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CHAPTER

ONE

INTRODUCTION

High-performance computing relies on ever finer threading. Advances in processor technology include ever greater
numbers of cores, hyperthreading, accelerators with integrated blocks of cores, and special vectorized instructions,
all of which require more software parallelism to achieve peak performance. Traditional visualization solutions
cannot support this extreme level of concurrency. Extreme scale systems require a new programming model and
a fundamental change in how we design algorithms. To address these issues we created VTK-m: the visualization
toolkit for multi-/many-core architectures.
VTK-m supports a number of algorithms and the ability to design further algorithms through a top-down design
with an emphasis on extreme parallelism. VTK-m also provides support for finding and building links across
topologies, making it possible to perform operations that determine manifold surfaces, interpolate generated
values, and find adjacencies. Although VTK-m provides a simplified high-level interface for programming, its
template-based code removes the overhead of abstraction.
VTK-m simplifies the development of parallel scientific visualization algorithms by providing a framework of
supporting functionality that allows developers to focus on visualization operations. Consider the listings in
Figure 1.1 that compares the size of the implementation for the Marching Cubes algorithm in VTK-m with
the equivalent reference implementation in the CUDA software development kit. Because VTK-m internally
manages the parallel distribution of work and data, the VTK-m implementation is shorter and easier to maintain.
Additionally, VTK-m provides data abstractions not provided by other libraries that make code written in
VTK-m more versatile.

1.1 How to Use This Guide

This user’s guide is organized into 5 parts to help guide novice to advanced users and to provide a convenient
reference. Part I, Getting Started, provides a brief overview of using VTK-m. This part provides instructions
on building VTK-m and some simple examples of using VTK-m. Users new to VTK-m are well served to read
through Part I first to become acquainted with the basic concepts.
The remaining parts, which provide detailed documentation of increasing complexity, have chapters that do not
need to be read in detail. Readers will likely find it useful to skip to specific topics of interest.
Part II, Using VTK-m, dives deeper into the VTK-m library. It provides much more detail on the concepts
introduced in Part I and introduces new topics helpful to people who use VTK-m’s existing algorithms.
Part III, Developing Algorithms, documents how to use VTK-m’s framework to develop new or custom visual-
ization algorithms. In this part we dive into the inner workings of filters and introduce the concept of a worklet,
which is the base unit used to write a device-portable algorithm in VTK-m. Part III also documents many
supporting functions that are helpful in implementing visualization algorithms.



1.2. Conventions Used in This Guide

CUDA SDK VTK-m
431 LOC 265 LOC

Figure 1.1: Comparison of the Marching Cubes algorithm in VTK-m and the reference implementation in the
CUDA SDK. Implementations in VTK-m are simpler, shorter, more general, and easier to maintain. (Lines of
code (LOC) measurements come from cloc.)

Part IV, Advanced Development, explores in more detail how VTK-m manages memory and devices. This
information describes how to adapt VTK-m to custom data structures and new devices.
Part V, Core Development, exposes the inner workings of VTK-m. These concepts allow you to design new
algorithmic structures not already available in VTK-m.

1.2 Conventions Used in This Guide

When documenting the VTK-m API, the following conventions are used.

• Filenames are printed in a sans serif font.

• C++ code is printed in a monospace font.

• Macros and namespaces from VTK-m are printed in red.
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• Identifiers from VTK-m are printed in blue.

• Signatures, described in Chapter 17, and the tags used in them are printed in green.

This guide provides actual code samples throughout its discussions to demonstrate their use. These examples
are all valid code that can be compiled and used although it is often the case that code snippets are provided.
In such cases, the code must be placed in a larger context.

In this guide we periodically use these Did you know? boxes to provide additional information related to
the topic at hand.

Did you know?

Common Errors blocks are used to highlight some of the common problems or complications you might
encounter when dealing with the topic of discussion.

Common Errors
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CHAPTER

TWO

BUILD AND INSTALL VTK-M

Before we begin describing how to develop with VTK-m, we have a brief overview of how to build VTK-m,
optionally install it on your system, and start your own programs that use VTK-m.

2.1 Getting VTK-m

VTK-m is an open source software product where the code is made freely available. To get the latest released
version of VTK-m, go to the VTK-m releases page:

https://gitlab.kitware.com/vtk/vtk-m/-/releases

From there with your favorite browser you may download the source code from any of the recent VTK-m releases
in a variety of different archive files such as zip or tar gzip.
For access to the most recent work, the VTK-m development team provides public anonymous read access to
their main source code repository. The main VTK-m repository on a GitLab instance hosted at Kitware, Inc.
The repository can be browsed from its project web page:

https://gitlab.kitware.com/vtk/vtk-m

We leave access to the git hosted repository as an exercise for the user. Those interested in git access for the
purpose of contributing to VTK-m should consult the CONTRIBUTING guidelines documented in the source
code.1

2.2 Configure VTK-m

VTK-m uses a cross-platform configuration tool named CMake to simplify the configuration and building across
many supported platforms. CMake is available from many package distribution systems and can also be down-
loaded for many platforms from http://cmake.org.
Most distributions of CMake come with a convenient GUI application (cmake-gui) that allows you to browse
all of the available configuration variables and run the configuration. Many distributions also come with an
alternative terminal-based version (ccmake), which is helpful when accessing remote systems where creating GUI
windows is difficult.

1https://gitlab.kitware.com/vtk/vtk-m/blob/master/CONTRIBUTING.md

https://gitlab.kitware.com/vtk/vtk-m/-/releases
https://gitlab.kitware.com/vtk/vtk-m
http://cmake.org
https://gitlab.kitware.com/vtk/vtk-m/blob/master/CONTRIBUTING.md
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One helpful feature of CMake is that it allows you to establish a build directory separate from the source directory,
and the VTK-m project requires that separation. Thus, when you run CMake for the first time, you want to set
the build directory to a new empty directory and the source to the downloaded or cloned files. The following
example shows the steps for the case where the VTK-m source is cloned from the git repository. (If you extracted
files from an archive downloaded from the VTK-m web page, the instructions are the same from the second line
down.)

Example 2.1: Running CMake on downloaded VTK-m source (Unix commands).
1 tar xvzf ˜/ Downloads /vtk -m-v2.2.0. tar.gz
2 mkdir vtkm - build
3 cd vtkm - build
4 cmake -gui ../ vtk -m-v2.2.0

Figure 2.1: The CMake GUI configuring the VTK-m project. At left is the initial blank configuration. At right
is the state after a configure pass.

The first time the CMake GUI runs, it initially comes up blank as shown at left in Figure 2.1. Verify that the
source and build directories are correct (located at the top of the GUI) and then click the “Configure” button
near the bottom. The first time you run configure, CMake brings up a dialog box asking what generator you
want for the project. This allows you to select what build system or IDE to use (e.g. make, ninja, Visual Studio).
Once you click “Finish,” CMake will perform its first configuration. Don’t worry if CMake gives an error about
an error in this first configuration process.

Most options in CMake can be reconfigured at any time, but not the compiler and build system used. These
must be set the first time configure is run and cannot be subsequently changed. If you want to change the
compiler or the project file types, you will need to delete everything in the build directory and start over.

Common Errors
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After the first configuration, the CMake GUI will provide several configuration options as shown in Figure 2.1
on the right. You now have a chance to modify the configuration of VTK-m, which allows you to modify both
the behavior of the compiled VTK-m code as well as find components on your system. Using the CMake GUI is
usually an iterative process where you set configuration options and re-run “Configure.” Each time you configure,
CMake might find new options, which are shown in red in the GUI.
It is often the case during this iterative configuration process that configuration errors occur. This can occur
after a new option is enabled but CMake does not automatically find the necessary libraries to make that feature
possible. For example, to enable TBB support, you may have to first enable building TBB, configure for TBB
support, and then tell CMake where the TBB include directories and libraries are.
Once you have set all desired configuration variables and resolved any CMake errors, click the “Generate”
button. This will create the build files (such as makefiles or project files depending on the generator chosen at
the beginning). You can then close the CMake GUI.
There are a great number of configuration parameters available when running CMake on VTK-m. The following
list contains the most common configuration parameters.

BUILD SHARED LIBS Determines whether static or shared libraries are built.

CMAKE BUILD TYPE Selects groups of compiler options from categories like Debug and Release. Debug
builds are, obviously, easier to debug, but they run much slower than Release builds. Use Release builds
whenever releasing production software or doing performance tests.

CMAKE INSTALL PREFIX The root directory to place files when building the install target.

VTKm ENABLE EXAMPLES The VTK-m repository comes with an examples directory. This macro deter-
mines whether they are built.

VTKm ENABLE BENCHMARKS If on, the VTK-m build includes several benchmark programs. The bench-
marks are regression tests for performance.

VTKm ENABLE CUDA Determines whether VTK-m is built to run on CUDA GPU devices.

VTKm CUDA Architecture Specifies what GPU architecture(s) to build CUDA for. The options include
native, fermi, kepler, maxwell, pascal, volta, and turing.

VTKm ENABLE KOKKOS Determines whether VTK-m is built using the Kokkos portable library. Kokkos,
(https://kokkos.github.io/kokkos-core-wiki/) can be configured to support several backends that
VTK-m can leverage.

VTKm ENABLE OPENMP Determines whether VTK-m is built to run on multi-core devices using OpenMP
pragmas provided by the C++ compiler.

VTKm ENABLE RENDERING Determines whether to build the rendering library.

VTKm ENABLE TBB Determines whether VTK-m is built to run on multi-core x86 devices using the Intel
Threading Building Blocks library.

VTKm ENABLE TESTING If on, the VTK-m build includes building many test programs. The VTK-m
source includes hundreds of regression tests to ensure quality during development.

VTKm ENABLE TUTORIALS If on, several small example programes used for the VTK-m tutorial are built.

VTKm USE 64BIT IDS If on, then VTK-m will be compiled to use 64-bit integers to index arrays and other
lists. If off, then VTK-m will use 32-bit integers. 32-bit integers take less memory but could cause failures
on larger data.

Chapter 2. Build and Install VTK-m 9
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VTKm USE DOUBLE PRECISION If on, then VTK-m will use double precision (64-bit) floating point num-
bers for calculations where the precision type is not otherwise specified. If off, then single precision (32-bit)
floating point numbers are used. Regardless of this setting, VTK-m’s templates will accept either type.

2.3 Building VTK-m

Once CMake successfully configures VTK-m and generates the files for the build system, you are ready to build
VTK-m. As stated earlier, CMake supports generating configuration files for several different types of build tools.
Make and ninja are common build tools, but CMake also supports building project files for several different types
of integrated development environments such as Microsoft Visual Studio and Apple XCode.
The VTK-m libraries and test files are compiled when the default build is invoked. For example, if Makefiles
were generated, the build is invoked by calling make in the build directory. Expanding on Example 2.1

Example 2.2: Using make to build VTK-m.
1 tar xvzf ˜/ Downloads /vtk -m-v2.2.0. tar.gz
2 mkdir vtkm - build
3 cd vtkm - build
4 cmake -gui ../ vtk -m-v2.2.0
5 make -j
6 make install

The Makefiles and other project files generated by CMake support parallel builds, which run multiple com-
pile steps simultaneously. On computers that have multiple processing cores (as do almost all modern
computers), this can significantly speed up the overall compile. Some build systems require a special flag to
engage parallel compiles. For example, make requires the -j flag to start parallel builds as demonstrated in
Example 2.2.

Did you know?

Example 2.2 assumes that a make build system was generated, which is the default on most system. How-
ever, CMake supports many more build systems, which use different commands to run the build. If you are
not sure what the appropriate build command is, you can run cmake --build to allow CMake to start the
build using whatever build system is being used.

Did you know?

CMake allows you to switch between several types of builds including default, Debug, and Release. Programs
and libraries compiled as release builds can run much faster than those from other types of builds. Thus,
it is important to perform Release builds of all software released for production or where runtime is a
concern. Some integrated development environments such as Microsoft Visual Studio allow you to specify
the different build types within the build system. But for other build programs, like make, you have to

Common Errors
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specify the build type in the CMAKE BUILD TYPE CMake configuration variable, which is described in
Section 2.2.

CMake creates several build “targets” that specify the group of things to build. The default target builds all
of VTK-m’s libraries as well as tests, examples, and benchmarks if enabled. The test target executes each of
the VTK-m regression tests and verifies they complete successfully on the system. The install target copies the
subset of files required to use VTK-m to a common installation directory. The install target may need to be run
as an administrator user if the installation directory is a system directory.

VTK-m contains a significant amount of regression tests. If you are not concerned with testing a build
on a given system, you can turn off building the testing, benchmarks, and examples using the CMake
configuration variables described in Section 2.2. This can shorten the VTK-m compile time.

Did you know?

2.4 Linking to VTK-m

Ultimately, the value of VTK-m is the ability to link it into external projects that you write. The header files and
libraries installed with VTK-m are typical, and thus you can link VTK-m into a software project using any type
of build system. However, VTK-m comes with several CMake configuration files that simplify linking VTK-m
into another project that is also managed by CMake. Thus, the documentation in this section is specifically for
finding and configuring VTK-m for CMake projects.
VTK-m can be configured from an external project using the find package CMake function. The behavior
and use of this function is well described in the CMake documentation. The first argument to find package
is the name of the package, which in this case is VTKm. CMake configures this package by looking for a file
named VTKmConfig.cmake, which will be located in the lib/cmake/vtkm-2.2 directory of the install or build of
VTK-m. The configurable CMake variable CMAKE PREFIX PATH can be set to to the build or install directory,
or VTKm DIR can be set to the directory that contains this file.

Example 2.3: Loading VTK-m configuration from an external CMake project.
1 find_package (VTKm REQUIRED )

The CMake find package function also supports several features not discussed here including specifying
a minimum or exact version of VTK-m and turning off some of the status messages. See the CMake
documentation for more details.

Did you know?

When you load the VTK-m package in CMake, several libraries are defined. Projects building with VTK-m
components should link against one or more of these libraries as appropriate, typically with the target link -
libraries command.

Example 2.4: Linking VTK-m code into an external program.
1 find_package (VTKm REQUIRED )

Chapter 2. Build and Install VTK-m 11
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2
3 add_executable ( myprog myprog .cxx)
4 target_link_libraries ( myprog vtkm_filter )

Several library targets are provided, but most projects will need to link in one or more of the following.

vtkm::cont Contains the base objects used to control VTK-m. This library must always be linked in.

vtkm::filter Contains VTK-m’s pre-built filters including but not limited to CellAverage, CleanGrid, Contour,
ExternalFaces, and PointAverage. Applications that are looking to use VTK-m filters will need to link to
this library. The filters are further broken up into several smaller library packages (such as vtkm::filter -
contour , vtkm::filter flow , vtkm::filter field transform , and many more. vtkm::filter is actually a
meta library that links all of these filter libraries to a CMake target.

vtkm::io Contains VTK-m’s facilities for interacting with files. For example, reading and writing png,
NetBPM, and VTK files.

vtkm::rendering Contains VTK-m’s rendering components. This library is only available if VTKm ENABLE -
RENDERING is set to true.

vtkm::source Contains VTK-m’s pre-built dataset generators including but not limited to Wavelet, Tangle,
and Oscillator. Most applications will not need to link to this library.

The “libraries” made available in the VTK-m do more than add a library to the linker line. These libraries
are actually defined as external targets that establish several compiler flags, like include file directories.
Many CMake packages require you to set up other target options to compile correctly, but for VTK-m it is
sufficient to simply link against the library.

Did you know?

Because the VTK-m CMake libraries do more than set the link line, correcting the link libraries can do more
than fix link problems. For example, if you are getting compile errors about not finding VTK-m header
files, then you probably need to link to one of VTK-m’s libraries to fix the problem rather than try to add
the include directories yourself.

Common Errors

The following is a list of all the CMake variables defined when the find package function completes.

VTKm FOUND Set to true if the VTK-m CMake package is successfully loaded. If find package was not
called with the REQUIRED option, then this variable should be checked before attempting to use VTK-m.

VTKm VERSION The version number of the loaded VTK-m package. The package also sets VTKm VER-
SION MAJOR, VTKm VERSION MINOR, and VTKm VERSION PATCH to get the individual compo-
nents of the version. There is also a VTKm VERSION FULL that is augmented with a partial git SHA to
identify snapshots in between releases.

VTKm ENABLE CUDA Set to true if VTK-m was compiled for CUDA.
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VTKm ENABLE Kokkos Set to true if VTK-m was compiled with Kokkos.

VTKm ENABLE OPENMP Set to true if VTK-m was compiled for OpenMP.

VTKm ENABLE TBB Set to true if VTK-m was compiled for TBB.

VTKm ENABLE RENDERING Set to true if the VTK-m rendering library was compiled.

VTKm ENABLE MPI Set to true if VTK-m was compiled with MPI support.

These package variables can be used to query whether optional components are supported before they are used
in your CMake configuration.

Example 2.5: Using an optional component of VTK-m.
1 find_package (VTKm REQUIRED )
2
3 if (NOT VTKm_ENABLE_RENDERING )
4 message ( SEND_ERROR "VTK -m must be built with rendering on .")
5 endif ()
6
7 add_executable ( myprog myprog .cxx)
8 target_link_libraries ( myprog vtkm_cont vtkm_rendering )
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CHAPTER

THREE

QUICK START

In this chapter we go through the steps to create a simple program that uses VTK-m. This “hello world” example
presents only the bare minimum of features available. The remainder of this book documents dives into much
greater detail.
We will call the example program we are building VTKmQuickStart. It will demonstrate reading data from a
file, processing the data with a filter, and rendering an image of the data. Readers who are less interested in an
explanation and are more interested in browsing some code can skip to Section 3.5 on page 17.

3.1 Initialize

The first step to using VTK-m is to initialize the library. Although initializing VTK-m is optional, it is recommend
to allow VTK-m to configure devices and logging. Initialization is done by calling the vtkm::cont::Initialize
function. The Initialize function is defined in the vtkm/cont/Initialize.h header file.
Initialize takes the argc and argv arguments that are passed to the main function of your program, find any
command line arguments relevant to VTK-m, and remove them from the list to make further command line
argument processing easier.

Example 3.1: Initializing VTK-m.
1 int main(int argc , char* argv [])
2 {
3 vtkm :: cont :: Initialize (argc , argv );

Initialize has many options to customize command line argument processing. See Chapter 6 for more details.

Don’t have access to argc and argv? No problem. You can call vtkm::cont::Initialize with no
arguments.

Did you know?

3.2 Reading a File

VTK-m comes with a simple I/O library that can read and write files in VTK legacy format. These files have a
“.vtk” extension.



3.3. Running a Filter

VTK legacy files can be read using the vtkm::io::VTKDataSetReader object, which is declared in the vtkm/io/-
VTKDataSetReader.h header file. The object is constructed with a string specifying the filename (which for this
example we will get from the command line). The data is then read in by calling the VTKDataSetReader::-
ReadDataSet method.

Example 3.2: Reading data from a VTK legacy file.
1 vtkm :: io :: VTKDataSetReader reader (argv [1]);
2 vtkm :: cont :: DataSet inData = reader . ReadDataSet ();

The ReadDataSet method returns the data in a vtkm::cont::DataSet object. The structure and features of a
DataSet object is described in Chapter 7. For the purposes of this quick start, we will treat DataSet as a mostly
opaque object that gets passed to and from operations in VTK-m.
More information about VTK-m’s file readers and writers can be found in Chapter 8.

3.3 Running a Filter

Algorithms in VTK-m are encapsulated in units called filters. A filter takes in a DataSet, processes it, and
returns a new DataSet. The returned DataSet often, but not always, contains data inherited from the source
data.
VTK-m comes with many filters, which are documented in Chapter 9. For this example, we will demonstrate
the use of the vtkm::filter::MeshQuality filter, which is defined in the vtkm/filter/MeshQuality.h header file.
The MeshQuality filter will compute for each cell in the input data will compute a quantity representing some
metric of the cell’s shape. Several metrics are available, and in this example we will find the area of each cell.
Like all filters, MeshQuality contains an Execute method that takes an input DataSet and produces an output
DataSet. It also has several methods used to set up the parameters of the execution. Section 9.1.9 provides
details on all the options of MeshQuality. Suffice it to say that in this example we instruct the filter to find the
area of each cell, which it will output to a field named “area.”

Example 3.3: Running a filter.
1 vtkm :: filter :: mesh_info :: MeshQuality cellArea ;
2 cellArea . SetMetric (vtkm :: filter :: mesh_info :: CellMetric :: Area );
3 vtkm :: cont :: DataSet outData = cellArea . Execute ( inData );

3.4 Rendering an Image

Although it is possible to leverage external rendering systems, VTK-m comes with its own self-contained image
rendering algorithms. These rendering classes are completely implemented with the parallel features provided
by VTK-m, so using rendering in VTK-m does not require any complex library dependencies.
Even a simple rendering scene requires setting up several parameters to establish what is to be featured in
the image including what data should be rendered, how that data should be represented, where objects should
be placed in space, and the qualities of the image to generate. Consequently, setting up rendering in VTK-m
involves many steps. Chapter 10 goes into much detail on the ways in which a rendering scene is specified. For
now, we just briefly present some boilerplate to achieve a simple rendering.

Example 3.4: Rendering data.
1 vtkm :: rendering :: Actor actor (
2 outData . GetCellSet (), outData . GetCoordinateSystem (), outData . GetField (" area "));
3
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4 vtkm :: rendering :: Scene scene ;
5 scene . AddActor ( actor );
6
7 vtkm :: rendering :: MapperRayTracer mapper ;
8
9 vtkm :: rendering :: CanvasRayTracer canvas (1280 , 1024);

10
11 vtkm :: rendering :: View3D view(scene , mapper , canvas );
12
13 view. Paint ();
14
15 view. SaveAs (" image .png ");

The first step in setting up a render is to create a scene. A scene comprises some number of actors, which
represent some data to be rendered in some location in space. In our case we only have one DataSet to render,
so we simply create a single actor and add it to a scene as shown in lines 1–5.
The second step in setting up a render is to create a view. The view comprises the aforementioned scene, a
mapper, which describes how the data are to be rendered, and a canvas, which holds the image buffer and other
rendering context. The view is created in line 11. The image generation is then performed by calling Paint on
the view object (line 13). However, the rendering done by VTK-m’s rendering classes is performed offscreen,
which means that the result does not appear on your computer’s monitor. The easiest way to see the image is
to save it to an image file using the SaveAs method (line 15).

3.5 The Full Example

Putting together the examples from Sections 3.1 to 3.4, here is a complete program for reading, processing, and
rendering data with VTK-m.

Example 3.5: Simple example of using VTK-m.
1 # include <vtkm/cont/ Initialize .h>
2
3 # include <vtkm/io/ VTKDataSetReader .h>
4
5 # include <vtkm/ filter / mesh_info / MeshQuality .h>
6
7 # include <vtkm/ rendering / Actor .h>
8 # include <vtkm/ rendering / CanvasRayTracer .h>
9 # include <vtkm/ rendering / MapperRayTracer .h>

10 # include <vtkm/ rendering / Scene .h>
11 # include <vtkm/ rendering / View3D .h>
12
13 int main(int argc , char* argv [])
14 {
15 vtkm :: cont :: Initialize (argc , argv );
16
17 if (argc != 2)
18 {
19 std :: cerr << " USAGE : " << argv [0] << " <file.vtk >" << std :: endl;
20 return 1;
21 }
22
23 // Read in a file specified in the first command line argument .
24 vtkm :: io :: VTKDataSetReader reader (argv [1]);
25 vtkm :: cont :: DataSet inData = reader . ReadDataSet ();
26
27 // Run the data through the elevation filter .
28 vtkm :: filter :: mesh_info :: MeshQuality cellArea ;
29 cellArea . SetMetric (vtkm :: filter :: mesh_info :: CellMetric :: Area );
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30 vtkm :: cont :: DataSet outData = cellArea . Execute ( inData );
31
32 // Render an image and write it out to a file.
33 vtkm :: rendering :: Actor actor (
34 outData . GetCellSet (), outData . GetCoordinateSystem (), outData . GetField (" area "));
35
36 vtkm :: rendering :: Scene scene ;
37 scene . AddActor ( actor );
38
39 vtkm :: rendering :: MapperRayTracer mapper ;
40
41 vtkm :: rendering :: CanvasRayTracer canvas (1280 , 1024);
42
43 vtkm :: rendering :: View3D view(scene , mapper , canvas );
44
45 view. Paint ();
46
47 view. SaveAs (" image .png ");
48
49 return 0;
50 }

3.6 Build Configuration

Now that we have the program listed in Example 3.5, we still need to compile it with the appropriate compilers
and flags. By far the easiest way to compile VTK-m code is to use CMake. CMake commands that can be used
to link code to VTK-m are discussed in Section 2.4. The following example provides a minimal CMakeLists.txt
required to build this program.

Example 3.6: CMakeLists.txt to build a program using VTK-m.
1 cmake_minimum_required ( VERSION 3.13)
2 project ( VTKmQuickStart CXX)
3
4 find_package (VTKm REQUIRED )
5
6 add_executable ( VTKmQuickStart VTKmQuickStart .cxx)
7 target_link_libraries ( VTKmQuickStart vtkm :: filter vtkm :: rendering )

The first two lines contain boilerplate for any CMakeLists.txt file. They all should declare the minimum CMake
version required (for backward compatibility) and have a project command to declare which languages are used.
The remainder of the commands find the VTK-m library, declare the program begin compiled, and link the
program to the VTK-m library. These steps are described in detail in Section 2.4.
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FOUR

BASE TYPES

It is common for a framework to define its own types. Even the C++ standard template library defines its own
base types like std::size t and std::pair. VTK-m is no exception.
In fact VTK-m provides a great many base types. It is the general coding standard of VTK-m to not directly use
the base C types like int and float and instead to use types declared in VTK-m. The rational is to precisely
declare the representation of each variable to prevent future trouble.
Consider that you are programming something and you need to declare an integer variable. You would declare
this variable as int, right? Well, maybe. In C++, the declaration int does not simply mean “an integer.” int
means something much more specific than that. If you were to look up the C++11 standard, you would find
that int is an integer represented in 32 bits with a two’s complement signed representation. In fact, a C++
compiler has no less than 8 standard integer types.1

So, int is nowhere near as general as the code might make it seem, and treating it as such could lead to trouble.
For example, consider the MPI standard, which, back in the 1990’s, implicitly selected int for its indexing
needs. Fast forward to today where there is a need to reference buffers with more than 2 billion elements, but
the standard is stuck with a data type that cannot represent sizes that big.2

Consequently, we feel that with VTK-m it is best to declare the intention of a variable with its declaration, which
should help both prevent errors and future proof code. All the types presented in this chapter are declared in
vtkm/Types.h, which is typically included either directly or indirectly by all source using VTK-m.

4.1 Floating Point Types

VTK-m declares 2 types to hold floating point numbers: vtkm::Float32 and vtkm::Float64. These, of course,
represent floating point numbers with 32-bits and 64-bits of precision, respectively. These should be used when
the precision of a floating point number is predetermined.
When the precision of a floating point number is not predetermined, operations usually have to be overloaded or
templated to work with multiple precisions. In cases where a precision must be set, but no particular precision
is specified, vtkm::FloatDefault should be used. vtkm::FloatDefault will be set to either vtkm::Float32
or vtkm::Float64 depending on whether the CMake option VTKM USE DOUBLE PRECISION was set when
VTK-m was compiled, as discussed in Section 2.2. Using vtkm::FloatDefault makes it easier for users to trade
off precision and speed.

1I intentionally use the phrase “no less than” for our pedantic readers. One could argue that char and bool are treated distinctly by
the compiler even if their representations match either signed char or unsigned char. Furthermore, many modern C++ compilers
have extensions for less universally accepted types like 128-bit integers.

2To be fair, it is possible to represent buffers this large in MPI, but it is extraordinarily awkward to do so.



4.2. Integer Types

4.2 Integer Types

The most common use of an integer in VTK-m is to index arrays. For this purpose, the vtkm::Id type should
be used. (The width of vtkm::Id is determined by the VTKm USE 64BIT IDS CMake option.)
VTK-m also has a secondary index type named vtkm::IdComponent, which is smaller and typically used for
indexing groups of components within a thread. For example, if you had an array of 3D points, you would use
vtkm::Id to reference each point, and you would use vtkm::IdComponent to reference the respective x, y, and
z components.

The VTK-m index types, vtkm::Id and vtkm::IdComponent use signed integers. This breaks with the
convention of other common index types like the C++ standard template library std::size t, which
use unsigned integers. Unsigned integers make sense for indices as a valid index is always 0 or greater.
However, doing things like iterating in a for loop backward, representing relative indices, and representing
invalid values is much easier with signed integers. Thus, VTK-m chooses to use a signed integer for
indexing.

Did you know?

VTK-m also has types to declare an integer of a specific width and sign. The types vtkm::Int8, vtkm::Int16,
vtkm::Int32, and vtkm::Int64 specify signed integers of 1, 2, 4, and 8 bytes, respectively. Likewise, the types
vtkm::UInt8, vtkm::UInt16, vtkm::UInt32, and vtkm::UInt64 specify unsigned integers of 1, 2, 4, and 8 bytes,
respectively.

4.3 Vector Types

Visualization algorithms also often require operations on short vectors. Arrays indexed in up to three dimensions
are common. Data are often defined in 2-space and 3-space, and transformations are typically done in homoge-
neous coordinates of length 4. To simplify these types of operations, VTK-m provides a collection of base types
to represent these short vectors, which are collectively referred to as Vec types.
vtkm::Vec2f, vtkm::Vec3f, and vtkm::Vec4f specify floating point Vecs of 2, 3, and 4 components, respectively.
The precision of the floating point numbers follows that of vtkm::FloatDefault (which, from what is said in
Section 4.1, is specified by the VTKm USE DOUBLE PRECISION compile option). Components of these and
other Vec types can be references through the [ ] operator, much like a C array. Vecs also support basic
arithmetic operators so that they can be used much like their scalar-value counterparts.

Example 4.1: Simple use of Vec objects.
1 vtkm :: Vec2f A(1); // A is (1, 1)
2 A[1] = 3; // A is (1, 3) now
3 vtkm :: Vec2f B = { 4, 5 }; // B is (4, 5)
4 vtkm :: Vec2f C = A + B; // C is (5, 8)
5 vtkm :: FloatDefault manhattanDistance = C[0] + C[1];

You can also specify the precision for each of these vector types by appending the bit size of each component.
For example, vtkm::Vec3f 32 and vtkm::Vec3f 64 represent 3-component floating point vectors with each
component being 32 bits and 64 bits respectively. Note that the precision number refers to the precision of each
component, not the vector as a whole. So vtkm::Vec3f 32 contains 3 32-bit (4-byte) floating point components,
which means the entire vtkm::Vec3f 32 requires 96 bits (12 bytes).
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To help with indexing 2-, 3-, and 4- dimensional arrays, VTK-m provides the types vtkm::Id2, vtkm::Id3,
and vtkm::Id4, which are Vecs of type vtkm::Id. Likewise, VTK-m provides vtkm::IdComponent2, vtkm::-
IdComponent3, and vtkm::IdComponent4.
VTK-m also provides types for Vecs of integers of all varieties described in Section 4.2. vtkm::Vec2i, vtkm::-
Vec3i, and vtkm::Vec4i are vectors of signed integers whereas vtkm::Vec2ui, vtkm::Vec3ui, and vtkm::-
Vec4ui are vectors of unsigned integers. All of these sport components of a width equal to vtkm::Id. The
width can be specified by appending the desired number of bits in the same way as the floating point Vecs. For
example, vtkm::Vec4ui 8 is a Vec of 4 unsigned bytes.
These types really just scratch the surface of the Vec types available in VTK-m and the things that can be done
with them. See Chapter 19 for more information on Vec types and what can be done with them.
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FIVE

VTK-M VERSION

As the VTK-m code evolves, changes to the interface and behavior will inevitably happen. Consequently, code
that links into VTK-m might need a specific version of VTK-m or changes its behavior based on what version of
VTK-m it is using. To facilitate this, VTK-m software is managed with a versioning system and advertises its
version in multiple ways. As with many software products, VTK-m has three version numbers: major, minor, and
patch. The major version represents significant changes in the VTK-m implementation and interface. Changes
in the major version include backward incompatible changes. The minor version represents added functionality.
Generally, changes in the minor version to not introduce changes to the API (although the early 1.X versions of
VTK-m violate this). The patch version represents fixes provided after a release occurs. Patch versions represent
minimal change and do not add features.
If you are writing a software package that is managed by CMake and load VTK-m with the find package
command as described in Section 2.4, then you can query the VTK-m version directly in the CMake config-
uration. When you load VTK-m with find package, CMake sets the variables VTKm VERSION MAJOR,
VTKm VERSION MINOR, and VTKm VERSION PATCH to the major, minor, and patch versions, respectively.
Additionally, VTKm VERSION is set to the “major.minor” version number and VTKm VERSION FULL is set
to the “major.minor.patch” version number. If the current version of VTK-m is actually a development version
that is in between releases of VTK-m, then and abbreviated SHA of the git commit is also included as part of
VTKm VERSION FULL.

If you have a specific version of VTK-m required for your software, you can also use the version option to
the find package CMake command. The find package command takes an optional version argument
that causes the command to fail if the wrong version of the package is found.

Did you know?

It is also possible to query the VTK-m version directly in your code through preprocessor macros. The vtkm/-
Version.h header file defines the following preprocessor macros to identify the VTK-m version. VTKM VERSION -
MAJOR, VTKM VERSION MINOR, and VTKM VERSION PATCH are set to integer numbers representing the major,
minor, and patch versions, respectively. Additionally, VTKM VERSION is set to the “major.minor” version number
as a string and VTKM VERSION FULL is set to the “major.minor.patch” version number (also as a string). If the
current version of VTK-m is actually a development version that is in between releases of VTK-m, then and
abbreviated SHA of the git commit is also included as part of VTKM VERSION FULL.



Note that the CMake variables all begin with VTKm (lowercase “m”) whereas the preprocessor macros begin
with VTKM (all uppercase). This follows the respective conventions of CMake variables and preprocessor
macros.

Common Errors

Note that vtkm/Version.h does not include any other VTK-m header files. This gives your code a chance to load,
query, and react to the VTK-m version before loading any VTK-m code proper.
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SIX

INITIALIZATION

When it comes to running VTK-m code, there are a few ways in which various facilities, such as logging de-
vice connections, and device configuration parameters, can be initialized. The preferred method of initializing
these features is to run the vtkm::cont::Initialize function. Although it is not strictly necessary to call
Initialize, it is recommended to set up state and check for available devices.
Initialize can be called without any arguments, in which case VTK-m will be initialized with defaults. But it
can also optionally take the argc and argv arguments to the main function to parse some options that control the
state of VTK-m. VTK-m accepts arguments that, for example, configure the compute device to use or establish
logging levels. Any arguments that are handled by VTK-m are removed from the argc/argv list so that your
program can then respond to the remaining arguments.
Initialize takes an optional third argument that specifies some options on the behavior of the argument
parsing. The options are specified as a bit-wise “or” of fields specified in the vtkm::cont::InitializeOptions
enum. The available initialize options are

None Placeholder used when no options are enabled. This is the value used when the third argument to Ini-
tialize is not provided.

RequireDevice Issue an error if the device argument is not specified.

DefaultAnyDevice If no device is specified, treat it as if the user gave “--device=Any”. This means that
DeviceAdapterTagUndefined will never be return in the result.

AddHelp Add a help option. If “-h” or “--help” is provided, prints a usage statement. Of course, the usage
statement will only print out arguments processed by VTK-m, which is why help is not given by default.
A string with usage help is returned from Initialize so that the calling program can provide VTK-m’s
help in its own usage statement.

ErrorOnBadOption If an unknown option is encountered, the program terminates with an error. If this option
is not provided, any unknown options are returned in argv. If this option is used, it is a good idea to use
AddHelp as well.

ErrorOnBadArgument If an extra argument is encountered, the program terminates with an error. If this option
is not provided, any unknown arguments are returned in argv.

Strict If supplied, Initialize treats its own arguments as the only ones supported by the application and provides
an error if not followed exactly. This is a convenience option that is a combination of ErrorOnBadOption,
ErrorOnBadArgument, and AddHelp.

As stated earlier, vtkm::cont::Initialize removes parsed options from the argc/argv passed to it so that
the calling program can further respond to command line arguments. Additionally, Initialize returns an
vtkm::cont::InitializeResult object that contains the following information.



Device A vtkm::cont::DeviceAdapterId that represents the device specified by the command line arguments.
(See Chapter 12 for details on how VTK-m represents devices.) If no device is specified in the command line
options, vtkm::cont::DeviceAdapterTagUndefined is returned (unless the DefaultAnyDevice option is
given, in which case vtkm::cont::DeviceAdapterTagAny is returned).

Example 6.1: Calling Initialize.
1 # include <vtkm/cont/ Initialize .h>
2
3 int main(int argc , char ** argv)
4 {
5 vtkm :: cont :: InitializeOptions options =
6 vtkm :: cont :: InitializeOptions :: ErrorOnBadArgument |
7 vtkm :: cont :: InitializeOptions :: DefaultAnyDevice ;
8 vtkm :: cont :: InitializeResult config = vtkm :: cont :: Initialize (argc , argv , options );
9

10 if (argc != 2)
11 {
12 std :: cerr << " USAGE : " << argv [0] << " [ options ] filename " << std :: endl;
13 std :: cerr << " Available options are :" << std :: endl;
14 std :: cerr << config . Usage << std :: endl;
15 return 1;
16 }
17 std :: string filename = argv [1];
18
19 // Do something cool with VTK -m
20 // ...
21
22 return 0;
23 }
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SEVEN

DATA SETS

A data set, implemented with the vtkm::cont::DataSet class, contains and manages the geometric data struc-
tures that VTK-m operates on. A data set comprises the following 3 data structures.

Cell Set A cell set describes topological connections. A cell set defines some number of points in space and how
they connect to form cells, filled regions of space. A data set has exactly one cell set.

Field A field describes numerical data associated with the topological elements in a cell set. The field is
represented as an array, and each entry in the field array corresponds to a topological element (point, edge,
face, or cell). Together the cell set topology and discrete data values in the field provide an interpolated
function throughout the volume of space covered by the data set. A cell set can have any number of fields.

Coordinate System A coordinate system is a special field that describes the physical location of the points
in a data set. Although it is most common for a data set to contain a single coordinate system, VTK-m
supports data sets with no coordinate system such as abstract data structures like graphs that might not
have positions in a space. DataSet also supports multiple coordinate systems for data that have multiple
representations for position. For example, geospatial data could simultaneously have coordinate systems
defined by 3D position, latitude-longitude, and any number of 2D projections.

In addition to the base vtkm::cont::DataSet, VTK-m provides vtkm::cont::PartitionedDataSet to repre-
sent data partitioned into multiple domains. A PartitionedDataSet is implemented as a collection of DataSet
objects. Partitioned data sets are described later in Section 7.5.

7.1 Building Data Sets

Before we go into detail on the cell sets, fields, and coordinate systems that make up a data set in VTK-m, let
us first discuss how to build a data set. One simple way to build a data set is to load data from a file using the
vtkm::io module. Reading files is discussed in detail in Chapter 8.
This section describes building data sets of different types using a set of classes named DataSetBuilder*, which
provide a convenience layer on top of vtkm::cont::DataSet to make it easier to create data sets.

To simplify the introduction of DataSets, this section uses the simplest mechanisms. In many cases this
involves loading data in a std::vector and passing that to VTK-m, which usually causes the data to be
copied. This is not the most efficient method to load data into VTK-m. Although it is sufficient for small

Did you know?
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data or data that come from a “slow” source, such as a file, it might be a bottleneck for large data generated
by another library. It is possible to adapt VTK-m’s DataSet to externally defined data. This is done by
wrapping existing data into what is called ArrayHandle, but this is a more advanced topic that will not be
addressed in this chapter. ArrayHandles are introduced in Chapter 16 and more adaptive techniques are
described in later chapters.

7.1.1 Creating Uniform Grids

Uniform grids are meshes that have a regular array structure with points uniformly spaced parallel to the axes.
Uniform grids are also sometimes called regular grids or images.
The vtkm::cont::DataSetBuilderUniform class can be used to easily create 2- or 3-dimensional uniform grids.
DataSetBuilderUniform has several versions of a method named Create that takes the number of points in
each dimension, the origin, and the spacing. The origin is the location of the first point of the data (in the lower
left corner), and the spacing is the distance between points in the x, y, and z directions. The Create methods
also take an optional name for the coordinate system and an optional name for the cell set.
The following example creates a vtkm::cont::DataSet containing a uniform grid of 101×101×26 points.

Example 7.1: Creating a uniform grid.
1 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
2
3 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create (vtkm :: Id3 (101 , 101 , 26));

If not specified, the origin will be at the coordinates (0,0,0) and the spacing will be 1 in each direction. Thus,
in the previous example the width, height, and depth of the mesh in physical space will be 100, 100, and 25,
respectively, and the mesh will be centered at (50,50,12.5). Let us say we actually want a mesh of the same
dimensions, but we want the z direction to be stretched out so that the mesh will be the same size in each
direction, and we want the mesh centered at the origin.

Example 7.2: Creating a uniform grid with custom origin and spacing.
1 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
2
3 vtkm :: cont :: DataSet dataSet =
4 dataSetBuilder . Create (vtkm :: Id3 (101 , 101 , 26) ,
5 vtkm :: Vec3f ( -50.0 , -50.0 , -50.0) ,
6 vtkm :: Vec3f (1.0 , 1.0 , 4.0));

7.1.2 Creating Rectilinear Grids

A rectilinear grid is similar to a uniform grid except that a rectilinear grid can adjust the spacing between
adjacent grid points. This allows the rectilinear grid to have tighter sampling in some areas of space, but the
points are still constrained to be aligned with the axes and each other. The irregular spacing of a rectilinear grid
is specified by providing a separate array each for the x, y, and z coordinates.
The vtkm::cont::DataSetBuilderRectilinear class can be used to easily create 2- or 3-dimensional rectilinear
grids. DataSetBuilderRectilinear has several versions of a method named Create that takes these coordinate
arrays and builds a vtkm::cont::DataSet out of them. The arrays can be supplied as either standard C arrays
or as std::vector objects, in which case the data in the arrays are copied into the DataSet. These arrays can
also be passed as ArrayHandle objects (introduced later in this book), in which case the data are shallow copied.

30 Chapter 7. Data Sets



7.1. Building Data Sets

The following example creates a vtkm::cont::DataSet containing a rectilinear grid with 201×201×101 points
with different irregular spacing along each axis.

Example 7.3: Creating a rectilinear grid.
1 // Make x coordinates range from -4 to 4 with tighter spacing near 0.
2 std :: vector <vtkm :: Float32 > xCoordinates ;
3 for (vtkm :: Float32 x = -2.0f; x <= 2.0f; x += 0.02f)
4 {
5 xCoordinates . push_back (vtkm :: CopySign (x * x, x));
6 }
7
8 // Make y coordinates range from 0 to 2 with tighter spacing near 2.
9 std :: vector <vtkm :: Float32 > yCoordinates ;

10 for (vtkm :: Float32 y = 0.0f; y <= 4.0f; y += 0.02f)
11 {
12 yCoordinates . push_back (vtkm :: Sqrt(y));
13 }
14
15 // Make z coordinates rangefrom -1 to 1 with even spacing .
16 std :: vector <vtkm :: Float32 > zCoordinates ;
17 for (vtkm :: Float32 z = -1.0f; z <= 1.0f; z += 0.02f)
18 {
19 zCoordinates . push_back (z);
20 }
21
22 vtkm :: cont :: DataSetBuilderRectilinear dataSetBuilder ;
23
24 vtkm :: cont :: DataSet dataSet =
25 dataSetBuilder . Create ( xCoordinates , yCoordinates , zCoordinates );

7.1.3 Creating Explicit Meshes

An explicit mesh is an arbitrary collection of cells with arbitrary connections. It can have multiple different types
of cells. Explicit meshes are also known as unstructured grids. Explicit meshes can contain cells of different
shapes. The shapes that VTK-m currently supports are listed in Figure 7.1.
The cells of an explicit mesh are defined with the following 3 arrays, which are depicted graphically in Figure
7.2.

Shapes An array of ids identifying the shape of the cell. Each value is a vtkm::UInt8 and should be set to one
of the vtkm ::CELL SHAPE * constants. The shapes and their identifiers are shown in Figure 7.1. The size
of this array is equal to the number of cells in the set.

Connectivity An array that lists all the points that comprise each cell. Each entry in the array is a vtkm::Id
giving the point id associated with a vertex of a cell. The points for each cell are given in a prescribed
order for each shape, which is also shown in Figure 7.1. The point indices are stored consecutively from
the first cell to the last.

Offsets An array of vtkm::Id s pointing to the index in the connectivity array where the points for a particular
cell starts. The size of this array is equal to the number of cells in the set plus 1. The first entry is expected
to be 0 (since the connectivity of the first cell is at the start of the connectivity array). The last entry,
which does not correspond to any cell, should be the size of the connectivity array.

One important item that is missing from this list of arrays is a count of the number of indices associated with
each cell. This is not explicitly represented in VTK-m’s mesh structure because it can be implicitly derived from
the offsets array by subtracting consecutive entries. However, it is usually the case when building an explicit
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Figure 7.1: Basic Cell Shapes

mesh that you will have an array of these counts rather than the offsets. It is for this reason that VTK-m
contains mechanisms to build an explicit data set with a “num indices” arrays rather than an offsets array.
The vtkm::cont::DataSetBuilderExplicit class can be used to create data sets with explicit meshes.
DataSetBuilderExplicit has several versions of a method named Create. Generally, these methods take
the shapes, number of indices, and connectivity arrays as well as an array of point coordinates. These arrays
can be given in std::vector objects, and the data are copied into the DataSet created.
The following example creates a mesh like the one shown in Figure 7.2.

Example 7.4: Creating an explicit mesh with DataSetBuilderExplicit.
1 // Array of point coordinates .
2 std :: vector <vtkm :: Vec3f_32 > pointCoordinates ;
3 pointCoordinates . push_back (vtkm :: Vec3f_32 (1.1f, 0.0f, 0.0f));
4 pointCoordinates . push_back (vtkm :: Vec3f_32 (0.2f, 0.4f, 0.0f));
5 pointCoordinates . push_back (vtkm :: Vec3f_32 (0.9f, 0.6f, 0.0f));
6 pointCoordinates . push_back (vtkm :: Vec3f_32 (1.4f, 0.5f, 0.0f));
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Figure 7.2: An example explicit mesh.

7 pointCoordinates . push_back (vtkm :: Vec3f_32 (1.8f, 0.3f, 0.0f));
8 pointCoordinates . push_back (vtkm :: Vec3f_32 (0.4f, 1.0f, 0.0f));
9 pointCoordinates . push_back (vtkm :: Vec3f_32 (1.0f, 1.2f, 0.0f));

10 pointCoordinates . push_back (vtkm :: Vec3f_32 (1.5f, 0.9f, 0.0f));
11
12 // Array of shapes .
13 std :: vector <vtkm :: UInt8 > shapes ;
14 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE );
15 shapes . push_back (vtkm :: CELL_SHAPE_QUAD );
16 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE );
17 shapes . push_back (vtkm :: CELL_SHAPE_POLYGON );
18 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE );
19
20 // Array of number of indices per cell.
21 std :: vector <vtkm :: IdComponent > numIndices ;
22 numIndices . push_back (3);
23 numIndices . push_back (4);
24 numIndices . push_back (3);
25 numIndices . push_back (5);
26 numIndices . push_back (3);
27
28 // Connectivity array .
29 std :: vector <vtkm ::Id > connectivity ;
30 connectivity . push_back (0); // Cell 0
31 connectivity . push_back (2);
32 connectivity . push_back (1);
33 connectivity . push_back (0); // Cell 1
34 connectivity . push_back (4);
35 connectivity . push_back (3);
36 connectivity . push_back (2);
37 connectivity . push_back (1); // Cell 2
38 connectivity . push_back (2);
39 connectivity . push_back (5);
40 connectivity . push_back (2); // Cell 3
41 connectivity . push_back (3);
42 connectivity . push_back (7);
43 connectivity . push_back (6);
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44 connectivity . push_back (5);
45 connectivity . push_back (3); // Cell 4
46 connectivity . push_back (4);
47 connectivity . push_back (7);
48
49 // Copy these arrays into a DataSet .
50 vtkm :: cont :: DataSetBuilderExplicit dataSetBuilder ;
51
52 vtkm :: cont :: DataSet dataSet =
53 dataSetBuilder . Create ( pointCoordinates , shapes , numIndices , connectivity );

Often it is awkward to build your own arrays and then pass them to DataSetBuilderExplicit. There also
exists an alternate builder class named vtkm::cont::DataSetBuilderExplicitIterative that allows you to
specify each cell and point one at a time rather than all at once. This is done by calling one of the versions of
AddPoint and one of the versions of AddCell for each point and cell, respectively. The next example also builds
the mesh shown in Figure 7.2 except this time using DataSetBuilderExplicitIterative.

Example 7.5: Creating an explicit mesh with DataSetBuilderExplicitIterative.
1 vtkm :: cont :: DataSetBuilderExplicitIterative dataSetBuilder ;
2
3 dataSetBuilder . AddPoint (1.1 , 0.0 , 0.0);
4 dataSetBuilder . AddPoint (0.2 , 0.4 , 0.0);
5 dataSetBuilder . AddPoint (0.9 , 0.6 , 0.0);
6 dataSetBuilder . AddPoint (1.4 , 0.5 , 0.0);
7 dataSetBuilder . AddPoint (1.8 , 0.3 , 0.0);
8 dataSetBuilder . AddPoint (0.4 , 1.0 , 0.0);
9 dataSetBuilder . AddPoint (1.0 , 1.2 , 0.0);

10 dataSetBuilder . AddPoint (1.5 , 0.9 , 0.0);
11
12 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE );
13 dataSetBuilder . AddCellPoint (0);
14 dataSetBuilder . AddCellPoint (2);
15 dataSetBuilder . AddCellPoint (1);
16
17 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_QUAD );
18 dataSetBuilder . AddCellPoint (0);
19 dataSetBuilder . AddCellPoint (4);
20 dataSetBuilder . AddCellPoint (3);
21 dataSetBuilder . AddCellPoint (2);
22
23 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE );
24 dataSetBuilder . AddCellPoint (1);
25 dataSetBuilder . AddCellPoint (2);
26 dataSetBuilder . AddCellPoint (5);
27
28 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_POLYGON );
29 dataSetBuilder . AddCellPoint (2);
30 dataSetBuilder . AddCellPoint (3);
31 dataSetBuilder . AddCellPoint (7);
32 dataSetBuilder . AddCellPoint (6);
33 dataSetBuilder . AddCellPoint (5);
34
35 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE );
36 dataSetBuilder . AddCellPoint (3);
37 dataSetBuilder . AddCellPoint (4);
38 dataSetBuilder . AddCellPoint (7);
39
40 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create ();
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7.1.4 Add Fields

In addition to creating the geometric structure of a data set, it is usually important to add fields to the data.
Fields describe numerical data associated with the topological elements in a cell. They often represent a physical
quantity (such as temperature, mass, or volume fraction) but can also represent other information (such as
indices or classifications).
The easiest way to define fields in a data set is to use the DataSet::AddPointField and DataSet::AddCellField
methods. Each of these methods take a requisite field name and the array with with field data.
Both AddPointField and AddCellField are overloaded to accept arrays of data in different structures. Field
arrays can be passed as standard C arrays or as std::vectors, in which case the data are copied. Field arrays
can also be passed in a ArrayHandle (introduced later in this book), in which case the data are not copied.
The following (somewhat contrived) example defines fields for a uniform grid that identify which points and cells
are on the boundary of the mesh.

