme
event and the lower threshold to make a baseline for evaluation
metrics calculation. Figure 4 shows these thresholds in a power
outage curve.

Similar to [3], we started the threshold computation by
taking 25% of total customer outages as the higher threshold
to distinguish if an event is an extreme event and 5% of the
total customer outages as the lower threshold as a baseline
to calculate the evaluation metrics. One of the problems with
this way of calculating the threshold is that in some counties
(e.g. Harris counties in Texas), it ignores more than 50, 000
customers because the 25% of total customers is more than
50, 000 customers outage in those counties. Note that DOE
(OE-416) considers more than 50, 000 customers impact for
more than 1 hours as a major event. To incorporate the (OE-
416) criteria of 50, 000 customers impact and improve the
limitation of [3], we have modified 25% of the customers
outage to 50, 000 or 25% as threshold to identify an extreme
event. The lower threshold is also modified to 20% of the
higher threshold to account for the change in criteria of the
high threshold calculation.

The sensitivity analysis of the threshold is necessary to
know if the selected threshold is accurately capturing the
extreme events. The sensitivity of this way of calculating the
threshold is evaluated below.

1) Sensitivity of Threshold: We perform the sensitivity
analysis of the high threshold by varying it (a threshold that
determines whether an outage is due to an extreme event) from
5% to 25%. The variation of the number of extreme events
due to variation of high threshold value is as shown in Fig. 5.
Figure 5 shows that the number of event is significantly high
when the high threshold is 5% (which is also a low threshold)
as compared to 10%, 15%, 20%, or 25%. The change of
number of event is not much from 15−25%. From Fig. 5, we
can say that the threshold value somewhere between 15−20%
would be a good balance between not ignoring the resilience
events as minor events and not including small event as large
events. The average of the metrics obtained by varying the
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Fig. 5. Number of events in different years varies as higher threshold for
event detection ranges from 5% to 25% of total customer impacted.

Fig. 6. Impact level as threshold varies from 5% to 25% of total customers
impacted for some of the FIPS.

threshold per Federal information processing standard (FIPS)
for 2018-2022 is calculated. The event duration and impact
level metrics with variation of the threshold is as shown in
Fig. 6 and Fig. 7. These curves can be interpreted as follows.
For event duration, if the event duration is monotonically
increasing, then we are not loosing the important events; if
event duration is flattening after a certain threshold, the good
threshold would be one where the flattening starts, and if the
curve tend to decrease at a certain threshold point, then it
means we are loosing potentially significant events that have a
longer outage duration. Further details of the threshold analysis
is not provided here and is left for our future research.

To be more conservative about the size of the event, we
are using 15% or 30, 000 customers impacted as the high
threshold to identify the extreme events for our analysis. The
lower threshold is still the 5% of total customer or 10, 000
customers impacted (20% of 50, 000).

Note that since we are analyzing the threshold to distinguish
the outages due to extreme events, it needs to have weather
magnitude on it to compute threshold more accurately. Some
of it has been explored in our previous work [14]. However,



Fig. 7. Event duration as threshold varies from 5% to 25% of total customers
impacted for some of the FIPS.

it needs further investigation and is left as future research.

IV. RESULTS AND DISCUSSION

This section provide the correlation analysis of the power
outages and the various NRI indices.

A. Power Outage vs Risk

The power outage events captured with 15% of customers
impacted as high threshold is plotted against the Risk rating
as shown in Fig. 8. Figure 8 shows that there is positive
correlation between the risk rating and the impact duration,
event duration, and recovery duration. In other words, in high
risk areas if there is a power outage event, it takes longer time
to reach the time at which maximum number of customer are
impacted (impact duration); similarly, it takes longer duration
to recover the impacted customers; and therefore, resulting
longer event duration as well. However, Risk rating seems
(not all metrics are shown in Fig. 8, only AUC is shown) to
be indifferent against other metrics (AUC, impact level, impact
rate, recovery rate, recovery to impact ratio).

B. Power Outage vs Expected Annual Loss

The power outage events is plotted against the Expected
Annual Loss rating as shown in Fig. 9. Figure 9 shows that
there is positive correlation between the EAL rating and the
impact duration, event duration, and recovery duration. In
other words, for areas with high expected annual loss due
to natural hazards, the impact duration, event duration, and
recovery duration are high as well. However, Risk rating seems
(not all metrics are shown in Fig. 9, only recovery rate is
shown) to be indifferent against other metrics (AUC, impact
level, impact rate, recovery rate, recovery to impact ratio).

C. Power Outage vs Social Vulnerability

The results for different resilience metrics of the power out-
age events against the Social Vulnerability rating are presented
in Fig. 10. Figure 10 shows that there is no clear correlation
between the Social Vulnerability rating and the resilience

Fig. 8. Correlation of power outage Vs Risk Rating. Only Impact duration,
Event duration, Recovery duration, and Area under the curve are shown.

Fig. 9. Correlation of power outage Vs EAL Rating. Only Impact duration,
Event duration, Recovery duration, and Recovery rate are shown.

metrics. This shows power outage is indifferent to the Social
Vulnerability rating. Although only the Impact duration, Event
duration, Impact rate, and recovery impact ratio are shown
in Fig. 10, other metrics are also indifferent to the Social
Vulnerability rating.

D. Power Outage vs Community Resilience

The evaluated resilience metrics of power outage events of
the United States are plotted against the community resilience
rating and are shown in Fig. 11. Figure 11 shows that there
is no clear correlation between the community resilience
rating and the resilience metrics. This shows power outage
is indifferent to the community resilience rating. Although
only the Impact duration, Event duration, Recovery duration,
and Impact level are shown in Fig. 11, other metrics are also
indifferent to the community resilience rating.

V. CONCLUSION

This work studied how power outages are related to the
National Risk Index (NRI). In this work, the NRI indices



Fig. 10. Correlation of power outage Vs Social Vulnerability Rating. Only
Impact duration, Event duration, Recovery duration, and Impact level are
shown.

Fig. 11. Correlation of power outage Vs Community Resilience Rating. Only
Impact duration, Event duration, Recovery duration, and Impact level are
shown.

such as Risk, Expected Annual Loss, Social Vulnerability, and
Community Resilience were analyzed with several resilience
evaluation metrics such as event duration, impact duration,
recovery duration, impact level, impact rate, recovery rate,
recovery to impact ratio, and area under the outage curves
to examine the correlation of NRI indices with the resilience
metrics. The results showed that NRI indices such as Risk and
Expected Annual Loss increased with the increase of event
duration, impact duration, and recovery duration. All other
metrics were indifferent with the change of the the Risk and
EAL ratings. The results also showed that there was no strong
relationship between all the metrics and community resilience
and the social vulnerability. Since Risk is a function of EAL
and the latter two components, the correlation between outages
and Risk may be driven primarily by the risk of natural hazard
exposure (i.e., EAL alone).

Our results are indicative of the interpretability, limitations,

and implications for use of SVI and community resilience
indices in energy policy, infrastructure investment, and re-
silience planning. Due to complex social-technical interac-
tions, a county’s social vulnerability can be counteracted by
the ability to adapt and recover (i.e., resilience), while it
still faces human burdens and susceptibility to weather-related
outages that such indices may not entirely capture [15], [16].
These findings highlight the research need to better capture the
relationships between hazards, outages, and community im-
pacts, particularly in respect to community resilience relative
to the duration of weather events and outages. Further work
can also explore whether correlations arise using different
spatial scales, geographical subsets, and alternative metrics for
social vulnerability and community resilience that are more
closely related to power outages due to natural hazards.
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