Example 7.6: Adding fields to a DataSet.
1 // Make a simple structured data set.
2 const vtkm :: Id3 pointDimensions (20 , 20, 10);
3 const vtkm :: Id3 cellDimensions = pointDimensions - vtkm :: Id3 (1, 1, 1);
4 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
5 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create ( pointDimensions );
6
7 // Create a field that identifies points on the boundary .
8 std :: vector <vtkm :: UInt8 > boundaryPoints ;
9 for (vtkm :: Id zIndex = 0; zIndex < pointDimensions [2]; zIndex ++)

10 {
11 for (vtkm :: Id yIndex = 0; yIndex < pointDimensions [1]; yIndex ++)
12 {
13 for (vtkm :: Id xIndex = 0; xIndex < pointDimensions [0]; xIndex ++)
14 {
15 if (( xIndex == 0) || ( xIndex == pointDimensions [0] - 1) || ( yIndex == 0) ||
16 ( yIndex == pointDimensions [1] - 1) || ( zIndex == 0) ||
17 ( zIndex == pointDimensions [2] - 1))
18 {
19 boundaryPoints . push_back (1);
20 }
21 else
22 {
23 boundaryPoints . push_back (0);
24 }
25 }
26 }
27 }
28
29 dataSet . AddPointField (" boundary_points ", boundaryPoints );
30
31 // Create a field that identifies cells on the boundary .
32 std :: vector <vtkm :: UInt8 > boundaryCells ;
33 for (vtkm :: Id zIndex = 0; zIndex < cellDimensions [2]; zIndex ++)
34 {
35 for (vtkm :: Id yIndex = 0; yIndex < cellDimensions [1]; yIndex ++)
36 {
37 for (vtkm :: Id xIndex = 0; xIndex < cellDimensions [0]; xIndex ++)
38 {
39 if (( xIndex == 0) || ( xIndex == cellDimensions [0] - 1) || ( yIndex == 0) ||
40 ( yIndex == cellDimensions [1] - 1) || ( zIndex == 0) ||
41 ( zIndex == cellDimensions [2] - 1))
42 {
43 boundaryCells . push_back (1);
44 }
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45 else
46 {
47 boundaryCells . push_back (0);
48 }
49 }
50 }
51 }
52
53 dataSet . AddCellField (" boundary_cells ", boundaryCells );

7.2 Cell Sets

A cell set determines the topological structure of the data in a data set. Fundamentally, any cell set is a
collection of cells, which typically (but not always) represent some region in space. 3D cells are made up of
points, edges, and faces. (2D cells have only points and edges, and 1D cells have only points.) Figure 7.3 shows
the relationship between a cell’s shape and these topological elements. The arrangement of these points, edges,
and faces is defined by the shape of the cell, which prescribes a specific ordering of each. The basic cell shapes
provided by VTK-m are discussed in detail in Section 25.1 starting on page 209.

Points

Edges
Face

Figure 7.3: The relationship between a cell shape and its topological elements (points, edges, and faces).

There are multiple ways to express the connections of a cell set, each with different benefits and restrictions.
These different cell set types are managed by different cell set classes in VTK-m. All VTK-m cell set classes
inherit from vtkm::cont::CellSet. The two basic types of cell sets are structured and explicit, and there are
several variations of these types.

7.2.1 Structured Cell Sets

A vtkm::cont::CellSetStructured defines a 1-, 2-, or 3-dimensional grid of points with lines, quadrilaterals,
or hexahedra, respectively, connecting them. The topology of a CellSetStructured is specified by simply
providing the dimensions, which is the number of points in the i, j, and k directions of the grid of points. The
number of points is implicitly i × j × k and the number of cells is implicitly (i − 1) × (j − 1) × (k − 1) (for 3D
grids). Figure 7.4 demonstrates this arrangement.
The big advantage of using vtkm::cont::CellSetStructured to define a cell set is that it is very space efficient
because the entire topology can be defined by the three integers specifying the dimensions. Also algorithms
can be optimized for CellSetStructured’s regular nature. However, CellSetStructured’s strictly regular grid
structure also limits its applicability. A structured cell set can only be a dense grid of lines, quadrilaterals, or
hexahedra. It cannot represent irregular data well.
Many data models in other software packages, such as the one for VTK, make a distinction between uniform,
rectilinear, and curvilinear grids. VTK-m’s cell sets do not. All three of these grid types are represented by
CellSetStructured. This is because in a VTK-m data set the cell set and the coordinate system are defined
independently and used interchangeably. A structured cell set with uniform point coordinates makes a uniform
grid. A structured cell set with point coordinates defined irregularly along coordinate axes makes a rectilinear
grid. And a structured cell set with arbitrary point coordinates makes a curvilinear grid. The point coordinates
are defined by the data set’s coordinate system, which is discussed in Section 7.4 starting on page 41.
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j

k

Cell

Point

Figure 7.4: The arrangement of points and cells in a 3D structured grid.

7.2.2 Explicit Cell Sets

A vtkm::cont::CellSetExplicit defines an irregular collection of cells. The cells can be of different types and
connected in arbitrary ways. The types of cell sets are listed in Figure 7.5. This is done by explicitly providing
for each cell a sequence of points that defines the cell.
An explicit cell set is defined with a minimum of three arrays. The first array identifies the shape of each cell.
(Identifiers for cell shapes are shown in Figure 7.5.) The second array has a sequence of point indices that make
up each cell. The third array identifies an offset into the second array where the point indices for each cell is
found plus an extra entry at the end set to the size of the second array. Figure 7.6 shows a simple example of
an explicit cell set.
An explicit cell set can also identify the number of indices defined for each cell by subtracting consecutive entries
in the offsets array. It is often the case when creating a CellSetExplicit that you have an array containing the
number of indices rather than the offsets. Such an array can be converted to an offsets array that can be used
with CellSetExplicit by using the vtkm::cont::ConvertNumComponentsToOffsets convenience function.
vtkm::cont::CellSetExplicit is a powerful representation for a cell set because it can represent an arbitrary
collection of cells. However, because all connections must be explicitly defined, CellSetExplicit requires a
significant amount of memory to represent the topology.
An important specialization of an explicit cell set is vtkm::cont::CellSetSingleType. CellSetSingleType is
an explicit cell set constrained to contain cells that all have the same shape and all have the same number of
points. So for example if you are creating a surface that you know will contain only triangles, CellSetSingleType
is a good representation for these data.
Using CellSetSingleType saves memory because the array of cell shapes and the array of point counts no longer
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Figure 7.5: Basic Cell Shapes in a CellSetExplicit.

need to be stored. CellSetSingleType also allows VTK-m to skip some processing and other storage required
for general explicit cell sets.

7.2.3 Cell Set Permutations

A vtkm::cont::CellSetPermutation rearranges the cells of one cell set to create another cell set. This re-
structuring of cells is not done by copying data to a new structure. Rather, CellSetPermutation establishes a
look-up from one cell structure to another. Cells are permuted on the fly while algorithms are run.
A CellSetPermutation is established by providing a mapping array that for every cell index provides the
equivalent cell index in the cell set being permuted. CellSetPermutation is most often used to mask out cells
in a data set so that algorithms will skip over those cells when running.
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Figure 7.6: Example of cells in a CellSetExplicit and the arrays that define them.

Although CellSetPermutation can mask cells, it cannot mask points. All points from the original cell set
are available in the permuted cell set regardless of whether they are used.

Did you know?

The following example uses vtkm::cont::CellSetPermutation with a counting array to expose every tenth
cell. This provides a simple way to subsample a data set.

Example 7.7: Subsampling a data set with CellSetPermutation.
1 // Create a simple data set.
2 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
3 vtkm :: cont :: DataSet originalDataSet = dataSetBuilder . Create (vtkm :: Id3 (33 , 33, 26));
4 vtkm :: cont :: CellSetStructured <3> originalCellSet ;
5 originalDataSet . GetCellSet (). AsCellSet ( originalCellSet );
6
7 // Create a permutation array for the cells . Each value in the array refers
8 // to a cell in the original cell set. This particular array selects every
9 // 10 th cell.

10 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id > permutationArray (0, 10, 2560);
11
12 // Create a permutation of that cell set containing only every 10 th cell.
13 vtkm :: cont :: CellSetPermutation <vtkm :: cont :: CellSetStructured <3>,
14 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id >>
15 permutedCellSet ( permutationArray , originalCellSet );

7.2.4 Cell Set Extrude

A vtkm::cont::CellSetExtrude defines a 3-dimensional extruded mesh representation from 2-dimensional co-
ordinates in the XZ-plane. This is done by providing 2-dimensional coordinates, the number of planes to extrude
along the Y-axis, and whether the resulting wedge cellset representation should be a torus or a cylinder.
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Figure 7.7: An example of an extruded wedge from XZ-plane coordinates. Six wedges are extracted from three
XZ-plane points.

The extruded mesh is advantageous because it is represented on-the-fly as required, so no additional memory
is required. In contrast other forms of cell sets, such as vtkm::cont::CellSetExplicit, need to be explicitly
constructed by replicating the vertices and cells. Figure 7.7 shows an example of six wedges extruded from three
2-dimensional coordinates.

7.2.5 Unknown Cell Sets

Each of the aforementioned cell set types are represented by a different class. A vtkm::cont::DataSet object
must hold one of these cell set objects that represent the cell structure. The actual object used is not determined
until run time.
The DataSet object manages the cell set object with vtkm::cont::UnknownCellSet. When you call DataSet::-
GetCellSet, it returns a UnknownCellSet.
The UnknownCellSet object provides mechanisms to query the cell set, identify its type, and cast it to one of
the concrete CellSet types. See Chapter 34 for details on working with UnknownCellSet.

7.3 Fields

A field on a data set provides a value on every point in space on the mesh. Fields are often used to describe
physical properties such as pressure, temperature, mass, velocity, and much more. Fields are represented in a
VTK-m data set as an array where each value is associated with a particular element type of a mesh (such as
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points or cells). This association of field values to mesh elements and the structure of the cell set determines
how the field is interpolated throughout the space of the mesh.
Fields are manged by the vtkm::cont::Field class. The Field object internally holds a reference to an array
in a type-agnostic way. Filters and other VTK-m units will determine the type of the array and pull it out of
the Field.
Field has a convenience method named GetRange that finds the range of values stored in the field array. The
returned value of GetRange is an ArrayHandle containing vtkm::Range values. The ArrayHandle will have
as many values as components in the field. So, for example, calling GetRange on a scalar field will return an
ArrayHandle with exactly 1 entry in it. Calling GetRange on a field of 3D vectors will return an ArrayHandle
with exactly 3 entries corresponding to each of the components in the range. Details on how to get data from
an ArrayHandle them is given in Chapter 27.

7.4 Coordinate Systems

A coordinate system determines the location of a mesh’s elements in space. The spatial location is described
by providing a 3D vector at each point that gives the coordinates there. The point coordinates can then be
interpolated throughout the mesh.
Coordinate systems are managed by the vtkm::cont::CoordinateSystem class. In actuality, a coordinate
system is just a field with a special meaning, and so the CoordinateSystem class inherits from the Field class.
CoordinateSystem constrains the field to be associated with points and typically has 3D floating point vectors
for values.
In addition to all the methods provided by the Field superclass, the CoordinateSystem also provides a Get-
Bounds convenience method that returns a vtkm::Bounds object giving the spatial bounds of the coordinate
system.
It is typical for a DataSet to have one coordinate system defined, but it is possible to define multiple coordinate
systems. This is helpful when there are multiple ways to express coordinates. For example, positions in geographic
may be expressed as Cartesian coordinates or as latitude-longitude coordinates. Both are valid and useful in
different ways.
It is also valid to have a DataSet with no coordinate system. This is useful when the structure is not rooted in
physical space. For example, if the cell set is representing a graph structure, there might not be any physical
space that has meaning for the graph.

7.5 Partitioned Data Sets

A partitioned data set, implemented with vtkm::cont::PartitionedDataSet, comprises a set of vtkm::cont::-
DataSet objects. The PartitionedDataSet interface allows for adding, replacing, and querying DataSets in its
list with the following methods.

GetNumberOfPartitions Returns the number of partitions stored in the PartitionedDataSet.

GetPartition Returns the DataSet at a given index.

GetPartitions Returns all of the DataSets stored in the PartitionedDataSet in a std::vector.

AppendPartition Adds a given DataSet to the end of the list of partitions.
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AppendPartitions Given a list of DataSet objects, appends this list to the end of the list of partitions. This
list can be given as a std::vector or it can be an initializer list (declared in { } curly braces).

InsertPartition Given an index and a DataSet, places the DataSet at the given index and pushes the remain-
ing partitions after it.

ReplacePartition Given an index and a DataSet, replaces the partition at that index with the new DataSet.

GetField Retrieves a vtkm::cont::Field object from the DataSet at a given index.

The following example creates a vtkm::cont::PartitionedDataSet containing two uniform grid data sets.

Example 7.8: Creating a PartitionedDataSet.
1 // Create two uniform data sets
2 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
3
4 vtkm :: cont :: DataSet dataSet1 = dataSetBuilder . Create (vtkm :: Id3 (10 , 10, 10));
5 vtkm :: cont :: DataSet dataSet2 = dataSetBuilder . Create (vtkm :: Id3 (30 , 30, 30));
6
7 // Add the datasets to a multi block
8 vtkm :: cont :: PartitionedDataSet partitionedData ;
9 partitionedData . AppendPartitions ({ dataSet1 , dataSet2 });

It is always possible to retrieve the independent blocks in a PartitionedDataSet, from which you can iterate
and get information about the data. However, VTK-m provides several helper functions to collect metadata
information about the collection as a whole.

vtkm::cont::BoundsCompute Queries the bounds of all the DataSets contained in the given Partitioned-
DataSet and returns a vtkm::Bounds object encompassing the conglomerate data.

vtkm::cont::BoundsGlobalCompute An MPI version of BoundsCompute that also finds the bounds around the
conglomerate data across all processes. All MPI processes must call this method.

vtkm::cont::FieldRangeCompute Given a PartitionedDataSet, the name of a field, and (optionally) an
association of the field, returns the minimum and maximum value of that field over all the contained
blocks. The result is returned in a ArrayHandle of vtkm::Range objects in the same manner as the
vtkm::cont::Field::GetRange method (see Section 7.3).

vtkm::cont::FieldRangeGlobalCompute An MPI version of FieldRangeCompute that also finds the field
ranges over all blocks on all processes. All MPI processes must call this method.

The following example illustrates a spatial bounds query and a field range query on a vtkm::cont::Parti-
tionedDataSet.

Example 7.9: Queries on a PartitionedDataSet.
1 // Get the bounds of a multi - block data set
2 vtkm :: Bounds bounds = vtkm :: cont :: BoundsCompute ( partitionedData );
3
4 // Get the overall min/max of a field named " cellvar "
5 vtkm :: cont :: ArrayHandle <vtkm :: Range > cellvarRanges =
6 vtkm :: cont :: FieldRangeCompute ( partitionedData , " cellvar ");
7
8 // Assuming the " cellvar " field has scalar values , then cellvarRanges has one entry
9 vtkm :: Range cellvarRange = cellvarRanges . ReadPortal (). Get (0);
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The aforementioned functions for querying a PartitionedDataSet object also work on DataSet objects.
This is particularly useful with the BoundsGlobalCompute and FieldRangeGlobalCompute to manage dis-
tributed parallel objects.

Did you know?

Filters can be executed on PartitionedDataSet objects in a similar way they are executed on DataSet objects.
In both cases, the Execute method is called on the filter giving data object as an argument.

Example 7.10: Applying a filter to multi block data.
1 vtkm :: filter :: field_conversion :: CellAverage cellAverage ;
2 cellAverage . SetActiveField (" pointvar ", vtkm :: cont :: Field :: Association :: Points );
3
4 vtkm :: cont :: PartitionedDataSet results = cellAverage . Execute ( partitionedData );
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CHAPTER

EIGHT

FILE I/O

Before VTK-m can be used to process data, data need to be loaded into the system. VTK-m comes with a basic
file I/O package to get started developing very quickly. All the file I/O classes are declared under the vtkm::io
namespace.

Files are just one of many ways to get data in and out of VTK-m. In later chapters we explore ways to
define VTK-m data structures of increasing power and complexity. In particular, Section 7.1 describes how
to build VTK-m data set objects and Section 36.5 documents how to adapt data structures defined in other
libraries to be used directly in VTK-m.

Did you know?

8.1 Readers

All reader classes provided by VTK-m are located in the vtkm::io namespace. The general interface for each
reader class is to accept a filename in the constructor and to provide a ReadDataSet method to load the data
from disk.
The data in the file are returned in a vtkm::cont::DataSet object as described in Chapter 7, but it is sufficient
to known that a DataSet can be passed around readers, writers, filters, and rendering units.

8.1.1 Legacy VTK File Reader

Legacy VTK files are a simple open format for storing visualization data. These files typically have a .vtk
extension. Legacy VTK files are popular because they are simple to create and read and are consequently
supported by a large number of tools. The format of legacy VTK files is well documented in The VTK User’s
Guide.1 Legacy VTK files can also be read and written with tools like ParaView and VisIt.
Legacy VTK files can be read using the vtkm::io::VTKDataSetReader class. The constructor for this class
takes a string containing the filename. The ReadDataSet method reads the data from the previously indicated
file and returns a vtkm::cont::DataSet object, which can be used with filters and rendering.

Example 8.1: Reading a legacy VTK file.
1A free excerpt describing the file format is available at http://www.vtk.org/Wiki/File:VTK-File-Formats.pdf.

http://www.vtk.org/Wiki/File:VTK-File-Formats.pdf
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1 # include <vtkm/io/ VTKDataSetReader .h>
2
3 vtkm :: cont :: DataSet OpenDataFromVTKFile ()
4 {
5 vtkm :: io :: VTKDataSetReader reader (" data.vtk ");
6
7 return reader . ReadDataSet ();
8 }

8.1.2 Image Readers

VTK-m provides classes to read images from some standard image formats. These readers will store the data in a
vtkm::cont::DataSet object with the colors stored as a named point field. The colors are read as 4-component
RGBA vectors for each pixel. Each component in the pixel color is stored as a 32-bit float between 0 and 1.
Portable Network Graphics (PNG) files can be read using the vtkm::io::ImageReaderPNG class. A ImageRead-
erPNG object is constructed with the name of the file to load. The data from the file are loaded using the
ReadDataSet method, which returns a DataSet object. By default, the colors are stored in a field named
“colors”, but the name of the field can optionally be changed using the SetPointFieldName method.

Example 8.2: Reading an image from a PNG file.
1 # include <vtkm/io/ ImageReaderPNG .h>
2
3 vtkm :: cont :: DataSet OpenDataFromPNG ()
4 {
5 vtkm :: io :: ImageReaderPNG imageReader (" data.png ");
6 imageReader . SetPointFieldName (" pixel_colors ");
7 return imageReader . ReadDataSet ();
8 }

Portable anymap (PNM) files can be read using the vtkm::io::ImageReaderPNM class. Currently, the PNM
file reader only supports files using the portable pixmap (PPM) format (with magic number “P6”). These files
are most commonly stored with a .ppm extension although the .pnm extension is also valid. Like for PNG files,
a ImageReaderPNM is constructed with the name of the file to read from. ImageReaderPNM also uses the same
ReadDataSet and optional SetPointFieldName methods.

Example 8.3: Reading an image from a PNM file.
1 # include <vtkm/io/ ImageReaderPNM .h>
2
3 vtkm :: cont :: DataSet OpenDataFromPNM ()
4 {
5 vtkm :: io :: ImageReaderPNM imageReader (" data.ppm ");
6 imageReader . SetPointFieldName (" pixels ");
7 return imageReader . ReadDataSet ();
8 }

8.2 Writers

All writer classes provided by VTK-m are located in the vtkm::io namespace. The general interface for each
writer class is to accept a filename in the constructor and to provide a WriteDataSet method to save data to
the disk. The WriteDataSet method takes a vtkm::cont::DataSet object as an argument, which contains the
data to write to the file.
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8.2.1 Legacy VTK File Writer

Legacy VTK files can be written using the vtkm::io::VTKDataSetWriter class. The constructor for this class
takes a string containing the filename. The WriteDataSet method takes a vtkm::cont::DataSet object and
writes its data to the previously indicated file.

Example 8.4: Writing a legacy VTK file.
1 # include <vtkm/io/ VTKDataSetWriter .h>
2
3 void SaveDataAsVTKFile (vtkm :: cont :: DataSet data)
4 {
5 vtkm :: io :: VTKDataSetWriter writer (" data.vtk ");
6
7 writer . WriteDataSet (data );
8 }

8.2.2 Image Writers

VTK-m provides classes to some standard image formats. These writers store data in a vtkm::cont::DataSet.
The data must be a 2D structure with the colors stored in a point field. (See Chapter 7 for details on DataSet
objects.)
Portable Network Graphics (PNG) files can be written using the vtkm::io::ImageWriterPNG class. A Im-
ageWriterPNG object is constructed with the name of the file to save. The data are written to the file using the
WriteDataSet method. This method takes a DataSet object as an argument. An optional second argument can
be given to name the field containing color data to write. If the field is not given, the first point field of the
appropriate type is used.
By default, PNG files are written as RGBA colors using 8-bits for each component. You can change the format
written using the SetPixelDepth method. This takes an item in the ImageWriterPNG::PixelDepth enumera-
tion. Valid values are

PixelDepth::PIXEL 8 8-bit RGBA values (default).

PixelDepth::PIXEL 16 16-bit RGBA values.

Example 8.5: Writing an image to a PNG file.
1 # include <vtkm/io/ ImageWriterPNG .h>
2
3 void WriteToPNG ( const vtkm :: cont :: DataSet & dataSet )
4 {
5 vtkm :: io :: ImageWriterPNG imageWriter (" data.png ");
6 imageWriter . SetPixelDepth (vtkm :: io :: ImageWriterPNG :: PixelDepth :: PIXEL_16 );
7 imageWriter . WriteDataSet ( dataSet );
8 }

Portable anymap (PNM) files can be written using the vtkm::io::ImageWriterPNM class. Currently, the PNM
file writer only supports files using the portable pixmap (PPM) format (with magic number “P6”). These files
are most commonly stored with a .ppm extensions although the .pnm extension is also valid.
Like for PNG files, a ImageReaderPNM is constructed with the name of the file to write. ImageReaderPNM
also uses the same WriteDataSet and SetPixelDepth. It also sports the same ImageReaderPNM::PixelDepth
enumeration.

Example 8.6: Writing an image to a PNM file.
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1 # include <vtkm/io/ ImageWriterPNM .h>
2
3 void WriteToPNM ( const vtkm :: cont :: DataSet & dataSet )
4 {
5 vtkm :: io :: ImageWriterPNM imageWriter (" data.ppm ");
6 imageWriter . SetPixelDepth (vtkm :: io :: ImageWriterPNM :: PixelDepth :: PIXEL_16 );
7 imageWriter . WriteDataSet ( dataSet );
8 }
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CHAPTER

NINE

RUNNING FILTERS

Filters are functional units that take data as input and write new data as output. Filters operate on vtkm::-
cont::DataSet objects, which are described in Chapter7.

The structure of filters in VTK-m is significantly simpler than their counterparts in VTK. VTK filters
are arranged in a dataflow network (a.k.a. a visualization pipeline) and execution management is handled
automatically. In contrast, VTK-m filters are simple imperative units, which are simply called with input
data and return output data.

Did you know?

VTK-m comes with several filters ready for use, and in this chapter we will give a brief overview of these filters.
All VTK-m filters are currently defined in the vtkm::filter namespace. We group filters based on the type of
operation that they do and the shared interfaces that they have. Later Part III describes the necessary steps in
creating new filters in VTK-m.
Different filters will be used in different ways, but the basic operation of all filters is to instantiate the filter class,
set the state parameters on the filter object, and then call the filter’s Execute method. The Execute method
takes a vtkm::cont::DataSet and returns a new DataSet, which contains the modified data. The Execute
method can alternately take a vtkm::cont::PartitionedDataSet object, which is a composite of DataSet
objects. In this case Execute will return another PartitionedDataSet object.
The following example provides a simple demonstration of using a filter. It specifically uses the point elevation
filter to estimate the air pressure at each point based on its elevation.

Example 9.1: Using PointElevation, which is a field filter.
1 VTKM_CONT
2 vtkm :: cont :: DataSet ComputeAirPressure (vtkm :: cont :: DataSet dataSet )
3 {
4 vtkm :: filter :: field_transform :: PointElevation elevationFilter ;
5
6 // Use the elevation filter to estimate atmospheric pressure based on the
7 // height of the point coordinates . Atmospheric pressure is 101325 Pa at
8 // sea level and drops about 12 Pa per meter .
9 elevationFilter . SetLowPoint (0.0 , 0.0 , 0.0);

10 elevationFilter . SetHighPoint (0.0 , 0.0 , 2000.0);
11 elevationFilter . SetRange (101325.0 , 77325.0);
12
13 elevationFilter . SetUseCoordinateSystemAsField (true );
14
15 elevationFilter . SetOutputFieldName (" pressure ");
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16
17 vtkm :: cont :: DataSet result = elevationFilter . Execute ( dataSet );
18
19 return result ;
20 }

We see that this example follows the previously described procedure of constructing the filter (line 4), setting
the state parameters (lines 9–15), and finally executing the filter on a DataSet (line 17).
Every vtkm::cont::DataSet object contains a list of fields, which describe some numerical value associated with
different parts of the data set in space. Fields often represent physical properties such as temperature, pressure,
or velocity. Fields are identified with string names. There are also special fields called coordinate systems that
describe the location of points in space. Field are mentioned here because they are often used as input data to
the filter’s operation and filters often generate new fields in the output. This is the case in Example 9.1. In line
13 the coordinate system is set as the input field and in line 15 the name to use for the generated output field
is selected.

9.1 Provided Filters

VTK-m comes with the implementation of many filters. Filters in VTK-m are divided into a collection of
modules, each with its own namespace and library. This section is organized by each filter module, each of which
contains one or more filters that are related to each other.

9.1.1 Cleaning Grids

The vtkm::filter::clean grid module contains filters that resolve issues with mesh structure. This could
include finding and merging coincident points, removing degenerate cells, or converting the grid to a known type.

Clean Grid

vtkm::filter::clean grid::CleanGrid is a filter that converts a cell set to an explicit representation and
potentially removes redundant or unused data. It does this by iterating over all cells in the data set, and for
each one creating the explicit cell representation that is stored in the output. (Explicit cell sets are described
in Section 7.2.2.) One benefit of using CleanGrid is that it can optionally remove unused points and combine
coincident points. Another benefit is that the resulting cell set will be of a known specific type.

The result of vtkm::filter::clean grid::CleanGrid is not necessarily smaller, memory-wise, than its
input. For example, “cleaning” a data set with a structured topology will actually result in a data set that
requires much more memory to store an explicit topology.

Common Errors

CleanGrid provides the following methods.

SetCompactPointFields/GetCompactPointFields Sets a Boolean flag that determines whether unused points
are removed from the output. If true (the default), then the output data set will have a new coordinate
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system containing only those points being used by the cell set, and the indices of the cells will be adjusted
to the new ordering of points.

SetMergePoints/GetMergePoints Sets a Boolean flag that determines whether points coincident in space are
merged into a single point. If true (the default), then the output data set will have a new coordinate system
containing containing only points that are unique in space, and the indices of the cells will be adjusted to
the new set of points. The tolerance parameters control the proximity used for points to be considered
coincident.

SetTolerance/GetTolerance Defines the tolerance used when determining whether two points are considered
coincident. Because floating point parameters have limited precision, point coordinates that are essentially
the same might not be bit-wise exactly the same. Thus, the CleanGrid filter has the ability to find and
merge points that are close but perhaps not exact. The default tolerance is 10−6.

SetToleranceIsAbsolute/GetToleranceIsAbsolute Sets a Boolean flag that determines whether the tolerance
parameter should be considered relative to the size of the data set. If false (the default), then the tolerance
is multiplied by the length of the diagonal of the bounds of the data being processed. If true, then the
tolerance value is used as is.

SetRemoveDegenerateCellsGetRemoveDegenerateCells Sets a Boolean flag that determines whether degener-
ate cells should be removed. If true (the default), then the CleanGrid filter will look for repeated points
in cells and, if the repeated points cause the cell to drop dimensionality, the cell is removed. This is
particularly useful when point merging is on as this operation can create degenerate cells.

SetFastMerge/GetFastMerge Sets a Boolean flag that determines whether to use a faster but less accurate
method for finding coincident points. If true (the default), some corners are cut when computing coincident
points. This will make the point merge step go faster but the tolerance will not be strictly followed. If
false, then extra steps will be taken to ensure that all points within tolerance are merged and that only
points within tolerance are merged. This flag has no effect if point merging is off.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use when finding coincident points. The default index is 0, which is the first coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

9.1.2 Connected Components

Connected components in a mesh are groups of mesh elements that are connected together in some way. For
example, if two cells are neighbors, then they are in the same component. Likewise, a cell is also in the same
component as its neighbor’s neighbors as well as their neighbors and so on. Connected components help identify
when features in a simulation fragment or meld.
The vtkm::filter::connected components module contains filters that find groups of cells that are connected.
There are different ways to define what it means to be connected. One way is to use the topological connections
of the cells. That is, two cells that share a point, edge, or face are connected. Another way is to use a field that
classifies each cell, and cells are only connected if they have the same classification.
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Cell Connectivity

The vtkm::filter::connected components::CellSetConnectivity filter finds groups of cells that are con-
nected together through their topology. Two cells are considered connected if they share an edge. CellSetCon-
nectivity identifies some number of components and assigns each component a unique integer.
The result of the filter is a cell field of type vtkm::Id. Each entry in the cell field will be a number that identifies
to which component the cell belongs. By default, this output cell field is named “component”.
CellSetConnectivity provides the following methods.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Classification Field on Image Data

The vtkm::filter::connected components::ImageConnectivity filter finds groups of points that have the
same field value and are connected together through their topology. Any point is considered to be connected to
its Moore neighborhood: 8 neighboring points for 2D and 26 neighboring points for 3D. As the name implies,
ImageConnectivity only works on data with a structured cell set. You will get an error if you use any other
type of cell set.
The active field passed to the filter must be associated with the points.
The result of the filter is a point field of type vtkm::Id. Each entry in the point field will be a number that
identifies to which component the cell belongs. By default, this output point field is named “component”.
ImageConnectivity provides the following methods.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

9.1.3 Contouring

The vtkm::filter::contour module contains filters that extract regions that match some field or spatial
criteria. Unlike entity extraction filters (Section 9.1.5), the geometry will be clipped or sliced to extract the
exact matching region. (In contrast, entity extraction filters will pull unmodified points, edges, faces, or cells
from the input.)
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Contour

Contouring is one of the most fundamental filters in scientific visualization. A contour is the locus where a field
is equal to a particular value. A topographic map showing curves of various elevations often used when hiking
in hilly regions is an example of contours of an elevation field in 2 dimensions. Extended to 3 dimensions, a
contour gives a surface. Thus, a contour is often called an isosurface. The contouring/isosurface algorithm is
implemented by vtkm::filter::contour::Contour.
Contour provides the following methods.

SetIsoValue Specifies the value on which to extract a contour. Multiple iso values can be specified at once.
The first parameter to SetIsoValue is the index of the iso value (starting at index 0) and the second is
the value to set. If only one iso value is needed, the index does not need to be specified.

GetIsoValue Returns the iso value for a given index.

SetNumberOfIsoValues Sets the number of iso values to create contours from. If the number of iso values is
not specified, the number is automatically set to accommodate the largest index given to SetIsoValue.

GetNumberOfIsoValues Returns the number of iso values (and consequently the number of contours to be
created).

SetMergeDuplicatePoints/GetMergeDuplicatePoints Specifies whether coincident points in the data set
should be merged. Because the contour filter (like all filters in VTK-m) runs in parallel, parallel threads
can (and often do) create duplicate versions of points. When this flag is set to true, a secondary operation
will find all duplicated points and combine them together.

SetGenerateNormals/GetGenerateNormals Specifies whether to generate normal vectors for the surface. Nor-
mals are used in shading calculations during rendering and can make the surface appear more smooth. By
default, the generated normals are based on the gradient of the field being contoured and can be quite
expensive to compute. A faster method is available that computes the normals based on the faces of the
isosurface mesh, but the normals do not look as good as the gradient based normals. Fast normals can be
enabled using the flags described bellow.

SetComputeFastNormalsForStructured/GetComputeFastNormalsForStructured Specifies whether to use the
fast method of normals computation for Structured data sets. This is only valid if the generate normals
flag is set.

SetComputeFastNormalsForUnstructured/GetComputeFastNormalsForUnstructured Specifies whether to
use the fast method of normals computation for unstructured data sets. This is only valid if the gen-
erate normals flag is set.

SetNormalArrayName/GetNormalArrayName Specifies the name used for the normals field if it is being created.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.
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Example 9.2: Using Contour, which is a data set with field filter.
1 vtkm :: filter :: contour :: Contour contour ;
2
3 contour . SetActiveField (" pointvar ");
4 contour . SetIsoValue (10.0);
5
6 vtkm :: cont :: DataSet isosurface = contour . Execute ( inData );

Slice

A slice operation intersects a mesh with a surface. The vtkm::filter::contour::Slice filter uses a vtkm::-
ImplicitFunctionGeneral to specify an implicit surface to slice on. A plane is a common thing to slice on, but
other surfaces are available. See Chapter 14 for information on implicit functions.
Slice provides the following methods.

SetImplicitFunction/GetImplicitFunction Specifies the surface to intersect the input data as an implicit
function. See Chapter 14 for documentation on implicit functions provided by VTK-m.

SetMergeDuplicatePoints/GetMergeDuplicatePoints Specifies whether coincident points in the data set
should be merged. Because the contour filter (like all filters in VTK-m) runs in parallel, parallel threads
can (and often do) create duplicate versions of points. When this flag is set to true, a secondary operation
will find all duplicated points and combine them together.

SetGenerateNormals/GetGenerateNormals Specifies whether to generate normal vectors for the surface. Nor-
mals are used in shading calculations during rendering and can make the surface appear more smooth. By
default, the generated normals are based on the gradient of the field being contoured and can be quite
expensive to compute. A faster method is available that computes the normals based on the faces of the
isosurface mesh, but the normals do not look as good as the gradient based normals. Fast normals can be
enabled using the flags described bellow.

SetComputeFastNormalsForStructured/GetComputeFastNormalsForStructured Specifies whether to use the
fast method of normals computation for Structured data sets. This is only valid if the generate normals
flag is set.

SetComputeFastNormalsForUnstructured/GetComputeFastNormalsForUnstructured Specifies whether to
use the fast method of normals computation for unstructured data sets. This is only valid if the gen-
erate normals flag is set.

SetNormalArrayName/GetNormalArrayName Specifies the name used for the normals field if it is being created.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use when computing normals and other geometric features. The default index is 0, which is the
first coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Clip with Field

Clipping is an operation that removes regions from the data set based on a user-provided value or function. The
vtkm::filter::contour::ClipWithField filter takes a clip value as an argument and removes regions where a
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named scalar field is below (or above) that value. (A companion filter that discards a region of the data based
on an implicit function is described later.)
The result of ClipWithField is a volume. If a cell has field values at its vertices that are all below the specified
value, then it will be discarded entirely. Likewise, if a cell has field values at its vertices that are all above
the specified value, then it will be retained in its entirety. If a cell has some vertices with field values below
the specified value and some above, then the cell will be split into the portions above the value (which will be
retained) and the portions below the value (which will be discarded).
This operation is sometimes called an isovolume because it extracts the volume of a mesh that is inside the
iso-region of a scalar. This is in contrast to an isosurface, which extracts only the surface of that iso-value.
ClipWithField is also similar to a threshold operation, which extracts cells based on the value of field. The
difference is that threshold will either keep or remove entire cells based on the field values whereas clip with
carve cells that straddle the valid regions. (See section 9.1.5 for threshold extraction.)
ClipWithField provides the following methods.

SetClipValue/GetClipValue Specifies the field value for the clip operation. Regions where the active field is
less than this value are clipped away from each input cell.

SetInvertClip Specifies if the result for the clip filter should be inverted. If set to false (the default), regions
where the active field is less than the specified clip value are removed. If set to true, regions where the
active field is more than the specified clip value are removed.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Example 9.3: Using ClipWithField.
1 // Create an instance of a clip filter that discards all regions with scalar
2 // value less than 25.
3 vtkm :: filter :: contour :: ClipWithField clip;
4 clip. SetClipValue (25.0);
5 clip. SetActiveField (" pointvar ");
6
7 // Execute the clip filter
8 vtkm :: cont :: DataSet outData = clip. Execute ( inData );

Clip with Implicit Function

The vtkm::filter::contour::ClipWithImplicitFunction function takes an implicit function and removes
all parts of the data that are inside (or outside) that function. See Chapter 14 for more detail on how implicit
functions are represented in VTK-m. (A companion filter that discards a region of the data based on the value
of a scalar field is described previously.)
The result of ClipWithImplicitFunction is a volume. If a cell has its vertices positioned all outside the implicit
function, then it will be discarded entirely. Likewise, if a cell its vertices all inside the implicit function, then
it will be retained in its entirety. If a cell has some vertices inside the implicit function and some outside, then
the cell will be split into the portions inside (which will be retained) and the portions outside (which will be
discarded).
ClipWithImplicitFunction provides the following methods.
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SetImplicitFunction/GetImplicitFunction Specifies the implicit function to be used to perform the clip
operation. See Chapter 14 for documentation on implicit functions provided by VTK-m.

SetInvertClip Specifies whether the result of the clip filter should be inverted. If set to false (the default), all
regions where the implicit function is negative will be removed. If set to true, all regions where the implicit
function is positive will be removed.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use when comparing spatial locations for the implicit function. The default index is 0, which is the
first coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

In the example provided below the vtkm::Sphere implicit function is used. This function evaluates to a negative
value if points from the original dataset occur within the sphere, evaluates to 0 if the points occur on the surface
of the sphere, and evaluates to a positive value if the points occur outside the sphere.

Example 9.4: Using ClipWithImplicitFunction.
1 // Parameters needed for implicit function
2 vtkm :: Sphere implicitFunction (vtkm :: make_Vec (1, 0, 1), 0.5);
3
4 // Create an instance of a clip filter with this implicit function .
5 vtkm :: filter :: contour :: ClipWithImplicitFunction clip;
6 clip. SetImplicitFunction ( implicitFunction );
7
8 // By default , ClipWithImplicitFunction will remove everything inside the sphere .
9 // Set the invert clip flag to keep the inside of the sphere and remove everything

10 // else.
11 clip. SetInvertClip (true );
12
13 // Execute the clip filter
14 vtkm :: cont :: DataSet outData = clip. Execute ( inData );

9.1.4 Density Estimation

Density estimation takes a collection of samples and estimates the density of the samples in each part of the
domain (or estimate the probabilty that a sample would be at a location in the domain). The domain of samples
could be a physical space, such as with particle density, or in an abstract place, such as with a histogram. The
vtkm::filter::density estimate module contains filters that estimate density in a variety of ways.

Histogram

The vtkm::filter::density estimate::Histogram filter computes a histogram of a given scalar field. The
histogram divides the range of the field into an even number of bins and counts the number of instances occur
in each bin.
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The default name for the output fields is “histogram”. The name can be overridden as always using the SetOut-
putFieldName method.
Histogram provides the following methods.

SetRange/GetRange Specifies an explicit range to use to generate the histogram. If no range is set then the
global range of the field is computed during filter execution and that range is used.

SetNumberOfBins/GetNumberOfBins Specifies the number of bins to divide the range. The range of data will
be split evenly into this number of bins, and the number of items landing in each bin will be counted. The
default number of bins is 10.

GetBinDelta Get the size of each bin from the last computed field. This value is only valid after a call to
Execute.

GetComputedRange Get the range used during the last call to Execute. If SetRange was called, then this range
will be returned. Otherwise, the computed range is returned. This value is only valid after a call to
Execute.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Nearest Grid Point

The vtkm::filter::density estimate::ParticleDensityNearestGridPoint filter defines a 3D grid of bins.
It then takes from the input a collection of particles, identifies which bin each particle lies in, and sums some
attribute from a field of the input (or the particles can simply be counted). Once the sum of the attribute is
computed for each grid cell, it is optionally divided by the volume of the cell. Thus, the density will be computed
as the units of the scalar field per the cubic units of the coordinate system.
This operation is helpful in the analysis of particle-based simulation where the data often requires conversion
or deposition of particles’ attributes, such as mass, to an overlaying mesh. This allows further identification
of regions of interest based on the spatial distribution of particles attributes, for example, high density regions
could be considered as clusters or halos while low density regions could be considered as bubbles or cavities in
the particle data.
Since there is no specific CellSet for particles in VTK-m, ParticleDensityNearestGridPoint treats the Co-
ordinateSystem of the input DataSet as the positions of the particles while ignoring the details of the CellSet.
Particles are infinitesimal in size with finite mass (or other scalar attributes such as charge). The filter estimates
density by imposing a regular grid of bins.
ParticleDensityNearestGridPoint provides the following methods.

SetActiveField/GetActiveFieldName Specify the particle attribute to be deposited.

SetDivideByVolume/GetDivideByVolume If you just want a sum of the attribute in each cell, turn off the
DivideByVolume feature of this filter with SetDivideByVolume(false).
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SetComputeNumberDensity/GetComputeNumberDensity Simply count the number of particles in each cell in-
stead of summing a field variable by calling SetComputeNumberDensity(true).

SetDimension/GetDimension Specify the number of bins to estimate particles in with a vtkm::Id3. The
numbers specify the number of bins (i.e. cells in the output mesh) in each dimensions, not the number of
points in the output mesh.

SetOrigin/GetOrigin Specify the minimum (lower-left) corner of the domain of density estimation.

SetSpacing/GetSpacing Specify the spacing of the grid points used to form the grid for density estimation.
The size of each bin is equivalent to the spacing.

SetBounds/GetBounds Specify the domain of space to estimate point density as a vtkm::Bounds object. Set-
Dimension must be called before the bounds are set. Calling SetDimension will change the ranges of the
bounds.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

Cloud in Cell

The vtkm::filter::density estimate::ParticleDensityCloudInCell filter defines a 3D grid of bins. It then
takes from the input a collection of particles, identifies which bin each particle lies in, and then redistributes
each particle’s attribute to the 8 vertices of the containing bin. The filter then sums up all the contributions
of particles for each vertex in the grid. This contribution is either an attribute value from an input field or a
simple count. This creates a point centered density field. Once the sum of the attribute is computed for each
grid points, it is optionally divided by the volume of each cell. Thus, the density will be computed as the units
of the scalar field per the cubic units of the coordinate system.
This operation is helpful in the analysis of particle-based simulation where the data often requires conversion
or deposition of particles’ attributes, such as mass, to an overlaying mesh. This allows further identification
of regions of interest based on the spatial distribution of particles attributes, for example, high density regions
could be considered as clusters or halos while low density regions could be considered as bubbles or cavities in
the particle data.
Since there is no specific CellSet for particles in VTK-m, ParticleDensityCloudInCell treats the Coordi-
nateSystem of the input DataSet as the positions of the particles while ignoring the details of the CellSet.
Particles are infinitesimal in size with finite mass (or other scalar attributes such as charge). The filter estimates
density by imposing a regular grid of bins.
ParticleDensityCloudInCell provides the following methods.

SetActiveField/GetActiveFieldName Specify the particle attribute to be deposited.

SetDivideByVolume/GetDivideByVolume If you just want a sum of the attribute in each cell, turn off the
DivideByVolume feature of this filter with SetDivideByVolume(false).

SetComputeNumberDensity/GetComputeNumberDensity Simply count the number of particles in each cell in-
stead of summing a field variable by calling SetComputeNumberDensity(true).
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SetDimension/GetDimension Specify the number of bins to estimate particles in with a vtkm::Id3. The
numbers specify the number of bins (i.e. cells in the output mesh) in each dimensions, not the number of
points in the output mesh.

SetOrigin/GetOrigin Specify the minimum (lower-left) corner of the domain of density estimation.

SetSpacing/GetSpacing Specify the spacing of the grid points used to form the grid for density estimation.
The size of each bin is equivalent to the spacing.

SetBounds/GetBounds Specify the domain of space to estimate point density as a vtkm::Bounds object. Set-
Dimension must be called before the bounds are set. Calling SetDimension will change the ranges of the
bounds.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

9.1.5 Entity Extraction

VTK-m contains a collection of filters that extract a portion of one DataSet and construct a new DataSet based
on that portion of the geometry. These filters are collected in the vtkm::filter::entity extraction module.

External Faces

vtkm::filter::entity extraction::ExternalFaces is a filter that extracts all the external faces from a
polyhedral data set. An external face is any face that is on the boundary of a mesh. Thus, if there is a hole
in a volume, the boundary of that hole will be considered external. More formally, an external face is one that
belongs to only one cell in a mesh.
ExternalFaces provides the following methods.

SetCompactPoints/GetCompactPoints Specifies whether point fields should be compacted. If on, the filter will
remove from the output all points that are not used in the resulting surface. If off (the default), unused
points will remain listed in the topology, but point fields and coordinate systems will be shallow-copied to
the output.

SetPassPolyData/GetPassPolyData Specifies how polygonal data (polygons, lines, and vertices) will be han-
dled. If on (the default), these cells will be passed to the output. If off, these cells will be removed from
the output. (Because they have less than 3 topological dimensions, they are not considered to have any
“faces.”)

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.
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External Geometry

The vtkm::filter::entity extraction::ExternalGeometry filter extracts all of the cells in a DataSet that
is inside or outside of an implicit function. Implicit functions are described in Chapter 14. They define a function
in 3D space that follow a geometric shape. The inside of the implicit function is the region of negative values.
ExternalGeometry differs from ClipWithImplicitFunction in that the clip filter will subdivide boundary cells
into new cells whereas this filter will not. Thus, the output of ExternalGeometry will produce a more “crinkly”
output.
ExternalGeometry provides the following methods.

SetImplicitFunction/GetImplicitFunction Specifies the implicit function that specifies the region of space
to extract geometry from.

SetExtractInside/GetExtractInside Specify whether to extract the geometry that is on the inside of the
implicit function (where the function is less than 0) or the outside (where the function is greater than 0).
This flag is true by default (i.e., the interior of the implicit function will be extracted).

ExtractInsideOnExtractInsideOff Set the extract inside flag on (true) or off (false).

SetExtractBoundaryCells/GetExtractBoundaryCells The implicit function used to extract geometry is likely
to intersect some of the cells of the input. If this flag is true, then any cells intersected by the implicit
function are extracted and included in the output. This flag is false by default.

ExtractBoundaryCellsOn/ExtractBoundaryCellsOff Set the Extract boundary cells flag to on (true) or off
(false).

SetExtractOnlyBoundaryCells/GetExtractOnlyBoundaryCells Specify whether to extract only the cells in-
tersected by the implicit function (where the function equals 0). By default this flag is off.

ExtractOnlyBoundaryCellsOn/ExtractOnlyBoundaryCellsOff Set the extract only boundary cells flag to on
(true) or off (false).

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use for the positions of the geometry. The coordinate system should match that of the implicit
function.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Extract Structured

vtkm::filter::entity extraction::ExtractStructured is a filter that extracts a volume of interest (VOI)
from a structured data set. In addition the filter is able to subsample the VOI while doing the extraction.
The output of this filter is a structured dataset. The filter treats input data of any topological dimension (i.e.,
point, line, plane, or volume) and can generate output data of any topological dimension.
Typical applications of this filter are to extract a slice from a volume for image processing, subsampling large
volumes to reduce data size, or extracting regions of a volume with interesting data.
ExtractStructured provides the following methods.

60 Chapter 9. Running Filters



9.1. Provided Filters

SetVOI/GetVOI Specifies what volume of interest (VOI) should be extracted by the filter. By default the VOI
is the entire input.

SetSampleRate/GetSampleRate Specifies the sample rate of the VOI. Supports sub-sampling on a per dimension
basis.

SetIncludeBoundary/GetIncludeBoundary Specifies if the VOI is inclusive or exclusive on the boundary of the
VOI.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Ghost Cell Removal

vtkm::filter::entity extraction::GhostCellRemove is a filter that is used to remove cells from a data set
according to a cell centered field that is provided to the filter. The default field used for removal is “vtkmGhost-
Cells”. The field is of type vtkm::UInt8, and represents a bit-field to classify each cell. By default, if the input
is a structured data set the filter will attempt to output a structured data set. If this is not possible, an explicit
data set is produced. The field specified for cell removal is not passed to the output.
GhostCellRemove provides the following methods.

RemoveAllGhost Remove all cells where the value is a ghost cell (i.e. vtkm::CellClassification::GHOST).

RemoveByType Remove cells specified by the vtkm::UInt8 using a bitwise “and” operation with the type field.
The values in vtkm::CellClassification can be combined with a logical “or” operation to specify the
type. Current values of vtkm::CellClassification include: NORMAL, GHOST, and INVALID.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as the ghost cell levels.

Threshold

A threshold operation removes topology elements from a data set that do not meet a specified criterion. The
vtkm::filter::entity extraction::Threshold filter removes all cells where the a field is between a range of
values.
Note that Threshold either passes an entire cell or discards an entire cell. This can consequently lead to jagged
surfaces at the interface of the threshold caused by the shape of cells that jut inside or outside the removed
region. See Section 9.1.3 for a clipping filter that will clip off a smooth region of the mesh.
Threshold provides the following methods.
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SetLowerThreshold/GetLowerThreshold Specifies the lower scalar value. Any cells where the scalar field is
less than this value are removed.

SetUpperThreshold/GetUpperThreshold Specifies the upper scalar value. Any cells where the scalar field is
more than this value are removed.

SetThresholdBelow Sets the threshold criterion to pass any value less than or equal to the provided value.

SetThresholdAbove Sets the threshold criterion to pass any value greater than or equal to the provided value.

SetThresholdBetween Sets the threshold criterion to pass any value between the given values (inclusive). This
method is equivalent to calling SetLowerThreshold with the first argument and SetUpperThreshold with
the second argument.

SetAllInRange/GetAllInRange When thresholding on a point field, each cell must consider the multiple values
associated with all incident points. When this flag is false (the default), the cell is passed if any of the
incident points matches the threshold criterion. When this flag is true, the cell is passed only if all the
incident points match the threshold criterion.

SetComponentToTest Specifies which vector component to apply the threshold criterion to (default 0). When
thresholding on a vector field (which has more than one component per entry), the Threshold filter will
by default compare the threshold criterion to the first component of the vector (component index 0). Use
SetComponentToTest to change the component to test against.

SetComponentToTestToAny Specifies that the threshold criterion should be applied to all the components of the
input vector field and a cell will pass if any the components match.

SetComponentToTestToAll Specifies that the threshold criterion should be applied to all the components of the
input vector field and a cell will pass only if all the components match.

SetInvert/GetInvert When set to true, the threshold result is inverted. That is, cells that would have been in
the output with this option set to false (the default) are excluded while cells that would have been excluded
from the output are included.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

9.1.6 Field Conversion

Field conversion modifies a field of a DataSet to have roughly equivalent values but with a different structure.
These filters allow the field to be used in places where they otherwise would not be applicable.
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Cell Average

vtkm::filter::field conversion::CellAverage is the cell average filter. It will take a data set with a
collection of cells and a field defined on the points of the data set and create a new field defined on the cells.
The values of this new derived field are computed by averaging the values of the input field at all the incident
points. This is a simple way to convert a point field to a cell field.
The default name for the output cell field is the same name as the input point field. The name can be overridden
as always using the SetOutputFieldName method.
CellAverage provides the following methods.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Point Average

vtkm::filter::field conversion::PointAverage is the point average filter. It will take a data set with a
collection of cells and a field defined on the cells of the data set and create a new field defined on the points.
The values of this new derived field are computed by averaging the values of the input field at all the incident
cells. This is a simple way to convert a cell field to a point field.
The default name for the output cell field is the same name as the input point field. The name can be overridden
as always using the SetOutputFieldName method.
PointAverage provides the following methods.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

9.1.7 Field Transform

VTK-m provides multiple filters to convert fields through some mathematical relationship.
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Cylindrical Coordinate System Transform

vtkm::filter::field transform::CylindricalCoordinateTransform is a coordinate system transformation
filter. The filter will take a data set and transform the points of the coordinate system. By default, the filter will
transform the coordinates from a Cartesian coordinate system to a cylindrical coordinate system. The order for
cylindrical coordinates is (R,θ,Z). The output coordinate system will be set to the new computed coordinates.
CylindricalCoordinateTransform provides the following methods.

SetCartesianToCylindrical This method specifies a transformation from cartesian to cylindrical coordinates.

SetCylindricalToCartesian This method specifies a transformation from cylindrical to cartesian coordinates.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Field to Colors

vtkm::filter::FieldToColors takes a field in a data set, looks up each value in a color table, and writes the
resulting colors to a new field. The color to be used for each field value is specified using a vtkm::cont::-
ColorTable object. ColorTable objects are also used with VTK-m’s rendering module and are described in
Section 10.8.
FieldToColors has three modes it can use to select how it should treat the input field. These input modes are
contained in FieldToColors::InputMode.

FieldToColors::InputMode::Scalar Treat the field as a scalar field. It is an error to provide a field of any
type that cannot be directly converted to a basic floating point number (such as a vector).

FieldToColors::InputMode::Magnitude Given a vector field, take the magnitude of each field value before
looking it up in the color table.

FieldToColors::InputMode::Component Select a particular component of the vectors in a field to map to
colors.

Additionally, FieldToColors has different modes in which it can represent colors in its output. These output
modes are contained in FieldToColors::OutputMode.

FieldToColors::OutputMode::RGB Output colors are represented as RGB values with each component repre-
sented by an unsigned byte. Specifically, these are vtkm::Vec3ui 8 values.
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FieldToColors::OutputMode::RGBA Output colors are represented as RGBA values with each component rep-
resented by an unsigned byte. Specifically, these are vtkm::Vec4ui 8 values.

FieldToColors provides the following methods.

SetColorTable/GetColorTable Specifies the vtkm::cont::ColorTable object to use to map field values to
colors.

SetMappingMode/GetMappingMode Specifies the input mapping mode. The value is one of the FieldToCol-
ors::InputMode::Scalar, FieldToColors::InputMode::Magnitude, or FieldToColors::InputMode::-
Component selectors described previously.

SetMappingToScalar Sets the input mapping mode to scalar. Shortcut for SetMappingMode(vtkm::filter::-
FieldToColors::InputMode::Scalar ).

SetMappingToMagnitude Sets the input mapping mode to vector. Shortcut for SetMappingMode(vtkm::fil-
ter::FieldToColors::InputMode::Magnitude ).

SetMappingToComponent Sets the input mapping mode to component. Shortcut for SetMappingMode(vtkm::-
filter::FieldToColors::InputMode::Component ).

IsMappingScalar Returns true if the input mapping mode is scalar (FieldToColors::InputMode::Scalar).

IsMappingMagnitude Returns true if the input mapping mode is magnitude (FieldToColors::InputMode::-
Magnitude).

IsMappingComponent Returns true if the input mapping mode is component (FieldToColors::InputMode::-
Component).

SetMappingComponent/GetMappingComponent Specifies the component of the vector to use in the mapping.
This only has an effect if the input mapping mode is set to FieldToColors::InputMode::Component.

SetOutputMode/GetOutputMode Specifies the output representation of colors. The value is one of the Field-
ToColors::OutputMode::RGB or FieldToColors::OutputMode::RGBA selectors described previously.

SetOutputToRGB Sets the output representation to 8-bit RGB. Shortcut for SetOutputMode(vtkm::filter::-
FieldToColors::OutputMode::RGB ).

SetOutputToRGBA Sets the output representation to 8-bit RGBA. Shortcut for SetOutputMode(vtkm::fil-
ter::FieldToColors::OutputMode::RGBA ).

IsOutputRGB Returns true if the output representation is 8-bit RGB (FieldToColors::OutputMode::RGB).

IsOutputRGBA Returns true if the output representation is 8-bit RGBA (FieldToColors::OutputMode::RGBA).

SetNumberOfSamplingPoints/GetNumberOfSamplingPoints Specifies how many samples to use when looking
up color values. The implementation of FieldToColors first builds an array of color samples to quickly
look up colors for particular values. The size of this lookup array can be adjusted with this parameter. By
default, an array of 256 colors is used.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.
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SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Generate Ids

vtkm::filter::field transform::GenerateIds is a filter that creates point and/or id fields that mimic the
identifier for the respective element.
GenerateIds provides the following methods.

SetPointFieldName/GetPointFieldName Specify the name of the point id field generated. By default, this is
set to “pointids”.

SetCellFieldName/GetCellFieldName Specify the name of the cell id field generated. By default, this is set
to “cellids”.

SetGeneratePointIds/GetGeneratePointIds Specify whether to generate the the point id field. By default,
this is true, meaning the field will be generated.

SetGenerateCellIds/GetGenerateCellIds Specify whether to generate the the cell id field. By default, this
is true, meaning the field will be generated.

SetUseFloat/GetUseFloat Specify whether to generate fields of integers or floats. If true, the geneated fields
will be of type vtkm::FloatDefault. If false, the default, the generated fields will be of type vtkm::Id.

Point Elevation

vtkm::filter::field transform::PointElevation computes the “elevation” of a field of point coordinates
in space. The filter will take a data set and a field of 3 dimensional vectors and compute the distance along a
line defined by a low point and a high point. Any point in the plane touching the low point and perpendicular
to the line is set to the minimum range value in the elevation whereas any point in the plane touching the high
point and perpendicular to the line is set to the maximum range value. All other values are interpolated linearly
between these two planes. This filter is commonly used to compute the elevation of points in some direction,
but can be repurposed for a variety of measures. Example 9.1 gives a demonstration of the elevation filter.
The default name for the output field is “elevation”, but that can be overridden as always using the SetOutput-
FieldName method.
PointElevation provides the following methods.

SetLowPoint/SetHighPoint This pair of methods is used to set the low and high points, respectively, of the
elevation. Each method takes three floating point numbers specifying the x, y, and z components of the
low or high point.

SetRange Sets the range of values to use for the output field. This method takes two floating point numbers
specifying the low and high values, respectively.
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SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Point Transform

vtkm::filter::field transform::PointTransform is the point transform filter. The filter will take a data
set and a field of 3 dimensional vectors and perform the specified point transform operation. Multiple point
transformations can be accomplished by subsequent calls to the filter and specifying the result of the previous
transform as the input field.
The default name for the output field is “transform”, but that can be overridden as always using the SetOut-
putFieldName method. By default, produced field replaces the coordinate system.
PointTransform provides the following methods.

SetTranslation This method translates, or moves, each point in the input field by a given direction. This
method takes either a three component vector of floats, or the x, y, z translation values separately.

SetRotation This method is used to rotate the input field about a given axis. This method takes a single
floating point number to specify the degrees of rotation and either a vector representing the rotation axis,
or the x, y, z axis components separately.

SetRotationX This method is used to rotate the input field about the x axis. This method takes a single floating
point number to specify the degrees of rotation.

SetRotationY This method is used to rotate the input field about the y axis. This method takes a single floating
point number to specify the degrees of rotation.

SetRotationZ This method is used to rotate the input field about the z0 axis. This method takes a single
floating point number to specify the degrees of rotation.

SetScale This method is used to scale the input field. This method takes either a single float to scale each
vector component of the field equally, or the x, y, z scaling values as separate floats, or a three component
vector.

SetTransform This is a generic transform method. This method takes a 4x4 matrix and applies this to the
input field.

SetChangeCoordinateSystem/GetChangeCoordinateSystem When this flag is on, the default, the coordinate
system in the output DataSet is replaced with the transformed point coordinates .

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.
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SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Spherical Coordinate System Transform

vtkm::filter::field transform::SphericalCoordinateTransform is a coordinate system transformation
filter. The filter will take a data set and transform the points of the coordinate system. By default, the filter
will transform the coordinates from a cartesian coordinate system to a spherical coordinate system. The order
for spherical coordinates is (R,θ,ϕ). The output coordinate system will be set to the new computed coordinates.
CylindricalCoordinateTransform provides the following methods.

SetCartesianToSpherical This method specifies a transformation from cartesian to spherical coordinates.

SetSphericalToCartesian This method specifies a transformation from spherical to cartesian coordinates.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Warp Scalar

vtkm::filter::field transform::WarpScalar is a specialized point transformation filter. The filter trans-
forms points by moving them based on a scalar field and a constant scale factor. This filter is useful for creating
carpet plots.
The WarpScalar filter will take a data set, a normal field, a scalar field, and a constant scale factor. The
coordinates will be scaled based on the scalar field and the scale factor. If no explicit normal field is provided
the filter will search for a field named “normal”. If no explicit scalar field is provided the filter will search for a
field named “scalarfactor”.
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The default name for the output field is “warpscalar”, but that can be overridden as always using the SetOut-
putFieldName method.
In addition to the standard SetOutputFieldName and Execute methods, WarpScalar provides the following
methods.

SetNormalField This method allows the user to select the name of the normal field. The normal field is the B
field in the warp equation of A+B ×scaleAmount×scalarFactor (where A is the original position of the
point).

SetScalarFactorField This method allows the user to select the name of the scale factor field. The scale factor
field is the scalarFactor field in the warp equation of A + B × scaleAmount × scalarFactor (where A is
the original position of the point).

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Warp Vector

vtkm::filter::field transform::WarpVector is a specialized point transformation filter. The filter trans-
forms points by moving them based on a vector field and a constant scale factor. This filter can be used to
highlight interesting features such as flow or deformations.
The WarpScalar filter will take a data set, a vector field, and a constant scale factor. The coordinates will be
scaled based on the vector field and the scale factor. If no explicit vector field is provided the filter will search
for a field named “normal”.
The default name for the output field is “warpvector”, but that can be overridden as always using the SetOut-
putFieldName method.
In addition the standard SetOutputFieldName and Execute methods, WarpVector provides the following meth-
ods.

SetVectorField This method allows the user to select the name of the vector field. The vector field is the B
field in the warp equation of A+B (where A is the original position of the point).

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.
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SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

9.1.8 Geometry Refinement

Geometry refinement modifies the geometry of a DataSet. It might add, change, or remove components of the
structure, but the general representation will be the same.

Split Sharp Edges

vtkm::filter::geometry refinement::SplitSharpEdges splits sharp manifold edges where the feature angle
between the adjacent surfaces are larger than a threshold value. When an edge is split, it adds a new point to
the coordinates and updates the connectivity of an adjacent surface.
For example, consider two adjacent triangles (0,1,2) and (2,1,3). Edge (1,2) needs to be split. Two new points
4 (duplication of point 1) and 5 (duplication of point 2) would be added and the later triangle’s connectivity
would be changed to (5,4,3). By default, all old point’s fields would be copied to the new point.
Note that “split” edges do not have space added between them. They are still adjacent visually, but the topology
becomes disconnectered there. Splitting sharp edges is most useful to duplicate normal shading vectors to make
a sharp shading effect.
SplitSharpEdges contains the following methods.

SetFeatureAngle/GetFeatureAngle Specifies the angle, in degrees, to split edges. Any time the normal vectors
to 2 adjacent polygons are greater than this angle, the points of this edge are duplicated. The default angle
is 30 degrees.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.
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Tetrahedralize

vtkm::filter::geometry refinement::Tetrahedralize converts all the polyhedra in a DataSet into tetra-
hedra.
Tetrahedralize has the following methods.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Triangulate

vtkm::filter::geometry refinement::Triangulate converts all the polyhedra in a DataSet into tetrahedra.
Triangulate has the following methods.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Tube

vtkm::filter::geometry refinement::Tube generates a tube around each line and polyline in the input data
set. The radius, number of sides, and end capping can be specified for each tube. The orientation of the geometry
of the tube are computed automatically using a heuristic to minimize the twisting along the input data set.
Tube provides the following methods.

SetRadius Specifies the radius of the tube.

SetNumberOfSides Specifies the number of sides for the tube geometry.

SetCapping Specifies if the ends of the tube should be capped.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Example 9.5: Using Tube, which is a data set with field filter.
1 vtkm :: filter :: geometry_refinement :: Tube tubeFilter ;
2
3 tubeFilter . SetRadius (0.5f);
4 tubeFilter . SetNumberOfSides (7);
5 tubeFilter . SetCapping (true );
6
7 vtkm :: cont :: DataSet output = tubeFilter . Execute ( inData );
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Vertex Clustering

vtkm::filter::vertex clustering::VertexClustering is a filter that simplifies a polygonal mesh. It does
so by dividing space into a uniform grid of bin and then merges together all points located in the same bin. The
smaller the dimensions of this binning grid, the fewer polygons will be in the output cells and the coarser the
representation. This surface simplification is an important operation to support level of detail (LOD) rendering
in visualization applications.
VertexClustering provides the following methods.

SetNumberOfDivisions/GetNumberOfDimensions Specifies the dimensions of the uniform grid that establishes
the bins used for clustering. Setting smaller numbers of dimensions produces a smaller output, but with a
coarser representation of the surface. The dimensions are provided as a vtkm::Id3.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Example 9.6: Using VertexClustering.
1 vtkm :: filter :: geometry_refinement :: VertexClustering vertexClustering ;
2
3 vertexClustering . SetNumberOfDivisions (vtkm :: Id3 (128 , 128 , 128));
4
5 vtkm :: cont :: DataSet simplifiedSurface = vertexClustering . Execute ( originalSurface );

9.1.9 Mesh Information

VTK-m provides several filters that derive information about the structure of the geometry. This can be infor-
mation about the shape of cells or their connections.

Ghost Cell Classification

vtkm::filter::mesh info::GhostCellClassify adds a cell centered field to the input data set that marks
each cell as either vtkm::CellClassification::Normal or vtkm::CellClassification::Ghost. The outer
layer of cells are marked as Ghost, and the remainder are marked as *CellClassificationNormal. This filter only
supports uniform and rectilinear data sets. The default field is “vtkmGhostCells”.
GhostCellClassify provides the following methods.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Mesh Quality Metrics

vtkm::filter::MeshQuality is a filter that can calculate various metrics for evaluating mesh quality. It gen-
erates a new field as output, based on the cells of an input data set. The metrics for this filter come from the
Verdict library, and full mathematical descriptions for each metric can be found in the Verdict documentation.1

1https://www.csimsoft.com/download?file=Documents/sand20071751.pdf
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The following table lists the supported mesh quality metrics. The constructor for vtkm::filter::MeshQuality
takes an argument from the enum vtkm::filter::CellMetric, which specifies the desired metric to calculate.
The possible values for the CellMetric enum are listed in the following table. Also listed in the table is the
default name for the field being created, which can be overridden using the SetOutputFieldName method. Also,
because most metrics only work on select types of cells, the table specifies on which cell types each metric works
using the abbreviations “Tri” for triangles, “Quad” for quadrilaterals, “Tet” for tetrahedrons, “Pyr” for pyramids,
“Wed” for wedges, and “Hex” for hexahedrons.

Default Supported
Constructor Argument Output Name Cell Types Brief Description
CellMetric::Area area Tri, Quad Area of a 2D cell

CellMetric::AspectGamma aspectGamma Tet Compare root-mean-square
edge length to volume

CellMetric::AspectRatio aspectRatio Tri, Quad, Ratio involving longest edge
Tet, Hex and circumradius

CellMetric::Condition condition Tri, Quad, Condition number of
Tet, Hex weighted Jacobian matrix

CellMetric::DiagonalRatio diagonalRatio Quad, Hex Ratio of minimum and
maximum diagonals

CellMetric::Dimension dimension Hex Designed specifically for
Sandia’s Pronto code

CellMetric::Jacobian jacobian Quad, Tet, Minimum determinant of Jacobian
Hex matrix, over corners and cell center

CellMetric::MaxAngle maxAngle Tri, Quad Maximum angle within cell, in degrees

CellMetric::MaxDiagonal maxDiagonal Hex Length of maximum diagonal in cell

CellMetric::MinAngle minAngle Tri, Quad Minimum angle within cell, in degrees

CellMetric::MinDiagonal minDiagonal Hex Length of minimum diagonal in cell

CellMetric::Oddy oddy Quad, Hex Maximum deviation of a metric tensor
from an identity matrix, over all
corners and cell center
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Default Supported
Constructor Argument Output Name Cell Types Brief Description
CellMetric::- relativeSize Tri, Quad, The ratio of the area/volume of

RelativeSizeSquared Squared Tet, Hex this cell compared to mesh average

CellMetric::ScaledJacobian scaledJacobian Tri, Quad, Derived from the Jacobian metric,
Tet, Hex with normalization involving edge length

CellMetric::Shape shape Tri, Quad, Varies by shape type, including
Tet, Hex incorporating Jacobian or Condition

Consult Verdict manual

CellMetric::ShapeAndSize shapeAndSize Tri, Quad, Shape metric multiplied by
Tet, Hex relative size squared metric

CellMetric::Shear shear Quad, Hex Min. value of Jacobian at each corner,
divided by length of adjacent edges

CellMetric::Skew skew Quad, Hex Maximum angle between principle axes

CellMetric::Stretch stretch Quad, Hex Ratio of minimum edges and maximum
diagonal, normalized for unit cube

CellMetric::Taper taper Quad Maximum ratio of cross-derivative
with associated principal axis

CellMetric::Volume volume Tet, Pyr, Volume of a 3D cell
Wed, Hex

CellMetric::Warpage warpage Quad Captures angles between diagonals

Finally, MeshQuality provides the following methods.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

9.1.10 Multi-Block

Data with multiple blocks are stored in vtkm::cont::PartitionedDataSet objects. Most VTK-m filters operate
correctly on PartitionedDataSet just like they do with DataSet. However, there are some filters that are
designed with operations specific to multi-block datasets.
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AMR Arrays

An AMR mesh is a vtkm::cont::PartitionedDataSet with a special structure in the partitions. Each partition
has a vtkm::cont::CellSetStructured. The partitions form a hierarchy of grids where each level of the
hierarchy refines the one above.
PartitionedDataSet does not explicitly store the structure of an AMR grid. The vtkm::filter::AmrArrays
filter determines the hierarchical structure of the AMR partitions and stores information about them in cell field
arrays on each partition. Cell fields with the following names are created for each partition.

vtkAmrLevel The AMR level at which the partition resides (with 0 being the most coarse level). All the values
for a particular partition are set to the same value.

vtkAmrIndex A unique identifier for each partition of a particular level. Each partition of the same level will
have a unique index, but the indices will repeat across levels. All the values for a particular partition are
set to the same value.

vtkCompositeIndex A unique identifier for each partition. This index is the same as the index used for the
partition in the containing PartitionedDataSet. All the values for a particular partition are set to the
same value.

vtkGhostType It is common for refinement levels in an AMR structure to overlap more coarse grids. In this
case, the overlapped coarse cells have invalid data. The vtkGhostType field will track which cells are
overlapped and should be ignored. This array will have a 0 value for all valid cells and a non-zero value
for all invalid cells. (Specifically, if the bit specified by vtkm::CellClassification::BLANKED is set, then
the cell is overlapped with a cell in a finer level.)

The names of these arrays (e.g. vtkAmrLevel) are chosen to be compatible with the equivalent arrays in
VTK. This is why they use the prefix of “vtk” instead of “vtkm”. Likewise, the flags used for vtkGhostType
are compatible with VTK.

Did you know?

AmrArrays provides the following methods.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

9.1.11 Vector Analysis

VTK-m’s vector analysis filters compute operations on fields related to vectors (usually in 3-space).

Cross Product

vtkm::filter::cross product::CrossProduct computes the cross product of two vector fields for every el-
ement in the input data set. The cross product filter computes (PrimaryField × SecondaryField), where both
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the primary and secondary field are specified using methods on the CrossProduct class. The cross product
computation works for both point and cell centered vector fields.
CrossProduct provides the following methods.

SetPrimaryField/GetPrimaryFieldName Specifies the name of the field to use as input for the primary (first)
value of the cross product.

SetUseCoordinateSystemAsPrimaryField/GetUseCoordinateSystemAsPrimaryField Specifies a Boolean
flag that determines whether to use point coordinates as the primary input field. Set to false by default.
When true, the name for the primary field is ignored.

SetPrimaryCoordinateSystem/GetPrimaryCoordinateSystemIndex Specifies the index of which coordinate
system to use as the primary input field. The default index is 0, which is the first coordinate system.

SetSecondaryField/GetSecondaryFieldName Specifies the name of the field to use as input for the secondary
(second) value of the cross product.

SetUseCoordinateSystemAsSecondaryField/GetUseCoordinateSystemAsSecondaryField Specifies a
Boolean flag that determines whether to use point coordinates as the secondary input field. Set to
false by default. When true, the name for the secondary field is ignored.

SetSecondaryCoordinateSystem/GetSecondaryCoordinateSystemIndex Specifies the index of which coordi-
nate system to use as the secondary input field. The default index is 0, which is the first coordinate
system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Dot Product

vtkm::filter::vector analysis::DotProduct computes the dot product of two vector fields for every element
in the input data set. The dot product filter computes (PrimaryField · SecondaryField), where both the primary
and secondary field are specified using methods on the DotProduct class. The dot product computation works
for both point and cell centered vector fields.
DotProduct provides the following methods.

SetPrimaryField/GetPrimaryFieldName Specifies the name of the field to use as input for the primary (first)
value of the dot product.

SetUseCoordinateSystemAsPrimaryField/GetUseCoordinateSystemAsPrimaryField Specifies a Boolean
flag that determines whether to use point coordinates as the primary input field. Set to false by default.
When true, the name for the primary field is ignored.

SetPrimaryCoordinateSystem/GetPrimaryCoordinateSystemIndex Specifies the index of which coordinate
system to use as the primary input field. The default index is 0, which is the first coordinate system.

SetSecondaryField/GetSecondaryFieldName Specifies the name of the field to use as input for the secondary
(second) value of the dot product.
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SetUseCoordinateSystemAsSecondaryField/GetUseCoordinateSystemAsSecondaryField Specifies a
Boolean flag that determines whether to use point coordinates as the secondary input field. Set to
false by default. When true, the name for the secondary field is ignored.

SetSecondaryCoordinateSystem/GetSecondaryCoordinateSystemIndex Specifies the index of which coordi-
nate system to use as the secondary input field. The default index is 0, which is the first coordinate
system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Gradients

vtkm::filter::vector analysis::Gradient computes the gradient of a point based input field for every
element in the input data set. The gradient computation can either generate cell center based gradients, which
are fast but less accurate, or more accurate but slower point based gradients. The default for the filter is output
as cell centered gradients, but can be changed by using the SetComputePointGradient method. The default
name for the output fields is “Gradients”, but that can be overridden as always using the SetOutputFieldName
method.
Gradient provides the following methods.

SetComputePointGradient/GetComputePointGradient Specifies whether we are computing point or cell based
gradients. The output field(s) of this filter will be point based if this is enabled.

SetComputeDivergence/GetComputeDivergence Specifies whether the divergence field will be generated. By
default the name of the array will be “Divergence” but can be changed by using SetDivergenceName. The
field will be a cell field unless ComputePointGradient is enabled. The input array must have 3 components
in order to compute this. The default is off.

SetComputeVorticity/GetComputeVorticity Specifies whether the vorticity field will be generated. By default
the name of the array will be “Vorticity” but can be changed by using SetVorticityName. The field will
be a cell field unless ComputePointGradient is enabled. The input array must have 3 components in order
to compute this. The default is off.

SetComputeQCriterion/GetComputeQCriterion Specifies whether the Q-Criterion field will be generated. By
default the name of the array will be “QCriterion” but can be changed by using SetQCriterionName. The
field will be a cell field unless ComputePointGradient is enabled. The input array must have 3 components
in order to compute this. The default is off.

SetComputeGradient/GetComputeGradient Specifies whether the actual gradient field is written to the output.
When processing fields that have 3 components it is desirable to compute information such as Divergence,
Vorticity, or Q-Criterion without incurring the cost of also having to write out the 3x3 gradient result. The
default is on.

SetColumnMajorOrdering/SetRowMajorOrdering When processing input fields that have 3 components, the
output will be a a 3x3 gradient. By default VTK-m outputs all matrix like arrays in Row Major ordering
(C-Ordering). The ordering can be changed when integrating with libraries like VTK or with FORTRAN
codes that use Column Major ordering. The default is Row Major. This setting is only relevant for 3
component input fields when SetComputeGradient is enabled.
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SetDivergenceName/GetDivergenceName Specifies the output cell normals field name. The default is “Diver-
gence”.

SetVorticityName/GetVorticityName Specifies the output Vorticity field name. The default is “Vorticity”

SetQCriterionName/GetQCriterionName Specifies the output Q-Criterion field name. The default is “QCrite-
rion”.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Surface Normals

vtkm::filter::vector analysis::SurfaceNormals computes the surface normals of a polygonal data set at
its points and/or cells. The filter takes a data set as input and by default, uses the active coordinate system to
compute the normals. Optionally, a coordinate system or a point field of 3d vectors can be explicitly provided to
the Execute method. The point and cell normals may be oriented to a point outside of the manifold surface by
setting the auto orient normals option (SetAutoOrientNormals), or they may point inward by also setting flip
normals (SetFlipNormals) to true. Triangle vertices will be wound counter-clockwise around the cell normals
when the consistency option (SetConsistency) is enabled. For non-polygonal cells, a zeroed vector is assigned.
The point normals are computed by averaging the cell normals of the incident cells of each point.
The default name for the output fields is “Normals”, but that can be overridden using the SetCellNormalsName
and SetPointNormalsName methods. The filter will also respect the name in SetOutputFieldName if neither of
the others are set.
SurfaceNormals provides the following methods.

SetGenerateCellNormals/GetGenerateCellNormals Specifies whether the cell normals should be generated.
This is off by default.

SetGeneratePointNormals/GetGeneratePointNormals Specifies whether the point normals should be gener-
ated. This is on by default.

SetNormalizeCellNormals/GetNormalizeCellNormals Specifies whether cell normals should be normalized
(made unit length). This is on by default. The intended use case of this flag is for faster, approximate
point normals generation by skipping the normalization of the face normals. Note that when set to false,
the result cell normals will not be unit length normals and the point normals will be different.

SetAutoOrientNormals/GetAutoOrientNormals If true, any generated point and/or cell normals will be ori-
ented to point outwards from the surface. This requires a closed manifold surface or else the behavior is
undefined. This is off by default.
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SetFlipNormals/GetFlipNormals When AutoOrientNormals is true, this option will reverse the point and cell
normals to point inward. This is off by default.

SetConsistency/GetConsistency When GenerateCellNormals is true, this option will ensure that the triangle
vertices in the output dataset are wound counter-clockwise around the generated cell normal. This only
affects triangles. This is on by default.

SetCellNormalsName/GetCellNormalsName Specifies the output cell normals field name. If no cell or point
normal name is specified, “Normals” is used.

SetPointNormalsName/GetPointNormalsName Specifies the output point normals field name. If no cell or point
normal name is specified, “Normals” is used.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Vector Magnitude

vtkm::filter::vector analysis::VectorMagnitude takes a field comprising vectors and computes the mag-
nitude for each vector. The vector field is selected as usual with the SetActiveField method. The default
name for the output field is “magnitude”, but that can be overridden as always using the SetOutputFieldName
method.
VectorMagnitude provides the following methods.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.
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9.1.12 ZFP Compression

vtkm::filter::zfp::ZFPCompressor takes a 1D, 2D, or 3D field and compresses the values using the compres-
sion algorithm ZFP. The field is selected as usual with the SetActiveField method. The rate of compression is
set using SetRate. The default name for the output field is “compressed”
ZFPCompressor provides the following methods:

SetRate/GetRate Specifies the rate of compression.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

vtkm::filter::zfp::ZFPDecompressor takes a field of compressed values and decompresses into scalar values
using the compression algorithm ZFP. The field is selected as usual with the SetActiveField method. The rate
of compression is set using SetRate. The default name for the output field is “decompressed”
ZFPDecompressor provides the following methods:

SetRate Specifies the rate of compression.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored and the active coordinate system is used instead.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.
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9.1.13 Lagrangian Coherent Structures

Lagrangian coherent structures (LCS) are distinct structures present in a flow field that have a major influence
over nearby trajectories over some interval of time. Some of these structures may be sources, sinks, saddles, or
vortices in the flow field. Identifying Lagrangian coherent structures is part of advanced flow analysis and is an
important part of studying flow fields. These structures can be studied by calculating the finite time Lyapunov
exponent (FTLE) for a flow field at various locations, usually over a regular grid encompassing the entire flow
field. If the provided input dataset is structured, then by default the points in this dataset will be used as seeds
for advection.
The vtkm::filter::LagrangianStructures filter is used to compute the FTLE of a flow field. La-
grangianStructures has the following methods.

SetStepSize/GetStepSize Set or retrieve the step size for a single advection step for the particles used to
calculate the FTLE.

SetNumberOfSteps/GetNumberOfSteps Set or retrieve the maximum number of steps a particle is allowed to
traverse while calculating the FTLE field.

SetAdvectionTime/GetAdvectionTime Set or retrieve the time interval of advection. The FTLE field is calcu-
lated over some finite time, and the advection time determines that interval of time used.

SetUseAuxiliaryGrid/GetUseAuxiliaryGrid Set or retrieve the flag to use auxiliary grids. When this flag
is off (the default), then the points of the mesh representing the vector field are advected and used for
computing the FTLE. However, if the mesh is too coarse, the FTLE will likely be inaccurate. Or if the
mesh is unstructured the FTLE may be less efficient to compute. When this flag is on, an auxiliary grid
of uniformly spaced points is used for the FTLE computation.

SetAuxiliaryGridDimensions/GetAuxiliaryGridDimensions Set or retrieve the dimensions of the auxiliary
grid for FTLE calculation. Seeds for advection will be placed along the points of this auxiliary grid. This
option has no effect unless the UseAuxiliaryGrid option is on.

SetUseFlowMapOutput/GetUseFlowMapOutput Set or retrieve the flag to use flow maps instead of advection. If
the start and end points for FTLE calculation are known already, advection is an unnecessary step. This
flag allows users to bypass advection, and instead use a precalculated flow map. By default this option is
off.

SetFlowMapOutput/GetFlowMapOutput Set or retrieve the array representing the flow map output to be used
for FTLE calculation.

SetOutputFieldName/GetOutputFieldName Set or retrieve the name of the output field in the dataset returned
by the LagrangianStructures filter. By default, the field will be names “FTLE”.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.
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9.1.14 Stream Tracing

Stream tracing is a visualization technique used to characterize the structure of flow. The flow itself is defined
by a vector field of velocities. Stream tracing works by following the path taken by the flow. There are multiple
ways in which to represent flow in this manner, and consequently VTK-m contains several filters that trace
streams in different ways.

Streamlines

Streamlines are a powerful technique for the visualization of flow fields. A streamline is a curve that is parallel
to the velocity vector of the flow field. Individual streamlines are computed from an initial point location (seed)
using a numerical method to integrate the point through the flow field.
vtkm::filter::Streamline provides the following methods.

SetSeeds Specifies the seed locations for the streamlines. Each seed is advected in the vector field to generate
one streamline for each seed. The seeds are specified in an ArrayHandle containing vtkm::Particle
objects.

SetStepSize Specifies the step size used for the numerical integrator (4th order Runge-Kutta method) to inte-
grate the seed locations through the flow field.

SetNumberOfSteps Specifies the number of integration steps to be performed on each streamline.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Example 9.7: Using Streamline, which is a data set with field filter.
1 vtkm :: filter :: flow :: Streamline streamlines ;
2
3 // Specify the seeds .
4 vtkm :: cont :: ArrayHandle <vtkm :: Particle > seedArray ;
5 seedArray . Allocate (2);
6 seedArray . WritePortal (). Set (0, vtkm :: Particle ({ 0, 0, 0 }, 0));
7 seedArray . WritePortal (). Set (1, vtkm :: Particle ({ 1, 1, 1 }, 1));
8
9 streamlines . SetActiveField (" vectorvar ");

10 streamlines . SetStepSize (0.1f);
11 streamlines . SetNumberOfSteps (100);
12 streamlines . SetSeeds ( seedArray );
13
14 vtkm :: cont :: DataSet output = streamlines . Execute ( inData );
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Stream Surface

A stream surface is defined as a continuous surface that is everywhere tangent to a specified vector field. vtkm::-
filter::StreamSurface computes a stream surface from a set of input points and the vector field of the input
data set. The stream surface is created by creating streamlines from each input point and then connecting
adjacent streamlines with a series of triangles.
vtkm::filter::StreamSurface provides the following methods.

SetSeeds Specifies the seed locations for the edge of the stream surface. The seeds are specified in an Array-
Handle containing vtkm::Particle objects.

SetStepSize Specifies the step size used for the numerical integrator (4th order Runge-Kutta method) to inte-
grate the seed locations through the flow field.

SetNumberOfSteps Specifies the number of integration steps to be performed on each seed.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Example 9.8: Using StreamSurface, which is a data set with field filter.
1 vtkm :: filter :: flow :: StreamSurface streamSurface ;
2
3 // Specify the seeds .
4 vtkm :: cont :: ArrayHandle <vtkm :: Particle > seedArray ;
5 seedArray . Allocate (2);
6 seedArray . WritePortal (). Set (0, vtkm :: Particle ({ 0, 0, 0 }, 0));
7 seedArray . WritePortal (). Set (1, vtkm :: Particle ({ 1, 1, 1 }, 1));
8
9 streamSurface . SetActiveField (" vectorvar ");

10 streamSurface . SetStepSize (0.1f);
11 streamSurface . SetNumberOfSteps (100);
12 streamSurface . SetSeeds ( seedArray );
13
14 vtkm :: cont :: DataSet output = streamSurface . Execute ( inData );

Pathlines

Pathlines are the analog to Streamlines for time varying vector fields. Individual pathlines are computed from
an initial point location (seed) using a numerical method to integrate the point through the flow field. This filter
requires two data sets as input. The data set passed into the filter is termed “Previous” and the “Next” data set
is specified to the filter using a method.
vtkm::filter::Pathline provides the following methods.
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SetPreviousTime Specifies time value for the input data set.

SetNextTime Specifies time value for the next data set.

SetNextDataSet Specifies the data set for the next time step.

SetSeeds Specifies the seed locations for the pathlines. Each seed is advected in the vector field to generate one
streamline for each seed. The seeds are specified in an ArrayHandle containing vtkm::Particle objects.

SetStepSize Specifies the step size used for the numerical integrator (4th order Runge-Kutta method) to inte-
grate the seed locations through the flow field.

SetNumberOfSteps Specifies the number of integration steps to be performed on each pathline.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 9.2.2 for more details.

Example 9.9: Using Pathline, which is a data set with field filter.
1 vtkm :: filter :: flow :: Pathline pathlines ;
2
3 // Specify the seeds .
4 vtkm :: cont :: ArrayHandle <vtkm :: Particle > seedArray ;
5 seedArray . Allocate (2);
6 seedArray . WritePortal (). Set (0, vtkm :: Particle ({ 0, 0, 0 }, 0));
7 seedArray . WritePortal (). Set (1, vtkm :: Particle ({ 1, 1, 1 }, 1));
8
9 pathlines . SetActiveField (" vectorvar ");

10 pathlines . SetStepSize (0.1f);
11 pathlines . SetNumberOfSteps (100);
12 pathlines . SetSeeds ( seedArray );
13 pathlines . SetPreviousTime (0.0f);
14 pathlines . SetNextTime (1.0f);
15 pathlines . SetNextDataSet ( inData2 );
16
17 vtkm :: cont :: DataSet pathlineCurves = pathlines . Execute ( inData1 );

9.2 Advanced Field Management

Most filters work with fields as inputs and outputs to their algorithms. Although in the previous discussions of
the filters we have seen examples of specifying fields, these examples have been kept brief in the interest of clarity.
In this section we revisit how filters manage fields and provide more detailed documentation of the controls.
Note that not all of the discussion in this section applies to all the aforementioned filters. For example, not all
filters have a specified input field. But where possible, the interface to the filter objects is kept consistent.
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9.2.1 Input Fields

Many of VTK-m’s filters have a method named SetActiveField, which selects a field in the input data to use
as the data for the filter’s algorithm. We have already seen how SetActiveField takes the name of the field as
an argument. However, SetActiveField also takes an optional second argument that specifies which topological
elements the field is associated with (such as points or cells). If specified, this argument is one of the following.

vtkm::cont::Field::Association::Any Any field regardless of the association. (This is the default if no
association is given.)

vtkm::cont::Field::Association::Points A field that applies to points. There is a separate field value
attached to each point. Point fields usually represent samples of continuous data that can be reinterpolated
through cells. Physical properties such as temperature, pressure, density, velocity, etc. are usually best
represented in point fields. Data that deals with the points of the topology, such as displacement vectors,
are also appropriate for point data.

vtkm::cont::Field::Association::Cells A field that applies to cells. There is a separate field value attached
to each cell in a cell set. Cell fields usually represent values from an integration over the finite cells of the
mesh. Integrated values like mass or volume are best represented in cell fields. Statistics about each cell
like strain or cell quality are also appropriate for cell data.

vtkm::cont::Field::Association::WholeMesh A “global” field that applies to the whole mesh. These often
contain summary or annotation information. An example of a whole mesh field could be the volume that
the mesh covers.

Example 9.10: Setting a field’s active filter with an association.
1 filter . SetActiveField (" pointvar ", vtkm :: cont :: Field :: Association :: Points );

It is possible to have two fields with the same name that are only differentiable by the association. That is,
you could have a point field and a cell field with different data but the same name. Thus, it is best practice
to specify the field association when possible. Likewise, it is poor practice to have two fields with the same
name, particularly if the data are not equivalent in some way. It is often the case that fields are selected
without an association.

Common Errors

It is also possible to set the active scalar field as a coordinate system of the data. A coordinate system essentially
provides the spatial location of the points of the data and they have a special place in the vtkm::cont::DataSet
structure. (See Section 7.4 for details on coordinate systems.) You can use a coordinate system as the active
scalars by calling the SetUseCoordinateSystemAsField method with a true flag. Since a DataSet can have
multiple coordinate systems, you can select the desired coordinate system with SetActiveCoordinateSystem.
(By default, the first coordinate system will be used.)

9.2.2 Passing Fields from Input to Output

After a filter successfully executes and returns a new data set, fields are mapped from input to output. Depending
on what operation the filter does, this could be a simple shallow copy of an array, or it could be a computed
operation. By default, the filter will automatically pass all fields from input to output (performing whatever
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transformations are necessary). You can control which fields are passed (and equivalently which are not) with
the SetFieldsToPass methods of vtkm::filter::Filter.
There are multiple ways to to use Filter::SetFieldsToPass to control what fields are passed. If you want
to turn off all fields so that none are passed, call SetFieldsToPass with vtkm::filter::FieldSelection::-
Mode::None.

Example 9.11: Turning off the passing of all fields when executing a filter.
1 filter . SetFieldsToPass (vtkm :: filter :: FieldSelection :: Mode :: None );

If you want to pass one specific field, you can pass that field’s name to SetFieldsToPass.

Example 9.12: Setting one field to pass by name.
1 filter . SetFieldsToPass (" pointvar ");

Or you can provide a list of fields to pass by giving SetFieldsToPass an initializer list of names.

Example 9.13: Using a list of fields for a filter to pass.
1 filter . SetFieldsToPass ({ " pointvar ", " cellvar " });

If you want to instead select a list of fields to not pass, you can add vtkm::filter::FieldSelection::-
Mode::Exclude as an argument to SetFieldsToPass.

Example 9.14: Excluding a list of fields for a filter to pass.
1 filter . SetFieldsToPass ({ " pointvar ", " cellvar " },
2 vtkm :: filter :: FieldSelection :: Mode :: Exclude );

Ultimately, Filter::SetFieldsToPass takes a vtkm::filter::FieldSelection object. You can create one
directly to select (or exclude) specific fields and their associations.

Example 9.15: Using vtkm::filter::FieldSelection.
1 vtkm :: filter :: FieldSelection fieldSelection ;
2 fieldSelection . AddField (" scalars ");
3 fieldSelection . AddField (" cellvar ", vtkm :: cont :: Field :: Association :: Cells );
4
5 filter . SetFieldsToPass ( fieldSelection );

It is also possible to specify field attributions directly to Filter::SetFieldsToPass. If you only have one field,
you can just specify both the name and attribution. If you have multiple fields, you can provide an initializer
list of std::pair or vtkm::Pair containing a std::string and a vtkm::cont::Field::AssociationEnum. In
either case, you can add an optional last argument of vtkm::filter::FieldSelection::Mode::Exclude to
exclude the specified filters instead of selecting them.

Example 9.16: Selecting one field and its association for a filter to pass.
1 filter . SetFieldsToPass (" pointvar ", vtkm :: cont :: Field :: Association :: Points );

Example 9.17: Selecting a list of fields and their associations for a filter to pass.
1 filter . SetFieldsToPass (
2 { vtkm :: make_Pair (" pointvar ", vtkm :: cont :: Field :: Association :: Points ),
3 vtkm :: make_Pair (" cellvar ", vtkm :: cont :: Field :: Association :: Cells ),
4 vtkm :: make_Pair (" scalars ", vtkm :: cont :: Field :: Association :: Any) });

Note that coordinate systems in a DataSet are simply links to point fields, and by default filters will pass
coordinate systems regardless of the field selection flags. To prevent a filter from passing a coordinate system if
its associated field is not selected, use the SetPassCoordinateSystems method. When this flag is set to false,
coordinate systems are only passed if their associated field is selected.
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Example 9.18: Turning off the automatic selection of fields associated with a DataSet’s coordinate system.
1 filter . SetPassCoordinateSystems ( false );
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CHAPTER

TEN

RENDERING

Rendering, the generation of images from data, is a key component to visualization. To assist with rendering,
VTK-m provides a rendering package to produce imagery from data, which is located in the vtkm::rendering
namespace.
The rendering package in VTK-m is not intended to be a fully featured rendering system or library. Rather, it
is a lightweight rendering package with two primary use cases:

1. New users getting started with VTK-m need a “quick and dirty” render method to see their visualization
results.

2. In situ visualization that integrates VTK-m with a simulation or other data-generation system might need
a lightweight rendering method.

Both of these use cases require just a basic rendering platform. Because VTK-m is designed to be integrated
into larger systems, it does not aspire to have a fully featured rendering system.

VTK-m’s big sister toolkit VTK is already integrated with VTK-m and has its own fully featured rendering
system. If you need more rendering capabilities than what VTK-m provides, you can leverage VTK instead.

Did you know?

10.1 Scenes and Actors

The primary intent of the rendering package in VTK-m is to visually display the data that is loaded and
processed. Data are represented in VTK-m by vtkm::cont::DataSet objects, which are described in Chapter
7. They are also the unit created from I/O operations (Chapter 8 and filters (Chapter 9).
To render a DataSet, the data are wrapped in a vtkm::rendering::Actor class. The Actor holds the compo-
nents of the DataSet to render (a cell set, a coordinate system, and a field). A color table can also be optionally
be specified, but a default color table will be specified otherwise.
Actors are collected together in an object called vtkm::rendering::Scene. An Actor is added to a Scene with
the AddActor method. The following example demonstrates creating a Scene with one Actor.

Example 10.1: Creating an Actor and adding it to a Scene.



10.2. Canvas

1 vtkm :: rendering :: Actor actor ( surfaceData . GetCellSet (),
2 surfaceData . GetCoordinateSystem (),
3 surfaceData . GetField (" RandomPointScalars "));
4
5 vtkm :: rendering :: Scene scene ;
6 scene . AddActor ( actor );

10.2 Canvas

A canvas is a unit that represents the image space that is the target of the rendering. The canvas’ primary
function is to manage the buffers that hold the working image data during the rendering. The canvas also
manages the context and state of the rendering subsystem.
vtkm::rendering::Canvas is the base class of all canvas objects. Each type of rendering system has its own
canvas subclass, but currently the only rendering system provided by VTK-m is the internal ray tracer. The
canvas for the ray tracer is vtkm::rendering::CanvasRayTracer. CanvasRayTracer is typically constructed
by giving the width and height of the image to render.

Example 10.2: Creating a canvas for rendering.
1 vtkm :: rendering :: CanvasRayTracer canvas (1920 , 1080);

10.3 Mappers

A mapper is a unit that converts data (managed by an Actor) and issues commands to the rendering subsystem
to generate images. All mappers in VTK-m are a subclass of vtkm::rendering::Mapper. Different rendering
systems (as established by the Canvas) often require different mappers. Also, different mappers could render
different types of data in different ways. For example, one mapper might render polygonal surfaces whereas
another might render polyhedra as a translucent volume. Thus, a mapper should be picked to match both the
rendering system of the Canvas and the data in the Actor.
The following mappers are provided by VTK-m.

vtkm::rendering::MapperRayTracer Uses VTK-m’s built in ray tracing system to render the visible surface
of a mesh. MapperRayTracer only works in conjunction with CanvasRayTracer.

vtkm::rendering::MapperCylinder Uses VTK-m’s built in ray tracing system to render cylinders as lines of
a mesh. MapperCylinder only works in conjunction with CanvasRayTracer.

vtkm::rendering::MapperGlyphScalar Uses VTK-m’s built in ray tracing system to render glyphs at the
visible points/vertices of a mesh. It suports rendering points as spheres, axis-aligned cubes, axes and
camera-facing quads, coloring the points based on the values of a scalar field. MapperGlyphScalar only
works in conjunction with CanvasRayTracer.

vtkm::rendering::MapperGlyphVector Uses VTK-m’s built in ray tracing system to render arrows at the
visible points/vertices of a mesh. It suports rendering points by coloring the points based on the values of
a vector field. MapperGlyphVector only works in conjunction with CanvasRayTracer.

vtkm::rendering::MapperQuad Uses VTK-m’s built in ray tracing system to render the visible quadrilaterals
of a mesh. MapperQuad only works in conjunction with CanvasRayTracer.

vtkm::rendering::MapperVolume Uses VTK-m’s built in ray tracing system to render polyhedra as a translu-
cent volume. MapperVolume only works in conjunction with CanvasRayTracer.
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vtkm::rendering::MapperWireframer Uses VTK-m’s built in ray tracing system to render the cell edges (i.e.
the “wireframe”) of a mesh. MapperWireframer only works in conjunction with CanvasRayTracer.

10.4 Views

A view is a unit that collects all the structures needed to perform rendering. It contains everything needed to
take a Scene (Section 10.1) and use a Mapper (Section 10.3) to render it onto a Canvas (Section 10.2). The view
also annotates the image with spatial and scalar properties.
The base class for all views is vtkm::rendering::View. View is an abstract class, and you must choose one of the
three provided subclasses, vtkm::rendering::View3D, vtkm::rendering::View2D, and vtkm::rendering::-
View3D, depending on the type of data being presented. All three view classes take a Scene, a Mapper, and a
Canvas as arguments to their constructor.

Example 10.3: Constructing a View.
1 vtkm :: rendering :: Actor actor ( surfaceData . GetCellSet (),
2 surfaceData . GetCoordinateSystem (),
3 surfaceData . GetField (" RandomPointScalars "));
4
5 vtkm :: rendering :: Scene scene ;
6 scene . AddActor ( actor );
7
8 vtkm :: rendering :: MapperRayTracer mapper ;
9 vtkm :: rendering :: CanvasRayTracer canvas (1920 , 1080);

10
11 vtkm :: rendering :: View3D view(scene , mapper , canvas );

The View also maintains a background color (the color used in areas where nothing is drawn) and a foreground
color (the color used for annotation elements). By default, the View has a black background and a white
foreground. These can be set in the view’s constructor, but it is a bit more readable to set them using the
View::SetBackground and View::SetForeground methods. In either case, the colors are specified using the
vtkm::rendering::Color helper class, which manages the red, green, and blue color channels as well as an
optional alpha channel. These channel values are given as floating point values between 0 and 1.

Example 10.4: Changing the background and foreground colors of a View.
1 view. SetBackgroundColor (vtkm :: rendering :: Color (1.0f, 1.0f, 1.0f));
2 view. SetForegroundColor (vtkm :: rendering :: Color (0.0f, 0.0f, 0.0f));

Although the background and foreground colors are set independently, it will be difficult or impossible to see
the annotation if there is not enough contrast between the background and foreground colors. Thus, when
changing a View’s background color, it is always good practice to also change the foreground color.

Common Errors

Once the View is constructed, intialized, and set up, it is ready to render. This is done by calling the View::Paint
method.

Example 10.5: Using Canvas::Paint in a display callback.
1 view. Paint ();
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Figure 10.1: Example output of VTK-m’s rendering system.

Putting together Examples 10.3, 10.4, and 10.5, the final render of a view looks like that in Figure 10.1.
Of course, the vtkm::rendering::CanvasRayTracer created in 10.3 is an offscreen rendering buffer, so you
cannot immediately see the image. When doing batch visualization, an easy way to output the image to a file
for later viewing is with the View::SaveAs method. This method can save the image in either PNG or in the
portable pixelmap (PPM) format.

Example 10.6: Saving the result of a render as an image file.
1 view. SaveAs (" BasicRendering .png ");

We visit doing interactive rendering in a GUI later in Section 10.7.

10.5 Changing Rendering Modes

Example 10.3 constructs the default mapper for ray tracing, which renders the data as an opaque solid. However,
you can change the rendering mode by using one of the other mappers listed in Section 10.3. For example, say you
just wanted to see a wireframe representation of your data. You can achieve this by using vtkm::rendering::-
MapperWireframer.

Example 10.7: Creating a mapper for a wireframe representation.
1 vtkm :: rendering :: MapperWireframer mapper ;
2 vtkm :: rendering :: View3D view(scene , mapper , canvas );

Alternatively, perhaps you wish to render just the points of mesh. vtkm::rendering::MapperGlyphScalar
renders the points as glyphs and also optionally can scale the glyphs based on field values.

Example 10.8: Creating a mapper for point representation.
1 vtkm :: rendering :: MapperGlyphScalar mapper ;
2 mapper . SetGlyphType (vtkm :: rendering :: GlyphType :: Cube );
3 mapper . SetScaleByValue (true );
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4 mapper . SetScaleDelta (10.0 f);
5
6 vtkm :: rendering :: View3D view(scene , mapper , canvas );

These mappers respectively render the images shown in Figure 10.2. Other mappers, such as those that can
render translucent volumes, are also available.

Figure 10.2: Examples of alternate rendering modes using different mappers. The top left image is rendered with
MapperWireframer. The top right and bottom left images are rendered with MapperGlyphScalar. The bottom
right image is rendered with MapperGlyphVector.

10.6 Manipulating the Camera

The vtkm::rendering::View uses an object called vtkm::rendering::Camera to describe the vantage point
from which to draw the geometry. The camera can be retrieved from the View::GetCamera method. That
retrieved camera can be directly manipulated or a new camera can be provided by calling View::SetCamera. In
this section we discuss camera setups typical during view set up. Camera movement during interactive rendering
is revisited in Section 10.7.2.
A Camera operates in one of two major modes: 2D mode or 3D mode. 2D mode is designed for looking at flat
geometry (or close to flat geometry) that is parallel to the x-y plane. 3D mode provides the freedom to place the
camera anywhere in 3D space. The different modes can be set with SetModeTo2D and SetModeTo3D, respectively.
The interaction with the camera in these two modes is very different.
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10.6.1 2D Camera Mode

The 2D camera is restricted to looking at some region of the x-y plane.

View Range

The vantage point of a 2D camera can be specified by simply giving the region in the x-y plane to look at. This
region is specified by calling Camera::SetViewRange2D. This method takes the left, right, bottom, and top of
the region to view. Typically these are set to the range of the geometry in world space as shown in Figure 10.3.

Bottom
(Y Min)

Top
(Y Max)

Left
(X Min)

Right
(X Max)

Figure 10.3: The view range bounds to give a Camera.

There are 3 overloaded versions of the SetViewRange2D method. The first version takes the 4 range values, left,
right, bottom, and top, as separate arguments in that order. The second version takes two vtkm::Range objects
specifying the range in the x and y directions, respectively. The third version trakes a single vtkm::Bounds
object, which completely specifies the spatial range. (The range in z is ignored.) The Range and Bounds objects
are documented later in Sections 19.3 and 19.4, respectively.

Pan

A camera pan moves the viewpoint left, right, up, or down. A camera pan is performed by calling the Camera::-
Pan method. Pan takes two arguments: the amount to pan in x and the amount to pan in y.
The pan is given with respect to the projected space. So a pan of 1 in the x direction moves the camera to focus
on the right edge of the image whereas a pan of −1 in the x direction moves the camera to focus on the left edge
of the image.

Example 10.9: Panning the camera.
1 view. GetCamera (). Pan(deltaX , deltaY );
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Zoom

A camera zoom draws the geometry larger or smaller. A camera zoom is performed by calling the Camera::Zoom
method. Zoom takes a single argument specifying the zoom factor. A positive number draws the geometry larger
(zoom in), and larger zoom factor results in larger geometry. Likewise, a negative number draws the geometry
smaller (zoom out). A zoom factor of 0 has no effect.

Example 10.10: Zooming the camera.
1 view. GetCamera (). Zoom( zoomFactor );

10.6.2 3D Camera Mode

The 3D camera is a free-form camera that can be placed anywhere in 3D space and can look in any direction.
The projection of the 3D camera is based on the pinhole camera model in which all viewing rays intersect a
single point. This single point is the camera’s position.

Position and Orientation

The position of the camera, which is the point where the observer is viewing the scene, can be set with the
Camera::SetPosition method. The direction the camera is facing is specified by giving a position to focus on.
This is called either the “look at” point or the focal point and is specified with the Camera::SetLookAt method.
Figure 10.4 shows the relationship between the position and look at points.
In addition to specifying the direction to point the camera, the camera must also know which direction is
considered “up.” This is specified with the view up vector using the Camera::SetViewUp method. The view up
vector points from the camera position (in the center of the image) to the top of the image. The view up vector
in relation to the camera position and orientation is shown in Figure 10.4.
Another important parameter for the camera is its field of view. The field of view specifies how wide of a region
the camera can see. It is specified by giving the angle in degrees of the cone of visible region emanating from
the pinhole of the camera to the Camera::SetFieldOfView method. The field of view angle in relation to the
camera orientation is shown in Figure 10.4. A field of view angle of 60◦ usually works well.
Finally, the camera must specify a clipping region that defines the valid range of depths for the object. This is
a pair of planes parallel to the image that all visible data must lie in. Each of these planes is defined simply
by their distance to the camera position. The near clip plane is closer to the camera and must be in front of
all geometry. The far clip plane is further from the camera and must be behind all geometry. The distance to
both the near and far planes are specified with the Camera::SetClippingRange method. Figure 10.4 shows the
clipping planes in relationship to the camera position and orientation.

Example 10.11: Directly setting vtkm::rendering::Camera position and orientation.
1 camera . SetPosition (vtkm :: make_Vec (10.0 , 6.0 , 6.0));
2 camera . SetLookAt (vtkm :: make_Vec (0.0 , 0.0 , 0.0));
3 camera . SetViewUp (vtkm :: make_Vec (0.0 , 1.0 , 0.0));
4 camera . SetFieldOfView (60.0);
5 camera . SetClippingRange (0.1 , 100.0);

Movement

In addition to specifically setting the position and orientation of the camera, vtkm::rendering::Camera contains
several convenience methods that move the camera relative to its position and look at point.
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Figure 10.4: The position and orientation parameters for a Camera.

Two such methods are elevation and azimuth, which move the camera around the sphere centered at the look
at point. Camera::Elevation raises or lowers the camera. Positive values raise the camera up (in the direction
of the view up vector) whereas negative values lower the camera down. Camera::Azimuth moves the camera
around the look at point to the left or right. Positive values move the camera to the right whereas negative
values move the camera to the left. Both Elevation and Azimuth specify the amount of rotation in terms of
degrees. Figure 10.5 shows the relative movements of Elevation and Azimuth.

Example 10.12: Moving the camera around the look at point.
1 view. GetCamera (). Azimuth (45.0);
2 view. GetCamera (). Elevation (45.0);

The Camera::Elevation and Camera::Azimuth methods change the position of the camera, but not the
view up vector. This can cause some wild camera orientation changes when the direction of the camera
view is near parallel to the view up vector, which often happens when the elevation is raised or lowered by
about 90 degrees.

Common Errors
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Figure 10.5: Camera movement functions relative to position and orientation.

In addition to rotating the camera around the look at point, you can move the camera closer or further from the
look at point. This is done with the Camera::Dolly method. The Dolly method takes a single value that is the
factor to scale the distance between camera and look at point. Values greater than one move the camera away,
values less than one move the camera closer. The direction of dolly movement is shown in Figure 10.5.
Finally, the Camera::Roll method rotates the camera around the viewing direction. It has the effect of rotating
the rendered image. The Roll method takes a single value that is the angle to rotate in degrees. The direction
of roll movement is shown in Figure 10.5.

Pan

A camera pan moves the viewpoint left, right, up, or down. A camera pan is performed by calling the Camera::-
Pan method. Pan takes two arguments: the amount to pan in x and the amount to pan in y.
The pan is given with respect to the projected space. So a pan of 1 in the x direction moves the camera to focus
on the right edge of the image whereas a pan of −1 in the x direction moves the camera to focus on the left edge
of the image.

Example 10.13: Panning the camera.
1 view. GetCamera (). Pan(deltaX , deltaY );

Zoom

A camera zoom draws the geometry larger or smaller. A camera zoom is performed by calling the Camera::Zoom
method. Zoom takes a single argument specifying the zoom factor. A positive number draws the geometry larger
(zoom in), and larger zoom factor results in larger geometry. Likewise, a negative number draws the geometry
smaller (zoom out). A zoom factor of 0 has no effect.
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Example 10.14: Zooming the camera.
1 view. GetCamera (). Zoom( zoomFactor );

Reset

Setting a specific camera position and orientation can be frustrating, particularly when the size, shape, and
location of the geometry is not known a priori. Typically this involves querying the data and finding a good
camera orientation.
To make this process simpler, vtkm::rendering::Camera has a convenience method named Camera::ResetTo-
Bounds that automatically positions the camera based on the spatial bounds of the geometry. The most expedient
method to find the spatial bounds of the geometry being rendered is to get the vtkm::rendering::Scene object
and call GetSpatialBounds. The Scene object can be retrieved from the vtkm::rendering::View, which, as
described in Section 10.4, is the central object for managing rendering.

Example 10.15: Resetting a Camera to view geometry.
1 void ResetCamera (vtkm :: rendering :: View& view)
2 {
3 vtkm :: Bounds bounds = view. GetScene (). GetSpatialBounds ();
4 view. GetCamera (). ResetToBounds ( bounds );
5 }

The ResetToBounds method operates by placing the look at point in the center of the bounds and then placing
the position of the camera relative to that look at point. The position is such that the view direction is the
same as before the call to ResetToBounds and the distance between the camera position and look at point has
the bounds roughly fill the rendered image. This behavior is a convenient way to update the camera to make
the geometry most visible while still preserving the viewing position. If you want to reset the camera to a new
viewing angle, it is best to set the camera to be pointing in the right direction and then calling ResetToBounds
to adjust the position.

Example 10.16: Resetting a Camera to be axis aligned.
1 view. GetCamera (). SetPosition (vtkm :: make_Vec (0.0 , 0.0 , 0.0));
2 view. GetCamera (). SetLookAt (vtkm :: make_Vec (0.0 , 0.0 , -1.0));
3 view. GetCamera (). SetViewUp (vtkm :: make_Vec (0.0 , 1.0 , 0.0));
4 vtkm :: Bounds bounds = view. GetScene (). GetSpatialBounds ();
5 view. GetCamera (). ResetToBounds ( bounds );

10.7 Interactive Rendering

So far in our description of VTK-m’s rendering capabilities we have talked about doing rendering of fixed scenes.
However, an important use case of scientific visualization is to provide an interactive rendering system to explore
data. In this case, you want to render into a GUI application that lets the user interact manipulate the view.
The full design of a 3D visualization application is well outside the scope of this book, but we discuss in general
terms what you need to plug VTK-m’s rendering into such a system.
In this section we discuss two important concepts regarding interactive rendering. First, we need to write images
into a GUI while they are being rendered. Second, we want to translate user interaction to camera movement.

10.7.1 Rendering Into a GUI

Before being able to show rendering to a user, we need a system rendering context in which to push the images.
In this section we demonstrate the display of images using the OpenGL rendering system, which is common for
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scientific visualization applications. That said, you could also use other rendering systems like DirectX or even
paste images into a blank widget.
Creating an OpenGL context varies depending on the OS platform you are using. If you do not already have
an application you want to integrate with VTK-m’s rendering, you may wish to start with graphics utility API
such as GLUT or GLFW. The process of initializing an OpenGL context is not discussed here.
The process of rendering into an OpenGL context is straightforward. First call Paint on the View object to do
the actual rendering. Second, get the image color data out of the View’s Canvas object. This is done by calling
Canvas::GetColorBuffer. This will return a vtkm::cont::ArrayHandle object containing the image’s pixel
color data. (ArrayHandles are discussed in detail in Chapter 16 and subsequent chapters.) A raw pointer can
be pulled out of this ArrayHandle by casting it to the vtkm::cont::ArrayHandleBase subclass and calling the
GetReadPointer method on that. Third, the pixel color data are pasted into the OpenGL render context. There
are multiple ways to do so, but the most straightforward way is to use the glDrawPixels function provided by
OpenGL. Fourth, swap the OpenGL buffers. The method to swap OpenGL buffers varies by OS platform. The
aforementioned graphics libraries GLUT and GLFW each provide a function for doing so.

Example 10.17: Rendering a View and pasting the result to an active OpenGL context.
1 view. Paint ();
2
3 // Get the color buffer containing the rendered image .
4 vtkm :: cont :: ArrayHandle <vtkm :: Vec4f_32 > colorBuffer =
5 view. GetCanvas (). GetColorBuffer ();
6
7 // Pull the C array out of the arrayhandle .
8 const void * colorArray =
9 vtkm :: cont :: ArrayHandleBasic <vtkm :: Vec4f_32 >( colorBuffer ). GetReadPointer ();

10
11 // Write the C array to an OpenGL buffer .
12 glDrawPixels (( GLint )view. GetCanvas (). GetWidth (),
13 ( GLint )view. GetCanvas (). GetHeight (),
14 GL_RGBA ,
15 GL_FLOAT ,
16 colorArray );
17
18 // Swap the OpenGL buffers ( system dependent ).

10.7.2 Camera Movement

When interactively manipulating the camera in a windowing system, the camera is usually moved in response
to mouse movements. Typically, mouse movements are detected through callbacks from the windowing system
back to your application. Once again, the details on how this works depend on your windowing system. The
assumption made in this section is that through the windowing system you will be able to track the x-y pixel
location of the mouse cursor at the beginning of the movement and the end of the movement. Using these two
pixel coordinates, as well as the current width and height of the render space, we can make several typical camera
movements.

Pixel coordinates in VTK-m’s rendering system originate in the lower-left corner of the image. However,
windowing systems generally report mouse coordinates with the origin in the upper-left corner. The upshot
is that the y coordinates will have to be reversed when translating mouse coordinates to VTK-m image
coordinates. This inverting is present in all the following examples.

Common Errors
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Rotate

A common and important mode of interaction with 3D views is to allow the user to rotate the object under
inspection by dragging the mouse. To facilitate this type of interactive rotation, vtkm::rendering::Camera
provides a convenience method named TrackballRotate. The TrackballRotate method takes a start and end
position of the mouse on the image and rotates viewpoint as if the user grabbed a point on a sphere centered in
the image at the start position and moved under the end position.
The TrackballRotate method is typically called from within a mouse movement callback. The callback must
record the pixel position from the last event and the new pixel position of the mouse. Those pixel positions must
be normalized to the range -1 to 1 where the position (-1,-1) refers to the lower left of the image and (1,1) refers
to the upper right of the image. The following example demonstrates the typical operations used to establish
rotations when dragging the mouse.

Example 10.18: Interactive rotations through mouse dragging with Camera::TrackballRotate.
1 void DoMouseRotate (vtkm :: rendering :: View& view ,
2 vtkm :: Id mouseStartX ,
3 vtkm :: Id mouseStartY ,
4 vtkm :: Id mouseEndX ,
5 vtkm :: Id mouseEndY )
6 {
7 vtkm :: Id screenWidth = view. GetCanvas (). GetWidth ();
8 vtkm :: Id screenHeight = view. GetCanvas (). GetHeight ();
9

10 // Convert the mouse position coordinates , given in pixels from 0 to
11 // width /height , to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up , so you have to reverse the y
14 // coordiantes .
15 vtkm :: Float32 startX = (2.0f * mouseStartX ) / screenWidth - 1.0f;
16 vtkm :: Float32 startY = -((2.0f * mouseStartY ) / screenHeight - 1.0f);
17 vtkm :: Float32 endX = (2.0f * mouseEndX ) / screenWidth - 1.0f;
18 vtkm :: Float32 endY = -((2.0f * mouseEndY ) / screenHeight - 1.0f);
19
20 view. GetCamera (). TrackballRotate (startX , startY , endX , endY );
21 }

Pan

Panning can be performed by calling Camera::Pan with the translation relative to the width and height of the
canvas. For the translation to track the movement of the mouse cursor, simply scale the pixels the mouse has
traveled by the width and height of the image.

Example 10.19: Pan the view based on mouse movements.
1 void DoMousePan (vtkm :: rendering :: View& view ,
2 vtkm :: Id mouseStartX ,
3 vtkm :: Id mouseStartY ,
4 vtkm :: Id mouseEndX ,
5 vtkm :: Id mouseEndY )
6 {
7 vtkm :: Id screenWidth = view. GetCanvas (). GetWidth ();
8 vtkm :: Id screenHeight = view. GetCanvas (). GetHeight ();
9

10 // Convert the mouse position coordinates , given in pixels from 0 to
11 // width /height , to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up , so you have to reverse the y
14 // coordiantes .
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15 vtkm :: Float32 startX = (2.0f * mouseStartX ) / screenWidth - 1.0f;
16 vtkm :: Float32 startY = -((2.0f * mouseStartY ) / screenHeight - 1.0f);
17 vtkm :: Float32 endX = (2.0f * mouseEndX ) / screenWidth - 1.0f;
18 vtkm :: Float32 endY = -((2.0f * mouseEndY ) / screenHeight - 1.0f);
19
20 vtkm :: Float32 deltaX = endX - startX ;
21 vtkm :: Float32 deltaY = endY - startY ;
22
23 view. GetCamera (). Pan(deltaX , deltaY );
24 }

Zoom

Zooming can be performed by calling Camera::Zoom with a positive or negative zoom factor. When using Zoom
to respond to mouse movements, a natural zoom will divide the distance traveled by the mouse pointer by the
width or height of the screen as demonstrated in the following example.

Example 10.20: Zoom the view based on mouse movements.
1 void DoMouseZoom (vtkm :: rendering :: View& view ,
2 vtkm :: Id mouseStartY ,
3 vtkm :: Id mouseEndY )
4 {
5 vtkm :: Id screenHeight = view. GetCanvas (). GetHeight ();
6
7 // Convert the mouse position coordinates , given in pixels from 0 to height ,
8 // to normalized screen coordinates from -1 to 1. Note that y screen
9 // coordinates are usually given from the top down whereas our geometry

10 // transforms are given from bottom up , so you have to reverse the y
11 // coordiantes .
12 vtkm :: Float32 startY = -((2.0f * mouseStartY ) / screenHeight - 1.0f);
13 vtkm :: Float32 endY = -((2.0f * mouseEndY ) / screenHeight - 1.0f);
14
15 vtkm :: Float32 zoomFactor = endY - startY ;
16
17 view. GetCamera (). Zoom( zoomFactor );
18 }

10.8 Color Tables

An important feature of VTK-m’s rendering units is the ability to pseudocolor objects based on scalar data.
This technique maps each scalar to a potentially unique color. This mapping from scalars to colors is defined by
a vtkm::cont::ColorTable object. A ColorTable can be specified as an optional argument when constructing
a vtkm::rendering::Actor. (Use of Actors is discussed in Section 10.1.)

Example 10.21: Specifying a ColorTable for an Actor.
1 vtkm :: rendering :: Actor actor ( surfaceData . GetCellSet (),
2 surfaceData . GetCoordinateSystem (),
3 surfaceData . GetField (" RandomPointScalars "),
4 vtkm :: cont :: ColorTable (" inferno "));

The easiest way to create a ColorTable is to provide the name of one of the many predefined sets of color
provided by VTK-m. A list of all available predefined color tables is provided below.
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Viridis Matplotlib Virdis, which is designed to have perceptual uni-
formity, accessibility to color blind viewers, and good con-
version to black and white. This is the default color map.

Cool to Warm A color table designed to be perceptually even, to work well
on shaded 3D surfaces, and to generally perform well across
many uses.

Cool to Warm Extended This colormap is an expansion on cool to warm that moves
through a wider range of hue and saturation. Useful if you
are looking for a greater level of detail, but the darker colors
at the end might interfere with 3D surfaces.

Inferno Matplotlib Inferno, which is designed to have perceptual uni-
formity, accessibility to color blind viewers, and good conver-
sion to black and white.

Plasma Matplotlib Plasma, which is designed to have perceptual uni-
formity, accessibility to color blind viewers, and good conver-
sion to black and white.

Black-Body Radiation The colors are inspired by the wavelengths of light from black
body radiation. The actual colors used are designed to be
perceptually uniform.

X Ray Greyscale colormap useful for making volume renderings sim-
ilar to what you would expect in an x-ray.

Green A sequential color map of green varied by saturation.
Black - Blue - White A sequential color map from black to blue to white.
Blue to Orange A double-ended (diverging) color table that goes from dark

blues to a neutral white and then a dark orange at the other
end.

Gray to Red A double-ended (diverging) color table with black/gray at
the low end and orange/red at the high end.

Cold and Hot A double-ended color map with a black middle color and
diverging values to either side. Colors go from red to yellow
on the positive side and through blue on the negative side.

Blue - Green - Orange A three-part color map with blue at the low end, green in
the middle, and orange at the high end.

Yellow - Gray - Blue A three-part color map with yellow at the low end, gray in
the middle, and blue at the high end.

Rainbow Uniform A color table that spans the hues of a rainbow. There have
been many scientific perceptual studies on the effectiveness
of rainbow colors, and they uniformly found them to be in-
effective. This color table modifies the hues to make them
more perceptually uniform, which should improve the effec-
tiveness of the colors. However, we still recommend the other
color tables over this one.

Jet A rainbow color table that adds some darkness for greater
perceptual resolution. The ends of the jet color table might
be too dark for 3D surfaces.

Rainbow Desaturated All the badness of the rainbow color table with periodic dark
points added, which can help identify rate of change.
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ERROR HANDLING

VTK-m contains several mechanisms for checking and reporting error conditions.

11.1 Runtime Error Exceptions

VTK-m uses exceptions to report errors. All exceptions thrown by VTK-m will be a subclass of vtkm::cont::-
Error. For simple error reporting, it is possible to simply catch a vtkm::cont::Error and report the error
message string reported by the Error::GetMessage method.

Example 11.1: Simple error reporting.
1 int main(int argc , char ** argv)
2 {
3 try
4 {
5 // Do something cool with VTK -m
6 // ...
7 }
8 catch ( const vtkm :: cont :: Error & error )
9 {

10 std :: cout << error . GetMessage () << std :: endl;
11 return 1;
12 }
13 return 0;
14 }

There are several subclasses to vtkm::cont::Error. The specific subclass gives an indication of the type of
error that occurred when the exception was thrown. Catching one of these subclasses may help a program better
recover from errors.

vtkm::cont::ErrorBadAllocation Thrown when there is a problem accessing or manipulating memory. Often
this is thrown when an allocation fails because there is insufficient memory, but other memory access errors
can cause this to be thrown as well.

vtkm::cont::ErrorBadType Thrown when VTK-m attempts to perform an operation on an object that is of
an incompatible type.

vtkm::cont::ErrorBadValue Thrown when a VTK-m function or method encounters an invalid value that
inhibits progress.

vtkm::cont::ErrorExecution Throw when an error is signaled in the execution environment for example when
a worklet is being executed.
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vtkm::cont::ErrorInternal Thrown when VTK-m detects an internal state that should never be reached.
This error usually indicates a bug in VTK-m or, at best, VTK-m failed to detect an invalid input it should
have.

vtkm::io::ErrorIO Thrown by a reader or writer when a file error is encountered.

11.2 Asserting Conditions

In addition to the aforementioned error signaling, the vtkm/Assert.h header file defines a macro named VTKM -
ASSERT. This macro behaves the same as the POSIX assert macro. It takes a single argument that is a condition
that is expected to be true. If it is not true, the program is halted and a message is printed. Asserts are useful
debugging tools to ensure that software is behaving and being used as expected.

Example 11.2: Using VTKM ASSERT.
1 template < typename T>
2 VTKM_CONT T GetArrayValue (vtkm :: cont :: ArrayHandle <T> arrayHandle , vtkm :: Id index )
3 {
4 VTKM_ASSERT ( index >= 0);
5 VTKM_ASSERT ( index < arrayHandle . GetNumberOfValues ());

Like the POSIX assert, if the NDEBUG macro is defined, then VTKM ASSERT will become an empty expres-
sion. Typically NDEBUG is defined with a compiler flag (like -DNDEBUG) for release builds to better optimize
the code. CMake will automatically add this flag for release builds.

Did you know?

A helpful warning provided by many compilers alerts you of unused variables. (This warning is commonly
enabled on VTK-m regression test nightly builds.) If a function argument is used only in a VTKM ASSERT,
then it will be required for debug builds and be unused in release builds. To get around this problem, add
a statement to the function of the form (void)variableName ;. This statement will have no effect on the
code generated but will suppress the warning for release builds.

Common Errors

11.3 Compile Time Checks

Because VTK-m makes heavy use of C++ templates, it is possible that these templates could be used with
inappropriate types in the arguments. Using an unexpected type in a template can lead to very confusing errors,
so it is better to catch such problems as early as possible. The VTKM STATIC ASSERT macro, defined in vtkm/-
StaticAssert.h makes this possible. This macro takes a constant expression that can be evaluated at compile time
and verifies that the result is true.
In the following example, VTKM STATIC ASSERT and its sister macro VTKM STATIC ASSERT MSG, which allows
you to give a descriptive message for the failure, are used to implement checks on a templated function that is
designed to work on any scalar type that is represented by 32 or more bits.
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Example 11.3: Using VTKM STATIC ASSERT.
1 template < typename T>
2 VTKM_EXEC_CONT void MyMathFunction (T& value )
3 {
4 VTKM_STATIC_ASSERT (( std :: is_same < typename vtkm :: TypeTraits <T >:: DimensionalityTag ,
5 vtkm :: TypeTraitsScalarTag >:: value ));
6
7 VTKM_STATIC_ASSERT_MSG ( sizeof (T) >= 4,
8 " MyMathFunction needs types with at least 32 bits .");

In addition to the several trait template classes provided by VTK-m to introspect C++ types, the C++
standard type traits header file contains several helpful templates for general queries on types. Example 11.3
demonstrates the use of one such template: std::is same.

Did you know?

Many templates used to introspect types resolve to the tags std::true type and std::false type rather
than the constant values true and false that VTKM STATIC ASSERT expects. The std::true type and
std::false type tags can be converted to the Boolean literal by adding ::value to the end of them.
Failing to do so will cause VTKM STATIC ASSERT to behave incorrectly. Example 11.3 demonstrates getting
the Boolean literal from the result of std::is same.

Common Errors
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CHAPTER

TWELVE

MANAGING DEVICES

Multiple vendors vie to provide accelerator-type processors. VTK-m endeavors to support as many such ar-
chitectures as possible. Each device and device technology requires some level of code specialization, and that
specialization is encapsulated in a unit called a device adapter.
So far in Part II we have been writing code that runs on a local serial CPU. In those examples where we run
a filter, VTK-m is launching parallel execution in the execution environment. Internally VTK-m uses a device
adapter to manage this execution.
A build of VTK-m generally supports multiple device adapters. In this chapter we describe how to represent
and manage devices.

12.1 Device Adapter Tag

A device adapter is identified by a device adapter tag. This tag, which is simply an empty struct type, is used as
the template parameter for several classes in the VTK-m control environment and causes these classes to direct
their work to a particular device. The following device adapter tags are available in VTK-m.

vtkm::cont::DeviceAdapterTagSerial Performs all computation on the same single thread as the control
environment. This device is useful for debugging. This device is always available. This tag is defined in
vtkm/cont/DeviceAdapterSerial.h.

vtkm::cont::DeviceAdapterTagCuda Uses a CUDA capable GPU device. For this device to work, VTK-m
must be configured to use CUDA and the code must be compiled by the CUDA nvcc compiler. This tag is
defined in vtkm/cont/cuda/DeviceAdapterCuda.h.

vtkm::cont::DeviceAdapterTagOpenMP Uses OpenMP compiler extensions to run algorithms on multiple
threads. For this device to work, VTK-m must be configured to use OpenMP and the code must be
compiled with a compiler that supports OpenMP pragmas. This tag is defined in vtkm/cont/openmp/De-
viceAdapterOpenMP.h.

vtkm::cont::DeviceAdapterTagTBB Uses the Intel Threading Building Blocks library to run algorithms on
multiple threads. For this device to work, VTK-m must be configured to use TBB and the executable must
be linked to the TBB library. This tag is defined in vtkm/cont/tbb/DeviceAdapterTBB.h.

vtkm::cont::DeviceAdapterTagKokkos Uses the Kokkos library to run algorithms in parallel. For this device
to work, VTK-m must be configured to use Kokkos and the executable must be linked to the Kokkos
libraries. Vtk-m will use the default execution space of the provided kokkos library build. This tag is
defined in vtkm/cont/kokkos/DeviceAdapterKokkos.h.



12.2. Device Adapter Id

The following example uses the tag for the Intel Threading Building blocks device adapter to specify a specific
device for VTK-m to use. (Details on specifying devices in VTK-m is provided in Section 12.3.)

Example 12.1: Specifying a device using a device adapter tag.
1 vtkm :: cont :: ScopedRuntimeDeviceTracker (vtkm :: cont :: DeviceAdapterTagTBB {});

For classes and methods that have a template argument that is expected to be a device adapter tag, the tag
type can be checked with the VTKM IS DEVICE ADAPTER TAG macro to verify the type is a valid device adapter
tag. It is good practice to check unknown types with this macro to prevent further unexpected errors.

12.2 Device Adapter Id

Using a device adapter tag directly means that the type of device needs to be known at compile time. To store
a device adapter type at run time, one can instead use vtkm::cont::DeviceAdapterId. DeviceAdapterId is
a superclass to all the device adapter tags, and any device adapter tag can be “stored” in a DeviceAdapterId.
Thus, it is more common for functions and classes to use DeviceAdapterId then to try to track a specific device
with templated code.
In addition to the provided device adapter tags listed previously, a DeviceAdapterId can store some special
device adapter tags that do not directly specify a specific device.

vtkm::cont::DeviceAdapterTagAny Used to specify that any device may be used for an operation. In practice
this is limited to devices that are currently available.

vtkm::cont::DeviceAdapterTagUndefined Used to avoid specifying a device. Useful as a placeholder when a
device can be specified but none is given.

Any device adapter tag can be used where a device adapter id is expected. Thus, you can use a device
adapter tag whenever you want to specify a particular device and pass that to any method expecting a device
id. Likewise, it is usually more convenient for classes and methods to manage device adapter ids rather
than device adapter tag.

Did you know?

DeviceAdapterId contains several helpful methods to get runtime information about a particular device.

GetName A static method that returns a string description for the device adapter. The string is stored in
a type named vtkm::cont::DeviceAdapterNameType, which is currently aliased to std::string. The
device adapter name is useful for printing information about a device being used.

GetId A static method taking no arguments that returns a unique integer identifier for the device adapter as
a vtkm::Int8.

IsValueValid A static const bool that is true if the implementation of the integer returned from GetId
corresponds to a concrete device. So, for example, the IsValueValid flag for a DeviceAdapterTagSerial
is true whereas the IsValueValid flag for a DeviceAdapterTagAny is false.
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As a cheat, all device adapter tags actually inherit from the vtkm::cont::DeviceAdapterId class. Thus,
all of these methods can be called directly on a device adapter tag.

Did you know?

Just because the DeviceAdapterId::IsValueValid returns true that does not necessarily mean that this
device is available to be run on. It simply means that the device is implemented in VTK-m. However, that
device might not be compiled, or that device might not be available on the current running system, or that
device might not be enabled. Use the device runtime tracker described in Section 12.3 to determine if a
particular device can actually be used.

Common Errors

12.3 Runtime Device Tracker

It is often the case that you are agnostic about what device VTK-m algorithms run so long as they complete
correctly and as fast as possible. Thus, rather than directly specify a device adapter, you would like VTK-m to
try using the best available device, and if that does not work try a different device. Because of this, there are
many features in VTK-m that behave this way. For example, you may have noticed that running filters, as in
the examples of Chapter 9, you do not need to specify a device; they choose a device for you.
However, even though we often would like VTK-m to choose a device for us, we still need a way to manage
device preferences. VTK-m also needs a mechanism to record runtime information about what devices are
available so that it does not have to continually try (and fail) to use devices that are not available at runtime.
These needs are met with the vtkm::cont::RuntimeDeviceTracker class. RuntimeDeviceTracker maintains
information about which devices can and should be run on. VTK-m maintains a RuntimeDeviceTracker for
each thread your code is operating on. To get the runtime device for the current thread, use the vtkm::cont::-
GetRuntimeDeviceTracker method.
RuntimeDeviceTracker has the following methods.

CanRunOn Takes a device adapter tag and returns true if VTK-m was configured for the device and it has not
yet been marked as disabled.

DisableDevice Takes a device adapter tag and marks that device to not be used. Future calls to CanRunOn for
this device will return false until that device is reset.

ResetDevice Takes a vtkm::cont::DeviceAdapterTag and resets the state for that device to its default value.
Each device defaults to on as long as VTK-m is configured to use that device and a basic runtime check
finds a viable device.

Reset Resets all devices. This equivocally calls ResetDevice for all devices supported by VTK-m.

ForceDevice Takes a device adapter tag and enables that device. All other devices are disabled. This method
throws a vtkm::cont::ErrorBadValue if the requested device cannot be enabled.

ReportAllocationFailure A device might have less working memory available than the main CPU. If this is
the case, memory allocation errors are more likely to happen. This method is used to report a vtkm::-
cont::ErrorBadAllocation and disables the device for future execution.
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ReportBadDeviceFailure It is possible that a device may throw a vtkm::cont::ErrorBadDevice failure caused
by some erroneous device issue. If this occurs, it is possible to catch the vtkm::cont::ErrorBadDevice
exception and pass it to ReportBadDeviceFailure along with the vtkm::cont::DeviceAdapterId to
forcefully disable a device.

A RuntimeDeviceTracker can be used to specify which devices to consider for a particular operation. How-
ever, a better way to specify devices is to use the vtkm::cont::ScopedRuntimeDeviceTracker class. When a
ScopedRuntimeDeviceTracker is constructed, it specifies a new set of devices for VTK-m to use. When the
ScopedRuntimeDeviceTracker is destroyed as it leaves scope, it restores VTK-m’s devices to those that existed
when it was created.
The following example demonstrates how the ScopedRuntimeDeviceTracker is used to force the VTK-m oper-
ations that happen within a function to operate exclusively with the TBB device.

Example 12.2: Restricting which devices VTK-m uses per thread.
1 void ChangeDefaultRuntime ()
2 {
3 std :: cout << " Checking changing default runtime ." << std :: endl;
4
5 vtkm :: cont :: ScopedRuntimeDeviceTracker (vtkm :: cont :: DeviceAdapterTagTBB {});
6
7 // VTK -m operations limited to serial devices here ...
8
9 // Devices restored as we leave scope .

10 }

In the previous example we forced VTK-m to use the TBB device. This is the default behavior of ScopedRun-
timeDeviceTracker, but the constructor takes an optional second argument that is a value in the vtkm::-
cont::RuntimeDeviceTrackerMode to specify how modify the current device adapter list.

RuntimeDeviceTrackerMode::Force Replaces the current list of devices to try with the device specified to the
ScopedRuntimeDeviceTracker. This has the effect of forcing VTK-m to use the provided device. This is
the default behavior for the ScopedRuntimeDeviceTracker.

RuntimeDeviceTrackerMode::Enable Adds the provided device adapter to the list of devices to try.

RuntimeDeviceTrackerMode::Disable Removes the provided device adapter from the list of devices to try.

As a motivating example, let us say that we want to perform a deep copy of an array (described in Section 16.2).
However, we do not want to do the copy on a CUDA device because we happen to know the data is not on that
device and we do not want to spend the time to transfer the data to that device. We can use a vtkm::cont::-
ScopedRuntimeDeviceTracker to temporarily disable the CUDA device for this operation.

Example 12.3: Disabling a device with RuntimeDeviceTracker.
1 vtkm :: cont :: ScopedRuntimeDeviceTracker tracker (
2 vtkm :: cont :: DeviceAdapterTagCuda (),
3 vtkm :: cont :: RuntimeDeviceTrackerMode :: Disable );
4
5 vtkm :: cont :: ArrayCopy (srcArray , destArray );
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THIRTEEN

TIMERS

It is often the case that you need to measure the time it takes for an operation to happen. This could be for
performing measurements for algorithm study or it could be to dynamically adjust scheduling.
Performing timing in a multi-threaded environment can be tricky because operations happen asynchronously. To
ensure that accurate timings can be made, VTK-m provides a vtkm::cont::Timer class to provide an accurate
measurement of operations that happen on devices that VTK-m can use. By default, Timer will time operations
on all possible devices.
The timer is started by calling the Timer::Start method. The timer can subsequently be stopped by calling
Timer::Stop. The time elapsed between calls to Start and Stop (or the current time if Stop was not called) can
be retrieved with a call to the Timer::GetElapsedTime method. Subsequently calling Start again will restart
the timer.

Example 13.1: Using vtkm::cont::Timer.
1 vtkm :: filter :: field_transform :: PointElevation elevationFilter ;
2 elevationFilter . SetUseCoordinateSystemAsField (true );
3 elevationFilter . SetOutputFieldName (" elevation ");
4
5 vtkm :: cont :: Timer timer ;
6
7 timer . Start ();
8
9 vtkm :: cont :: DataSet result = elevationFilter . Execute ( dataSet );

10
11 // This code makes sure data is pulled back to the host in a host/ device
12 // architecture .
13 vtkm :: cont :: ArrayHandle <vtkm :: Float64 > outArray ;
14 result . GetField (" elevation "). GetData (). AsArrayHandle ( outArray );
15 outArray . SyncControlArray ();
16
17 timer .Stop ();
18
19 vtkm :: Float64 elapsedTime = timer . GetElapsedTime ();
20
21 std :: cout << "Time to run: " << elapsedTime << std :: endl;

Some device require data to be copied between the host CPU and the device. In this case you might want

Common Errors



to measure the time to copy data back to the host. This can be done by “touching” the data on the host by
getting a control portal.

The VTK-m Timer does its best to capture the time it takes for all parallel operations run between calls to
Start and Stop to complete. It does so by synchronizing to concurrent execution on devices that might be in
use.

Because Timer synchronizes with devices (essentially waiting for the device to finish executing), that can
have an effect on how your program runs. Be aware that using a Timer can itself change the performance
of your code. In particular, starting and stopping the timer many times to measure the parts of a sequence
of operations can potentially make the whole operation run slower.

Common Errors

By default, Timer will synchronize with all active devices. However, if you want to measure the time for a
specific device, then you can pass the device adapter tag or id to vtkm::cont::Timer’s constructor. You can
also change the device being used by passing a device adapter tag or id to the Timer::Reset method. A device
can also be specified through an optional argument to the Timer::GetElapsedTime method.
The following methods are provided by vtkm::cont::Timer.

Start Causes the Timer to begin timing. The elapsed time will record an interval beginning when this method
is called.

Started Returns true if Start has been called. It is invalid to try to get the elapsed time if Started is not
true.

Stop Causes the Timer to finish timing. The elapsed time will record an interval ending when this method is
called. It is invalid to stop the timer if Started is not true.

Stopped Returns true if Stop has been called. If Stopped is true, then the elapsed time will no longer increase.
If Stopped is false and Started is true, then the timer is still running.

Ready Returns true if the timer has finished the synchronization required to get the timing result from the
device.

GetElapsedTime Returns the amount of time that has elapsed between calling Start and Stop. If Stop was not
called, then the amount of time between calling Start and GetElapsedTime is returned. GetElapsedTime
can optionally take a device adapter tag or id to specify for which device to return the elapsed time.

Reset Restores the initial state of the Timer. All previous recorded time is erased. Reset optionally takes a
device adapter tag or id that specifies on which device to time and synchronize.

GetDevice Returns the id of the device adapter for which this timer is synchronized. If the device adapter has
the same id as vtkm::cont::DeviceAdapterTagAny (the default), then the timer will synchronize on all
devices.

Synchronize Synchronizes the device returned by GetDevice without starting or stopping the timer. This is
useful for ensuring that external events are synchronized to the timer. Note that this method will always
block until all pending operations on the device finish even if the Start or Stop do not actually block.
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FOURTEEN

IMPLICIT FUNCTIONS

VTK-m’s implicit functions are objects that are constructed with values representing 3D spatial coordinates that
often describe a shape. Each implicit function is typically defined by the surface formed where the value of the
function is equal to 0. All vtkm::ImplicitFunction s implement Value and Gradient methods that describe
the orientation of a provided point with respect to the vtkm::ImplicitFunction’s shape.

Value The Value method for a vtkm::ImplicitFunction takes a vtkm::Vec3f and returns a vtkm::Float-
Default representing the orientation of the point with respect to the vtkm::ImplicitFunction’s shape.
Negative scalar values represent vector points inside of the vtkm::ImplicitFunction’s shape. Positive
scalar values represent vector points outside the vtkm::ImplicitFunction’s shape. Zero values represent
vector points that lie on the surface of the vtkm::ImplicitFunction

Gradient The Gradient method for a vtkm::ImplicitFunction takes a vtkm::Vec3f and returns a vtkm::-
Vec3f representing the pointing direction from the vtkm::ImplicitFunction’s shape. Gradient calcula-
tions are more object shape specific. It is advised to look at the individual shape implementations for
specific implicit functions.

Implicit functions are useful when trying to clip regions from a dataset. For example, it is possible to use
vtkm::filter::ClipWithImplicitFunction to remove a region in a provided dataset according to the shape
of an implicit function. See Section9.1.3 for more information on clipping with implicit functions.

14.1 Provided Implicit Functions

VTK-m has implementations of various implicit functions provided by the following subclasses.

14.1.1 Plane

vtkm::Plane defines an infinite plane. The plane is defined by a pair of vtkm::Vec3f values that represent the
origin, which is any point on the plane, and a normal, which is a vector that is tangent to the plane. These are
set with the SetOrigin and SetNormal methods, respectively. Planes extend infinitely from the origin point in
the direction perpendicular form the Normal. An example vtkm::Plane is shown in Figure 14.1.

14.1.2 Sphere

vtkm::Sphere defines a sphere. The Sphere is defined by a center location and a radius, which are set with the
SetCenter and SetRadius methods, respectively. An example vtkm::Sphere is shown in Figure 14.2.
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Figure 14.1: Visual Representation of an Implicit Plane. The red dot and arrow represent the origin and normal
of the plane, respectively. For demonstrative purposes the plane as shown with limited area, but in actuality the
plane extends infinitely.

Figure 14.2: Visual Representation of an Implicit Sphere. The red dot represents the center of the sphere. The
radius is the length of any line (like the blue one shown here) that extends from the center in any direction to
the surface.

14.1.3 Cylinder

vtkm::Cylinder defines a cylinder that extends infinitely along its axis. The cylinder is defined with a center
point, a direction of the center axis, and a radius, which are set with SetCenter, SetAxis, and SetRadius,
respectively. An example vtkm::Cylinder is shown in Figure 14.3 with set origin, radius, and axis values.

Figure 14.3: Visual Representation of an Implicit Cylinder. The red dot represents the center value, and the red
arrow represents the vector that points in the direction of the axis. The radius is the length of any line (like the
blue one shown here) that extends perpendicular from the axis to the surface.
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14.1.4 Box

vtkm::Box defines an axis-aligned box. The box is defined with a pair of vtkm::Vec3f values that represent the
minimum point coordinates and maximum point coordinates, which are set with SetMinPoint and SetMaxPoint,
respectively. The Box is the shape enclosed by intersecting axis-parallel lines drawn from each point. Alternately,
the Box can be specified with a vtkm::Bounds object using the SetBounds method. An example vtkm::Box is
shown in Figure 14.4.

Figure 14.4: Visual Representation of an Implicit Box. The red dots represent the minimum and maximum
points.

14.1.5 Frustum

vtkm::Frustum defines a hexahedral region with potentially oblique faces. A Frustum is typically used to define
the tapered region of space visible in a perspective camera projection. The frustum is defined by the 6 planes
that make up its 6 faces. Each plane is defined by a point and a normal vector, which are set with SetPlane and
SetNormal, respectively. Parameters for all 6 planes can be set at once using the SetPlanes and SetNormals
methods. Alternately, the Frustum can be defined by the 8 points at the vertices of the enclosing hexahedron
using the CreateFromPoints method. The points given to CreateFromPoints must be in hex-cell order where
the first four points are assumed to be a plane, and the last four points are assumed to be a plane. An example
vtkm::Frustum is shown in Figure 14.5.

14.2 General Implicit Functions

It is often the case when creating code that uses an implicit function that you do not know which implicit
function will be desired. For example, the vtkm::filter::ClipWithImplicitFunction filter can be used with
any of the implicit functions described here (Plane, Sphere, etc.).
To handle conditions where you want to support multiple implicit functions simultaneously, VTK-m provides
vtkm::ImplicitFunctionGeneral. Any of the implicit functions described in this chapter can be copied to a
ImplicitFunctionGeneral, which will behave like the specified function. The following example shows shows
passing a vtkm::Sphere to ClipWithImplicitFunction, which internally uses ImplicitFunctionGeneral to
manage the implicit function types.

Example 14.1: Passing an implicit function to a filter.
1 // Parameters needed for implicit function
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Figure 14.5: Visual Representation of an Implicit Frustum. The red dots and arrows represent the points and
normals defining each enclosing plane. The blue dots represent the 8 vertices, which can also be used to define
the frustum.

2 vtkm :: Sphere implicitFunction (vtkm :: make_Vec (1, 0, 1), 0.5);
3
4 // Create an instance of a clip filter with this implicit function .
5 vtkm :: filter :: contour :: ClipWithImplicitFunction clip;
6 clip. SetImplicitFunction ( implicitFunction );
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CHAPTER

FIFTEEN

GENERAL APPROACH

VTK-m is designed to provide a pervasive parallelism throughout all its visualization algorithms, meaning that the
algorithm is designed to operate with independent concurrency at the finest possible level throughout. VTK-m
provides this pervasive parallelism by providing a programming construct called a worklet, which operates on a
very fine granularity of data. The worklets are designed as serial components, and VTK-m handles whatever
layers of concurrency are necessary, thereby removing the onus from the visualization algorithm developer.
Worklet operation is then wrapped into filters, which provide a simplified interface to end users.
A worklet is essentially a functor or kernel designed to operate on a small element of data. (The name “worklet”
means a small amount of the work. We mean small in this sense to be the amount of data, not necessarily the
amount of instructions performed.) The worklet is constrained to contain a serial and stateless function. These
constraints form three critical purposes. First, the constraints on the worklets allow VTK-m to schedule worklet
invocations on a great many independent concurrent threads and thereby making the algorithm pervasively
parallel. Second, the constraints allow VTK-m to provide thread safety. By controlling the memory access the
toolkit can insure that no worklet will have any memory collisions, false sharing, or other parallel programming
pitfalls. Third, the constraints encourage good programming practices. The worklet model provides a natural
approach to visualization algorithm design that also has good general performance characteristics.
VTK-m allows developers to design algorithms that are run on massive amounts of threads. However, VTK-m
also allows developers to interface to applications, define data, and invoke algorithms that they have written or
are provided otherwise. These two modes represent significantly different operations on the data. The operating
code of an algorithm in a worklet is constrained to access only a small portion of data that is provided by the
framework. Conversely, code that is building the data structures needs to manage the data in its entirety, but
has little reason to perform computations on any particular element.
Consequently, VTK-m is divided into two environments that handle each of these use cases. Each environment
has its own API, and direct interaction between the environments is disallowed. The environments are as follows.

Execution Environment This is the environment in which the computational portion of algorithms are exe-
cuted. The API for this environment provides work for one element with convenient access to information
such as connectivity and neighborhood as needed by typical visualization algorithms. Code for the execu-
tion environment is designed to always execute on a very large number of threads.

Control Environment This is the environment that is used to interface with applications, interface with
I/O devices, and schedule parallel execution of the algorithms. The associated API is designed for users
that want to use VTK-m to analyze their data using provided or supplied filters. Code for the control
environment is designed to run on a single thread (or one single thread per process in an MPI job).

These dual programming environments are partially a convenience to isolate the application from the execution
of the worklets and are partially a necessity to support GPU languages with host and device environments. The
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control and execution environments are logically equivalent to the host and device environments, respectively, in
CUDA and other associated GPU languages.

W
orklet

Control
Environment

Data Model
Array Handle
Invoke

Execution
Environment

Cell Operations
Field Operations

Basic Math
Make CellsAllocate

Transfer
Schedule

Sort
Scan

...

Device
Adapter

Figure 15.1: Diagram of the VTK-m framework.

Figure 15.1 displays the relationship between the control and execution environment. The typical workflow when
using VTK-m is that first the control thread establishes a data set in the control environment and then invokes a
parallel operation on the data using a filter. From there the data is logically divided into its constituent elements,
which are sent to independent invocations of a worklet. The worklet invocations, being independent, are run on
as many concurrent threads as are supported by the device. On completion the results of the worklet invocations
are collected to a single data structure and a handle is returned back to the control environment.

Are you only planning to use filters in VTK-m that already exist? If so, then everything you work with will
be in the control environment. The execution environment is only used when implementing algorithms for
filters.

Did you know?

15.1 Package Structure

VTK-m is organized in a hierarchy of nested packages. VTK-m places definitions in namespaces that correspond
to the package (with the exception that one package may specialize a template defined in a different namespace).
The base package is named vtkm . All classes within VTK-m are placed either directly in the vtkm package or
in a package beneath it. This helps prevent name collisions between VTK-m and any other library.
As described at the beginning of this chapter, the VTK-m API is divided into two distinct environments: the
control environment and the execution environment. The API for these two environments are located in the
vtkm::cont and vtkm::exec packages, respectively. Items located in the base vtkm namespace are available
in both environments.
Although it is conventional to spell out names in identifiers,1 there is an exception to abbreviate control and
execution to cont and exec, respectively. This is because it is also part of the coding convention to declare
the entire namespace when using an identifier that is part of the corresponding package. The shorter names

1VTK-m coding conventions are outlined in the doc/CodingConventions.md file in the VTK-m source code and at https://gitlab.
kitware.com/vtk/vtk-m/blob/master/docs/CodingConventions.md
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make the identifiers easier to read, faster to type, and more feasible to pack lines in 80 column displays. These
abbreviations are also used instead of more common abbreviations (e.g. ctrl for control) because, as part of
actual English words, they are easier to type.
Further functionality in VTK-m is built on top of the base vtkm , vtkm::cont , and vtkm::exec packages.
Support classes for building worklets, introduced in Chapter 17, are contained in the vtkm::worklet package.
Other facilities in VTK-m are provided in their own packages such as vtkm::io , vtkm::filter , and vtkm::-
rendering . These packages are described in Part II.
VTK-m contains code that uses specialized compiler features, such as those with CUDA, or libraries, such as Intel
Threading Building Blocks, that will not be available on all machines. Code for these features are encapsulated
in their own packages under the vtkm::cont namespace: vtkm::cont::cuda and vtkm::cont::tbb .
VTK-m contains OpenGL interoperability that allows data generated with VTK-m to be efficiently transferred
to OpenGL objects. This feature is encapsulated in the vtkm::opengl package.
Figure 15.2 provides a diagram of the VTK-m package hierarchy.

Figure 15.2: VTK-m package hierarchy.

By convention all classes will be defined in a file with the same name as the class name (with a .h extension)
located in a directory corresponding to the package name. For example, the vtkm::cont::DataSet class is found
in the vtkm/cont/DataSet.h header. There are, however, exceptions to this rule. Some smaller classes and types
are grouped together for convenience. These exceptions will be noted as necessary.
Within each namespace there may also be internal and detail sub-namespaces. The internal namespaces
contain features that are used internally and may change without notice. The detail namespaces contain
features that are used by a particular class but must be declared outside of that class. Users should generally
ignore classes in these namespaces.

15.2 Function and Method Environment Modifiers

Any function or method defined by VTK-m must come with a modifier that determines in which environments
the function may be run. These modifiers are C macros that VTK-m uses to instruct the compiler for which
architectures to compile each method. Most user code outside of VTK-m need not use these macros with the
important exception of any classes passed to VTK-m. This occurs when defining new worklets, array storage,
and device adapters.
VTK-m provides three modifier macros, VTKM CONT, VTKM EXEC, and VTKM EXEC CONT, which are used to declare
functions and methods that can run in the control environment, execution environment, and both environments,
respectively. These macros get defined by including just about any VTK-m header file, but including vtkm/-
Types.h will ensure they are defined.
The modifier macro is placed after the template declaration, if there is one, and before the return type for the
function. Here is a simple example of a function that will square a value. Since most types you would use this
function on have operators in both the control and execution environments, the function is declared for both
places.
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Example 15.1: Usage of an environment modifier macro on a function.
1 template < typename ValueType >
2 VTKM_EXEC_CONT ValueType Square ( const ValueType & inValue )
3 {
4 return inValue * inValue ;
5 }

The primary function of the modifier macros is to inject compiler-specific keywords that specify what architecture
to compile code for. For example, when compiling with CUDA, the control modifiers have host in them
and execution modifiers have device in them.
It is sometimes the case that a function declared as VTKM EXEC CONT has to call a method declared as VTKM -
EXEC or VTKM CONT. Generally functions should not call other functions with incompatible control/execution
modifiers, but sometimes a generic VTKM EXEC CONT function calls another function determined by the template
parameters, and the valid environments of this subfunction may be inconsistent. For cases like this, you can
use the VTKM SUPPRESS EXEC WARNINGS to tell the compiler to ignore the inconsistency when resolving the
template. When applied to a templated function or method, VTKM SUPPRESS EXEC WARNINGS is placed before
the template keyword. When applied to a non-templated method in a templated class, VTKM SUPPRESS EXEC -
WARNINGS is placed before the environment modifier macro.

Example 15.2: Suppressing warnings about functions from mixed environments.
1 VTKM_SUPPRESS_EXEC_WARNINGS
2 template < typename Functor >
3 VTKM_EXEC_CONT void OverlyComplicatedForLoop ( Functor & functor ,
4 vtkm :: Id numInterations )
5 {
6 for (vtkm :: Id index = 0; index < numInterations ; index ++)
7 {
8 functor ();
9 }

10 }
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SIXTEEN

BASIC ARRAY HANDLES

Chapter 7 describes the basic data sets used by VTK-m. This chapter dives deeper into how VTK-m represents
data. Ultimately, data structures like vtkm::cont::DataSet can be broken down into arrays of numbers. Arrays
in VTK-m are managed by a unit called an array handle.
An array handle, which is implemented with the vtkm::cont::ArrayHandle class, manages an array of data
that can be accessed or manipulated by VTK-m algorithms. It is typical to construct an array handle in the
control environment to pass data to an algorithm running in the execution environment. It is also typical for an
algorithm running in the execution environment to populate an array handle, which can then be read back in the
control environment. It is also possible for an array handle to manage data created by one VTK-m algorithm
and passed to another, remaining in the execution environment the whole time and never copied to the control
environment.

The array handle may have multiple of the array, one for the control environment and one for each device.
However, depending on the device and how the array is being used, the array handle will only have one
copy when possible. Copies between the environments are implicit and lazy. They are copied only when an
operation needs data in an environment where the data are not.

Did you know?

vtkm::cont::ArrayHandle behaves like a shared smart pointer in that when the C++ object is copied, each
copy holds a reference to the same array. These copies are reference counted so that when all copies of the
vtkm::cont::ArrayHandle are destroyed, any allocated memory is released.
An ArrayHandle defines the following methods. Note, however, that the brief overview of this chapter will not
cover the use of most of these methods. Further descriptions are given in later chapters that explore even further
the features of ArrayHandles.

GetNumberOfValues Returns the number of entries in the array.

Allocate Resizes the array to include the number of entries given. Any previously stored data might be
discarded.

ReleaseResourcesExecution If the ArrayHandle is holding any data on a device (such as a GPU), that memory
is released to be used elsewhere. No data is lost from this call. Any data on the released resources is copied
to the control environment (the local CPU) before the memory is released.

ReleaseResources Releases all memory managed by this ArrayHandle. Any data in this memory is lost.
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SyncControlArray Makes sure any data in the execution environment is also available in the control environ-
ment. This method is useful when timing parallel algorithms and you want to include the time to transfer
data between parallel devices and their hosts.

ReadPortal Returns an array portal that can be used to access the data in the array handle in the control
environment. The data in the array portal can only be read. Array portals are described in Section 27.1.

WritePortal Returns an array portal that can be used to access the data in the array handle in the control
environment. The data in the array portal can be both read and written. Array portals are described in
Section 27.1.

PrepareForInput Readies the data as input to a parallel algorithm. See Section 27.4 for more details.

PrepareForOutput Readies the data as output to a parallel algorithm. See Section 27.4 for more details.

PrepareForInPlace Readies the data as input and output to a parallel algorithm. See Section 27.4 for more
details.

DeepCopyFrom Given an ArrayHandle of the same type, deep copies the data from the provided array to this
array. The array will be resized as necessary.

IsOnHost Returns true if the data are available on the host memory (that is, available in the control environ-
ment).

IsOnDevice Returns true if the data are available on the specific device.

16.1 Creating Array Handles

vtkm::cont::ArrayHandle is templated on the type of values being stored in the array. There are multiple
ways to create and populate an array handle. The default vtkm::cont::ArrayHandle constructor will create
an empty array with nothing allocated in either the control or execution environment. This is convenient for
creating arrays used as the output for algorithms.

Example 16.1: Creating an ArrayHandle for output data.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > outputArray ;

Chapter 27 describes in detail how to allocate memory and access data in an ArrayHandle. However, you can
use the vtkm::cont::make ArrayHandle function for a simplified way to create an ArrayHandle with data.
make ArrayHandle has many forms. An easy form to use takes an initializer list and creates a basic ArrayHandle
with it. This allows you to create short ArrayHandles from literals.

Example 16.2: Creating an ArrayHandle from initially specified values.
1 auto fibonacciArray = vtkm :: cont :: make_ArrayHandle ({ 0, 1, 1, 2, 3, 5, 8, 13 });

One problem with creating an array from an initializer list like this is that it can be tricky to specify the exact
value type of the ArrayHandle. The value type of the ArrayHandle will be the same types as the literals in
the initializer list, but that might not match the type you actually need. This is particularly true for types
like vtkm::Id and vtkm::FloatDefault, which can change depending on compile options. To specify the exact
value type to use, give that type as a template argument to the vtkm::cont::make ArrayHandle function.

Example 16.3: Creating a typed ArrayHandle from initially specified values.
1 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > inputArray =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: FloatDefault >({ 1.4142f, 2.7183f, 3.1416 f });
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Constructing an ArrayHandle that points to a provided C array is also straightforward. To do this, call make -
ArrayHandle with the array pointer, the number of values in the C array, and a vtkm::CopyFlag. This last
argument can be either CopyFlag::On to copy the array or CopyFlag::Off to share the provided buffer.

Example 16.4: Creating an ArrayHandle that points to a provided C array.
1 vtkm :: Float32 dataBuffer [50];
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3
4 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
5 vtkm :: cont :: make_ArrayHandle ( dataBuffer , 50, vtkm :: CopyFlag :: On );

Likewise, you can use make ArrayHandle to transfer data from a std::vector to an ArrayHandle. This form of
make ArrayHandle takes the std::vector as the first argument and a vtkm::CopyFlag as the second argument.

Example 16.5: Creating an ArrayHandle that points to a provided std::vector.
1 std :: vector <vtkm :: Float32 > dataBuffer ;
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3
4 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
5 vtkm :: cont :: make_ArrayHandle ( dataBuffer , vtkm :: CopyFlag :: On );

As hinted at earlier, it is possible to send CopyFlag::Off to make ArrayHandle to wrap an ArrayHandle around
an existing C array or std::vector. Doing so allows you to send the data to the ArrayHandle without copying
it. It also provides a mechanism for VTK-m to write directly into your array. However, be aware that if you
change or delete the data provided, the internal state of ArrayHandle becomes invalid and undefined behavior
can ensue. A common manifestation of this error happens when a std::vector goes out of scope. This subtle
interaction will cause the vtkm::cont::ArrayHandle to point to an unallocated portion of the memory heap.
The following example provides an erroneous use of ArrayHandle and some ways to fix it.

Example 16.6: Invalidating an ArrayHandle by letting the source std::vector leave scope.
1 VTKM_CONT vtkm :: cont :: ArrayHandle <vtkm :: Float32 > BadDataLoad ()
2 {
3 std :: vector <vtkm :: Float32 > dataBuffer ;
4 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
5
6 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
7 vtkm :: cont :: make_ArrayHandle ( dataBuffer , vtkm :: CopyFlag :: Off );
8
9 return inputArray ;

10 // THIS IS WRONG ! At this point dataBuffer goes out of scope and deletes its
11 // memory . However , inputArray has a pointer to that memory , which becomes an
12 // invalid pointer in the returned object . Bad things will happen when the
13 // ArrayHandle is used.
14 }
15
16 VTKM_CONT vtkm :: cont :: ArrayHandle <vtkm :: Float32 > SafeDataLoad1 ()
17 {
18 std :: vector <vtkm :: Float32 > dataBuffer ;
19 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
20
21 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
22 vtkm :: cont :: make_ArrayHandle ( dataBuffer , vtkm :: CopyFlag :: On );
23
24 return inputArray ;
25 // This is safe.
26 }
27
28 VTKM_CONT vtkm :: cont :: ArrayHandle <vtkm :: Float32 > SafeDataLoad2 ()
29 {
30 std :: vector <vtkm :: Float32 > dataBuffer ;
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31 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
32
33 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
34 vtkm :: cont :: make_ArrayHandleMove (std :: move( dataBuffer ));
35
36 return inputArray ;
37 // This is safe.
38 }

An easy way around the problem of having an ArrayHandle’s data going out of scope is to copy the data into
the ArrayHandle. Simply make the vtkm::CopyFlag argument be On to copy the data. This solution is shown
on line 22 of Example 16.6.
What if you have a std::vector that you want to pass to an ArrayHandle and then want to only use in the
ArrayHandle? In this case, it is wasteful to have to copy the data, but you also do not want to be responsible
for keeping the std::vector in scope. To handle this, there is a special vtkm::cont::make ArrayHandleMove
that will move the memory out of the std::vector and into the ArrayHandle. make ArrayHandleMove takes
an “rvalue” version of a std::vector. To create an “rvalue”, use the std::move function provided by C++.
Once make ArrayHandleMove is called, the provided std::vector becomes invalid and any further access to it
is undefined. This solution is shown on line 34 of Example 16.6.

16.2 Deep Array Copies

As stated previously, an ArrayHandle object behaves as a smart pointer that copies references to the data
without copying the data itself. This is clearly faster and more memory efficient than making copies of the data
itself and usually the behavior desired. However, it is sometimes the case that you need to make a separate copy
of the data.
The easiest way to copy ArrayHandles is to use the ArrayHandle::DeepCopyFrom method.

Example 16.7: Deep copy ArrayHandles of the same type.
1 destArray . DeepCopyFrom ( srcArray );

However, the DeepCopyFrom method only works if the two ArrayHandles are the exact same type. To simplify
copying the data between ArrayHandles of different types, VTK-m comes with the vtkm::cont::ArrayCopy
convenience function defined in vtkm/cont/ArrayCopy.h. ArrayCopy takes the array to copy from (the source) as
its first argument and the array to copy to (the destination) as its second argument. The destination array will
be properly reallocated to the correct size.

Example 16.8: Using ArrayCopy.
1 vtkm :: cont :: ArrayCopy (srcArray , destArray );

16.3 The Hidden Second Template Parameter

We have already seen that vtkm::cont::ArrayHandle is a templated class with the template parameter indicat-
ing the type of values stored in the array. However, ArrayHandle has a second hidden parameter that indicates
the storage of the array. We have so far been able to ignore this second template parameter because VTK-m
will assign a default storage for us that will store the data in a basic array.

Example 16.9: Declaration of the vtkm::cont::ArrayHandle templated class.
1 template < typename T, typename StorageTag = VTKM_DEFAULT_STORAGE_TAG >
2 class ArrayHandle ;
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Changing the storage of an ArrayHandle lets us do many weird and wonderful things. We will explore these
options in later chapters, but for now we can ignore this second storage template parameter. However, there are
a couple of things to note concerning the storage.
First, if the compiler gives an error concerning your use of ArrayHandle, the compiler will report the ArrayHandle
type with not one but two template parameters. A second template parameter of vtkm::cont::StorageTag-
Basic can be ignored.
Second, if you write a function, method, or class that is templated based on an ArrayHandle type, it is good
practice to accept ArrayHandles with non-default storage types. There are two ways to do this. The first way
is to template both the value type and the storage type.

Example 16.10: Templating a function on an ArrayHandle’s parameters
1 template < typename T, typename Storage >
2 void Foo( const vtkm :: cont :: ArrayHandle <T, Storage >& array )
3 {

The second way is to template the whole array type rather than the sub types. If you create a template where
you expect one of the parameters to be an ArrayHandle, you should use the VTKM IS ARRAY HANDLE macro to
verify that the type is indeed an ArrayHandle.

Example 16.11: A template parameter that should be an ArrayHandle.
1 template < typename ArrayType >
2 void Bar( const ArrayType & array )
3 {
4 VTKM_IS_ARRAY_HANDLE ( ArrayType );

16.4 Mutability

One subtle feature of ArrayHandle is that the class is, in principle, a pointer to an array pointer. This means that
the data in an ArrayHandle is always mutable even if the class is declared const. You can change the contents
of “constant” arrays via methods like WritePortal and PrepareForOutput. It is even possible to change the
underlying array allocation with methods like Allocate and ReleaseResources. The upshot is that you can
(sometimes) pass output arrays as constant ArrayHandle references.
So if a constant ArrayHandle can have its contents modified, what is the difference between a constant reference
and a non-constant reference? The difference is that the constant reference can change the array’s content, but
not the array itself. Basically, this means that you cannot perform shallow copies into constant ArrayHandles.
This can be a pretty big limitation, and many of VTK-m’s internal device algorithms still require non-constant
references for outputs.
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CHAPTER

SEVENTEEN

SIMPLE WORKLETS

The simplest way to implement an algorithm in VTK-m is to create a worklet. A worklet is fundamentally a
functor that operates on an element of data. Thus, it is a class or struct that has an overloaded parenthesis op-
erator (which must be declared const for thread safety). However, worklets are also embedded with a significant
amount of metadata on how the data should be managed and how the execution should be structured.

Example 17.1: A simple worklet.
1 struct PoundsPerSquareInchToNewtonsPerSquareMeterWorklet
2 : vtkm :: worklet :: WorkletMapField
3 {
4 using ControlSignature = void ( FieldIn psi , FieldOut nsm );
5 using ExecutionSignature = void (_1 , _2 );
6 using InputDomain = _1;
7
8 template < typename T>
9 VTKM_EXEC void operator ()( const T& psi , T& nsm) const

10 {
11 // 1 psi = 6894.76 N/mˆ2
12 nsm = T (6894.76 f) * psi;
13 }
14 };

As can be seen in Example 17.1, a worklet is created by implementing a class or struct with the following
features.

1. The class must publicly inherit from a base worklet class that specifies the type of operation being performed
(line 1).

2. The class must contain a functional type named ControlSignature (line 4), which specifies what arguments
are expected when invoking the class in the control environment.

3. The class must contain a functional type named ExecutionSignature (line 5), which specifies how the
data gets passed from the arguments in the control environment to the worklet running in the execution
environment.

4. The class specifies an InputDomain (line 6), which identifies which input parameter defines the input
domain of the data.

5. The class must contain an implementation of the parenthesis operator, which is the method that is executed
in the execution environment (lines 8–13). The parenthesis operator must be declared const.
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17.1 Control Signature

The control signature of a worklet is a functional type named ControlSignature. The function prototype
matches what data are provided when the worklet is invoked (as described in Section 17.5).

Example 17.2: A ControlSignature.
1 using ControlSignature = void ( FieldIn psi , FieldOut nsm );

If the code in Example 17.2 looks strange, you may be unfamiliar with function types. In C++, functions
have types just as variables and classes do. A function with a prototype like

void functionName(int arg1, float arg2);

has the type void(int,float). VTK-m uses function types like this as a signature that defines the structure
of a function call.

Did you know?

The return type of the function prototype is always void. The parameters of the function prototype are tags
that identify the type of data that is expected to be passed to invoke. ControlSignature tags are defined by
the worklet type and the various tags are documented more fully in Chapter 21. In the case of Example 17.2,
the two tags FieldIn and FieldOut represent input and output data, respectively.
By convention, ControlSignature tag names start with the base concept (e.g. Field or Topology) followed by
the domain (e.g. Point or Cell) followed by In or Out. For example, FieldPointIn would specify values for a
field on the points of a mesh that are used as input (read only). Although they should be there in most cases,
some tag names might leave out the domain or in/out parts if they are obvious or ambiguous.

17.2 Execution Signature

Like the control signature, the execution signature of a worklet is a functional type named ExecutionSignature.
The function prototype must match the parenthesis operator (described in Section 17.4) in terms of arity and
argument semantics.

Example 17.3: An ExecutionSignature.
1 using ExecutionSignature = void (_1 , _2 );

The arguments of the ExecutionSignature’s function prototype are tags that define where the data come from.
The most common tags are an underscore followed by a number, such as 1, 2, etc. These numbers refer back
to the corresponding argument in the ControlSignature. For example, 1 means data from the first control
signature argument, 2 means data from the second control signature argument, etc.
Unlike the control signature, the execution signature optionally can declare a return type if the parenthesis
operator returns a value. If this is the case, the return value should be one of the numeric tags (i.e. 1, 2,
etc.) to refer to one of the data structures of the control signature. If the parenthesis operator does not return
a value, then ExecutionSignature should declare the return type as void.
In addition to the numeric tags, there are other execution signature tags to represent other types of data. For
example, the WorkIndex tag identifies the instance of the worklet invocation. Each call to the worklet function
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will have a unique WorkIndex. Other such tags exist and are described in the following section on worklet types
where appropriate.

17.3 Input Domain

All worklets represent data parallel operations that are executed over independent elements in some domain.
The type of domain is inherent from the worklet type, but the size of the domain is dependent on the data being
operated on.
A worklet identifies the argument specifying the domain with a type alias named InputDomain. The InputDomain
must be aliased to one of the execution signature numeric tags (i.e. 1, 2, etc.). By default, the InputDomain
points to the first argument, but a worklet can override that to point to any argument.

Example 17.4: An InputDomain declaration.
1 using InputDomain = _1;

Different types of worklets can have different types of domain. For example a simple field map worklet has a
FieldIn argument as its input domain, and the size of the input domain is taken from the size of the associated
field array. Likewise, a worklet that maps topology has a CellSetIn argument as its input domain, and the size
of the input domain is taken from the cell set.
Specifying the InputDomain is optional. If it is not specified, the first argument is assumed to be the input
domain.

17.4 Worklet Operator

A worklet is fundamentally a functor that operates on an element of data. Thus, the algorithm that the worklet
represents is contained in or called from the parenthesis operator method.

Example 17.5: An overloaded parenthesis operator of a worklet.
1 template < typename T>
2 VTKM_EXEC void operator ()( const T& psi , T& nsm) const
3 {

There are some constraints on the parenthesis operator. First, it must have the same arity as the Execu-
tionSignature, and the types of the parameters and return must be compatible. Second, because it runs in
the execution environment, it must be declared with the VTKM EXEC (or VTKM EXEC CONT) modifier. Third, the
method must be declared const to help preserve thread safety.

17.5 Invoking a Worklet

Previously in this chapter we discussed creating a simple worklet. In this section we describe how to run the
worklet in parallel.
A worklet is run using the vtkm::cont::Invoker class.

Example 17.6: Invoking a worklet.
1 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > psiArray ;
2 // Fill psiArray with values ...
3
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4 vtkm :: cont :: Invoker invoke ;
5
6 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > nsmArray ;
7 invoke ( PoundsPerSquareInchToNewtonsPerSquareMeterWorklet {}, psiArray , nsmArray );

Using an Invoker is simple. First, an Invoker can be simply constructed with no arguments (line 4). Next, the
Invoker is called as if it were a function (line 7).
The first argument to the invoke is always an instance of the worklet. The remaining arguments are data that are
passed (indirectly) to the worklet. Each of these arguments (after the worklet) match a corresponding argument
listed in the ControlSignature. So in the invocation on Example 17.6, line 7, the second and third arguments
correspond the the two ControlSignature arguments given in Example 17.2. psiArray corresponds to the
FieldIn argument and nmsArray corresponds to the FieldOut argument.

17.6 Preview of More Complex Worklets

This chapter demonstrates the creation of a worklet that performs a very simple math operation in parallel.
However, we have just scratched the surface of the kinds of algorithms that can be expressed with VTK-m
worklets. There are many more execution patterns and data handling constructs. The following example gives
a preview of some of the more advanced features of worklets.

Example 17.7: A more complex worklet.
1 struct EdgesExtract : vtkm :: worklet :: WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void (CellSetIn , FieldOutCell edgeIndices );
4 using ExecutionSignature = void (CellShape , PointIndices , VisitIndex , _2 );
5 using InputDomain = _1;
6
7 using ScatterType = vtkm :: worklet :: ScatterCounting ;
8
9 template < typename CellShapeTag ,

10 typename PointIndexVecType ,
11 typename EdgeIndexVecType >
12 VTKM_EXEC void operator ()( CellShapeTag cellShape ,
13 const PointIndexVecType & globalPointIndicesForCell ,
14 vtkm :: IdComponent edgeIndex ,
15 EdgeIndexVecType & edgeIndices ) const
16 {

We will discuss the many features available in the worklet framework throughout Part IV.
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EIGHTEEN

BASIC FILTER IMPLEMENTATION

Chapter 17 introduced the concept of a worklet and demonstrated how to create and run one to execute an algo-
rithm on a device. Although worklets provide a powerful mechanism for designing heavily threaded visualization
algorithms, invoking them requires quite a bit of knowledge of the workings of VTK-m. Instead, most users
execute algorithms in VTK-m using filters. Thus, to expose algorithms implemented with worklets to general
users, we need to implement a filter to encapsulate the worklets. In this chapter we will create a filter that
encapsulates the worklet algorithm presented in Chapter 17, which converted the units of a pressure field from
pounds per square inch (psi) to Newtons per square meter (N/m2).
Filters in VTK-m are implemented by deriving one of the filter base classes provided in vtkm::filter . There
are multiple base filter classes that we can choose from. These different classes are documented later in Chapter
22. For this example we will derive the vtkm::filter::Filter base class.
The following example shows the declaration of our pressure unit conversion filter. By convention, this declaration
would be placed in a header file with a .h extension. VTK-m filters are divided into libraries. In this example,
we are assuming this filter is being compiled in a library named vtkm filter unit conversion. By convention, the
source files would be placed in a directory named vtkm/filter/unit conversion.

Example 18.1: Header declaration for a simple filter.
1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace unit_conversion
6 {
7
8 class VTKM_FILTER_UNIT_CONVERSION_EXPORT
9 PoundsPerSquareInchToNewtonsPerSquareMeterFilter : public vtkm :: filter :: Filter

10 {
11 public :
12 VTKM_CONT PoundsPerSquareInchToNewtonsPerSquareMeterFilter ();
13
14 VTKM_CONT vtkm :: cont :: DataSet DoExecute (
15 const vtkm :: cont :: DataSet & inDataSet ) override ;
16 };
17
18 }
19 }
20 } // namespace vtkm :: filter :: unit_conversion

It is typical for a filter to have a constructor to set up its initial state. A filter will also override the DoExe-
cute method. The DoExecute method takes a vtkm::cont::DataSet as input and likewise returns a DataSet
containing the results of the filter operation.



Note that the declaration of the PoundsPerSquareInchToNewtonsPerSquareMeterFilter contains the export
macro VTKM FILTER UNIT CONVERSION EXPORT. This is a macro generated by CMake to handle the appropriate
modifies for exporting a class from a library. Remember that this code is to be placed in a library named vtkm -
filter unit conversion. For this library, CMake creates a header file named vtkm filter unit conversion.h that
declares macros like VTKM FILTER UNIT CONVERSION EXPORT.

A filter can also override the DoExecutePartitions, which operates on a vtkm::cont::Partitioned-
DataSet. If DoExecutePartitions is not overridden, then the filter will call DoExecute on each of the
partitions and build a new PartitionedDataSet with the outputs.

Did you know?

Once the filter class is declared in the .h file, the implementation filter is by convention given in a separate
.cxx file. Given the definition of our filter in Example 18.1, we will need to provide the implementation for the
constructor and the DoExecute method. The constructor is quite simple. It initializes the name of the output
field name, which is managed by the superclass.

Example 18.2: Constructor for a simple filter.
1 VTKM_CONT PoundsPerSquareInchToNewtonsPerSquareMeterFilter ::
2 PoundsPerSquareInchToNewtonsPerSquareMeterFilter ()
3 {
4 this -> SetOutputFieldName ("");
5 }

In this case, we are setting the output field name to the empty string. This is not to mean that the default name
of the output field should be the empty string, which is not a good idea. Rather, as we will see later, we will use
the empty string to flag an output name that should be derived from the input name.
The meat of the filter implementation is located in the DoExecute method.

Example 18.3: Implementation of DoExecute for a simple filter.
1 VTKM_CONT vtkm :: cont :: DataSet
2 PoundsPerSquareInchToNewtonsPerSquareMeterFilter :: DoExecute (
3 const vtkm :: cont :: DataSet & inDataSet )
4 {
5 vtkm :: cont :: Field inField = this -> GetFieldFromDataSet ( inDataSet );
6
7 vtkm :: cont :: UnknownArrayHandle outArray ;
8
9 auto resolveType = [&]( const auto& inputArray )

10 {
11 // use std :: decay to remove const ref from the decltype of concrete .
12 using T = typename std :: decay_t < decltype ( inputArray ) >:: ValueType ;
13 vtkm :: cont :: ArrayHandle <T> result ;
14 this -> Invoke (
15 PoundsPerSquareInchToNewtonsPerSquareMeterWorklet {}, inputArray , result );
16 outArray = result ;
17 };
18
19 this -> CastAndCallScalarField (inField , resolveType );
20
21 std :: string outFieldName = this -> GetOutputFieldName ();
22 if ( outFieldName == "")
23 {
24 outFieldName = inField . GetName () + "_N/mˆ2";
25 }
26
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27 return this -> CreateResultField (
28 inDataSet , outFieldName , inField . GetAssociation (), outArray );
29 }

The single argument to DoExecute is a vtkm::cont::DataSet containing the data to operate on, and DoExecute
returns a derived DataSet. The filter must pull the appropriate information out of the input DataSet to operate
on. This simple algorithm just operates on a single field array of the data. The Filter base class provides
several methods to allow filter users to select the active field to operate on. The filter implementation can get
the appropriate field to operate on using the GetFieldFromDataSet method provided by Filter as shown in
Example 18.3 line 5.
One of the challenges with writing filters is determining the actual types the algorithm is operating on. The
Field object pulled from the input DataSet contains an ArrayHandle (see Chapter 16), but you do not know
what the template parameters of the ArrayHandle are. There are numerous ways to extract an array of an
unknown type out of an ArrayHandle (many of which will be explored later in Chapter 33), but the Filter
contains some convenience functions to simplify this.
In particular, this filter operates specifically on scalar fields. For this purpose, Filter provides the CastAnd-
CallScalarField helper method. The first argument to CastAndCallScalarField is the field containing the
data to operate on. The second argument is a functor that will operate on the array once it is identified. Cas-
tAndCallScalarField will pull a ArrayHandle out of the field and call the provided functor with that object.
CastAndCallScalarField is called in Example 18.3 on line 19.

If your filter requires a field containing vtkm::Vec s of a particular size (e.g. 3), you can use the convenience
method CastAndCallVecField. CastAndCallVecField works similarly to CastAndCallScalarField ex-
cept that it takes a template parameter specifying the size of the Vec. For example, CastAndCallVec-
Field<3>(inField, functor);.

Did you know?

As previously stated, one of the arguments to CastAndCallScalarField is a functor that contains the routine to
call with the found ArrayHandle. A functor can be created as its own class or struct, but a more convenient
method is to use a C++ lambda. A lambda is an unnamed function defined inline with the code. The lambda in
Example 18.3 starts on line 9. Apart from being more convenient than creating a named class, lambda functions
offer another important feature. Lambda functions can “capture” variables in the current scope. They can
therefore access things like local variables and the this reference to the method’s class (even accessing private
members).
The callback to the lambda function in Example 18.3 first creates an output ArrayHandle of a compatible type
(line 13), then invokes the worklet that computes the derived field (line 14), and finally captures the resulting
array. Note that the Filter base class provides an Invoke member that can be used to invoke the worklet. (See
Section 17.5 for information on invoking a worklet.) Recall that the worklet created in Chapter 17 takes two
parameters: an input array and an output array, which are shown in this invocation.
With the output data created, the filter has to build the output structure to return. All implementations of
DoExecute must return a vtkm::cont::DataSet, and for a simple field filter like this we want to return the same
DataSet as the input with the output field added. The output field needs a name, and we get the appropriate
name from the superclass (line 21). However, we would like a special case where if the user does not specify an
output field name we construct one based on the input field name. Recall from Example 18.2 that by default
we set the output field name to the empty string. Thus, our filter checks for this empty string, and if it is
encountered, it builds a field name by appending “ N/Mˆ2” to it.
Finally, our filter constructs the output DataSet using one of the CreateResult member functions (line 27).
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In this particular case, the filter uses Filter::CreateResultField, which constructs a DataSet with the same
structure as the input and adds the computed filter.

The Filter::CreateResult methods do more than just construct a new vtkm::cont::DataSet. They
also set up the structure of the data and pass fields as specified by the state of the filter object. Thus, imple-
mentations of DoExecute should always return DataSets that were created with Filter::CreateResult
or a similarly named method in the base filter classes.

Common Errors

This chapter has just provided a brief introduction to creating filters. There are several more filter superclasses
to help express algorithms of different types. After some more worklet concepts to implement more complex
algorithms are introduced in Part IV, we will see a more complete documentation of the types of filters in Chapter
22.
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CHAPTER

NINETEEN

ADVANCED TYPES

Chapter 4 introduced some of the base data types defined for use in VTK-m. However, for simplicity Chapter 4
just briefly touched the high-level concepts of these types. In this chapter we dive into much greater depth and
introduce several more types.

19.1 Single Number Types

As described in Chapter 4, VTK-m provides aliases for all the base C types to ensure the representation matches
the variable use. When a specific type width is not required, then the most common types to use are vtkm::-
FloatDefault for floating-point numbers, vtkm::Id for array and similar indices, and vtkm::IdComponent for
shorter-width vector indices.
If a specific type width is desired, then one of the following is used to clearly declare the type and width.

bytes floating point signed integer unsigned integer
1 vtkm::Int8 vtkm::UInt8
2 vtkm::Int16 vtkm::UInt16
4 vtkm::Float32 vtkm::Int32 vtkm::UInt32
8 vtkm::Float64 vtkm::Int64 vtkm::UInt64

These VTK-m–defined types should be preferred over basic C types like int or float.

19.2 Vector Types

Visualization algorithms also often require operations on short vectors. Arrays indexed in up to three dimensions
are common. Data are often defined in 2-space and 3-space, and transformations are typically done in homoge-
neous coordinates of length 4. To simplify these types of operations, VTK-m provides the vtkm::Vec <T,Size>
templated type, which is essentially a fixed length array of a given type.
The default constructor of vtkm::Vec objects leaves the values uninitialized. All vectors have a constructor with
one argument that is used to initialize all components. All vtkm::Vec objects also have a constructor that allows
you to set the individual components (one per argument). All vtkm::Vec objects with a size that is greater than
4 are constructed at run time and support an arbitrary number of initial values. Likewise, there is a vtkm::-
make Vec convenience function that builds initialized vector types with an arbitrary number of components.
Once created, you can use the bracket operator to get and set component values with the same syntax as an
array.

Example 19.1: Creating vector types.



19.2. Vector Types

1 vtkm :: Vec3f_32 A{ 1 }; // A is (1, 1, 1)
2 A[1] = 2; // A is now (1, 2, 1)
3 vtkm :: Vec3f_32 B{ 1, 2, 3 }; // B is (1, 2, 3)
4 vtkm :: Vec3f_32 C = vtkm :: make_Vec (3, 4, 5); // C is (3, 4, 5)
5 // Longer Vecs specified with template .
6 vtkm ::Vec <vtkm :: Float32 , 5> D{ 1 }; // D is (1, 1, 1, 1, 1)
7 vtkm ::Vec <vtkm :: Float32 , 5> E{ 1, 2, 3, 4, 5 }; // E is (1, 2, 3, 4, 5)
8 vtkm ::Vec <vtkm :: Float32 , 5> F = { 6, 7, 8, 9, 10 }; // F is (6, 7, 8, 9, 10)
9 auto G = vtkm :: make_Vec (1, 3, 5, 7, 9); // G is (1, 3, 5, 7, 9)

The types vtkm::Id2, vtkm::Id3, and vtkm::Id4 are type aliases of vtkm::Vec <vtkm::Id,2>, vtkm::Vec
<vtkm::Id,3>, and vtkm::Vec <vtkm::Id,4>. These are used to index arrays of 2, 3, and 4 dimensions,
which is common. Likewise, vtkm::IdComponent2, vtkm::IdComponent4, and vtkm::IdComponent4 are type
aliases of vtkm::Vec <vtkm::IdComponent,2>, vtkm::Vec <vtkm::IdComponent,3>, and vtkm::Vec <vtkm::-
IdComponent,4>.
Because declaring vtkm::Vec <T,Size> with all of its template parameters can be cumbersome, VTK-m provides
easy to use aliases for small vectors of base types. As introduced in Section 4.3, the following type aliases are
available.

bytes size floating point signed integer unsigned integer
default 2 vtkm::Vec2f vtkm::Vec2i vtkm::Vec2ui

3 vtkm::Vec3f vtkm::Vec3i vtkm::Vec3ui
4 vtkm::Vec4f vtkm::Vec4i vtkm::Vec4ui

1 2 vtkm::Vec2i 8 vtkm::Vec2ui 8
3 vtkm::Vec3i 8 vtkm::Vec3ui 8
4 vtkm::Vec4i 8 vtkm::Vec4ui 8

2 2 vtkm::Vec2i 16 vtkm::Vec2ui 16
3 vtkm::Vec3i 16 vtkm::Vec3ui 16
4 vtkm::Vec4i 16 vtkm::Vec4ui 16

4 2 vtkm::Vec2f 32 vtkm::Vec2i 32 vtkm::Vec2ui 32
3 vtkm::Vec3f 32 vtkm::Vec3i 32 vtkm::Vec3ui 32
4 vtkm::Vec4f 32 vtkm::Vec4i 32 vtkm::Vec4ui 32

8 2 vtkm::Vec2f 64 vtkm::Vec2i 64 vtkm::Vec2ui 64
3 vtkm::Vec3f 64 vtkm::Vec3i 64 vtkm::Vec3ui 64
4 vtkm::Vec4f 64 vtkm::Vec4i 64 vtkm::Vec4ui 64

vtkm::Vec supports component-wise arithmetic using the operators for plus (+), minus (-), multiply (*), and
divide (/). It also supports scalar to vector multiplication with the multiply operator. The comparison operators
equal (==) is true if every pair of corresponding components are true and not equal (!=) is true otherwise. A
special vtkm::Dot function is overloaded to provide a dot product for every type of vector.

Example 19.2: Vector operations.
1 vtkm :: Vec3f_32 A{ 1, 2, 3 };
2 vtkm :: Vec3f_32 B{ 4, 5, 6.5 };
3 vtkm :: Vec3f_32 C = A + B; // C is (5, 7, 9.5)
4 vtkm :: Vec3f_32 D = 2.0f * C; // D is (10 , 14, 19)
5 vtkm :: Float32 s = vtkm :: Dot(A, B); // s is 33.5
6 bool b1 = (A == B); // b1 is false
7 bool b2 = (A == vtkm :: make_Vec (1, 2, 3)); // b2 is true
8
9 vtkm ::Vec <vtkm :: Float32 , 5> E{ 1, 2.5 , 3, 4, 5 }; // E is (1, 2, 3, 4, 5)

10 vtkm ::Vec <vtkm :: Float32 , 5> F{ 6, 7, 8.5 , 9, 10.5 }; // F is (6, 7, 8, 9, 10)
11 vtkm ::Vec <vtkm :: Float32 , 5> G = E + F; // G is (7, 9.5 , 11.5 , 13, 15.5)
12 bool b3 = (E == F); // b3 is false
13 bool b4 = (G == vtkm :: make_Vec (7.f, 9.5f, 11.5f, 13.f, 15.5f)); // b4 is true
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These operators, of course, only work if they are also defined for the component type of the vtkm::Vec. For
example, the multiply operator will work fine on objects of type vtkm::Vec <char,3>, but the multiply operator
will not work on objects of type vtkm::Vec <std::string,3> because you cannot multiply objects of type
std::string.
In addition to generalizing vector operations and making arbitrarily long vectors, vtkm::Vec can be repurposed
for creating any sequence of homogeneous objects. Here is a simple example of using vtkm::Vec to hold the
state of a polygon.

Example 19.3: Repurposing a vtkm::Vec.
1 vtkm ::Vec <vtkm :: Vec2f_32 , 3> equilateralTriangle = { { 0.0f, 0.0f },
2 { 1.0f, 0.0f },
3 { 0.5f, 0.8660254 f } };

The vtkm::Vec class provides a convenient structure for holding and passing small vectors of data. However,
there are times when using Vec is inconvenient or inappropriate. For example, the size of vtkm::Vec must be
known at compile time, but there may be need for a vector whose size is unknown until compile time. Also, the
data populating a vtkm::Vec might come from a source that makes it inconvenient or less efficient to construct
a vtkm::Vec. For this reason, VTK-m also provides several Vec-like objects that behave much like vtkm::Vec
but are a different class. These Vec-like objects have the same interface as vtkm::Vec except that the NUM -
COMPONENTS constant is not available on those that are sized at run time. Vec-like objects also come with a
CopyInto method that will take their contents and copy them into a standard Vec class. (The standard Vec
class also has a CopyInto method for consistency.)
The first Vec-like object is vtkm::VecC, which exposes a C-type array as a Vec. The constructor for vtkm::VecC
takes a C array and a size of that array. There is also a constant version of VecC named vtkm::VecCConst, which
takes a constant array and cannot be mutated. The vtkm/Types.h header defines both VecC and VecCConst as
well as multiple versions of vtkm::make VecC to easily convert a C array to either a VecC or VecCConst.
The following example demonstrates converting values from a constant table into a vtkm::VecCConst for further
consumption. The table and associated methods define how 8 points come together to form a hexahedron.

Example 19.4: Using vtkm::VecCConst with a constant array.
1 VTKM_EXEC
2 vtkm :: VecCConst <vtkm :: IdComponent > HexagonIndexToIJK (vtkm :: IdComponent index )
3 {
4 static const vtkm :: IdComponent HexagonIndexToIJKTable [8][3] = {
5 { 0, 0, 0 }, { 1, 0, 0 }, { 1, 1, 0 }, { 0, 1, 0 },
6 { 0, 0, 1 }, { 1, 0, 1 }, { 1, 1, 1 }, { 0, 1, 1 }
7 };
8
9 return vtkm :: make_VecC ( HexagonIndexToIJKTable [ index ], 3);

10 }
11
12 VTKM_EXEC
13 vtkm :: IdComponent HexagonIJKToIndex (vtkm :: VecCConst <vtkm :: IdComponent > ijk)
14 {
15 static const vtkm :: IdComponent HexagonIJKToIndexTable [2][2][2] = {
16 {
17 // i=0
18 { 0, 4 }, // j=0
19 { 3, 7 }, // j=1
20 },
21 {
22 // i=1
23 { 1, 5 }, // j=0
24 { 2, 6 }, // j=1
25 }
26 };

Chapter 19. Advanced Types 141



19.2. Vector Types

27
28 return HexagonIJKToIndexTable [ijk [0]][ ijk [1]][ ijk [2]];
29 }

The vtkm::VecC and vtkm::VecCConst classes only hold a pointer to a buffer that contains the data. They
do not manage the memory holding the data. Thus, if the pointer given to vtkm::VecC or vtkm::VecCConst
becomes invalid, then using the object becomes invalid. Make sure that the scope of the vtkm::VecC or
vtkm::VecCConst does not outlive the scope of the data it points to.

Common Errors

The next Vec-like object is vtkm::VecVariable, which provides a Vec-like object that can be resized at run time
to a maximum value. Unlike VecC, VecVariable holds its own memory, which makes it a bit safer to use. But
also unlike VecC, you must define the maximum size of VecVariable at compile time. Thus, VecVariable is
really only appropriate to use when there is a predetermined limit to the vector size that is fairly small.
The following example uses a vtkm::VecVariable to store the trace of edges within a hexahedron. This example
uses the methods defined in Example 19.4.

Example 19.5: Using vtkm::VecVariable.
1 vtkm :: VecVariable <vtkm :: IdComponent , 4> HexagonShortestPath (
2 vtkm :: IdComponent startPoint ,
3 vtkm :: IdComponent endPoint )
4 {
5 vtkm :: VecCConst <vtkm :: IdComponent > startIJK = HexagonIndexToIJK ( startPoint );
6 vtkm :: VecCConst <vtkm :: IdComponent > endIJK = HexagonIndexToIJK ( endPoint );
7
8 vtkm :: IdComponent3 currentIJK ;
9 startIJK . CopyInto ( currentIJK );

10
11 vtkm :: VecVariable <vtkm :: IdComponent , 4> path;
12 path. Append ( startPoint );
13 for (vtkm :: IdComponent dimension = 0; dimension < 3; dimension ++)
14 {
15 if ( currentIJK [ dimension ] != endIJK [ dimension ])
16 {
17 currentIJK [ dimension ] = endIJK [ dimension ];
18 path. Append ( HexagonIJKToIndex ( currentIJK ));
19 }
20 }
21
22 return path;
23 }

VTK-m provides further examples of Vec-like objects as well. For example, the vtkm::VecFromPortal and
vtkm::VecFromPortalPermute objects allow you to treat a subsection of an arbitrarily large array as a Vec.
These objects work by attaching to array portals, which are described in Section 27.1. Another example of a
Vec-like object is vtkm::VecRectilinearPointCoordinates, which efficiently represents the point coordinates
in an axis-aligned hexahedron. Such shapes are common in structured grids. These and other data sets are
described in Chapter 7.
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19.3 Range

VTK-m provides a convenience structure named vtkm::Range to help manage a range of values. The Range
struct contains two data members, Min and Max, which represent the ends of the range of numbers. Min and
Max are both of type vtkm::Float64. Min and Max can be directly accessed, but Range also comes with the
following helper functions to make it easier to build and use ranges. Note that all of these functions treat the
minimum and maximum value as inclusive to the range.

IsNonEmpty Returns true if the range covers at least one value.

Contains Takes a single number and returns true if that number is contained within the range.

Length Returns the distance between Min and Max. Empty ranges return a length of 0. Note that if the range
is non-empty and the length is 0, then Min and Max must be equal, and the range contains exactly one
number.

Center Returns the number equidistant to Min and Max. If the range is empty, NaN is returned.

Include Takes either a single number or another range and modifies this range to include the given number or
range. If necessary, the range is grown just enough to encompass the given argument. If the argument is
already in the range, nothing changes.

Union A nondestructive version of Include, which builds a new Range that is the union of this range and the
argument. The + operator is also overloaded to compute the union.

The following example demonstrates the operation of vtkm::Range.

Example 19.6: Using vtkm::Range.
1 vtkm :: Range range ; // default constructor is empty range
2 bool b1 = range . IsNonEmpty (); // b1 is false
3
4 range . Include (0.5); // range now is [0.5 .. 0.5]
5 bool b2 = range . IsNonEmpty (); // b2 is true
6 bool b3 = range . Contains (0.5); // b3 is true
7 bool b4 = range . Contains (0.6); // b4 is false
8
9 range . Include (2.0); // range is now [0.5 .. 2]

10 bool b5 = range . Contains (0.5); // b3 is true
11 bool b6 = range . Contains (0.6); // b4 is true
12
13 range . Include (vtkm :: Range (-1, 1)); // range is now [-1 .. 2]
14
15 range . Include (vtkm :: Range (3, 4)); // range is now [-1 .. 4]
16
17 vtkm :: Float64 lower = range .Min; // lower is -1
18 vtkm :: Float64 upper = range .Max; // upper is 4
19 vtkm :: Float64 length = range . Length (); // length is 5
20 vtkm :: Float64 center = range . Center (); // center is 1.5

19.4 Bounds

VTK-m provides a convenience structure named vtkm::Bounds to help manage an axis-aligned region in 3D
space. Among other things, this structure is often useful for representing a bounding box for geometry. The
Bounds struct contains three data members, X, Y, and Z, which represent the range of the bounds along each
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respective axis. All three of these members are of type vtkm::Range, which is discussed previously in Section 19.3.
X, Y, and Z can be directly accessed, but Bounds also comes with the following helper functions to make it easier
to build and use ranges.

IsNonEmpty Returns true if the bounds cover at least one value.

Contains Takes a vtkm::Vec of size 3 and returns true if those point coordinates are contained within the range.

Center Returns the point at the center of the range as a vtkm::Vec <vtkm::Float64,3>.

Include Takes either a vtkm::Vec of size 3 or another bounds and modifies this bounds to include the given
point or bounds. If necessary, the bounds are grown just enough to encompass the given argument. If the
argument is already in the bounds, nothing changes.

Union A nondestructive version of Include, which builds a new Bounds that is the union of this bounds and
the argument. The + operator is also overloaded to compute the union.

The following example demonstrates the operation of vtkm::Bounds.

Example 19.7: Using vtkm::Bounds.
1 vtkm :: Bounds bounds ; // default constructor makes empty
2 bool b1 = bounds . IsNonEmpty (); // b1 is false
3
4 bounds . Include (vtkm :: make_Vec (0.5 , 2.0 , 0.0)); // bounds contains only
5 // the point [0.5 , 2, 0]
6 bool b2 = bounds . IsNonEmpty (); // b2 is true
7 bool b3 = bounds . Contains (vtkm :: make_Vec (0.5 , 2.0 , 0.0)); // b3 is true
8 bool b4 = bounds . Contains (vtkm :: make_Vec (1, 1, 1)); // b4 is false
9 bool b5 = bounds . Contains (vtkm :: make_Vec (0, 0, 0)); // b5 is false

10
11 bounds . Include (vtkm :: make_Vec (4, -1, 2)); // bounds is region [0.5 .. 4] in X,
12 // [-1 .. 2] in Y,
13 // and [0 .. 2] in Z
14 bool b6 = bounds . Contains (vtkm :: make_Vec (0.5 , 2.0 , 0.0)); // b6 is true
15 bool b7 = bounds . Contains (vtkm :: make_Vec (1, 1, 1)); // b7 is true
16 bool b8 = bounds . Contains (vtkm :: make_Vec (0, 0, 0)); // b8 is false
17
18 vtkm :: Bounds otherBounds (vtkm :: make_Vec (0, 0, 0), vtkm :: make_Vec (3, 3, 3));
19 // otherBounds is region [0 .. 3] in X, Y, and Z
20 bounds . Include ( otherBounds ); // bounds is now region [0 .. 4] in X,
21 // [-1 .. 3] in Y,
22 // and [0 .. 3] in Z
23
24 vtkm :: Vec3f_64 lower ( bounds .X.Min , bounds .Y.Min , bounds .Z.Min );
25 // lower is [0, -1, 0]
26 vtkm :: Vec3f_64 upper ( bounds .X.Max , bounds .Y.Max , bounds .Z.Max );
27 // upper is [4, 3, 3]
28
29 vtkm :: Vec3f_64 center = bounds . Center (); // center is [2, 1, 1.5]

19.5 Traits

When using templated types, it is often necessary to get information about the type or specialize code based on
general properties of the type. VTK-m uses traits classes to publish and retrieve information about types. A
traits class is simply a templated structure that provides type aliases for tag structures, empty types used for
identification. The traits classes might also contain constant numbers and helpful static functions. See Effective
C++ Third Edition by Scott Meyers for a description of traits classes and their uses.
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19.5.1 Type Traits

The vtkm::TypeTraits <T> templated class provides basic information about a core type. These type traits are
available for all the basic C++ types as well as the core VTK-m types described in Chapter 4. vtkm::TypeTraits
contains the following elements.

NumericTag This type is set to either vtkm::TypeTraitsRealTag or vtkm::TypeTraitsIntegerTag to signal
that the type represents either floating point numbers or integers.

DimensionalityTag This type is set to either vtkm::TypeTraitsScalarTag or vtkm::TypeTraitsVectorTag
to signal that the type represents either a single scalar value or a tuple of values.

ZeroInitialization A static member function that takes no arguments and returns 0 (or the closest equivalent
to it) cast to the type.

The definition of vtkm::TypeTraits for vtkm::Float32 could like something like this.

Example 19.8: Definition of vtkm::TypeTraits <vtkm::Float32 >.
1 namespace vtkm {
2
3 template <>
4 struct TypeTraits <vtkm :: Float32 >
5 {
6 using NumericTag = vtkm :: TypeTraitsRealTag ;
7 using DimensionalityTag = vtkm :: TypeTraitsScalarTag ;
8
9 VTKM_EXEC_CONT

10 static vtkm :: Float32 ZeroInitialization () { return vtkm :: Float32 (0); }
11 };
12
13 }

Here is a simple example of using vtkm::TypeTraits to implement a generic function that behaves like the
remainder operator (%) for all types including floating points and vectors.

Example 19.9: Using TypeTraits for a generic remainder.
1 # include <vtkm/ TypeTraits .h>
2
3 # include <vtkm/Math.h>
4
5 template < typename T>
6 T AnyRemainder ( const T& numerator , const T& denominator );
7
8 namespace detail
9 {

10
11 template < typename T>
12 T AnyRemainderImpl ( const T& numerator ,
13 const T& denominator ,
14 vtkm :: TypeTraitsIntegerTag ,
15 vtkm :: TypeTraitsScalarTag )
16 {
17 return numerator % denominator ;
18 }
19
20 template < typename T>
21 T AnyRemainderImpl ( const T& numerator ,
22 const T& denominator ,
23 vtkm :: TypeTraitsRealTag ,
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24 vtkm :: TypeTraitsScalarTag )
25 {
26 // The VTK -m math library contains a Remainder function that operates on
27 // floating point numbers .
28 return vtkm :: Remainder (numerator , denominator );
29 }
30
31 template < typename T, typename NumericTag >
32 T AnyRemainderImpl ( const T& numerator ,
33 const T& denominator ,
34 NumericTag ,
35 vtkm :: TypeTraitsVectorTag )
36 {
37 T result ;
38 for (int componentIndex = 0; componentIndex < T:: NUM_COMPONENTS ; componentIndex ++)
39 {
40 result [ componentIndex ] =
41 AnyRemainder ( numerator [ componentIndex ], denominator [ componentIndex ]);
42 }
43 return result ;
44 }
45
46 } // namespace detail
47
48 template < typename T>
49 T AnyRemainder ( const T& numerator , const T& denominator )
50 {
51 return detail :: AnyRemainderImpl (numerator ,
52 denominator ,
53 typename vtkm :: TypeTraits <T >:: NumericTag (),
54 typename vtkm :: TypeTraits <T >:: DimensionalityTag ());
55 }

19.5.2 Vector Traits

The templated vtkm::Vec class contains several items for introspection (such as the component type and its
size). However, there are other types that behave similarly to Vec objects but have different ways to perform
this introspection.
For example, VTK-m contains Vec-like objects that essentially behave the same but might have different features.
Also, there may be reason to interchangeably use basic scalar values, like an integer or floating point number, with
vectors. To provide a consistent interface to access these multiple types that represents vectors, the vtkm::-
VecTraits <T> templated class provides information and accessors to vector types.It contains the following
elements.

ComponentType This type is set to the type for each component in the vector. For example, a vtkm::Id3 has
ComponentType defined as vtkm::Id.

IsSizeStatic This type is set to either vtkm::VecTraitsTagSizeStatic if the vector has a static number of
components that can be determined at compile time or set to vtkm::VecTraitsTagSizeVariable if the
size of the vector is determined at run time. If IsSizeStatic is set to VecTraitsTagSizeVariable, then
VecTraits will be missing some information that cannot be determined at compile time.

HasMultipleComponents This type is set to either vtkm::VecTraitsTagSingleComponent if the vector length
is size 1 or vtkm::VecTraitsTagMultipleComponents otherwise. This tag can be useful for creating spe-
cialized functions when a vector is really just a scalar. If the vector type is of variable size (that is,
IsSizeStatic is VecTraitsTagSizeVariable), then HasMultipleComponents might be VecTraitsTag-
MultipleComponents even when at run time there is only one component.
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NUM COMPONENTS An integer specifying how many components are contained in the vector. NUM COMPONENTS is
not available for vector types of variable size (that is, IsSizeStatic is VecTraitsTagSizeVariable).

GetNumberOfComponents A static method that takes an instance of a vector and returns the number of compo-
nents the vector contains. The result of GetNumberOfComponents is the same value of NUM COMPONENTS
for vector types that have a static size (that is, IsSizeStatic is VecTraitsTagSizeStatic). But unlike
NUM COMPONENTS, GetNumberOfComponents works for vectors of any type.

GetComponent A static method that takes a vector and returns a particular component.

SetComponent A static method that takes a vector and sets a particular component to a given value.

CopyInto A static method that copies the components of a vector to a vtkm::Vec.

The definition of vtkm::VecTraits for vtkm::Id3 could look something like this.

Example 19.10: Definition of vtkm::VecTraits <vtkm::Id3 >.
1 namespace vtkm {
2
3 template <>
4 struct VecTraits <vtkm ::Id3 >
5 {
6 using ComponentType = vtkm :: Id;
7 static const int NUM_COMPONENTS = 3;
8 using IsSizeStatic = vtkm :: VecTraitsTagSizeStatic ;
9 using HasMultipleComponents = vtkm :: VecTraitsTagMultipleComponents ;

10
11 VTKM_EXEC_CONT
12 static vtkm :: IdComponent GetNumberOfComponents ( const vtkm :: Id3 &)
13 {
14 return NUM_COMPONENTS ;
15 }
16
17 VTKM_EXEC_CONT
18 static const vtkm :: Id& GetComponent ( const vtkm :: Id3& vector , int component )
19 {
20 return vector [ component ];
21 }
22 VTKM_EXEC_CONT
23 static vtkm :: Id& GetComponent (vtkm :: Id3& vector , int component )
24 {
25 return vector [ component ];
26 }
27
28 VTKM_EXEC_CONT
29 static void SetComponent (vtkm :: Id3& vector , int component , vtkm :: Id value )
30 {
31 vector [ component ] = value ;
32 }
33
34 template <vtkm :: IdComponent DestSize >
35 VTKM_EXEC_CONT static void CopyInto ( const vtkm :: Id3& src ,
36 vtkm ::Vec <vtkm ::Id , DestSize >& dest)
37 {
38 for (vtkm :: IdComponent index = 0; ( index < NUM_COMPONENTS ) && ( index < DestSize );
39 index ++)
40 {
41 dest[ index ] = src[ index ];
42 }
43 }
44 };
45
46 } // namespace vtkm
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The real power of vector traits is that they simplify creating generic operations on any type that can look like
a vector. This includes operations on scalar values as if they were vectors of size one. The following code uses
vector traits to simplify the implementation of less functors that define an ordering that can be used for sorting
and other operations.

Example 19.11: Using VecTraits for less functors.
1 # include <vtkm/ VecTraits .h>
2
3 // This functor provides a total ordering of vectors . Every compared vector
4 // will be either less , greater , or equal ( assuming all the vector components
5 // also have a total ordering ).
6 template < typename T>
7 struct LessTotalOrder
8 {
9 VTKM_EXEC_CONT

10 bool operator ()( const T& left , const T& right )
11 {
12 for (int index = 0; index < vtkm :: VecTraits <T >:: NUM_COMPONENTS ; index ++)
13 {
14 using ComponentType = typename vtkm :: VecTraits <T >:: ComponentType ;
15 const ComponentType & leftValue = vtkm :: VecTraits <T >:: GetComponent (left , index );
16 const ComponentType & rightValue =
17 vtkm :: VecTraits <T >:: GetComponent (right , index );
18 if ( leftValue < rightValue )
19 {
20 return true;
21 }
22 if ( rightValue < leftValue )
23 {
24 return false ;
25 }
26 }
27 // If we are here , the vectors are equal (or at least equivalent ).
28 return false ;
29 }
30 };
31
32 // This functor provides a partial ordering of vectors . It returns true if and
33 // only if all components satisfy the less operation . It is possible for
34 // vectors to be neither less , greater , nor equal , but the transitive closure
35 // is still valid .
36 template < typename T>
37 struct LessPartialOrder
38 {
39 VTKM_EXEC_CONT
40 bool operator ()( const T& left , const T& right )
41 {
42 for (int index = 0; index < vtkm :: VecTraits <T >:: NUM_COMPONENTS ; index ++)
43 {
44 using ComponentType = typename vtkm :: VecTraits <T >:: ComponentType ;
45 const ComponentType & leftValue = vtkm :: VecTraits <T >:: GetComponent (left , index );
46 const ComponentType & rightValue =
47 vtkm :: VecTraits <T >:: GetComponent (right , index );
48 if (!( leftValue < rightValue ))
49 {
50 return false ;
51 }
52 }
53 // If we are here , all components satisfy less than relation .
54 return true;
55 }
56 };
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19.6 List Templates

VTK-m internally uses template metaprogramming, which utilizes C++ templates to run source-generating
programs, to customize code to various data and compute platforms. One basic structure often uses with
template metaprogramming is a list of class names (also sometimes called a tuple or vector, although both of
those names have different meanings in VTK-m).
Many VTK-m users only need predefined lists, such as the type lists specified in Section 19.6.2. Those users
can skip most of the details of this section. However, it is sometimes useful to modify lists, create new lists, or
operate on lists, and these usages are documented here.

19.6.1 Building Lists

A basic list is defined with the vtkm::List <T, ...> template, which is defined in the vtkm/List.h header. It is
common (but not necessary) to use the using keyword to define an alias for a list with a particular meaning.

Example 19.12: Creating lists of types.
1 # include <vtkm/List.h>
2
3 // Placeholder classes representing things that might be in a template
4 // metaprogram list.
5 class Foo;
6 class Bar;
7 class Baz;
8 class Qux;
9 class Xyzzy ;

10
11 // The names of the following tags are indicative of the lists they contain .
12
13 using FooList = vtkm :: List <Foo >;
14
15 using FooBarList = vtkm :: List <Foo , Bar >;
16
17 using BazQuxXyzzyList = vtkm :: List <Baz , Qux , Xyzzy >;
18
19 using QuxBazBarFooList = vtkm :: List <Qux , Baz , Bar , Foo >;

VTK-m defines the convenience class vtkm::ListEmpty, which is simply an empty list (i.e. vtkm::List <>).
VTK-m also provides a special identifier named vtkm::ListUniversal. ListUniversal is a conceptual list
containing all possible types. Operations on ListUniversal will behave as if it contains all types where possible,
but some operations (such as getting the size of the list) are ill-defined and will fail.

19.6.2 Type Lists

One of the major use cases for template metaprogramming lists in VTK-m is to identify a set of potential data
types for arrays. The vtkm/TypeList.h header contains predefined lists for known VTK-m types. Although
technically all these lists are of C++ types, the types we refer to here are those data types stored in data arrays.
The following lists are provided.

vtkm::TypeListId Contains the single item vtkm::Id.

vtkm::TypeListId2 Contains the single item vtkm::Id2.

vtkm::TypeListId3 Contains the single item vtkm::Id3.
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vtkm::TypeListIdComponent Contains the single item vtkm::IdComponent.

vtkm::TypeListIndex A list of all types used to index arrays. Contains vtkm::Id, vtkm::Id2, and vtkm::Id3.

vtkm::TypeListFieldScalar A list containing types used for scalar fields. Specifically, it contains floating
point numbers of different widths (i.e. vtkm::Float32 and vtkm::Float64).

vtkm::TypeListFieldVec2 A list containing types for values of fields with 2 dimensional vectors. All these
vectors use floating point numbers.

vtkm::TypeListFieldVec3 A list containing types for values of fields with 3 dimensional vectors. All these
vectors use floating point numbers.

vtkm::TypeListFieldVec4 A list containing types for values of fields with 4 dimensional vectors. All these
vectors use floating point numbers.

vtkm::TypeListField A list containing all the types generally used for fields. It is the combination of vtkm::-
TypeListFieldScalar, vtkm::TypeListFieldVec2, vtkm::TypeListFieldVec3, and vtkm::TypeList-
FieldVec4.

vtkm::TypeListScalarAll A list of all scalar types. It contains signed and unsigned integers of widths from
8 to 64 bits. It also contains floats of 32 and 64 bit widths.

vtkm::TypeListVecCommon A list of the most common vector types. It contains all vtkm::Vec class of size 2
through 4 containing components of unsigned bytes, signed 32-bit integers, signed 64-bit integers, 32-bit
floats, or 64-bit floats.

vtkm::TypeListVecAll A list of all vtkm::Vec classes with standard integers or floating points as components
and lengths between 2 and 4.

vtkm::TypeListAll A list of all types included in vtkm/Types.h with vtkm::Vec s with up to 4 components.

vtkm::TypeListCommon A list containing only the most used types in visualization. This includes signed
integers and floats that are 32 or 64 bit. It also includes 3 dimensional vectors of floats. This is the default
list used when resolving the type in arrays of unknown type (described in Chapter 33).

If these lists are not sufficient, it is possible to build new type lists using the existing type lists and the list bases
from Section 19.6.1 as demonstrated in the following example.

Example 19.13: Defining new type lists.
1 # define VTKM_DEFAULT_TYPE_LIST_TAG MyCommonTypes
2
3 # include <vtkm/List.h>
4 # include <vtkm/ TypeList .h>
5
6 // A list of 2D vector types .
7 using Vec2List = vtkm :: List <vtkm :: Vec2f_32 , vtkm :: Vec2f_64 >;
8
9 // An application that uses 2D geometry might commonly encounter this list of

10 // types .
11 using MyCommonTypes = vtkm :: ListAppend <Vec2List , vtkm :: TypeListCommon >;

The vtkm/TypeList.h header also defines a macro named VTKM DEFAULT TYPE LIST that defines a default list of
types to use when, for example, determining the type of a field array. This list can be overridden by defining the
VTKM DEFAULT TYPE LIST macro before any VTK-m headers are included. If included after a VTK-m header,
the list is not likely to take effect. Do not ignore compiler warnings about the macro being redefined, which
you will not get if defined correctly. Example 19.13 also contains an example of overriding the VTKM DEFAULT -
TYPE LIST macro.
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19.6.3 Querying Lists

vtkm/List.h contains some templated classes to help get information about a list type. This are particularly
useful for lists that are provided as templated parameters for which you do not know the exact type.
The VTKM IS LIST does a compile-time check to make sure a particular type is actually a vtkm::List of types.
If the compile-time check fails, then a build error will occur. This is a good way to verify that a templated class
or method that expects a list actually gets a list.

Example 19.14: Checking that a template parameter is a valid List.
1 template < typename List >
2 class MyImportantClass
3 {
4 VTKM_IS_LIST (List );
5 // Implementation ...
6 };
7
8 void DoImportantStuff ()
9 {

10 MyImportantClass <vtkm :: List <vtkm ::Id >> important1 ; // This compiles fine
11 MyImportantClass <vtkm ::Id > important2 ; // COMPILE ERROR : vtkm :: Id is not a list

The size of a list can be determined by using the vtkm::ListSize template. The type of the template will
resolve to a std::integral constant<vtkm::IdComponent,N> where N is the number of types in the list.
vtkm::ListSize does not work with vtkm::ListUniversal.

Example 19.15: Getting the size of a List.
1 using MyList = vtkm :: List <vtkm :: Int8 , vtkm :: Int32 , vtkm :: Int64 >;
2
3 constexpr vtkm :: IdComponent myListSize = vtkm :: ListSize <MyList >:: value ;
4 // myListSize is 3

The vtkm::ListHas template can be used to determine if a vtkm::List contains a particular type. ListHas
takes two template parameters. The first parameter is a form of vtkm::List. The second parameter is any type
to check to see if it is in the list. If the type is in the list, then ListHas resolves to std::true type. Otherwise
it resolves to std::false type. vtkm::ListHas always returns true for vtkm::ListUniversal.

Example 19.16: Determining if a List contains a particular type.
1 using MyList = vtkm :: List <vtkm :: Int8 , vtkm :: Int16 , vtkm :: Int32 , vtkm :: Int64 >;
2
3 constexpr bool hasInt = vtkm :: ListHas <MyList , int >:: value ;
4 // hasInt is true
5
6 constexpr bool hasFloat = vtkm :: ListHas <MyList , float >:: value ;
7 // hasFloat is false

The vtkm::ListIndexOf template can be used to get the index of a particular type in a vtkm::List. ListIn-
dexOf takes two template parameters. The first parameter is a form of vtkm::List. The second parameter is
any type to check to see if it is in the list. The type of the template will resolve to a std::integral con-
stant<vtkm::IdComponent,N> where N is the index of the type. If the requested type is not in the list, then
ListIndexOf becomes std::integral constant<vtkm::IdComponent,-1>.
Conversely, the vtkm::ListAt template can be used to get the type for a particular index. The two template
parameters for ListAt are the List and an index for the list.
Neither vtkm::ListIndexOf nor vtkm::ListAt works with vtkm::ListUniversal.

Example 19.17: Using indices with List.
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1 using MyList = vtkm :: List <vtkm :: Int8 , vtkm :: Int32 , vtkm :: Int64 >;
2
3 constexpr vtkm :: IdComponent indexOfInt8 =
4 vtkm :: ListIndexOf <MyList , vtkm :: Int8 >:: value ;
5 // indexOfInt8 is 0
6 constexpr vtkm :: IdComponent indexOfInt32 =
7 vtkm :: ListIndexOf <MyList , vtkm :: Int32 >:: value ;
8 // indexOfInt32 is 1
9 constexpr vtkm :: IdComponent indexOfInt64 =

10 vtkm :: ListIndexOf <MyList , vtkm :: Int64 >:: value ;
11 // indexOfInt64 is 2
12 constexpr vtkm :: IdComponent indexOfFloat32 =
13 vtkm :: ListIndexOf <MyList , vtkm :: Float32 >:: value ;
14 // indexOfFloat32 is -1 (not in list)
15
16 using T0 = vtkm :: ListAt <MyList , 0>; // T0 is vtkm :: Int8
17 using T1 = vtkm :: ListAt <MyList , 1>; // T1 is vtkm :: Int32
18 using T2 = vtkm :: ListAt <MyList , 2>; // T2 is vtkm :: Int64

19.6.4 Operating on Lists

In addition to providing the base templates for defining and querying lists, vtkm/List.h also contains several
features for operating on lists.
The vtkm::ListAppend template joins together 2 or more Lists. The items are concatenated in the order
provided to ListAppend. ListAppend does not work with vtkm::ListUniversal.

Example 19.18: Appending Lists.
1 using BigTypes = vtkm :: List <vtkm :: Int64 , vtkm :: Float64 >;
2 using MediumTypes = vtkm :: List <vtkm :: Int32 , vtkm :: Float32 >;
3 using SmallTypes = vtkm :: List <vtkm :: Int8 >;
4
5 using SmallAndBigTypes = vtkm :: ListAppend < SmallTypes , BigTypes >;
6 // SmallAndBigTypes is vtkm :: List <vtkm :: Int8 , vtkm :: Int64 , vtkm :: Float64 >
7
8 using AllMyTypes = vtkm :: ListAppend <BigTypes , MediumTypes , SmallTypes >;
9 // AllMyTypes is

10 // vtkm :: List <vtkm :: Int64 , vtkm :: Float64 , vtkm :: Int32 , vtkm :: Float32 , vtkm :: Int8 >

The vtkm::ListIntersect template takes two Lists and becomes a vtkm::List containing all types in both
lists. If one of the lists is vtkm::ListUniversal, the contents of the other list used.

Example 19.19: Intersecting Lists.
1 using SignedInts = vtkm :: List <vtkm :: Int8 , vtkm :: Int16 , vtkm :: Int32 , vtkm :: Int64 >;
2 using WordTypes = vtkm :: List <vtkm :: Int32 , vtkm :: UInt32 , vtkm :: Int64 , vtkm :: UInt64 >;
3
4 using SignedWords = vtkm :: ListIntersect < SignedInts , WordTypes >;
5 // SignedWords is vtkm :: List <vtkm :: Int32 , vtkm :: Int64 >

The vtkm::ListApply template transfers all of the types in a vtkm::List to another template. The first
template argument of ListApply is the List to apply. The second template argument is another template to
apply to. ListApply becomes an instance of the passed template with all the types in the List. ListApply can
be used to convert a List to some other template. ListApply cannot be used with vtkm::ListUniversal.

Example 19.20: Applying a List to another template.
1 using MyList = vtkm :: List <vtkm ::Id , vtkm ::Id3 , vtkm :: Vec3f >;
2
3 using MyTuple = vtkm :: ListApply <MyList , std :: tuple >;
4 // MyTuple is std :: tuple <vtkm ::Id , vtkm ::Id3 , vtkm :: Vec3f >
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The vtkm::ListTransform template applies each item in a vtkm::List to another template and constructs a
list from all these applications. The first template argument of ListTransform is the List to apply. The second
template argument is another template to apply to. ListTransform becomes an instance of a new vtkm::List
containing the passed template each type. ListTransform cannot be used with vtkm::ListUniversal.

Example 19.21: Transforming a List using a custom template.
1 using MyList = vtkm :: List <vtkm :: Int32 , vtkm :: Float32 >;
2
3 template < typename T>
4 using MakeVec = vtkm ::Vec <T, 3>;
5
6 using MyVecList = vtkm :: ListTransform <MyList , MakeVec >;
7 // MyVecList is vtkm :: List <vtkm ::Vec <vtkm :: Int32 , 3>, vtkm ::Vec <vtkm :: Float32 , 3>>

The vtkm::ListRemoveIf template removes items from a vtkm::List given a predicate. The first template
argument of ListRemoveIf is the List. The second argument is another template that is used as a predicate to
determine if the type should be removed or not. The predicate should become a type with a value member that
is a static true or false value. Any type in the list that the predicate evaluates to true is removed. ListRemoveIf
cannot be used with vtkm::ListUniversal.

Example 19.22: Removing items from a List.
1 using MyList =
2 vtkm :: List <vtkm :: Int64 , vtkm :: Float64 , vtkm :: Int32 , vtkm :: Float32 , vtkm :: Int8 >;
3
4 using FilteredList = vtkm :: ListRemoveIf <MyList , std :: is_integral >;
5 // FilteredList is vtkm :: List <vtkm :: Float64 , vtkm :: Float32 >

The vtkm::ListCross takes two lists and performs a cross product of them. It does this by creating a new
vtkm::List that contains nested Lists, each of length 2 and containing all possible pairs of items in the first list
with items in the second list. ListCross is often used in conjunction with another list processing command, such
as ListTransform to build templated types of many combinations. ListCross cannot be used with vtkm::-
ListUniversal.

Example 19.23: Creating the cross product of 2 Lists.
1 using BaseTypes = vtkm :: List <vtkm :: Int8 , vtkm :: Int32 , vtkm :: Int64 >;
2 using BoolCases = vtkm :: List <std :: false_type , std :: true_type >;
3
4 using CrossTypes = vtkm :: ListCross <BaseTypes , BoolCases >;
5 // CrossTypes is
6 // vtkm :: List <vtkm :: List <vtkm :: Int8 , std :: false_type >,
7 // vtkm :: List <vtkm :: Int8 , std :: true_type >,
8 // vtkm :: List <vtkm :: Int32 , std :: false_type >,
9 // vtkm :: List <vtkm :: Int32 , std :: true_type >,

10 // vtkm :: List <vtkm :: Int64 , std :: false_type >,
11 // vtkm :: List <vtkm :: Int64 , std :: true_type >>
12
13 template < typename TypeAndIsVec >
14 using ListPairToType =
15 typename std :: conditional <vtkm :: ListAt < TypeAndIsVec , 1 >:: value ,
16 vtkm ::Vec <vtkm :: ListAt < TypeAndIsVec , 0>, 3>,
17 vtkm :: ListAt < TypeAndIsVec , 0>>:: type;
18
19 using AllTypes = vtkm :: ListTransform < CrossTypes , ListPairToType >;
20 // AllTypes is
21 // vtkm :: List <vtkm :: Int8 ,
22 // vtkm ::Vec <vtkm :: Int8 , 3>,
23 // vtkm :: Int32 ,
24 // vtkm ::Vec <vtkm :: Int32 , 3>,
25 // vtkm :: Int64 ,
26 // vtkm ::Vec <vtkm :: Int64 , 3>>
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The vtkm::ListForEach function takes a functor object and a vtkm::List. It then calls the functor object with
the default object of each type in the list. This is most typically used with C++ run-time type information to
convert a run-time polymorphic object to a statically typed (and possibly inlined) call.
The following example shows a rudimentary version of converting a dynamically-typed array to a statically-typed
array similar to what is done in VTK-m classes like vtkm::cont::UnknownArrayHandle (which is documented
in Chapter 33).

Example 19.24: Converting dynamic types to static types with ListForEach.
1 struct MyArrayBase
2 {
3 // A virtual destructor makes sure C++ RTTI will be generated . It also helps
4 // ensure subclass destructors are called .
5 virtual ˜ MyArrayBase () {}
6 };
7
8 template < typename T>
9 struct MyArrayImpl : public MyArrayBase

10 {
11 std :: vector <T> Array ;
12 };
13
14 template < typename T>
15 void PrefixSum (std :: vector <T >& array )
16 {
17 T sum( typename vtkm :: VecTraits <T >:: ComponentType (0));
18 for ( typename std :: vector <T >:: iterator iter = array . begin (); iter != array .end ();
19 iter ++)
20 {
21 sum = sum + *iter;
22 *iter = sum;
23 }
24 }
25
26 struct PrefixSumFunctor
27 {
28 MyArrayBase * ArrayPointer ;
29
30 PrefixSumFunctor ( MyArrayBase * arrayPointer )
31 : ArrayPointer ( arrayPointer )
32 {
33 }
34
35 template < typename T>
36 void operator ()(T)
37 {
38 using ConcreteArrayType = MyArrayImpl <T >;
39 ConcreteArrayType * concreteArray =
40 dynamic_cast < ConcreteArrayType *>(this -> ArrayPointer );
41 if ( concreteArray != NULL)
42 {
43 PrefixSum ( concreteArray -> Array );
44 }
45 }
46 };
47
48 void DoPrefixSum ( MyArrayBase * array )
49 {
50 PrefixSumFunctor functor = PrefixSumFunctor ( array );
51 vtkm :: ListForEach (functor , vtkm :: TypeListCommon ());
52 }
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19.7 Pair

VTK-m defines a vtkm::Pair <T1,T2> templated object that behaves just like std::pair from the standard
template library. The difference is that vtkm::Pair will work in both the execution and control environments,
whereas the STL std::pair does not always work in the execution environment.
The VTK-m version of vtkm::Pair supports the same types, fields, and operations as the STL version. VTK-m
also provides a vtkm::make Pair function for convenience.

19.8 Tuple

VTK-m defines a vtkm::Tuple templated object that behaves like std::tuple from the standard template
library. The main difference is that vtkm::Tuple will work in both the execution and control environments,
whereas the STL std::tuple does not always work in the execution environment.

19.8.1 Defining and Constructing

vtkm::Tuple takes any number of template parameters that define the objects stored the tuple.

Example 19.25: Defining a Tuple.
1 vtkm :: Tuple <vtkm ::Id , vtkm :: Vec3f , vtkm :: cont :: ArrayHandle <vtkm :: Int32 >> myTuple ;

You can construct a vtkm::Tuple with arguments that will be used to initialize the respective objects. As a
convenience, you can use vtkm::MakeTuple to construct a vtkm::Tuple of types based on the arguments.

Example 19.26: Initializing values in a Tuple.
1 // Initialize a tuple with 0, [0, 1, 2], and an existing ArrayHandle .
2 vtkm :: Tuple <vtkm ::Id , vtkm :: Vec3f , vtkm :: cont :: ArrayHandle <vtkm :: Float32 >>
3 myTuple1 (0, vtkm :: Vec3f (0, 1, 2), array );
4
5 // Another way to create the same tuple .
6 auto myTuple2 = vtkm :: MakeTuple (vtkm :: Id (0) , vtkm :: Vec3f (0, 1, 2), array );

19.8.2 Querying

The size of a vtkm::Tuple can be determined by using the vtkm::TupleSize template, which resolves to an
std::integral constant. The types at particular indices can be determined with vtkm::TupleElement.

Example 19.27: Querying Tuple types.
1 using TupleType = vtkm :: Tuple <vtkm ::Id , vtkm :: Float32 , vtkm :: Float64 >;
2
3 // Becomes 3
4 constexpr vtkm :: IdComponent size = vtkm :: TupleSize <TupleType >:: value ;
5
6 using FirstType = vtkm :: TupleElement <0, TupleType >; // vtkm :: Id
7 using SecondType = vtkm :: TupleElement <1, TupleType >; // vtkm :: Float32
8 using ThirdType = vtkm :: TupleElement <2, TupleType >; // vtkm :: Float64

The function vtkm::Get can be used to retrieve an element from the vtkm::Tuple. Get returns a reference to
the element, so you can set a vtkm::Tuple element by Geting the value.
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Example 19.28: Retrieving values from a Tuple.
1 auto myTuple = vtkm :: MakeTuple (vtkm :: Id3 (0, 1, 2), vtkm :: Vec3f (3, 4, 5));
2
3 // Gets the value [0, 1, 2]
4 vtkm :: Id3 x = vtkm ::Get <0 >( myTuple );
5
6 // Changes the second object in myTuple to [6, 7, 8]
7 vtkm ::Get <1 >( myTuple ) = vtkm :: Vec3f (6, 7, 8);

19.8.3 For Each

Tuple::ForEach is a method that takes a function or functor and calls it for each of the items in the tuple.
Nothing is returned from ForEach and any return value from the function is ignored. ForEach can be used to
check the validity of each item.

Example 19.29: Using Tuple::ForEach to check the contents.
1 void CheckPositive (vtkm :: Float64 x)
2 {
3 if (x < 0)
4 {
5 throw vtkm :: cont :: ErrorBadValue (" Values need to be positive .");
6 }
7 }
8
9 // ...

10
11 vtkm :: Tuple <vtkm :: Float64 , vtkm :: Float64 , vtkm :: Float64 > tuple (
12 CreateValue (0) , CreateValue (1) , CreateValue (2));
13
14 // Will throw an error if any of the values are negative .
15 tuple . ForEach ( CheckPositive );

Tuple::ForEach can also be used to aggregate values.

Example 19.30: Using Tuple::ForEach to aggregate.
1 struct SumFunctor
2 {
3 vtkm :: Float64 Sum = 0;
4
5 template < typename T>
6 void operator ()( const T& x)
7 {
8 this ->Sum = this ->Sum + static_cast <vtkm :: Float64 >(x);
9 }

10 };
11
12 // ...
13
14 vtkm :: Tuple <vtkm :: Float32 , vtkm :: Float64 , vtkm ::Id > tuple (
15 CreateValue (0) , CreateValue (1) , CreateValue (2));
16
17 SumFunctor sum;
18 tuple . ForEach (sum );
19 vtkm :: Float64 average = sum.Sum / 3;

156 Chapter 19. Advanced Types



19.8. Tuple

19.8.4 Transform

Tuple::Transform is a method that builds a new Tuple by calling a function or functor on each of the items.
The return value is placed in the corresponding part of the resulting Tuple, and the type is automatically created
from the return type of the function.

Example 19.31: Transforming a Tuple.
1 struct GetReadPortalFunctor
2 {
3 template < typename Array >
4 typename Array :: ReadPortalType operator ()( const Array & array ) const
5 {
6 VTKM_IS_ARRAY_HANDLE ( Array );
7 return array . ReadPortal ();
8 }
9 };

10
11 // ...
12
13 auto arrayTuple = vtkm :: MakeTuple (array1 , array2 , array3 );
14
15 auto portalTuple = arrayTuple . Transform ( GetReadPortalFunctor {});

19.8.5 Apply

Tuple::Apply is a method that calls a function or functor using the objects in the Tuple as the arguments. If
the function returns a value, that value is returned from Apply.

Example 19.32: Applying a Tuple as arguments to a function.
1 struct AddArraysFunctor
2 {
3 template < typename Array1 , typename Array2 , typename Array3 >
4 vtkm :: Id operator ()( Array1 inArray1 , Array2 inArray2 , Array3 outArray ) const
5 {
6 VTKM_IS_ARRAY_HANDLE ( Array1 );
7 VTKM_IS_ARRAY_HANDLE ( Array2 );
8 VTKM_IS_ARRAY_HANDLE ( Array3 );
9

10 vtkm :: Id length = inArray1 . GetNumberOfValues ();
11 VTKM_ASSERT ( inArray2 . GetNumberOfValues () == length );
12 outArray . Allocate ( length );
13
14 auto inPortal1 = inArray1 . ReadPortal ();
15 auto inPortal2 = inArray2 . ReadPortal ();
16 auto outPortal = outArray . WritePortal ();
17 for (vtkm :: Id index = 0; index < length ; ++ index )
18 {
19 outPortal .Set(index , inPortal1 .Get( index ) + inPortal2 .Get( index ));
20 }
21
22 return length ;
23 }
24 };
25
26 // ...
27
28 auto arrayTuple = vtkm :: MakeTuple (array1 , array2 , array3 );
29
30 vtkm :: Id arrayLength = arrayTuple . Apply ( AddArraysFunctor {});
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If additional arguments are given to Apply, they are also passed to the function (before the objects in the
vtkm::Tuple). This is helpful for passing state to the function.

Example 19.33: Using extra arguments with Tuple::Apply.
1 struct ScanArrayLengthFunctor
2 {
3 template <vtkm :: IdComponent N, typename Array , typename ... Remaining >
4 vtkm ::Vec <vtkm ::Id , N + 1 + vtkm :: IdComponent ( sizeof ...( Remaining ))> operator ()(
5 const vtkm ::Vec <vtkm ::Id , N >& partialResult ,
6 const Array & nextArray ,
7 const Remaining &... remainingArrays ) const
8 {
9 vtkm ::Vec <vtkm ::Id , N + 1> nextResult ;

10 std :: copy (& partialResult [0] , & partialResult [0] + N, & nextResult [0]);
11 nextResult [N] = nextResult [N - 1] + nextArray . GetNumberOfValues ();
12 return (* this )( nextResult , remainingArrays ...);
13 }
14
15 template <vtkm :: IdComponent N>
16 vtkm ::Vec <vtkm ::Id , N> operator ()( const vtkm ::Vec <vtkm ::Id , N >& result ) const
17 {
18 return result ;
19 }
20 };
21
22 // ...
23
24 auto arrayTuple = vtkm :: MakeTuple (array1 , array2 , array3 );
25
26 vtkm ::Vec <vtkm ::Id , 4> sizeScan =
27 arrayTuple . Apply ( ScanArrayLengthFunctor {}, vtkm ::Vec <vtkm ::Id , 1>{ 0 });

19.9 Error Codes

For operations that occur in the control environment, VTK-m uses exceptions to report errors as described in
Chapter 11. However, when operating in the execution environment, it is not feasible to throw exceptions. Thus,
for operations designed for the execution environment, the status of an operation that can fail is returned as an
vtkm::ErrorCode, which is an enum. An ErrorCode can be one of the following enumerators.

ErrorCode::Success The operation completed successfully.

ErrorCode::InvalidShapeId An operation on a cell was given a shape identifier that is not recognized.

ErrorCode::InvalidNumberOfPoints The wrong number of points was provided for a given cell type. For
example, if a triangle has 4 points associated with it, you are likely to get this error.

ErrorCode::InvalidPointId A bad point identifier was detected while operating on a cell.

ErrorCode::InvalidEdgeId A bad edge identifier was detected while operating on a cell.

ErrorCode::InvalidFaceId A bad face identifier was detected while operating on a cell.

ErrorCode::SolutionDidNotConverge An iterative operation did not find an appropriate solution. The result
is not likely to be accurate.

ErrorCode::MatrixFactorizationFailed A solution was not found for a linear system.
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ErrorCode::DegenerateCellDetected A cell’s parameters have degenerated it to another type. For example,
if two vertices of a tetrahedron are the same, it degenerates into a triangle.

ErrorCode::MalformedCellDetected The structure of a cell is incorrect. For example, if the vertices of a cell
are listed in the wrong order, you might encounter this error.

ErrorCode::OperationOnEmptyCell There is an “empty” cell placeholder type to be used when other cell types
cannot be applied. Because it is a placeholder, operations on these types of cells are undefined.

ErrorCode::CellNotFound A locate operation failed to find a cell given the search criteria.

If a function or method returns an ErrorCode, it is a good practice to check to make sure that the returned value
is Success. If it is not, you can use the vtkm::ErrorString function to convert the ErrorCode to a descriptive
C string. The easiest thing to do from within a worklet is to call the worklet’s RaiseError method.

Example 19.34: Checking an ErrorCode and reporting errors in a worklet.
1 vtkm :: ErrorCode status = cellLocator . FindCell (point , cellId , parametric );
2 if ( status != vtkm :: ErrorCode :: Success )
3 {
4 this -> RaiseError (vtkm :: ErrorString ( status ));
5 }

Chapter 19. Advanced Types 159





CHAPTER

TWENTY

LOGGING

VTK-m features a logging system that allows status updates and timing. VTK-m uses the loguru project to
provide runtime logging facilities.1 Logging is enabled by setting the CMake variable VTKm ENABLE LOGGING.
When this flag is enabled, any messages logged to the Info, Warn, Error, and Fatal levels are printed to stderr
by default.

20.1 Initializing Logging

Additional logging features are enabled by calling vtkm::cont::Initialize as described in Chapter 6. Although
calling Initialize is not strictly necessary for output messages, initialization adds the following features.

• Set human-readable names for the log levels in the output.

• Allow the stderr logging level to be set at runtime by passing a -v [level] argument to the executable
(if provided).

• Name the main thread.

• Print a preamble with details of the program’s startup (arguments, etc).

Example 20.1 in the following section provides an example of initializing with additional logging setup.
The logging implementation is thread-safe. When working in a multithreaded environment, each thread may
be assigned a human-readable name using vtkm::cont::SetThreadName (which can later be retrieved with
vtkm::cont::GetThreadName. This name will appear in the log output so that per-thread messages can be
easily tracked.

20.2 Logging Levels

The logging in VTK-m provides several “levels” of logging. Logging levels are ordered by precedence. When
selecting which log message to output, a single logging level is provided. Any logging message with that or a
higher precedence is output. For example, if warning messages are on, then error messages are also outputted
because errors are a higher precedence than warnings. Likewise, if information messages are on, then error and
warning messages are also outputted.

1A sample of the log output can be found at https://gitlab.kitware.com/snippets/427.
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All logging levels are assigned a number, and logging levels with a higher precedence actually have a smaller
number.

Common Errors

All logging levels are listed in the vtkm::cont::LogLevel enum. The available logging levels, in order of
precedence, are as follows.

LogLevel::Off A placeholder used to silence all logging.

LogLevel::Fatal Fatal errors that should abort execution.

LogLevel::Error Important but non-fatal errors, such as device fail-over.

LogLevel::Warn Less important user errors, such as out-of-bounds parameters.

LogLevel::Info Information messages (detected hardware, etc) and temporary debugging output.

LogLevel::UserFirst The first in a range of logging levels reserved for code that uses VTK-m. Internal VTK-m
code will not log on these levels but will report these logs.

LogLevel::UserLast The last in a range of logging levels reserved for code that uses VTK-m.

LogLevel::Perf General timing data and algorithm flow information, such as filter execution, worklet dis-
patches, and device algorithm calls.

LogLevel::MemCont Host-side resource memory allocations and frees such as ArrayHandle control buffers.

LogLevel::MemExec Device-side resource memory allocations and frees such as ArrayHandle device buffers)

LogLevel::MemTransfer Transferring of data between a host and device.

LogLevel::Cast Report when a dynamic object is (or is not) resolved via a CastAndCall or other casting
method.

LogLevel::UserVerboseFirst The first in a range of logging levels reserved for code that uses VTK-m. Internal
VTK-m code will not log on these levels but will report these logs. These are used similarly to those in the
UserFirst range but are at a lower precedence that also includes more verbose reporting from VTK-m.

LogLevel::UserVerboseLast The last in a range of logging levels reserved for code that uses VTK-m.

When VTK-m outputs an entry in its log, it annotates the message with the logging level. VTK-m will auto-
matically provide descriptions for all log levels described in vtkm::cont::LogLevel. A custom log level can be
described by calling the vtkm::cont::SetLogLevelName function. (The log name can likewise be retrieved with
vtkm::cont::GetLogLevelName.)

The SetLogLevelName function must be called before vtkm::cont::Initialize to have an effect.

Common Errors
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The descriptions for each log level are only set up if vtkm::cont::Initialize is called. If it is not, then
all log levels will be represented with a numerical value.

Common Errors

If vtkm::cont::Initialize is called with argc/argv, then the user can control the logging level with the “–
vtkm-log-level” command line argument. Alternatively, you can control which logging levels are reported with
the vtkm::cont::SetStderrLogLevel.

Example 20.1: Initializing logging.
1 static const vtkm :: cont :: LogLevel CustomLogLevel = vtkm :: cont :: LogLevel :: UserFirst ;
2
3 int main(int argc , char ** argv)
4 {
5 vtkm :: cont :: SetLogLevelName ( CustomLogLevel , " custom ");
6
7 // For this example we will set the log level manually .
8 // The user can override this with the --vtkm -log - level command line flag.
9 vtkm :: cont :: SetStderrLogLevel ( CustomLogLevel );

10
11 vtkm :: cont :: Initialize (argc , argv );
12
13 // Do interesting stuff ...

20.3 Log Entries

Log entries are created with a collection of macros provided in vtkm/cont/Logging.h. In addition to basic log
entries, VTK-m logging can also provide conditional logging, scope levels of logs, and generate special logs on
crashes.

20.3.1 Basic Log Entries

The main logging entry points are the macros VTKM LOG S and VTKM LOG F, which use C++ stream and printf
syntax, respectively. Both macros take a logging level as the first argument. The remaining arguments specify
the message printed to the log. VTKM LOG S takes a single argument with a C++ stream expression (so <<
operators can exist in the expression). VTKM LOG F takes a C string as its second argument that has printf-style
formatting codes. The remaining arguments fulfill those codes.

Example 20.2: Basic logging.
1 VTKM_LOG_F (vtkm :: cont :: LogLevel :: Info ,
2 "Base VTK -m version : %d.%d",
3 VTKM_VERSION_MAJOR ,
4 VTKM_VERSION_MINOR );
5 VTKM_LOG_S (vtkm :: cont :: LogLevel :: Info ,
6 "Full VTK -m version : " << VTKM_VERSION_FULL );

20.3.2 Conditional Log Entries

The macros VTKM LOG IF S VTKM LOG IF F behave similarly to VTKM LOG S and VTKM LOG F, respectively,
except they have an extra argument that contains the condition. If the condition is true, then the log entry is
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created. If the condition is false, then the statement is ignored and nothing is recorded in the log.

Example 20.3: Conditional logging.
1 for ( size_t i = 0; i < 5; i++)
2 {
3 VTKM_LOG_IF_S (
4 vtkm :: cont :: LogLevel :: Info , i % 2 == 0, " Found an even number : " << i);
5 }

20.3.3 Scoped Log Entries

The logging back end supports the concept of scopes. Scopes allow the nesting of log messages, which allows a
complex operation to report when it starts, when it ends, and what log messages happen in the middle. Scoped
log entries are also timed so you can get an idea of how long operations take. Scoping can happen to arbitrary
depths.

Although the timing reported in scoped log entries can give an idea of the time each operation takes, the
reported time should not be considered accurate in regards to timing parallel operations. If a parallel
algorithm is invoked inside a log scope, the program may return from that scope before the parallel algorithm
is complete. See Chapter 13 for information on more accurate timers.

Common Errors

Scoped log entries follow the same scoping of your C++ code. A scoped log can be created with the VTKM -
LOG SCOPE macro. This macro behaves similarly to VTKM LOG F except that it creates a scoped log that starts
when VTKM LOG SCOPE and ends when the program leaves the given scope.

Example 20.4: Scoped logging.
1 for (vtkm :: IdComponent trial = 0; trial < numTrials ; ++ trial )
2 {
3 VTKM_LOG_SCOPE ( CustomLogLevel , " Trial %d", trial );
4
5 VTKM_LOG_F ( CustomLogLevel , "Do thing 1");
6
7 VTKM_LOG_F ( CustomLogLevel , "Do thing 2");
8
9 //...

10 }

It is also common, and typically good code structure, to structure scoped concepts around functions or methods.
Thus, VTK-m provides VTKM LOG SCOPE FUNCTION. When placed at the beginning of a function or macro,
VTKM LOG SCOPE FUNCTION will automatically create a scoped log around it.

Example 20.5: Scoped logging in a function.
1 void TestFunc ()
2 {
3 VTKM_LOG_SCOPE_FUNCTION (vtkm :: cont :: LogLevel :: Info );
4 VTKM_LOG_S (vtkm :: cont :: LogLevel :: Info , " Showcasing function logging ");
5 }
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20.4 Helper Functions

The vtkm/cont/Logging.h header file also contains several helper functions that provide useful functions when
reporting information about the system.

Although provided with the logging utilities, these functions can be useful in contexts outside of the logging
as well. These functions are available even if VTK-m is compiled with logging off.

Did you know?

The vtkm::cont::TypeToString function provides run-time type information (RTTI) based type-name infor-
mation. TypeToString is a templated function for which you have to explicitly declare the type. TypeToString
returns a std::string containing a representation of the type provided. When logging is enabled, TypeToString
uses the logging back end to demangle symbol names on supported platforms.
The vtkm::cont::GetHumanReadableSize takes a size of memory in bytes and returns a human readable string
(for example ”64 bytes”, ”1.44 MiB”, ”128 GiB”, etc). vtkm::cont::GetSizeString is a similar function that
returns the same thing as GetHumanReadableSize followed by “(# bytes)” (with # replaced with the number
passed to the function). Both GetHumanReadableSize and GetSizeString take an optional second argument
that is the number of digits of precision to display. By default, they display 2 digits of precision.
The vtkm::cont::GetStackTrace function returns a string containing a trace of the stack, which can be helpful
for debugging. GetStackTrace takes an optional argument for the number of stack frames to skip. Reporting
the stack trace is not available on all platforms. On platforms that are not supported, a simple string reporting
that the stack trace is unavailable is returned.

Example 20.6: Helper log functions.
1 template < typename T>
2 void DoSomething (T&& x)
3 {
4 VTKM_LOG_S ( CustomLogLevel ,
5 " Doing something with type " << vtkm :: cont :: TypeToString <T >());
6
7 vtkm :: Id arraySize = 100000 * sizeof (T);
8 VTKM_LOG_S ( CustomLogLevel ,
9 "Size of array is " << vtkm :: cont :: GetHumanReadableSize ( arraySize ));

10 VTKM_LOG_S ( CustomLogLevel ,
11 "More precisely it is " << vtkm :: cont :: GetSizeString (arraySize , 4));
12
13 VTKM_LOG_S ( CustomLogLevel , " Stack location : " << vtkm :: cont :: GetStackTrace ());
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CHAPTER

TWENTYONE

WORKLET TYPE REFERENCE

Chapter 17 introduces worklets and provides a simple example of creating a worklet to run an algorithm on
a many core device. Different operations in visualization can have different data access patterns, perform
different execution flow, and require different provisions. VTK-m manages these different accesses, execution,
and provisions by grouping visualization algorithms into common classes of operation and supporting each class
with its own worklet type.
Each worklet type has a generic superclass that worklets of that particular type must inherit. This makes the
type of the worklet easy to identify. The following list describes each worklet type provided by VTK-m and the
superclass that supports it.

Field Map A worklet deriving vtkm::worklet::WorkletMapField performs a basic mapping operation that
applies a function (the operator in the worklet) on all the field values at a single point or cell and creates a
new field value at that same location. Although the intention is to operate on some variable over a mesh,
a WorkletMapField may actually be applied to any array. Thus, a field map can be used as a basic map
operation.

Topology Map A worklet deriving vtkm::worklet::WorkletMapTopology or one of its child classes performs
a mapping operation that applies a function (the operator in the worklet) on all elements of a particular
type (such as points or cells) and creates a new field for those elements. The basic operation is similar to
a field map except that in addition to access fields being mapped on, the worklet operation also has access
to incident fields.
There are multiple convenience classes available for the most common types of topology mapping. vtkm::-
worklet::WorkletVisitCellsWithPoints calls the worklet operation for each cell and makes every inci-
dent point available. This type of map also has access to cell structures and can interpolate point fields.
Likewise, vtkm::worklet::WorkletVisitPointsWithCells calls the worklet operation for each point and
makes every incident cell available.

Point Neighborhood A worklet deriving from vtkm::worklet::WorkletPointNeighborhood performs a
mapping operation that applies a function (the operator in the worklet) on all points of a structured
mesh. The basic operation is similar to a field map except that in addition to having access to the point
being operated on, you can get the field values of nearby points within a neighborhood of a given size.
Point neighborhood worklets can only applied to structured cell sets.

Reduce by Key A worklet deriving vtkm::worklet::WorkletReduceByKey operates on an array of keys and
one or more associated arrays of values. When a reduce by key worklet is invoked, all identical keys are
collected and the worklet is called once for each unique key. Each worklet invocation is given a Vec-like
containing all values associated with the unique key. Reduce by key worklets are very useful for combining
like items such as shared topology elements or coincident points.
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The remainder of this chapter provides details on how to create worklets of each type. It is also possible to create
new worklet types in VTK-m. This is an advanced topic covered in Chapter 43.

21.1 Field Map

A worklet deriving vtkm::worklet::WorkletMapField performs a basic mapping operation that applies a func-
tion (the operator in the worklet) on all the field values at a single point or cell and creates a new field value at
that same location. Although the intention is to operate on some variable over the mesh, a WorkletMapField
can actually be applied to any array.
A field map worklet supports the following tags in the parameters of its ControlSignature.

FieldIn This tag represents an input field. A FieldIn argument expects an ArrayHandle or an UnknownAr-
rayHandle in the associated parameter of the Invoker. Each invocation of the worklet gets a single value
out of this array.
The worklet’s InputDomain can be set to a FieldIn argument. In this case, the input domain will be the
size of the array.

FieldOut This tag represents an output field. A FieldOut argument expects an ArrayHandle or an Unknow-
nArrayHandle in the associated parameter of the Invoker. The array is resized before scheduling begins,
and each invocation of the worklet sets a single value in the array.

FieldInOut This tag represents field that is both an input and an output. A FieldInOut argument expects an
ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker. Each invocation of
the worklet gets a single value out of this array, which is replaced by the resulting value after the worklet
completes.
The worklet’s InputDomain can be set to a FieldInOut argument. In this case, the input domain will be
the size of the array.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of reading from any place in the array is given to the worklet. Whole arrays are discussed
in detail in Section 28.1 starting on page 241.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of writing to any place in the array is given to the worklet. Developers should take care
when using writable whole arrays as introducing race conditions is possible. Whole arrays are discussed in
detail in Section 28.1 starting on page 241.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker. An
array portal capable of reading from or writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible. Whole arrays
are discussed in detail in Section 28.1 starting on page 241.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet invoca-
tion. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker.
A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in the array
is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of a
parallel algorithm. Atomic arrays are discussed in detail in Section 28.2 starting on page 243.
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WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm::cont::CellSet in the associated parameter of the Invoker. A connectivity object capable of
finding elements of one type that are incident on elements of a different type. Accessing whole cell set
connectivity is discussed in detail in Section 28.3.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 29 starting on page 249.

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 31.1).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 31.1).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 43.2, but most users can get the information they
need through other signature tags.

Field maps most commonly perform basic calculator arithmetic, as demonstrated in the following example.

Example 21.1: Implementation and use of a field map worklet.
1 class ComputeMagnitude : public vtkm :: worklet :: WorkletMapField
2 {
3 public :
4 using ControlSignature = void ( FieldIn inputVectors , FieldOut outputMagnitudes );
5 using ExecutionSignature = _2(_1 );
6
7 using InputDomain = _1;
8
9 template < typename T, vtkm :: IdComponent Size >

10 VTKM_EXEC T operator ()( const vtkm ::Vec <T, Size >& inVector ) const
11 {
12 return vtkm :: Magnitude ( inVector );
13 }
14 };

Although simple, the WorkletMapField worklet type can be used (and abused) as a general parallel-
for/scheduling mechanism. In particular, the WorkIndex execution signature tag can be used to get a unique
index, the WholeArray* tags can be used to get random access to arrays, and the ExecObject control signature
tag can be used to pass execution objects directly to the worklet. Whole arrays and execution objects are talked
about in more detail in Chapters 28 and 29, respectively, in more detail, but here is a simple example that uses
the random access of WholeArrayOut to make a worklet that copies an array in reverse order.
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Example 21.2: Leveraging field maps and field maps for general processing.
1 namespace vtkm
2 {
3 namespace worklet
4 {
5
6 struct ReverseArrayCopyWorklet : vtkm :: worklet :: WorkletMapField
7 {
8 using ControlSignature = void ( FieldIn inputArray , WholeArrayOut outputArray );
9 using ExecutionSignature = void (_1 , _2 , WorkIndex );

10 using InputDomain = _1;
11
12 template < typename InputType , typename OutputArrayPortalType >
13 VTKM_EXEC void operator ()( const InputType & inputValue ,
14 const OutputArrayPortalType & outputArrayPortal ,
15 vtkm :: Id workIndex ) const
16 {
17 vtkm :: Id outIndex = outputArrayPortal . GetNumberOfValues () - workIndex - 1;
18 if ( outIndex >= 0)
19 {
20 outputArrayPortal .Set(outIndex , inputValue );
21 }
22 else
23 {
24 this -> RaiseError (" Output array not sized correctly .");
25 }
26 }
27 };
28
29 } // namespace worklet
30 } // namespace vtkm

21.2 Topology Map

A topology map performs a mapping that it applies a function (the operator in the worklet) on all the elements
of a DataSet of a particular type (i.e. point, edge, face, or cell). While operating on the element, the worklet
has access to data from all incident elements of another type.
There are several versions of topology maps that differ in what type of element being mapped from and what
type of element being mapped to. The subsequent sections describe these different variations of the topology
maps.

21.2.1 Visit Cells with Points

A worklet deriving vtkm::worklet::WorkletVisitCellsWithPoints performs a mapping operation that applies
a function (the operator in the worklet) on all the cells of a DataSet. While operating on the cell, the worklet
has access to fields associated both with the cell and with all incident points. Additionally, the worklet can get
information about the structure of the cell and can perform operations like interpolation on it.
A visit cells with points worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of cells the map will operate on. A
CellSetIn argument expects a CellSet subclass or an UnknownCellSet in the associated parameter of
the Invoker. Each invocation of the worklet gets a cell shape tag. (Cell shapes and the operations you
can do with cells are discussed in Chapter 25.)
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There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInPoint This tag represents an input field that is associated with the points. A FieldInPoint argument
expects an ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker. The size
of the array must be exactly the number of points.
Each invocation of the worklet gets a Vec-like object containing the field values for all the points incident
with the cell being visited. The order of the entries is consistent with the defined order of the vertices for
the visited cell’s shape. If the field is a vector field, then the provided object is a Vec of Vecs.

FieldInCell This tag represents an input field that is associated with the cells. A FieldInCell argument
expects an ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker. The size
of the array must be exactly the number of cells. Each invocation of the worklet gets a single value out of
this array.

FieldOutCell This tag represents an output field, which is necessarily associated with cells. A FieldOutCell
argument expects an ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker.
The array is resized before scheduling begins, and each invocation of the worklet sets a single value in the
array.
FieldOut is an alias for FieldOutCell (since output arrays can only be defined on cells).

FieldInOutCell This tag represents field that is both an input and an output, which is necessarily associated
with cells. A FieldInOutCell argument expects an ArrayHandle or an UnknownArrayHandle in the
associated parameter of the Invoker. Each invocation of the worklet gets a single value out of this array,
which is replaced by the resulting value after the worklet completes.
FieldInOut is an alias for FieldInOutCell (since output arrays can only be defined on cells).

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of reading from any place in the array is given to the worklet. Whole arrays are discussed
in detail in Section 28.1 starting on page 241.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of writing to any place in the array is given to the worklet. Developers should take care
when using writable whole arrays as introducing race conditions is possible. Whole arrays are discussed in
detail in Section 28.1 starting on page 241.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker. An
array portal capable of reading from or writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible. Whole arrays
are discussed in detail in Section 28.1 starting on page 241.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet invoca-
tion. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker.
A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in the array
is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of a
parallel algorithm. Atomic arrays are discussed in detail in Section 28.2 starting on page 243.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm::cont::CellSet in the associated parameter of the Invoker. A connectivity object capable of
finding elements of one type that are incident on elements of a different type. Accessing whole cell set
connectivity is discussed in detail in Section 28.3.
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ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 29 starting on page 249.

A visit cells with points worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellShape This tag produces a shape tag corresponding to the shape of the visited cell. (Cell shapes and the
operations you can do with cells are discussed in Chapter 25.) This is the same value that gets provided
if you reference the CellSetIn parameter.

PointCount This tag produces a vtkm::IdComponent equal to the number of points incident on the cell being
visited. The Vecs provided from a FieldInPoint parameter will be the same size as PointCount.

PointIndices This tag produces a Vec-like object of vtkm::Id s giving the indices for all incident points. Like
values from a FieldInPoint parameter, the order of the entries is consistent with the defined order of the
vertices for the visited cell’s shape.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 31.1).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 31.1).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 43.2, but most users can get the information they
need through other signature tags.

Point to cell field maps are a powerful construct that allow you to interpolate point fields throughout the space
of the data set. See Chapter 25 for a description on how to work with the cell information provided to the
worklet. The following example provides a simple demonstration that finds the geometric center of each cell by
interpolating the point coordinates to the cell centers.

Example 21.3: Implementation and use of a visit cells with points worklet.
1 namespace vtkm
2 {
3 namespace worklet
4 {
5
6 struct CellCenter : public vtkm :: worklet :: WorkletVisitCellsWithPoints
7 {
8 public :
9 using ControlSignature = void ( CellSetIn cellSet ,

10 FieldInPoint inputPointField ,
11 FieldOut outputCellField );
12 using ExecutionSignature = void (_1 , PointCount , _2 , _3 );
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13
14 using InputDomain = _1;
15
16 template < typename CellShape , typename InputPointFieldType , typename OutputType >
17 VTKM_EXEC void operator ()( CellShape shape ,
18 vtkm :: IdComponent numPoints ,
19 const InputPointFieldType & inputPointField ,
20 OutputType & centerOut ) const
21 {
22 vtkm :: Vec3f parametricCenter ;
23 vtkm :: exec :: ParametricCoordinatesCenter (numPoints , shape , parametricCenter );
24 vtkm :: exec :: CellInterpolate ( inputPointField , parametricCenter , shape , centerOut );
25 }
26 };
27
28 } // namespace worklet
29 } // namespace vtkm

21.2.2 Visit Points with Cells

A worklet deriving vtkm::worklet::WorkletVisitPointsWithCells performs a mapping operation that applies
a function (the operator in the worklet) on all the points of a DataSet. While operating on the point, the worklet
has access to fields associated both with the point and with all incident cells.
A visit points with cells worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of points the map will operate on. A
CellSetIn argument expects a CellSet subclass or an UnknownCellSet in the associated parameter of
the Invoker.
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInCell This tag represents an input field that is associated with the cells. A FieldInCell argument
expects an ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker. The size
of the array must be exactly the number of cells.
Each invocation of the worklet gets a Vec-like object containing the field values for all the cells incident
with the point being visited. The order of the entries is arbitrary but will be consistent with the values of
all other FieldInCell arguments for the same worklet invocation. If the field is a vector field, then the
provided object is a Vec of Vecs.

FieldInPoint This tag represents an input field that is associated with the points. A FieldInPoint argument
expects an ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker. The size
of the array must be exactly the number of points. Each invocation of the worklet gets a single value out
of this array.

FieldOutPoint This tag represents an output field, which is necessarily associated with points. A FieldOut-
Point argument expects an ArrayHandle or an UnknownArrayHandle in the associated parameter of the
Invoker. The array is resized before scheduling begins, and each invocation of the worklet sets a single
value in the array.
FieldOut is an alias for FieldOutPoint (since output arrays can only be defined on points).

FieldInOutPoint This tag represents field that is both an input and an output, which is necessarily associated
with points. A FieldInOutPoint argument expects an ArrayHandle or an UnknownArrayHandle in the
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associated parameter of the Invoker. Each invocation of the worklet gets a single value out of this array,
which is replaced by the resulting value after the worklet completes.
FieldInOut is an alias for FieldInOutPoint (since output arrays can only be defined on points).

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of reading from any place in the array is given to the worklet. Whole arrays are discussed
in detail in Section 28.1 starting on page 241.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of writing to any place in the array is given to the worklet. Developers should take care
when using writable whole arrays as introducing race conditions is possible. Whole arrays are discussed in
detail in Section 28.1 starting on page 241.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker. An
array portal capable of reading from or writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible. Whole arrays
are discussed in detail in Section 28.1 starting on page 241.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet invoca-
tion. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker.
A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in the array
is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of a
parallel algorithm. Atomic arrays are discussed in detail in Section 28.2 starting on page 243.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm::cont::CellSet in the associated parameter of the Invoker. A connectivity object capable of
finding elements of one type that are incident on elements of a different type. Accessing whole cell set
connectivity is discussed in detail in Section 28.3.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 29 starting on page 249.

A visit points with cells worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellCount This tag produces a vtkm::IdComponent equal to the number of cells incident on the point being
visited. The Vecs provided from a FieldInCell parameter will be the same size as CellCount.

CellIndices This tag produces a Vec-like object of vtkm::Id s giving the indices for all incident cells. The
order of the entries is arbitrary but will be consistent with the values of all other FieldInCell arguments
for the same worklet invocation.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 31.1).

174 Chapter 21. Worklet Type Reference



21.2. Topology Map

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 31.1).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 43.2, but most users can get the information they
need through other signature tags.

Cell to point field maps are typically used for converting fields associated with cells to points so that they can be
interpolated. The following example does a simple averaging, but you can also implement other strategies such
as a volume weighted average.

Example 21.4: Implementation and use of a visit points with cells worklet.
1 class AverageCellField : public vtkm :: worklet :: WorkletVisitPointsWithCells
2 {
3 public :
4 using ControlSignature = void ( CellSetIn cellSet ,
5 FieldInCell inputCellField ,
6 FieldOut outputPointField );
7 using ExecutionSignature = void (CellCount , _2 , _3 );
8
9 using InputDomain = _1;

10
11 template < typename InputCellFieldType , typename OutputFieldType >
12 VTKM_EXEC void operator ()( vtkm :: IdComponent numCells ,
13 const InputCellFieldType & inputCellField ,
14 OutputFieldType & fieldAverage ) const
15 {
16 fieldAverage = OutputFieldType (0);
17
18 for (vtkm :: IdComponent cellIndex = 0; cellIndex < numCells ; cellIndex ++)
19 {
20 fieldAverage = fieldAverage + inputCellField [ cellIndex ];
21 }
22
23 fieldAverage = fieldAverage / OutputFieldType ( numCells );
24 }
25 };
26
27 //
28 // Later in the associated Filter class ...
29 //
30
31 vtkm :: cont :: ArrayHandle <T> outFieldData ;
32 this -> Invoke ( AverageCellField {}, inCellSet , inFieldData , outFieldData );

21.2.3 General Topology Maps

A worklet deriving vtkm::worklet::WorkletMapTopology performs a mapping operation that applies a function
(the operator in the worklet) on all the elements of a specified type from a DataSet. While operating on each
element, the worklet has access to fields associated both with that element and with all incident elements of a
different specified type.
The WorkletMapTopology class is a template with two template parameters. The first template parameter
specifies the “visit” topology element, and the second parameter specifies the “incident” topology element. The
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worklet is scheduled such that each instance is associated with a particular “visit” topology element and has
access to “incident” topology elements.
These visit and incident topology elements are specified with topology element tags, which are defined in the
vtkm/TopologyElementTag.h header file. The available topology element tags are vtkm::TopologyElementTag-
Cell, vtkm::TopologyElementTagPoint, vtkm::TopologyElementTagEdge, and vtkm::TopologyElementTag-
Face, which represent the cell, point, edge, and face elements, respectively.
WorkletMapTopology is a generic form of a topology map, and it can perform identically to the aforementioned
forms of topology map with the correct template parameters. For example,

vtkm::worklet::WorkletMapTopology <vtkm::TopologyElementTagCell, vtkm::TopologyEle-
mentTagPoint >

is equivalent to the vtkm::worklet::WorkletVisitCellsWithPoints class except the signature tags have differ-
ent names. The names used in the specific topology map superclasses (such as WorkletVisitCellsWithPoints)
tend to be easier to read and are thus preferable. However, the generic WorkletMapTopology is available for
topology combinations without a specific superclass or to support more general mappings in a worklet.
The general topology map worklet supports the following tags in the parameters of its ControlSignature, which
are equivalent to tags in the other topology maps but with different (more general) names.

CellSetIn This tag represents the cell set that defines the collection of elements the map will operate on. A
CellSetIn argument expects a CellSet subclass or an UnknownCellSet in the associated parameter of
the Invoker. Each invocation of the worklet gets a cell shape tag. (Cell shapes and the operations you
can do with cells are discussed in Chapter 25.)
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInVisit This tag represents an input field that is associated with the “visit” element. A FieldInVisit
argument expects an ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker.
The size of the array must be exactly the number of cells. Each invocation of the worklet gets a single
value out of this array.

FieldInIncident This tag represents an input field that is associated with the “incident” elements. A Fiel-
dInIncident argument expects an ArrayHandle or an UnknownArrayHandle in the associated parameter
of the Invoker. The size of the array must be exactly the number of “incident” elements.
Each invocation of the worklet gets a Vec-like object containing the field values for all the “incident”
elements incident with the “visit” element being visited. If the field is a vector field, then the provided
object is a Vec of Vecs.

FieldOut This tag represents an output field, which is necessarily associated with “visit” elements. A FieldOut
argument expects an ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker.
The array is resized before scheduling begins, and each invocation of the worklet sets a single value in the
array.

FieldInOut This tag represents field that is both an input and an output, which is necessarily associated with
“visit” elements. A FieldInOut argument expects an ArrayHandle or an UnknownArrayHandle in the
associated parameter of the Invoker. Each invocation of the worklet gets a single value out of this array,
which is replaced by the resulting value after the worklet completes.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of reading from any place in the array is given to the worklet. Whole arrays are discussed
in detail in Section 28.1 starting on page 241.
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WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of writing to any place in the array is given to the worklet. Developers should take care
when using writable whole arrays as introducing race conditions is possible. Whole arrays are discussed in
detail in Section 28.1 starting on page 241.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker. An
array portal capable of reading from or writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible. Whole arrays
are discussed in detail in Section 28.1 starting on page 241.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet invoca-
tion. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker.
A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in the array
is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of a
parallel algorithm. Atomic arrays are discussed in detail in Section 28.2 starting on page 243.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm::cont::CellSet in the associated parameter of the Invoker. A connectivity object capable of
finding elements of one type that are incident on elements of a different type. Accessing whole cell set
connectivity is discussed in detail in Section 28.3.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 29 starting on page 249.

A general topology map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellShape This tag produces a shape tag corresponding to the shape of the visited element. (Cell shapes and
the operations you can do with cells are discussed in Chapter 25.) This is the same value that gets provided
if you reference the CellSetIn parameter.
If the “visit” element is cells, the CellShape clearly will match the shape of each cell. Other elements will
have shapes to match their structures. Points have vertex shapes, edges have line shapes, and faces have
some type of polygonal shape.

IncidentElementCount This tag produces a vtkm::IdComponent equal to the number of elements incident on
the element being visited. The Vecs provided from a FieldInIncident parameter will be the same size as
IncidentElementCount.

IncidentElementIndices This tag produces a Vec-like object of vtkm::Id s giving the indices for all incident
elements. The order of the entries is consistent with the values of all other FieldInIncident arguments
for the same worklet invocation.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 31.1).

Chapter 21. Worklet Type Reference 177



21.3. Point Neighborhood

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 31.1).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 43.2, but most users can get the information they
need through other signature tags.

21.3 Point Neighborhood

A worklet deriving vtkm::worklet::WorkletPointNeighborhood performs a mapping operation that applies a
function (the operator in the worklet) on all the points of a DataSet. While operating on the point, the worklet
has access to field values on nearby points within a neighborhood.
A point neighborhood worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of points the map will operate on. A
CellSetIn argument expects a vtkm::cont::CellSetStructured object in the associated parameter of
the Invoker. The object could also be stored in an UnknownCellSet, but it is an error to use any object
other than CellSetStructured.
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldIn This tag represents an input field that is associated with the points. A FieldIn argument expects
an ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker. The size of the
array must be exactly the number of points. Each invocation of the worklet gets a single value out of this
array.

FieldInNeighborhood This tag represents an input field that is associated with the points. A FieldInNeigh-
borhood argument expects an ArrayHandle or an UnknownArrayHandle in the Invoker. The size of the
array must be exactly the number of points.
What differentiates FieldInNeighborhood from FieldIn is that FieldInNeighborhood allows the worklet
function to access the field value at the point it is visiting and the field values in the neighborhood around it.
Thus, instead of getting a single value out of the array, each invocation of the worklet gets a vtkm::exec::-
FieldNeighborhood object. FieldNeighborhood objects are described in the Neighborhood Information
section starting on page 180.

FieldOut This tag represents an output field, which is necessarily associated with points. A FieldOut argument
expects an ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker. The array
is resized before scheduling begins, and each invocation of the worklet sets a single value in the array.

FieldInOut This tag represents field that is both an input and an output, which is necessarily associated with
points. A FieldInOut argument expects an ArrayHandle or an UnknownArrayHandle in the associated
parameter of the Invoker. Each invocation of the worklet gets a single value out of this array, which is
replaced by the resulting value after the worklet completes.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of reading from any place in the array is given to the worklet. Whole arrays are discussed
in detail in Section 28.1 starting on page 241.
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WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of writing to any place in the array is given to the worklet. Developers should take care
when using writable whole arrays as introducing race conditions is possible. Whole arrays are discussed in
detail in Section 28.1 starting on page 241.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker. An
array portal capable of reading from or writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible. Whole arrays
are discussed in detail in Section 28.1 starting on page 241.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet invoca-
tion. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker.
A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in the array
is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of a
parallel algorithm. Atomic arrays are discussed in detail in Section 28.2 starting on page 243.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm::cont::CellSet in the associated parameter of the Invoker. A connectivity object capable of
finding elements of one type that are incident on elements of a different type. Accessing whole cell set
connectivity is discussed in detail in Section 28.3.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 29 starting on page 249.

A point neighborhood worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

Boundary This tag produces a vtkm::exec::arg::BoundaryState object, which provides information about
where the local neighborhood is in relationship to the full mesh. BoundaryState objects are described in
the Neighborhood Information section starting on page 180.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 31.1).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 31.1).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 43.2, but most users can get the information they
need through other signature tags.
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21.3.1 Neighborhood Information

As stated earlier in this section, what makes a WorkletPointNeighborhood worklet special is its ability to get
field information in a neighborhood surrounding a point rather than just the point itself. This is done using the
special FieldInNeighborhood ControlSignature tag. When you use this tag, rather than getting the single
field value for the point, you get a vtkm::exec::FieldNeighborhood object.
The FieldNeighborhood class (which has a single template argument of the array portal type values are stored in)
contains a Get method that retrieves a field value relative to the local neighborhood. FieldNeighborhood::Get
takes the i, j, k index of the point with respect to the local point. So, calling FieldNeighborhood::Get(0,0,0)
retrieves at the point being visited. Likewise, Get(-1,0,0) gets the value to the “left” of the point visited and
Get(1,0,0) gets the value to the “right.” FieldNeighborhood::Get is overloaded to accept the index as either
three separate vtkm::IdComponent values or a single vtkm::Vec <vtkm::IdComponent,3>.

Example 21.5: Retrieve neighborhood field value.
1 sum = sum + inputField .Get(i, j, k);

When performing operations on a neighborhood within the mesh, it is often important to know whether the
expected neighborhood is contained completely within the mesh or whether the neighborhood extends beyond
the borders of the mesh. This can be queried using a vtkm::exec::BoundaryState object, which is provided
when a Boundary tag is listed in the ExecutionSignature.
Generally, BoundaryState allows you to specify the size of the neighborhood at runtime. The neighborhood size
is specified by a radius. The radius specifies the number of items in each direction the neighborhood extends.
So, for example, a point neighborhood with radius 1 would contain a 3×3×3 neighborhood centered around the
point. Likewise, a point neighborhood with radius 2 would contain a 5×5×5 neighborhood centered around the
point. BoundaryState provides several methods to determine if the neighborhood is contained in the mesh.

MinNeighborIndices Given a radius for the neighborhood, returns a vtkm::Vec <vtkm::IdComponent,3> for
the “lower left” (minimum) index. If the visited point is in the middle of the mesh, the returned triplet
is the negative radius for all components. But if the visited point is near the mesh boundary, then the
minimum index will be clipped.
For example, if the visited point is at [5,5,5] and MinNeighborIndices(2) is called, then [−2,−2,−2] is
returned. However, if the visited point is at [0,1,2] and MinNeighborIndices(2) is called, then [0,−1,−2]
is returned.

MaxNeighborIndices Given a radius for the neighborhood, returns a vtkm::Vec <vtkm::IdComponent,3> for
the “upper right” (maximum) index. If the visited point is in the middle of the mesh, the returned triplet
is the negative radius for all components. But if the visited point is near the mesh boundary, then the
maximum index will be clipped.
For example, if the visited point is at [5,5,5] in a 103 mesh and MaxNeighborIndices(2) is called, then
[2,2,2] is returned. However, if the visited point is at [7,8,9] in the same mesh and MaxNeighborIndices(2)
is called, then [2,1,0] is returned.

InBoundary Given a radius for the neighborhood, returns true if the neighborhood is contained completely
within the boundary of the mesh, false otherwise.

InXBoundary Given a radius for the neighborhood, returns false if the neighborhood extends beyond the edge
of the mesh in the positive or negative x (I) direction, true otherwise.

InYBoundary Given a radius for the neighborhood, returns false if the neighborhood extends beyond the edge
of the mesh in the positive or negative y (J) direction, true otherwise.
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InZBoundary Given a radius for the neighborhood, returns false if the neighborhood extends beyond the edge
of the mesh in the positive or negative z (K) direction, true otherwise.

The BoundaryState::MinNeighborIndices and BoundaryState::MaxNeighborIndices are particularly useful
for iterating over the valid portion of the neighborhood.

Example 21.6: Iterating over the valid portion of a neighborhood.
1 auto minIndices = boundary . MinNeighborIndices (this -> NumberOfLayers );
2 auto maxIndices = boundary . MaxNeighborIndices (this -> NumberOfLayers );
3
4 T sum = 0;
5 vtkm :: IdComponent size = 0;
6 for (vtkm :: IdComponent k = minIndices [2]; k <= maxIndices [2]; ++k)
7 {
8 for (vtkm :: IdComponent j = minIndices [1]; j <= maxIndices [1]; ++j)
9 {

10 for (vtkm :: IdComponent i = minIndices [0]; i <= maxIndices [0]; ++i)
11 {
12 sum = sum + inputField .Get(i, j, k);
13 ++ size;
14 }
15 }
16 }

21.3.2 Convolving Small Kernels

A common use case for point neighborhood worklets is to convolve a small kernel with a structured mesh. A
very simple example of this is averaging out the values the values within some distance to the central point. This
has the effect of smoothing out the field (although smoothing filters with better properties exist). The following
example shows a worklet that applies this simple “box” averaging.

Example 21.7: Implementation and use of a point neighborhood worklet.
1 class ApplyBoxKernel : public vtkm :: worklet :: WorkletPointNeighborhood
2 {
3 private :
4 vtkm :: IdComponent NumberOfLayers ;
5
6 public :
7 using ControlSignature = void ( CellSetIn cellSet ,
8 FieldInNeighborhood inputField ,
9 FieldOut outputField );

10 using ExecutionSignature = _3(_2 , Boundary );
11
12 using InputDomain = _1;
13
14 ApplyBoxKernel (vtkm :: IdComponent kernelSize )
15 {
16 VTKM_ASSERT ( kernelSize >= 3);
17 VTKM_ASSERT (( kernelSize % 2) == 1);
18
19 this -> NumberOfLayers = ( kernelSize - 1) / 2;
20 }
21
22 template < typename InputFieldPortalType >
23 VTKM_EXEC typename InputFieldPortalType :: ValueType operator ()(
24 const vtkm :: exec :: FieldNeighborhood < InputFieldPortalType >& inputField ,
25 const vtkm :: exec :: BoundaryState & boundary ) const
26 {
27 using T = typename InputFieldPortalType :: ValueType ;
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28
29 auto minIndices = boundary . MinNeighborIndices (this -> NumberOfLayers );
30 auto maxIndices = boundary . MaxNeighborIndices (this -> NumberOfLayers );
31
32 T sum = 0;
33 vtkm :: IdComponent size = 0;
34 for (vtkm :: IdComponent k = minIndices [2]; k <= maxIndices [2]; ++k)
35 {
36 for (vtkm :: IdComponent j = minIndices [1]; j <= maxIndices [1]; ++j)
37 {
38 for (vtkm :: IdComponent i = minIndices [0]; i <= maxIndices [0]; ++i)
39 {
40 sum = sum + inputField .Get(i, j, k);
41 ++ size;
42 }
43 }
44 }
45
46 return static_cast <T >( sum / size );
47 }
48 };

21.4 Reduce by Key

A worklet deriving vtkm::worklet::WorkletReduceByKey operates on an array of keys and one or more asso-
ciated arrays of values. When a reduce by key worklet is invoked, all identical keys are collected and the worklet
is called once for each unique key. Each worklet invocation is given a Vec-like containing all values associated
with the unique key. Reduce by key worklets are very useful for combining like items such as shared topology
elements or coincident points.
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Figure 21.1: The collection of values for a reduce by key worklet.

Figure 21.1 show a pictorial representation of how VTK-m collects data for a reduce by key worklet. All calls to
a reduce by key worklet has exactly one array of keys. The key array in this example has 4 unique keys: 0, 1,
2, 4. These 4 unique keys will result in 4 calls to the worklet function. This example also has 2 arrays of values
associated with the keys. (A reduce by keys worklet can have any number of values arrays.)
When the worklet is invoked, all these common keys will be collected with their associated values. The parenthesis
operator of the worklet will be called once per each unique key. The worklet call will be given a Vec-like containing
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all values that have the key.
A reduce by key worklet supports the following tags in the parameters of its ControlSignature.

KeysIn This tag represents the input keys. A KeysIn argument expects a vtkm::worklet::Keys object in the
associated parameter of the Invoker. The Keys object, which wraps around an ArrayHandle containing
the keys and manages the auxiliary structures for collecting like keys, is described later in this section.
Each invocation of the worklet gets a single unique key.
A WorkletReduceByKey object must have exactly one KeysIn parameter in its ControlSignature, and
the InputDomain must point to the KeysIn parameter.

ValuesIn This tag represents a set of input values that are associated with the keys. A ValuesIn argument
expects an ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker. The
number of values in this array must be equal to the size of the array used with the KeysIn argument. Each
invocation of the worklet gets a Vec-like object containing all the values associated with the unique key.

ValuesInOut This tag behaves the same as ValuesIn except that the worklet may write values back into the Vec-
like object, and these values will be placed back in their original locations in the array. Use of ValuesInOut
is rare.

ValuesOut This tag behaves the same as ValuesInOut except that the array is resized appropriately and no
input values are passed to the worklet. As with ValuesInOut, values the worklet writes to its Vec-like
object get placed in the location of the original arrays. Use of ValuesOut is rare.

ReducedValuesOut This tag represents the resulting reduced values. A ReducedValuesOut argument expects
an ArrayHandle or an UnknownArrayHandle in the associated parameter of the Invoker. The array is
resized before scheduling begins, and each invocation of the worklet sets a single value in the array.

ReducedValuesIn This tag represents input values that come from (typically) from a previous invocation of a
reduce by key. A ReducedValuesOut argument expects an ArrayHandle or an UnknownArrayHandle in
the associated parameter of the Invoker. The number of values in the array must equal the number of
unique keys.
A ReducedValuesIn argument is usually used to pass reduced values from one invocation of a reduce by
key worklet to another invocation of a reduced by key worklet such as in an algorithm that requires iterative
steps.

ReducedValuesInOut This tag behaves the same as ReducedValuesIn except that the worklet may write values
back into the array. Make sure that the associated parameter to the worklet operator is a reference so that
the changed value gets written back to the array.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of reading from any place in the array is given to the worklet. Whole arrays are discussed
in detail in Section 28.1 starting on page 241.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the Invoker. An array
portal capable of writing to any place in the array is given to the worklet. Developers should take care
when using writable whole arrays as introducing race conditions is possible. Whole arrays are discussed in
detail in Section 28.1 starting on page 241.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker. An
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array portal capable of reading from or writing to any place in the array is given to the worklet. Developers
should take care when using writable whole arrays as introducing race conditions is possible. Whole arrays
are discussed in detail in Section 28.1 starting on page 241.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet invoca-
tion. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the Invoker.
A vtkm::exec::AtomicArray object capable of performing atomic operations to the entries in the array
is given to the worklet. Atomic arrays can help avoid race conditions but can slow down the running of a
parallel algorithm. Atomic arrays are discussed in detail in Section 28.2 starting on page 243.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm::cont::CellSet in the associated parameter of the Invoker. A connectivity object capable of
finding elements of one type that are incident on elements of a different type. Accessing whole cell set
connectivity is discussed in detail in Section 28.3.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 29 starting on page 249.

A reduce by key worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

ValueCount This tag produces a vtkm::IdComponent that is equal to the number of times the key associated
with this call to the worklet occurs in the input. This is the same size as the Vec-like objects provided by
ValuesIn arguments.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 31.1).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 31.1).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 43.2, but most users can get the information they
need through other signature tags.

As stated earlier, the reduce by key worklet is useful for collected like values. To demonstrate the reduce by key
worklet, we will create a simple mechanism to generate a histogram in parallel. (VTK-m comes with its own
histogram implementation, but we create our own version here for a simple example.) The way we can use the
reduce by key worklet to compute a histogram is to first identify which bin of the histogram each value is in,
and then use the bin identifiers as the keys to collect the information. To help with this example, we will first
create a helper class named BinScalars that helps us manage the bins.
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Example 21.8: A helper class to manage histogram bins.
1 class BinScalars
2 {
3 public :
4 VTKM_EXEC_CONT
5 BinScalars ( const vtkm :: Range & range , vtkm :: Id numBins )
6 : Range ( range )
7 , NumBins ( numBins )
8 {
9 }

10
11 VTKM_EXEC_CONT
12 BinScalars ( const vtkm :: Range & range , vtkm :: Float64 tolerance )
13 : Range ( range )
14 {
15 this -> NumBins = vtkm :: Id(this -> Range . Length () / tolerance ) + 1;
16 }
17
18 VTKM_EXEC_CONT
19 vtkm :: Id GetBin (vtkm :: Float64 value ) const
20 {
21 vtkm :: Float64 ratio = ( value - this -> Range .Min) / this -> Range . Length ();
22 vtkm :: Id bin = vtkm :: Id( ratio * this -> NumBins );
23 bin = vtkm :: Max(bin , vtkm :: Id (0));
24 bin = vtkm :: Min(bin , this -> NumBins - 1);
25 return bin;
26 }
27
28 private :
29 vtkm :: Range Range ;
30 vtkm :: Id NumBins ;
31 };

Using this helper class, we can easily create a simple map worklet that takes values, identifies a bin, and writes
that result out to an array that can be used as keys.

Example 21.9: A simple map worklet to identify histogram bins, which will be used as keys.
1 struct IdentifyBins : vtkm :: worklet :: WorkletMapField
2 {
3 using ControlSignature = void ( FieldIn data , FieldOut bins );
4 using ExecutionSignature = _2(_1 );
5 using InputDomain = _1;
6
7 BinScalars Bins;
8
9 VTKM_CONT

10 IdentifyBins ( const BinScalars & bins)
11 : Bins(bins)
12 {
13 }
14
15 VTKM_EXEC
16 vtkm :: Id operator ()( vtkm :: Float64 value ) const { return Bins. GetBin ( value ); }
17 };

Once you generate an array to be used as keys, you need to make a vtkm::worklet::Keys object. The Keys
object is what will be passed to the Invoker for the argument associated with the KeysIn ControlSignature
tag. This of course happens in the control environment after calling the Invoker for our worklet for generating
the keys.

Example 21.10: Creating a vtkm::worklet::Keys object.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > binIds ;
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2 this -> Invoke ( IdentifyBins (bins), valuesArray , binIds );
3
4 vtkm :: worklet :: Keys <vtkm ::Id > keys( binIds );

Now that we have our keys, we are finally ready for our reduce by key worklet. A histogram is simply a count
of the number of elements in a bin. In this case, we do not really need any values for the keys. We just need the
size of the bin, which can be identified with the internally calculated ValueCount.
A complication we run into with this histogram filter is that it is possible for a bin to be empty. If a bin is
empty, there will be no key associated with that bin, and the Invoker will not call the worklet for that bin/key.
To manage this case, we have to initialize an array with 0’s and then fill in the non-zero entities with our reduce
by key worklet. We can find the appropriate entry into the array by using the key, which is actually the bin
identifier, which doubles as an index into the histogram. The following example gives the implementation for
the reduce by key worklet that fills in positive values of the histogram.

Example 21.11: A reduce by key worklet to write histogram bin counts.
1 struct CountBins : vtkm :: worklet :: WorkletReduceByKey
2 {
3 using ControlSignature = void ( KeysIn keys , WholeArrayOut binCounts );
4 using ExecutionSignature = void (_1 , ValueCount , _2 );
5 using InputDomain = _1;
6
7 template < typename BinCountsPortalType >
8 VTKM_EXEC void operator ()( vtkm :: Id binId ,
9 vtkm :: IdComponent numValuesInBin ,

10 BinCountsPortalType & binCounts ) const
11 {
12 binCounts .Set(binId , numValuesInBin );
13 }
14 };

The previous example demonstrates the basic usage of the reduce by key worklet to count common keys. A more
common use case is to collect values associated with those keys, do an operation on those values, and provide
a “reduced” value for each unique key. The following example demonstrates such an operation by providing a
worklet that finds the average of all values in a particular bin rather than counting them.

Example 21.12: A worklet that averages all values with a common key.
1 struct BinAverage : vtkm :: worklet :: WorkletReduceByKey
2 {
3 using ControlSignature = void ( KeysIn keys ,
4 ValuesIn originalValues ,
5 ReducedValuesOut averages );
6 using ExecutionSignature = _3(_2 );
7 using InputDomain = _1;
8
9 template < typename OriginalValuesVecType >

10 VTKM_EXEC typename OriginalValuesVecType :: ComponentType operator ()(
11 const OriginalValuesVecType & originalValues ) const
12 {
13 typename OriginalValuesVecType :: ComponentType sum = 0;
14 for (vtkm :: IdComponent index = 0;
15 index < originalValues . GetNumberOfComponents ();
16 index ++)
17 {
18 sum = sum + originalValues [ index ];
19 }
20 return sum / originalValues . GetNumberOfComponents ();
21 }
22 };
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To complete the code required to average all values that fall into the same bin, the following example shows the
full code required to invoke such a worklet. Note that this example repeats much of the previous examples, but
shows it in a more complete context.

Example 21.13: Using a reduce by key worklet to average values falling into the same bin.
1 struct IdentifyBins : vtkm :: worklet :: WorkletMapField
2 {
3 using ControlSignature = void ( FieldIn data , FieldOut bins );
4 using ExecutionSignature = _2(_1 );
5 using InputDomain = _1;
6
7 BinScalars Bins;
8
9 VTKM_CONT

10 IdentifyBins ( const BinScalars & bins)
11 : Bins(bins)
12 {
13 }
14
15 VTKM_EXEC
16 vtkm :: Id operator ()( vtkm :: Float64 value ) const { return Bins. GetBin ( value ); }
17 };
18
19 struct BinAverage : vtkm :: worklet :: WorkletReduceByKey
20 {
21 using ControlSignature = void ( KeysIn keys ,
22 ValuesIn originalValues ,
23 ReducedValuesOut averages );
24 using ExecutionSignature = _3(_2 );
25 using InputDomain = _1;
26
27 template < typename OriginalValuesVecType >
28 VTKM_EXEC typename OriginalValuesVecType :: ComponentType operator ()(
29 const OriginalValuesVecType & originalValues ) const
30 {
31 typename OriginalValuesVecType :: ComponentType sum = 0;
32 for (vtkm :: IdComponent index = 0;
33 index < originalValues . GetNumberOfComponents ();
34 index ++)
35 {
36 sum = sum + originalValues [ index ];
37 }
38 return sum / originalValues . GetNumberOfComponents ();
39 }
40 };
41
42 //
43 // Later in the associated Filter class ...
44 //
45
46 vtkm :: Range range = vtkm :: cont :: ArrayRangeCompute ( inField ). ReadPortal (). Get (0);
47 BinScalars bins(range , numBins );
48
49 vtkm :: cont :: ArrayHandle <vtkm ::Id > binIds ;
50 this -> Invoke ( IdentifyBins (bins), inField , binIds );
51
52 vtkm :: worklet :: Keys <vtkm ::Id > keys( binIds );
53
54 vtkm :: cont :: ArrayHandle <T> combinedValues ;
55
56 this -> Invoke ( BinAverage {}, keys , inField , combinedValues );
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CHAPTER

TWENTYTWO

FILTER TYPE REFERENCE

In Chapters 17 and 21 we discuss how to implement an algorithm in the VTK-m framework by creating a worklet.
For simplicity, worklet algorithms are wrapped in what are called filter objects for general usage. Chapter 9
introduces the concept of filters and documents those that come with the VTK-m library. Chapter 18 gives a
brief introduction on implementing filters. This chapter elaborates on building new filter objects by introducing
new filter types. These will be used to wrap filters around the extended worklet examples in Chapter 21.
Unsurprisingly, the base filter objects are contained in the vtkm::filter package. In particular, all filter objects
inherit from vtkm::filter::Filter, either directly or indirectly. The filter implementation must override the
protected pure virtual method Filter::DoExecute. The base class will call this method to run the operation
of the filter.
The DoExecute method has a single argument that is a vtkm::cont::DataSet. The DataSet contains the data
on which the filter will operate. DoExecute must then return a new DataSet containing the derived data. The
DataSet should be created with one of the Filter::CreateResult methods.
A filter implementation may also optionally override the DoExecutePartitions. This method is similar to
DoExecute except that it takes and returns a vtkm::cont::PartitionedDataSet object. If a filter does not
provide a DoExecutePartitions method, then if given a PartitionedDataSet, the base class will call DoExecute
on each of the partitions and build a PartitionedDataSet with the results.
In addition to (or instead of) operating on the geometric structure of a DataSet, a filter will commonly take one
or more fields from the input DataSet and write one or more fields to the result. For this common occurrence,
vtkm::filter::Filter provides convenience methods to select input fields and output field names. It also
provides a method named GetFieldFromDataSet that can be used to get the input fields from the DataSet
passed to DoExecute.
Because Filter subclasses must read fields from the input and/or write fields to the output, Filter provides
some convenience methods on top of those provided by Filter. When getting a field with GetFieldFromDataSet,
you get a vtkm::cont::Field object. Before you can operate on the Field, you have to convert it to a vtkm::-
cont::ArrayHandle. Filter::CastAndCallScalarField can be used to do this conversion. It takes the field
object as the first argument and attempts to convert it to an ArrayHandle of different types. When it finds
the correct type, it calls the provided functor with the appropriate ArrayHandle. The similar Filter::-
CastAndCallVecField does the same thing to find an ArrayHandle with vtkm::Vec s of a selected length.
Filter also provides a CreateResultField in addition to the CreateResult provided by its superclass. Cre-
ateResultField takes the DataSet provided to DoExecute and the specification for a field that has been gen-
erated and produces a resulting DataSet with the same structure as the input with the provided field added.
The remainder of this chapter will provide some common patterns of filter operation based on the data they use
and generate.
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22.1 Deriving Fields from other Fields

A common type of filter is one that generates a new field that is derived from one or more existing fields or
point coordinates on the data set. For example, mass, volume, and density are interrelated, and any one can be
derived from the other two.
Filters of this nature should be implemented in classes that derive the vtkm::filter::Filter base class. As
described previously, Filter provides facilities to manage input and output fields. Typically, you would use
Filter::GetFieldFromDataSet to retrieve the input fields, one of the Filter::CastAndCall methods to resolve
the array type of the field, and finally use Filter::CreateResultField to produce the output.
In this section we provide an example implementation of a field filter that wraps the “magnitude” worklet
provided in Example 21.1 (listed on page 169). By C++ convention, object implementations are split into two
files. The first file is a standard header file with a .h extension that contains the declaration of the filter class
without the implementation. So we would expect the following code to be in a file named FieldMagnitude.h.

Example 22.1: Header declaration for a field filter.
1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace vector_calculus
6 {
7
8 class VTKM_FILTER_VECTOR_CALCULUS_EXPORT FieldMagnitude : public vtkm :: filter :: Filter
9 {

10 public :
11 VTKM_CONT FieldMagnitude ();
12
13 VTKM_CONT vtkm :: cont :: DataSet DoExecute (
14 const vtkm :: cont :: DataSet & inDataSet ) override ;
15 };
16
17 } // namespace vector_calculus
18 } // namespace filter
19 } // namespace vtkm

You may notice in Example 22.1 line 8 there is a special macro names VTKM FILTER VECTOR CALCULUS -
EXPORT. This macro tells the C++ compiler that the class FieldMagnitude is going to be exported from a
library. More specifically, the CMake for VTK-m’s build will generate a header file containing this export macro
for the associated library. By VTK-m’s convention, a filter in the vtkm::filter::vector calculus will be
defined in the vtkm/filter/vector calculus directory and placed in a library named vtkm filter vector calculus.
When defining the targets for this library, CMake will create a header file named vtkm filter vector calculus.h
that contains the macro named VTKM FILTER VECTOR CALCULUS EXPORT. This macro will provide the correct
modifiers for the particular C++ compiler being used to export the class from the library. If this macro is left
out, then the library will work on some platforms, but on other platforms will produce a linker error for missing
symbols.
Once the filter class is declared in the .h file, the implementation filter is by convention given in a separate .cxx
file. So the continuation of our example that follows would be expected in a file named FieldMagnitude.cxx.

Example 22.2: Implementation of a field filter.
1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace vector_calculus
6 {
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7
8 VTKM_CONT
9 FieldMagnitude :: FieldMagnitude ()

10 {
11 this -> SetOutputFieldName ("");
12 }
13
14 VTKM_CONT vtkm :: cont :: DataSet FieldMagnitude :: DoExecute (
15 const vtkm :: cont :: DataSet & inDataSet )
16 {
17 vtkm :: cont :: Field inField = this -> GetFieldFromDataSet ( inDataSet );
18
19 vtkm :: cont :: UnknownArrayHandle outField ;
20
21 // Use a C++ lambda expression to provide a callback for CastAndCall . The lambda
22 // will capture references to local variables like outFieldArray ( using ‘[&] ‘)
23 // that it can read and write .
24 auto resolveType = [&]( const auto& inFieldArray )
25 {
26 using InArrayHandleType = std :: decay_t < decltype ( inFieldArray )>;
27 using ComponentType =
28 typename vtkm :: VecTraits < typename InArrayHandleType :: ValueType >:: ComponentType ;
29
30 vtkm :: cont :: ArrayHandle < ComponentType > outFieldArray ;
31
32 this -> Invoke ( ComputeMagnitude {}, inFieldArray , outFieldArray );
33 outField = outFieldArray ;
34 };
35
36 this -> CastAndCallVecField <3 >( inField , resolveType );
37
38 std :: string outFieldName = this -> GetOutputFieldName ();
39 if ( outFieldName == "")
40 {
41 outFieldName = inField . GetName () + " _magnitude ";
42 }
43
44 return this -> CreateResultField (
45 inDataSet , outFieldName , inField . GetAssociation (), outField );
46 }
47
48 } // namespace vector_calculus
49 } // namespace filter
50 } // namespace vtkm

The implementation of DoExecute first pulls the input field from the provided DataSet using Filter::Get-
FieldFromDataSet. It then uses Filter::CastAndCallVecField to determine what type of ArrayHandle is
contained in the input field. That calls a lambda function that invokes a worklet to create the output field.
Finally, Filter::CreateResultField generates the output of the filter.

The filter implemented in Example 22.2 is limited to only find the magnitude of vtkm::Vec s with 3
components. It may be the case you wish to implement a filter that operates on vtkm::Vec s of multiple sizes
(or perhaps even any size). Chapter 33 discusses how you can use the vtkm::cont::UnknownArrayHandle
contained in the Field to more expressively decide what types to check for.

Did you know?

Note that all fields need a unique name, which is the reason for the second argument to CreateResult. The
vtkm::filter::Filter base class contains a pair of methods named SetOutputFieldName and GetOutput-
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FieldName to allow users to specify the name of output fields. The DoExecute method should respect the given
output field name. However, it is also good practice for the filter to have a default name if none is given. This
might be simply specifying a name in the constructor, but it is worthwhile for many filters to derive a name
based on the name of the input field.

22.2 Deriving Fields from Topology

The previous example performed a simple operation on each element of a field independently. However, it is
also common for a “field” filter to take into account the topology of a data set. In this case, the implementation
involves pulling a vtkm::cont::CellSet from the input vtkm::cont::DataSet and performing operations on
fields associated with different topological elements. The steps involve calling DataSet::GetCellSet to get
access to the CellSet object and then using topology-based worklets, described in Section 21.2, to operate on
them.
In this section we provide an example implementation of a field filter on cells that wraps the “cell center” worklet
provided in Example 21.3 (listed on page 172).

Example 22.3: Header declaration for a field filter using cell topology.
1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace field_conversion
6 {
7
8 class VTKM_FILTER_FIELD_CONVERSION_EXPORT CellCenters : public vtkm :: filter :: Filter
9 {

10 public :
11 VTKM_CONT CellCenters ();
12
13 VTKM_CONT vtkm :: cont :: DataSet DoExecute (
14 const vtkm :: cont :: DataSet & inDataSet ) override ;
15 };
16
17 } // namespace field_conversion
18 } // namespace filter
19 } // namespace vtkm

You may have noticed that Example 22.1 provided a specification for SupportedTypes but Example 22.3
provides no such specification. This demonstrates that declaring SupportedTypes is optional. If a filter
only works on some limited number of types, then it can use SupportedTypes to specify the specific types it
supports. But if a filter is generally applicable to many field types, it can simply use the default filter types.

Did you know?

As with any subclass of Filter, the filter implements DoExecute, which in this case invokes a worklet to compute
a new field array and then return a newly constructed vtkm::cont::DataSet object.

Example 22.4: Implementation of a field filter using cell topology.
1 namespace vtkm
2 {
3 namespace filter
4 {
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5 namespace field_conversion
6 {
7
8 VTKM_CONT
9 CellCenters :: CellCenters ()

10 {
11 this -> SetOutputFieldName ("");
12 }
13
14 VTKM_CONT cont :: DataSet CellCenters :: DoExecute ( const vtkm :: cont :: DataSet & inDataSet )
15 {
16 vtkm :: cont :: Field inField = this -> GetFieldFromDataSet ( inDataSet );
17
18 if (! inField . IsPointField ())
19 {
20 throw vtkm :: cont :: ErrorBadType (" Cell Centers filter operates on point data .");
21 }
22
23 vtkm :: cont :: UnknownArrayHandle outUnknownArray ;
24
25 auto resolveType = [&]( const auto& inArray )
26 {
27 using InArrayHandleType = std :: decay_t < decltype ( inArray )>;
28 using ValueType = typename InArrayHandleType :: ValueType ;
29 vtkm :: cont :: ArrayHandle <ValueType > outArray ;
30
31 this -> Invoke (
32 vtkm :: worklet :: CellCenter {}, inDataSet . GetCellSet (), inArray , outArray );
33
34 outUnknownArray = outArray ;
35 };
36
37 vtkm :: cont :: UnknownArrayHandle inUnknownArray = inField . GetData ();
38 inUnknownArray . CastAndCallForTypesWithFloatFallback < VTKM_DEFAULT_TYPE_LIST ,
39 VTKM_DEFAULT_STORAGE_LIST >(
40 resolveType );
41
42 std :: string outFieldName = this -> GetOutputFieldName ();
43 if ( outFieldName == "")
44 {
45 outFieldName = inField . GetName () + " _center ";
46 }
47
48 return this -> CreateResultFieldCell (inDataSet , outFieldName , outUnknownArray );
49 }
50
51 } // namespace field_conversion
52 } // namespace filter
53 } // namespace vtkm

22.3 Data Set Filters

Sometimes, a filter will generate a data set with a new cell set based off the cells of an input data set. For
example, a data set can be significantly altered by adding, removing, or replacing cells.
As with any filter, data set filters can be implemented in classes that derive the vtkm::filter::Filter base
class and implement its DoExecute method.
In this section we provide an example implementation of a data set filter that wraps the functionality of extracting
the edges from a data set as line elements. Many variations of implementing this functionality are given in
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Chapter 32. Suffice it to say that a pair of worklets will be used to create a new vtkm::cont::CellSet, and this
CellSet will be used to create the result DataSet. Details on how the worklets work are given in Section 32.1.
Because the operation of this edge extraction depends only on CellSet in a provided DataSet, the filter class is
a simple subclass of vtkm::filter::Filter.

Example 22.5: Header declaration for a data set filter.
1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace entity_extraction
6 {
7
8 class VTKM_FILTER_ENTITY_EXTRACTION_EXPORT ExtractEdges : public vtkm :: filter :: Filter
9 {

10 public :
11 VTKM_CONT vtkm :: cont :: DataSet DoExecute (
12 const vtkm :: cont :: DataSet & inData ) override ;
13 };
14
15 } // namespace entity_extraction
16 } // namespace filter
17 } // namespace vtkm

The implementation of DoExecute first gets the CellSet and calls the worklet methods to generate a new
CellSet class. It then uses a form of Filter::CreateResult to generate the resulting DataSet.

Example 22.6: Implementation of the DoExecute method of a data set filter.
1 inline VTKM_CONT vtkm :: cont :: DataSet ExtractEdges :: DoExecute (
2 const vtkm :: cont :: DataSet & inData )
3 {
4 auto inCellSet = inData . GetCellSet ();
5
6 // Count number of edges in each cell.
7 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > edgeCounts ;
8 this -> Invoke (vtkm :: worklet :: CountEdgesWorklet {}, inCellSet , edgeCounts );
9

10 // Build the scatter object (for non 1-to -1 mapping of input to output )
11 vtkm :: worklet :: ScatterCounting scatter ( edgeCounts );
12 auto outputToInputCellMap =
13 scatter . GetOutputToInputMap ( inCellSet . GetNumberOfCells ());
14
15 vtkm :: cont :: ArrayHandle <vtkm ::Id > connectivityArray ;
16 this -> Invoke (vtkm :: worklet :: EdgeIndicesWorklet {},
17 scatter ,
18 inCellSet ,
19 vtkm :: cont :: make_ArrayHandleGroupVec <2 >( connectivityArray ));
20
21 vtkm :: cont :: CellSetSingleType <> outCellSet ;
22 outCellSet .Fill(
23 inCellSet . GetNumberOfPoints (), vtkm :: CELL_SHAPE_LINE , 2, connectivityArray );
24
25 // This lambda function maps an input field to the output data set. It is
26 // used with the CreateResult method .
27 auto fieldMapper =
28 [&]( vtkm :: cont :: DataSet & outData , const vtkm :: cont :: Field & inputField )
29 {
30 if ( inputField . IsCellField ())
31 {
32 vtkm :: filter :: MapFieldPermutation ( inputField , outputToInputCellMap , outData );
33 }
34 else
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35 {
36 outData . AddField ( inputField ); // pass through
37 }
38 };
39
40 return this -> CreateResult (inData , outCellSet , fieldMapper );
41 }

The form of CreateResult used (line 40) takes as input a CellSet to use in the generated data. In forms of
CreateResult used in previous examples of this chapter, the cell structure of the output was created from the
cell structure of the input. Because these cell structures were the same, coordinate systems and fields needed
to be changed. However, because we are providing a new CellSet, we need to also specify how the coordinate
systems and fields change.
The last two arguments to CreateResult are providing this information. The second-to-last argument is a
std::vector of the CoordinateSystems to use. Because this filter does not actually change the points in the
data set, the CoordinateSystems can just be copied over. The last argument provides a functor that maps a
field from the input to the output. The functor takes two arguments: the output DataSet to modify and the
input Field to map. In this example, the functor is defined as a lambda function (line 27).

The field mapper in Example 22.5 uses a helper function named vtkm::filter::MapFieldPermutation.
In the case of this example, every cell in the output comes from one cell in the input. For this common
case, the values in the field arrays just need to be permuted so that each input value gets to the right output
value. MapFieldPermutation will do this shuffling for you.

VTK-m also comes with a similar helper function vtkm::filter::MapFieldAverage that can be used when
each output cell (or point) was constructed from multiple inputs. In this case, MapFieldAverage can do a
simple average for each output value of all input values that contributed.

Did you know?

Although not the case in this example, sometimes a filter creating a new cell set changes the points of the
cells. As long as the field mapper you provide to CreateResult properly converts points from the input to the
output, all fields and coordinate systems will be automatically filled in the output. Sometimes when creating
this new cell set you also create new point coordinates for it. This might be because the point coordinates are
necessary for the computation or might be due to a faster way of computing the point coordinates. In either
case, if the filter already has point coordinates computed, it can use CreateResultCoordinateSystem to
use the precomputed point coordinates.

Did you know?

22.4 Data Set with Field Filters

Sometimes, a filter will generate a data set with a new cell set based off the cells of an input data set along with
the data in at least one field. For example, a field might determine how each cell is culled, clipped, or sliced.
In this section we provide an example implementation of a data set with field filter that blanks the cells in a
data set based on a field that acts as a mask (or stencil). Any cell associated with a mask value of zero will be
removed. For simplicity of this example, we will use the Threshold filter internally for the implementation.
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Example 22.7: Header declaration for a data set with field filter.
1 namespace vtkm
2 {
3 namespace filter
4 {
5 namespace entity_extraction
6 {
7
8 class VTKM_FILTER_ENTITY_EXTRACTION_EXPORT BlankCells : public vtkm :: filter :: Filter
9 {

10 public :
11 VTKM_CONT vtkm :: cont :: DataSet DoExecute (
12 const vtkm :: cont :: DataSet & inDataSet ) override ;
13 };
14
15
16 } // namespace entity_extraction
17 } // namespace filter
18 } // namespace vtkm

The implementation of DoExecute first derives an array that contains a flag whether the input array value is
zero or non-zero. This is simply to guarantee the range for the threshold filter. After that a threshold filter is
set up and run to generate the result.

Example 22.8: Implementation of the DoExecute method of a data set with field filter.
1 VTKM_CONT vtkm :: cont :: DataSet BlankCells :: DoExecute (
2 const vtkm :: cont :: DataSet & inData )
3 {
4 vtkm :: cont :: Field inField = this -> GetFieldFromDataSet ( inData );
5 if (! inField . IsCellField ())
6 {
7 throw vtkm :: cont :: ErrorBadValue (" Blanking field must be a cell field .");
8 }
9

10 // Set up this array to have a 0 for any cell to be removed and
11 // a 1 for any cell to keep.
12 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > blankingArray ;
13
14 auto resolveType = [&]( const auto& inFieldArray )
15 {
16 auto transformArray = vtkm :: cont :: make_ArrayHandleTransform (
17 inFieldArray , vtkm :: NotZeroInitialized {});
18 vtkm :: cont :: ArrayCopyDevice ( transformArray , blankingArray );
19 };
20
21 this -> CastAndCallScalarField (inField , resolveType );
22
23 // Make a temporary DataSet ( shallow copy of the input ) to pass blankingArray
24 // to threshold .
25 vtkm :: cont :: DataSet tempData = inData ;
26 tempData . AddCellField (" vtkm -blanking - array ", blankingArray );
27
28 // Just use the Threshold filter to implement the actual cell removal .
29 vtkm :: filter :: entity_extraction :: Threshold thresholdFilter ;
30 thresholdFilter . SetLowerThreshold (0.5);
31 thresholdFilter . SetUpperThreshold (2.0);
32 thresholdFilter . SetActiveField (" vtkm -blanking - array ",
33 vtkm :: cont :: Field :: Association :: Cells );
34
35 // Make sure threshold filter passes all the fields requested , but not the
36 // blanking array .
37 thresholdFilter . SetFieldsToPass (this -> GetFieldsToPass ());
38 thresholdFilter . SetFieldsToPass (" vtkm -blanking - array ",
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39 vtkm :: cont :: Field :: Association :: Cells ,
40 vtkm :: filter :: FieldSelection :: Mode :: Exclude );
41
42 // Use the threshold filter to generate the actual output .
43 return thresholdFilter . Execute ( tempData );
44 }
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TWENTYTHREE

WORKLET ERROR HANDLING

It is sometimes the case during the execution of an algorithm that an error condition can occur that causes
the computation to become invalid. At such a time, it is important to raise an error to alert the calling code
of the problem. Since VTK-m uses an exception mechanism to raise errors, we want an error in the execution
environment to throw an exception.
However, throwing exceptions in a parallel algorithm is problematic. Some accelerator architectures, like CUDA,
do not even support throwing exceptions. Even on architectures that do support exceptions, throwing them in
a thread block can cause problems. An exception raised in one thread may or may not be thrown in another,
which increases the potential for deadlocks, and it is unclear how uncaught exceptions progress through thread
blocks.
VTK-m handles this problem by using a flag and check mechanism. When a worklet (or other subclass of vtkm::-
exec::FunctorBase) encounters an error, it can call its RaiseError method to flag the problem and record a
message for the error. Once all the threads terminate, the scheduler checks for the error, and if one exists it
throws a vtkm::cont::ErrorExecution exception in the control environment. Thus, calling RaiseError looks
like an exception was thrown from the perspective of the control environment code that invoked it.

Example 23.1: Raising an error in the execution environment.
1 struct SquareRoot : vtkm :: worklet :: WorkletMapField
2 {
3 public :
4 using ControlSignature = void (FieldIn , FieldOut );
5 using ExecutionSignature = _2(_1 );
6
7 template < typename T>
8 VTKM_EXEC T operator ()(T x) const
9 {

10 if (x < 0)
11 {
12 this -> RaiseError (" Cannot take the square root of a negative number .");
13 }
14 return vtkm :: Sqrt(x);
15 }
16 };

It is also worth noting that the VTKM ASSERT macro described in Section 11.2 also works within worklets and
other code running in the execution environment. Of course, a failed assert will terminate execution rather than
just raise an error so is best for checking invalid conditions for debugging purposes.





CHAPTER

TWENTYFOUR

MATH

VTK-m comes with several math functions that tend to be useful for visualization algorithms. The implementa-
tion of basic math operations can vary subtly on different accelerators, and these functions provide cross platform
support.
All math functions are located in the vtkm package. The functions are most useful in the execution environment,
but they can also be used in the control environment when needed.

24.1 Basic Math

The vtkm/Math.h header file contains several math functions that replicate the behavior of the basic POSIX
math functions as well as related functionality.

When writing worklets, you should favor using these math functions provided by VTK-m over the standard
math functions in math.h. VTK-m’s implementation manages several compiling and efficiency issues when
porting.

Did you know?

vtkm::Abs Returns the absolute value of the single argument. If given a vector, performs a component-wise
operation.

vtkm::ACos Returns the arccosine of a ratio in radians. If given a vector, performs a component-wise operation.

vtkm::ACosH Returns the hyperbolic arccossine. If given a vector, performs a component-wise operation.

vtkm::ASin Returns the arcsine of a ratio in radians. If given a vector, performs a component-wise operation.

vtkm::ASinH Returns the hyperbolic arcsine. If given a vector, performs a component-wise operation.

vtkm::ATan Returns the arctangent of a ratio in radians. If given a vector, performs a component-wise opera-
tion.

vtkm::ATan2 Computes the arctangent of y/x where y is the first argument and x is the second argument.
ATan2 uses the signs of both arguments to determine the quadrant of the return value. ATan2 is only
defined for floating point types (no vectors).
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vtkm::ATanH Returns the hyperbolic arctangent. If given a vector, performs a component-wise operation.

vtkm::Cbrt Takes one argument and returns the cube root of that argument. If called with a vector type,
returns a component-wise cube root.

vtkm::Ceil Rounds and returns the smallest integer not less than the single argument. If given a vector,
performs a component-wise operation.

vtkm::CopySign Copies the sign of the second argument onto the first argument and returns that. If the second
argument is positive, returns the absolute value of the first argument. If the second argument is negative,
returns the negative absolute value of the first argument.

vtkm::Cos Returns the cosine of an angle given in radians. If given a vector, performs a component-wise
operation.

vtkm::CosH Returns the hyperbolic cosine. If given a vector, performs a component-wise operation.

vtkm::Epsilon Returns the difference between 1 and the least value greater than 1 that is representable by
a floating point number. Epsilon is useful for specifying the tolerance one should have when considering
numerical error. The Epsilon method is templated to specify either a 32 or 64 bit floating point number.
The convenience methods Epsilon32 and Epsilon64 are non-templated versions that return the precision
for a particular precision.

vtkm::Exp Computes ex where x is the argument to the function and e is Euler’s number (approximately
2.71828). If called with a vector type, returns a component-wise exponent.

vtkm::Exp10 Computes 10x where x is the argument. If called with a vector type, returns a component-wise
exponent.

vtkm::Exp2 Computes 2x where x is the argument. If called with a vector type, returns a component-wise
exponent.

vtkm::ExpM1 Computes ex −1 where x is the argument to the function and e is Euler’s number (approximately
2.71828). The accuracy of this function is good even for very small values of x. If called with a vector
type, returns a component-wise exponent.

vtkm::FloatDistance Computes the number of representables between two floating point numbers. This
function is non-negative and symmetric in its arguments. If either argument is non-finite, the value returned
is the maximum value allowed by 64-bit unsigned integers: 264 −1.

vtkm::Floor Rounds and returns the largest integer not greater than the single argument. If given a vector,
performs a component-wise operation.

vtkm::FMod Computes the remainder on the division of 2 floating point numbers. The return value is
numerator − n · denominator, where numerator is the first argument, denominator is the second argu-
ment, and n is the quotient of numerator divided by denominator rounded towards zero to an integer. For
example, FMod(6.5,2.3) returns 1.9, which is 6.5 − 2 · 4.6. If given vectors, FMod performs a component-
wise operation. FMod is similar to Remainder except that the quotient is rounded toward 0 instead of the
nearest integer.

vtkm::Infinity Returns the representation for infinity. The result is greater than any other number except
another infinity or NaN. When comparing two infinities or infinity to NaN, neither is greater than, less
than, nor equal to the other. The Infinity method is templated to specify either a 32 or 64 bit floating
point number. The convenience methods Infinity32 and Infinity64 are non-templated versions that
return the precision for a particular precision.
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vtkm::IsFinite Returns true if the argument is a normal number (neither a NaN nor an infinite).

vtkm::IsInf Returns true if the argument is either positive infinity or negative infinity.

vtkm::IsNan Returns true if the argument is not a number (NaN).

vtkm::IsNegative Returns true if the single argument is less than zero, false otherwise.

vtkm::Log Computes the natural logarithm (i.e. logarithm to the base e) of the single argument. If called with
a vector type, returns a component-wise logarithm.

vtkm::Log10 Computes the logarithm to the base 10 of the single argument. If called with a vector type,
returns a component-wise logarithm.

vtkm::Log1P Computes ln(1+x) where x is the single argument and ln is the natural logarithm (i.e. logarithm
to the base e). The accuracy of this function is good for very small values. If called with a vector type,
returns a component-wise logarithm.

vtkm::Log2 Computes the logarithm to the base 2 of the single argument. If called with a vector type, returns
a component-wise logarithm.

vtkm::Max Takes two arguments and returns the argument that is greater. If called with a vector type, returns
a component-wise maximum.

vtkm::Min Takes two arguments and returns the argument that is lesser. If called with a vector type, returns
a component-wise minimum.

vtkm::ModF Returns the integral and fractional parts of the first argument. The second argument is a reference
in which the integral part is stored. The return value is the fractional part. If given vectors, ModF performs
a component-wise operation.

vtkm::Nan Returns the representation for not-a-number (NaN). A NaN represents an invalid value or the result
of an invalid operation such as 0/0. A NaN is neither greater than nor less than nor equal to any other
number including other NaNs. The NaN method is templated to specify either a 32 or 64 bit floating point
number. The convenience methods Nan32 and NaN64 are non-templated versions that return the precision
for a particular precision.

vtkm::NegativeInfinity Returns the representation for negative infinity. The result is less than any other
number except another negative infinity or NaN. When comparing two negative infinities or negative in-
finity to NaN, neither is greater than, less than, nor equal to the other. The NegativeInfinity method is
templated to specify either a 32 or 64 bit floating point number. The convenience methods NegativeIn-
finity32 and NegativeInfinity64 are non-templated versions that return the precision for a particular
precision.

vtkm::Pi Returns the constant π (about 3.14159).

vtkm::Pi 2 Returns the constant π/2 (about 1.570796).

vtkm::Pi 3 Returns the constant π/3 (about 1.047197).

vtkm::Pi 4 Returns the constant π/4 (about 0.785398).

vtkm::Pow Takes two arguments and returns the first argument raised to the power of the second argument.
This function is only defined for vtkm::Float32 and vtkm::Float64.
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vtkm::QuadraticRoots Takes the coefficients a,b,c of the quadratic equation ax2 + bx+ c = 0 and returns the
real roots in a vtkm::Vec of size 2. If there are no roots, then both returned values are NaNs. If there are
two real roots, the first element is less than or equal to the second. If compiled with FMA support, each
root is accurate to 3 ulps; otherwise the discriminant is prone to catastrophic subtractive cancellation and
no accuracy guarantees can be provided.

vtkm::RCbrt Takes one argument and returns the cube root of that argument. The result of this function is
equivalent to 1/Cbrt(x). However, on some devices it is faster to compute the reciprocal cube root than
the regular cube root. Thus, you should use this function whenever dividing by the cube root.

vtkm::Remainder Computes the remainder on the division of 2 floating point numbers. The return value is
numerator−n ·denominator, where numerator is the first argument, denominator is the second argument,
and n is the quotient of numerator divided by denominator rounded towards the nearest integer. For
example, FMod(6.5,2.3) returns −0.4, which is 6.5 − 3 · 2.3. If given vectors, Remainder performs a
component-wise operation. Remainder is similar to FMod except that the quotient is rounded toward the
nearest integer instead of toward 0.

vtkm::RemainderQuotient Performs an operation identical to Reminder. In addition, this function takes a
third argument that is a reference in which the quotient is given.

vtkm::Round Rounds and returns the integer nearest the single argument. If given a vector, performs a
component-wise operation.

vtkm::RSqrt Takes one argument and returns the square root of that argument. The result of this function is
equivalent to 1/Sqrt(x). However, on some devices it is faster to compute the reciprocal square root than
the regular square root. Thus, you should use this function whenever dividing by the square root.

vtkm::SignBit Returns a nonzero value if the single argument is negative.

vtkm::Sin Returns the sine of an angle given in radians. If given a vector, performs a component-wise operation.

vtkm::SinH Returns the hyperbolic sine. If given a vector, performs a component-wise operation.

vtkm::Sqrt Takes one argument and returns the square root of that argument. If called with a vector type,
returns a component-wise square root. On some hardware it is faster to find the reciprocal square root, so
RSqrt should be used if you actually plan to divide by the square root.

vtkm::Tan Returns the tangent of an angle given in radians. If given a vector, performs a component-wise
operation.

vtkm::TanH Returns the hyperbolic tangent. If given a vector, performs a component-wise operation.

vtkm::TwoPi Returns the constant 2π (about 6.283185).

24.2 Vector Analysis

Visualization and computational geometry algorithms often perform vector analysis operations. The vtkm/-
VectorAnalysis.h header file provides functions that perform the basic common vector analysis operations.

vtkm::Cross Returns the cross product of two vtkm::Vec of size 3. If compiled with FMA support, it uses
Kahan’s difference of products algorithm to achieve a maximum error of 1.5 ulps in each component.
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vtkm::Lerp Given two values x and y in the first two parameters and a weight w as the third parameter,
interpolates between x and y. Specifically, the linear interpolation is (y − x)w + x although Lerp might
compute the interpolation faster than using the independent arithmetic operations. The two values may
be scalars or equal sized vectors. If the two values are vectors and the weight is a scalar, all components
of the vector are interpolated with the same weight. If the weight is also a vector, then each component of
the value vectors are interpolated with the respective weight component.

vtkm::Magnitude Returns the magnitude of a vector. This function works on scalars as well as vectors, in
which case it just returns the scalar. It is usually much faster to compute MagnitudeSquared, so that
should be substituted when possible (unless you are just going to take the square root, which would be
besides the point). On some hardware it is also faster to find the reciprocal magnitude, so RMagnitude
should be used if you actually plan to divide by the magnitude.

vtkm::MagnitudeSquared Returns the square of the magnitude of a vector. It is usually much faster to compute
the square of the magnitude than the length, so you should use this function in place of Magnitude or
RMagnitude when needing the square of the magnitude or any monotonically increasing function of a
magnitude or distance. This function works on scalars as well as vectors, in which case it just returns the
square of the scalar.

vtkm::Normal Returns a normalized version of the given vector. The resulting vector points in the same
direction as the argument but has unit length.

vtkm::Normalize Takes a reference to a vector and modifies it to be of unit length. Normalize(v) is function-
ally equivalent to v *= RMagnitude(v).

vtkm::RMagnitude Returns the reciprocal magnitude of a vector. On some hardware RMagnitude is faster than
Magnitude, but neither is as fast as MagnitudeSquared. This function works on scalars as well as vectors,
in which case it just returns the reciprocal of the scalar.

vtkm::TriangleNormal Given three points in space (contained in vtkm::Vec s of size 3) that compose a triangle
return a vector that is perpendicular to the triangle. The magnitude of the result is equal to twice the
area of the triangle. The result points away from the “front” of the triangle as defined by the standard
counter-clockwise ordering of the points.

24.3 Matrices

Linear algebra operations on small matrices that are done on a single thread are located in vtkm/Matrix.h.
This header defines the vtkm::Matrix templated class. The template parameters are first the type of component,
then the number of rows, then the number of columns. The overloaded parentheses operator can be used to
retrieve values based on row and column indices. Likewise, the bracket operators can be used to reference the
Matrix as a 2D array (indexed by row first). The following example builds a Matrix that contains the values∣∣∣∣ 0 1 2

10 11 12

∣∣∣∣
Example 24.1: Creating a Matrix.

1 vtkm :: Matrix <vtkm :: Float32 , 2, 3> matrix ;
2
3 // Using parenthesis notation .
4 matrix (0, 0) = 0.0f;
5 matrix (0, 1) = 1.0f;
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6 matrix (0, 2) = 2.0f;
7
8 // Using bracket notation .
9 matrix [1][0] = 10.0f;

10 matrix [1][1] = 11.0f;
11 matrix [1][2] = 12.0f;

The vtkm/Matrix.h header also defines the following functions that operate on matrices.

vtkm::MatrixDeterminant Takes a square Matrix as its single argument and returns the determinant of that
matrix.

vtkm::MatrixGetColumn Given a Matrix and a column index, returns a vtkm::Vec of that column. This
function might not be as efficient as vtkm::MatrixRow. (It performs a copy of the column).

vtkm::MatrixGetRow Given a Matrix and a row index, returns a vtkm::Vec of that row.

vtkm::MatrixIdentity Returns the identity matrix. If given no arguments, it creates an identity matrix and
returns it. (In this form, the component type and size must be explicitly set.) If given a single square
matrix argument, fills that matrix with the identity.

vtkm::MatrixInverse Finds and returns the inverse of a given matrix. The function takes two arguments.
The first argument is the matrix to invert. The second argument is a reference to a Boolean that is set to
true if the inverse is found or false if the matrix is singular and the returned matrix is incorrect.

vtkm::MatrixMultiply Performs a matrix-multiply on its two arguments. Overloaded to work for matrix-
matrix, vector-matrix, or matrix-vector multiply.

vtkm::MatrixSetColumn Given a Matrix, a column index, and a vtkm::Vec, sets the column of that index to
the values of the Tuple.

vtkm::MatrixSetRow Given a Matrix, a row index, and a vtkm::Vec, sets the row of that index to the values
of the Tuple.

vtkm::MatrixTranspose Takes a Matrix and returns its transpose.

vtkm::SolveLinearSystem Solves the linear system Ax= b and returns x. The function takes three arguments.
The first two arguments are the matrix A and the vector b, respectively. The third argument is a reference
to a Boolean that is set to true if a single solution is found, false otherwise.

24.4 Newton’s Method

VTK-m’s matrix methods (documented in Section 24.3) provide a method to solve a small linear system of
equations. However, sometimes it is necessary to solve a small nonlinear system of equations. This can be done
with the vtkm::NewtonsMethod function defined in the vtkm/NewtonsMethod.h header.
The NewtonsMethod function assumes that the number of variables equals the number of equations. Newton’s
method operates on an iterative evaluate and search. Evaluations are performed using the functors passed into
the NewtonsMethod. The function takes the following 6 parameters (three of which are optional).

1. A functor whose operation takes a vtkm::Vec and returns a vtkm::Matrix containing the math function’s
Jacobian vector at that point.
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2. A functor whose operation takes a vtkm::Vec and returns the evaluation of the math function at that
point as another vtkm::Vec.

3. The vtkm::Vec that represents the desired output of the function.

4. A vtkm::Vec to use as the initial guess. If not specified, the origin is used.

5. The convergence distance. If the iterative method changes all values less than this amount, then it considers
the solution found. If not specified, set to 10−3.

6. The maximum amount of iterations to run before giving up and returning the best solution. If not specified,
set to 10.

The NewtonsMethod function returns a vtkm::NewtonsMethodResult object. NewtonsMethodResult is a struct
templated on the type and number of input values of the nonlinear system. NewtonsMethodResult contains the
following items.

Valid A bool that is set to false if the solution runs into a singularity so that no possible solution is found.

Converged A bool that is set to true if a solution is found that is within the convergence distance specified. It
is set to false if the method did not convert in the specified number of iterations.

Solution A vtkm::Vec containing the solution to the nonlinear system. If Converged is false, then this value
is likely inaccurate. If Valid is false, then this value is undefined.

Example 24.2: Using NewtonsMethod to solve a small system of nonlinear equations.
1 // A functor for the mathematical function f(x) = [dot(x,x),x[0]*x[1]]
2 struct FunctionFunctor
3 {
4 template < typename T>
5 VTKM_EXEC_CONT vtkm ::Vec <T, 2> operator ()( const vtkm ::Vec <T, 2>& x) const
6 {
7 return vtkm :: make_Vec (vtkm :: Dot(x, x), x[0] * x [1]);
8 }
9 };

10
11 // A functor for the Jacobian of the mathematical function
12 // f(x) = [dot(x,x),x[0]*x[1]] , which is
13 // | 2*x[0] 2*x[1] |
14 // | x[1] x[0] |
15 struct JacobianFunctor
16 {
17 template < typename T>
18 VTKM_EXEC_CONT vtkm :: Matrix <T, 2, 2> operator ()( const vtkm ::Vec <T, 2>& x) const
19 {
20 vtkm :: Matrix <T, 2, 2> jacobian ;
21 jacobian (0, 0) = 2 * x[0];
22 jacobian (0, 1) = 2 * x[1];
23 jacobian (1, 0) = x[1];
24 jacobian (1, 1) = x[0];
25
26 return jacobian ;
27 }
28 };
29
30 VTKM_EXEC
31 void SolveNonlinear ()
32 {
33 // Use Newton ’s method to solve the nonlinear system of equations :
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34 //
35 // xˆ2 + yˆ2 = 2
36 // x*y = 1
37 //
38 // There are two possible solutions , which are (x=1,y=1) and (x=-1,y= -1).
39 // The one found depends on the starting value .
40 vtkm :: NewtonsMethodResult <vtkm :: Float32 , 2> answer1 =
41 vtkm :: NewtonsMethod ( JacobianFunctor (),
42 FunctionFunctor (),
43 vtkm :: make_Vec (2.0f, 1.0f),
44 vtkm :: make_Vec (1.0f, 0.0f));
45 if (! answer1 . Valid || ! answer1 . Converged )
46 {
47 // Failed to find solution
48 }
49 // answer1 . Solution is [1 ,1]
50
51 vtkm :: NewtonsMethodResult <vtkm :: Float32 , 2> answer2 =
52 vtkm :: NewtonsMethod ( JacobianFunctor (),
53 FunctionFunctor (),
54 vtkm :: make_Vec (2.0f, 1.0f),
55 vtkm :: make_Vec (0.0f, -2.0f));
56 if (! answer2 . Valid || ! answer2 . Converged )
57 {
58 // Failed to find solution
59 }
60 // answer2 is [-1,-1]
61 }
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CHAPTER

TWENTYFIVE

WORKING WITH CELLS

In the control environment, data is defined in mesh structures that comprise a set of finite cells. (See Section 7.2
starting on page 36 for information on defining cell sets in the control environment.) When worklets that operate
on cells are scheduled, these grid structures are broken into their independent cells, and that data is handed to
the worklet. Thus, cell-based operations in the execution environment exclusively operate on independent cells.
Unlike some other libraries such as VTK, VTK-m does not have a cell class that holds all the information
pertaining to a cell of a particular type. Instead, VTK-m provides tags or identifiers defining the cell shape,
and companion data like coordinate and field information are held in separate structures. This organization is
designed so a worklet may specify exactly what information it needs, and only that information will be loaded.

25.1 Cell Shape Tags and Ids

Cell shapes can be specified with either a tag (defined with a struct with a name like CellShapeTag*) or an
enumerated identifier (defined with a constant number with a name like CELL SHAPE *). These shape tags and
identifiers are defined in vtkm/CellShape.h and declared in the vtkm namespace (because they can be used in
either the control or the execution environment). Figure 25.1 gives both the identifier and the tag names.
In addition to the basic cell shapes, there is a special “empty” cell with the identifier vtkm::CELL SHAPE EMPTY
and tag vtkm::CellShapeTagEmpty. This type of cell has no points, edges, or faces and can be thought of as a
placeholder for a null or void cell.
There is also a special cell shape “tag” named vtkm::CellShapeTagGeneric that is used when the actual cell
shape is not known at compile time. CellShapeTagGeneric actually has a member variable named Id that
stores the identifier for the cell shape. There is no equivalent identifier for a generic cell; cell shape identifiers
can be placed in a vtkm::IdComponent at runtime.
When using cell shapes in templated classes and functions, you can use the VTKM IS CELL SHAPE TAG to ensure
a type is a valid cell shape tag. This macro takes one argument and will produce a compile error if the argument
is not a cell shape tag type.

25.1.1 Converting Between Tags and Identifiers

Every cell shape tag has a member variable named Id that contains the identifier for the cell shape. This
provides a convenient mechanism for converting a cell shape tag to an identifier. Most cell shape tags have their
Id member as a compile-time constant, but CellShapeTagGeneric is set at run time.
vtkm/CellShape.h also declares a templated class named vtkm::CellShapeIdToTag that converts a cell shape
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Figure 25.1: Basic Cell Shapes

identifier to a cell shape tag. CellShapeIdToTag has a single template argument that is the identifier. Inside
the class is a type named Tag that is the type of the correct tag.

Example 25.1: Using CellShapeIdToTag.
1 void CellFunction (vtkm :: CellShapeTagTriangle )
2 {
3 std :: cout << "In CellFunction for triangles ." << std :: endl;
4 }
5
6 void DoSomethingWithACell ()
7 {
8 // Calls CellFunction overloaded with a vtkm :: CellShapeTagTriangle .
9 CellFunction (vtkm :: CellShapeIdToTag <vtkm :: CELL_SHAPE_TRIANGLE >:: Tag ());

10 }

However, CellShapeIdToTag is only viable if the identifier can be resolved at compile time. In the case where
a cell identifier is stored in a variable or an array or the code is using a CellShapeTagGeneric, the correct cell
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shape is not known at run time. In this case, vtkmGenericCellShapeMacro can be used to check all possible
conditions. This macro is embedded in a switch statement where the condition is the cell shape identifier.
vtkmGenericCellShapeMacro has a single argument, which is an expression to be executed. Before the expression
is executed, a type named CellShapeTag is defined as the type of the appropriate cell shape tag. Often this
method is used to implement the condition for a CellShapeTagGeneric in a function overloaded for cell types.
A demonstration of vtkmGenericCellShapeMacro is given in Example 25.2.

25.1.2 Cell Traits

The vtkm/CellTraits.h header file contains a traits class named vtkm::CellTraits that provides information
about a cell. Each specialization of CellTraits contains the following members.

TOPOLOGICAL DIMENSIONS Defines the topological dimensions of the cell type. This is 3 for polyhedra, 2 for
polygons, 1 for lines, and 0 for points.

TopologicalDimensionsTag A type set to either vtkm::CellTopologicalDimensionsTag <3>, CellTopolog-
icalDimensionsTag<2>, CellTopologicalDimensionsTag<1>, or CellTopologicalDimensionsTag<0>.
The number is consistent with TOPOLOGICAL DIMENSIONS. This tag is provided for convenience when spe-
cializing functions.

IsSizeFixed Set to either vtkm::CellTraitsTagSizeFixed for cell types with a fixed number of points (for
example, triangle) or vtkm::CellTraitsTagSizeVariable for cell types with a variable number of points
(for example, polygon).

NUM POINTS A vtkm::IdComponent set to the number of points in the cell. This member is only defined when
there is a constant number of points (i.e. IsSizeFixed is set to vtkm::CellTraitsTagSizeFixed).

Example 25.2: Using CellTraits to implement a polygon normal estimator.
1 namespace detail
2 {
3
4 VTKM_SUPPRESS_EXEC_WARNINGS
5 template < typename PointCoordinatesVector , typename WorkletType >
6 VTKM_EXEC_CONT typename PointCoordinatesVector :: ComponentType CellNormalImpl (
7 const PointCoordinatesVector & pointCoordinates ,
8 vtkm :: CellTopologicalDimensionsTag <2>,
9 const WorkletType & worklet )

10 {
11 if ( pointCoordinates . GetNumberOfComponents () >= 3)
12 {
13 return vtkm :: TriangleNormal (
14 pointCoordinates [0] , pointCoordinates [1] , pointCoordinates [2]);
15 }
16 else
17 {
18 worklet . RaiseError (" Degenerate polygon .");
19 return typename PointCoordinatesVector :: ComponentType ();
20 }
21 }
22
23 VTKM_SUPPRESS_EXEC_WARNINGS
24 template < typename PointCoordinatesVector ,
25 vtkm :: IdComponent Dimensions ,
26 typename WorkletType >
27 VTKM_EXEC_CONT typename PointCoordinatesVector :: ComponentType CellNormalImpl (
28 const PointCoordinatesVector &,
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29 vtkm :: CellTopologicalDimensionsTag < Dimensions >,
30 const WorkletType & worklet )
31 {
32 worklet . RaiseError (" Only polygons supported for cell normals .");
33 return typename PointCoordinatesVector :: ComponentType ();
34 }
35
36 } // namespace detail
37
38 VTKM_SUPPRESS_EXEC_WARNINGS
39 template < typename CellShape , typename PointCoordinatesVector , typename WorkletType >
40 VTKM_EXEC_CONT typename PointCoordinatesVector :: ComponentType CellNormal (
41 CellShape ,
42 const PointCoordinatesVector & pointCoordinates ,
43 const WorkletType & worklet )
44 {
45 return detail :: CellNormalImpl (
46 pointCoordinates ,
47 typename vtkm :: CellTraits <CellShape >:: TopologicalDimensionsTag (),
48 worklet );
49 }
50
51 VTKM_SUPPRESS_EXEC_WARNINGS
52 template < typename PointCoordinatesVector , typename WorkletType >
53 VTKM_EXEC_CONT typename PointCoordinatesVector :: ComponentType CellNormal (
54 vtkm :: CellShapeTagGeneric shape ,
55 const PointCoordinatesVector & pointCoordinates ,
56 const WorkletType & worklet )
57 {
58 switch ( shape .Id)
59 {
60 vtkmGenericCellShapeMacro (
61 return CellNormal ( CellShapeTag (), pointCoordinates , worklet ));
62 default :
63 worklet . RaiseError (" Unknown cell type .");
64 return typename PointCoordinatesVector :: ComponentType ();
65 }
66 }

25.2 Parametric and World Coordinates

Each cell type supports a one-to-one mapping between a set of parametric coordinates in the unit cube (or some
subset of it) and the points in 3D space that are the locus contained in the cell. Parametric coordinates are useful
because certain features of the cell, such as vertex location and center, are at a consistent location in parametric
space irrespective of the location and distortion of the cell in world space. Also, many field operations are much
easier with parametric coordinates.
The vtkm/exec/ParametricCoordinates.h header file contains the following functions for working with parametric
coordinates.

vtkm::exec::ParametricCoordinatesCenter Returns the parametric coordinates for the center of a given
shape. It takes 3 arguments: the number of points in the cell, a shape tag, and a vtkm::Vec of size 3 to
store the results. An vtkm::ErrorCode is returned (see Section 19.9).

vtkm::exec::ParametricCoordinatesPoint Returns the parametric coordinates for a given point of a given
shape. It takes 4 arguments: the number of points in the cell, the index of the point to query, a shape tag,
and a vtkm::Vec of size 3 to store the results. An vtkm::ErrorCode is returned (see Section 19.9).
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vtkm::exec::ParametricCoordinatesToWorldCoordinates Converts parametric coordinates (coordinates
relative to the cell) to world coordinates (coordinates in the global system). It takes a vector of point
coordinates (usually given by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing para-
metric coordinates, a shape tag, and a vtkm::Vec of size 3 to store the resulting world coordinates. An
vtkm::ErrorCode is returned (see Section 19.9).

vtkm::exec::WorldCoordinatesToParametricCoordinates Converts world coordinates (coordinates in the
global system) to parametric coordinates (coordinates relative to the cell). It takes a vector of point
coordinates (usually given by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing world
coordinates, a shape tag, and a vtkm::Vec of size 3 to store the resulting parametric coordinates. An
vtkm::ErrorCode is returned (see Section 19.9). This function can be slow for cell types with nonlinear
interpolation (which is anything that is not a simplex).

25.3 Interpolation

The shape of every cell is defined by the connections of some finite set of points. Field values defined on those
points can be interpolated to any point within the cell to estimate a continuous field.
The vtkm/exec/CellInterpolate.h header contains the function vtkm::exec::CellInterpolate that takes a vector
of point field values (usually given by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing
parametric coordinates, a shape tag. The result of the interpolation is placed in the reference passed as the
fourth argument. CellInterpolate returns an vtkm::ErrorCode for the status of the operation.

Example 25.3: Interpolating field values to a cell’s center.
1 struct CellCenters : vtkm :: worklet :: WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void (CellSetIn ,
4 FieldInPoint inputField ,
5 FieldOutCell outputField );
6 using ExecutionSignature = void (CellShape , PointCount , _2 , _3 );
7 using InputDomain = _1;
8
9 template < typename CellShapeTag , typename FieldInVecType , typename FieldOutType >

10 VTKM_EXEC void operator ()( CellShapeTag shape ,
11 vtkm :: IdComponent pointCount ,
12 const FieldInVecType & inputField ,
13 FieldOutType & outputField ) const
14 {
15 vtkm :: Vec3f center ;
16 vtkm :: ErrorCode status =
17 vtkm :: exec :: ParametricCoordinatesCenter ( pointCount , shape , center );
18 if ( status != vtkm :: ErrorCode :: Success )
19 {
20 this -> RaiseError (vtkm :: ErrorString ( status ));
21 return ;
22 }
23 vtkm :: exec :: CellInterpolate ( inputField , center , shape , outputField );
24 }
25 };

25.4 Derivatives

Since interpolations provide a continuous field function over a cell, it is reasonable to consider the derivative of
this function. The vtkm/exec/CellDerivative.h header contains the function vtkm::exec::CellDerivative that
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takes a vector of scalar point field values (usually given by a FieldPointIn worklet argument), a vtkm::Vec
of size 3 containing parametric coordinates, a shape tag, and a worklet object (for raising errors). It returns
the field derivative at the location represented by the given parametric coordinates. The derivative is return in
a vtkm::Vec of size 3 corresponding to the partial derivatives in the x, y, and z directions. This derivative is
equivalent to the gradient of the field.

Example 25.4: Computing the derivative of the field at cell centers.
1 struct CellDerivatives : vtkm :: worklet :: WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void (CellSetIn ,
4 FieldInPoint inputField ,
5 FieldInPoint pointCoordinates ,
6 FieldOutCell outputField );
7 using ExecutionSignature = void (CellShape , PointCount , _2 , _3 , _4 );
8 using InputDomain = _1;
9

10 template < typename CellShapeTag ,
11 typename FieldInVecType ,
12 typename PointCoordVecType ,
13 typename FieldOutType >
14 VTKM_EXEC void operator ()( CellShapeTag shape ,
15 vtkm :: IdComponent pointCount ,
16 const FieldInVecType & inputField ,
17 const PointCoordVecType & pointCoordinates ,
18 FieldOutType & outputField ) const
19 {
20 vtkm :: Vec3f center ;
21 vtkm :: ErrorCode status =
22 vtkm :: exec :: ParametricCoordinatesCenter ( pointCount , shape , center );
23 if ( status != vtkm :: ErrorCode :: Success )
24 {
25 this -> RaiseError (vtkm :: ErrorString ( status ));
26 return ;
27 }
28 vtkm :: exec :: CellDerivative (
29 inputField , pointCoordinates , center , shape , outputField );
30 }
31 };

25.5 Edges and Faces

As explained earlier in this chapter, a cell is defined by a collection of points and a shape identifier that
describes how the points come together to form the structure of the cell. The cell shapes supported by VTK-m
are documented in Section 25.1. It contains Figure 25.1 on page 210, which shows how the points for each shape
form the structure of the cell.
Most cell shapes can be broken into subelements. 2D and 3D cells have pairs of points that form edges at the
boundaries of the cell. Likewise, 3D cells have loops of edges that form faces that encase the cell. Figure 25.2
demonstrates the relationship of these constituent elements for some example cell shapes.

Points

Edges
Face

Figure 25.2: The constituent elements (points, edges, and faces) of cells.
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The header file vtkm/exec/CellEdge.h contains a collection of functions to help identify the edges of a cell. The
first such function is vtkm::exec::CellEdgeNumberOfEdges. This function takes the number of points in the
cell, the shape of the cell, and places the number of edges the cell as in its third argument (which is a reference to
a vtkm::IdComponent). The function returns a vtkm::ErrorCode (section 19.9) for the status of the operation.
The second function is vtkm::exec::CellEdgeLocalIndex. This function takes, respectively, the number of
points, the local index of the point in the edge (0 or 1), the local index of the edge (0 to the number of edges
in the cell), the shape of the cell, and a reference to a vtkm::IdComponent to put the result. The result is the
local index (between 0 and the number of points in the cell) of the requested point in the edge. This local point
index is consistent with the point labels in Figure 25.2. To get the point indices relative to the data set, the
edge indices should be used to reference a PointIndices list. The function returns a vtkm::ErrorCode (section
19.9) for the status of the operation.
The third function is vtkm::exec::CellEdgeCanonicalId. This function takes the number of points, the local
index of the edge, the shape of the cell, a Vec-like containing the global id of each cell point, and a reference
to a vtkm::Id2 to put the result. The result is a pair of numbers that is globally unique to that edge. If
CellEdgeCanonicalId is called on an edge for a different cell, the two will be the same if and only if the two
cells share that edge. CellEdgeCanonicalId is useful for finding coincident components of topology.
The following example demonstrates a pair of worklets that use the cell edge functions. As is typical for operations
of this nature, one worklet counts the number of edges in each cell and another uses this count to generate the
data.

Example 25.5 demonstrates one of many techniques for creating cell sets in a worklet. Chapter 32 describes
this and many more such techniques.

Did you know?

Example 25.5: Using cell edge functions.
1 struct EdgesCount : vtkm :: worklet :: WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void (CellSetIn , FieldOutCell numEdgesInCell );
4 using ExecutionSignature = void (CellShape , PointCount , _2 );
5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC void operator ()( CellShapeTag cellShape ,
9 vtkm :: IdComponent numPointsInCell ,

10 vtkm :: IdComponent & numEdges ) const
11 {
12 vtkm :: ErrorCode status =
13 vtkm :: exec :: CellEdgeNumberOfEdges ( numPointsInCell , cellShape , numEdges );
14 if ( status != vtkm :: ErrorCode :: Success )
15 {
16 this -> RaiseError (vtkm :: ErrorString ( status ));
17 }
18 }
19 };
20
21 struct EdgesExtract : vtkm :: worklet :: WorkletVisitCellsWithPoints
22 {
23 using ControlSignature = void (CellSetIn , FieldOutCell edgeIndices );
24 using ExecutionSignature = void (CellShape , PointIndices , VisitIndex , _2 );
25 using InputDomain = _1;
26
27 using ScatterType = vtkm :: worklet :: ScatterCounting ;
28
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29 template < typename CellShapeTag ,
30 typename PointIndexVecType ,
31 typename EdgeIndexVecType >
32 VTKM_EXEC void operator ()( CellShapeTag cellShape ,
33 const PointIndexVecType & globalPointIndicesForCell ,
34 vtkm :: IdComponent edgeIndex ,
35 EdgeIndexVecType & edgeIndices ) const
36 {
37 vtkm :: IdComponent numPointsInCell =
38 globalPointIndicesForCell . GetNumberOfComponents ();
39
40 vtkm :: IdComponent pointInCellIndex0 ;
41 vtkm :: exec :: CellEdgeLocalIndex (
42 numPointsInCell , 0, edgeIndex , cellShape , pointInCellIndex0 );
43 vtkm :: IdComponent pointInCellIndex1 ;
44 vtkm :: exec :: CellEdgeLocalIndex (
45 numPointsInCell , 1, edgeIndex , cellShape , pointInCellIndex1 );
46
47 edgeIndices [0] = globalPointIndicesForCell [ pointInCellIndex0 ];
48 edgeIndices [1] = globalPointIndicesForCell [ pointInCellIndex1 ];
49 }
50 };

The header file vtkm/exec/CellFace.h contains a collection of functions to help identify the faces of a cell. The first
such function is vtkm::exec::CellFaceNumberOfFaces. This function takes the shape of the cell and places the
number of faces in the cell as its second argument (which is a reference to a vtkm::IdComponent. The function
returns a vtkm::ErrorCode (section 19.9) for the status of the operation.
The second function is vtkm::exec::CellFaceNumberOfPoints. This function takes the local index of the face
(0 to the number of faces in the cell), the shape of the cell, and a reference to a vtkm::IdComponent to put
the result. The result is the number of points the specified face has. The function returns a vtkm::ErrorCode
(section 19.9) for the status of the operation.
The third function is vtkm::exec::CellFaceLocalIndex. This function takes, respectively, the local index of
the point in the face (0 to the number of points in the face), the local index of the face (0 to the number of faces
in the cell), the shape of the cell, and a reference to a vtkm::IdComponent to put the result. The result is the
local index (between 0 and the number of points in the cell) of the requested point in the face. The points are
indexed in counterclockwise order when viewing the face from the outside of the cell. This local point index is
consistent with the point labels in Figure 25.2. To get the point indices relative to the data set, the face indices
should be used to reference a PointIndices list. The function returns a vtkm::ErrorCode (section 19.9) for the
status of the operation.
The fourth function is vtkm::exec::CellFaceCanonicalId. This function takes the local index of the face,
the shape of the cell, a Vec-like containing the global id of each cell point, and a reference to a vtkm::Id3 to
put the result. The result is a triplet of numbers that is globally unique to that face. If CellFaceCanonicalId
is called on a face for a different cell, the two will be the same if and only if the two cells share that face.
CellFaceCanonicalId is useful for finding coincident components of topology.
The following example demonstrates a triple of worklets that use the cell face functions. As is typical for
operations of this nature, the worklets are used in steps to first count entities and then generate new entities.
In this case, the first worklet counts the number of faces and the second worklet counts the points in each face.
The third worklet generates cells for each face.

Example 25.6: Using cell face functions.
1 struct FacesCount : vtkm :: worklet :: WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void (CellSetIn , FieldOutCell numFacesInCell );
4 using ExecutionSignature = void (CellShape , _2 );
5 using InputDomain = _1;
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6
7 template < typename CellShapeTag >
8 VTKM_EXEC void operator ()( CellShapeTag cellShape ,
9 vtkm :: IdComponent & numFaces ) const

10 {
11 vtkm :: ErrorCode status =
12 vtkm :: exec :: CellFaceNumberOfFaces (cellShape , numFaces );
13 if ( status != vtkm :: ErrorCode :: Success )
14 {
15 this -> RaiseError (vtkm :: ErrorString ( status ));
16 }
17 }
18 };
19
20 struct FacesCountPoints : vtkm :: worklet :: WorkletVisitCellsWithPoints
21 {
22 using ControlSignature = void (CellSetIn ,
23 FieldOutCell numPointsInFace ,
24 FieldOutCell faceShape );
25 using ExecutionSignature = void (CellShape , VisitIndex , _2 , _3 );
26 using InputDomain = _1;
27
28 using ScatterType = vtkm :: worklet :: ScatterCounting ;
29
30 template < typename CellShapeTag >
31 VTKM_EXEC void operator ()( CellShapeTag cellShape ,
32 vtkm :: IdComponent faceIndex ,
33 vtkm :: IdComponent & numPointsInFace ,
34 vtkm :: UInt8 & faceShape ) const
35 {
36 vtkm :: exec :: CellFaceNumberOfPoints (faceIndex , cellShape , numPointsInFace );
37 switch ( numPointsInFace )
38 {
39 case 3:
40 faceShape = vtkm :: CELL_SHAPE_TRIANGLE ;
41 break ;
42 case 4:
43 faceShape = vtkm :: CELL_SHAPE_QUAD ;
44 break ;
45 default :
46 faceShape = vtkm :: CELL_SHAPE_POLYGON ;
47 break ;
48 }
49 }
50 };
51
52 struct FacesExtract : vtkm :: worklet :: WorkletVisitCellsWithPoints
53 {
54 using ControlSignature = void (CellSetIn , FieldOutCell faceIndices );
55 using ExecutionSignature = void (CellShape , PointIndices , VisitIndex , _2 );
56 using InputDomain = _1;
57
58 using ScatterType = vtkm :: worklet :: ScatterCounting ;
59
60 template < typename CellShapeTag ,
61 typename PointIndexVecType ,
62 typename FaceIndexVecType >
63 VTKM_EXEC void operator ()( CellShapeTag cellShape ,
64 const PointIndexVecType & globalPointIndicesForCell ,
65 vtkm :: IdComponent faceIndex ,
66 FaceIndexVecType & faceIndices ) const
67 {
68 vtkm :: IdComponent numPointsInFace = faceIndices . GetNumberOfComponents ();
69 for (vtkm :: IdComponent pointInFaceIndex = 0;
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70 pointInFaceIndex < numPointsInFace ;
71 pointInFaceIndex ++)
72 {
73 vtkm :: IdComponent pointInCellIndex ;
74 vtkm :: exec :: CellFaceLocalIndex (
75 pointInFaceIndex , faceIndex , cellShape , pointInCellIndex );
76 faceIndices [ pointInFaceIndex ] = globalPointIndicesForCell [ pointInCellIndex ];
77 }
78 }
79 };
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CHAPTER

TWENTYSIX

FANCY ARRAY HANDLES

One of the features of using ArrayHandles is that they hide the implementation and layout of the array behind
a generic interface. This gives us the opportunity to replace a simple C array with some custom definition of the
data and the code using the ArrayHandle is none the wiser.
This gives us the opportunity to implement fancy arrays that do more than simply look up a value in an array. For
example, arrays can be augmented on the fly by mutating their indices or values. Or values could be computed
directly from the index so that no storage is required for the array at all.
VTK-m provides many of the fancy arrays, which we explore in this section. Later in Chapter 36 we explore
how to create custom arrays that adapt new memory layouts or augment other types of arrays.

One of the advantages of VTK-m’s implementation of fancy arrays is that they can define whole arrays
without actually storing and values. For example, ArrayHandleConstant, ArrayHandleCounting, and
ArrayHandleIndex do not store data in any array in memory. Rather, they construct the value for an
index at runtime. Likewise, arrays like ArrayHandlePermutation construct new arrays from the values of
other arrays without having to create a copy of the data.

Did you know?

26.1 Constant Arrays

A constant array is a fancy array handle that has the same value in all of its entries. The constant array provides
this array without actually using any memory.
Specifying a constant array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::ArrayHan-
dleConstant. ArrayHandleConstant is a templated class with a single template argument that is the type of
value for each element in the array. The constructor for ArrayHandleConstant takes the value to provide by
the array and the number of values the array should present. The following example is a simple demonstration
of the constant array handle.

Example 26.1: Using ArrayHandleConstant.
1 // Create an array of 50 entries , all containing the number 3. This could be
2 // used , for example , to represent the sizes of all the polygons in a set
3 // where we know all the polygons are triangles .
4 vtkm :: cont :: ArrayHandleConstant <vtkm ::Id > constantArray (3, 50);



26.2. ArrayHandleView

The vtkm/cont/ArrayHandleConstant.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleConstant that takes a value and a size for the array. This function can sometimes be used
to avoid having to declare the full array type.

Example 26.2: Using make ArrayHandleConstant.
1 // Create an array of 50 entries , all containing the number 3.
2 vtkm :: cont :: make_ArrayHandleConstant (3, 50)

26.2 ArrayHandleView

An array handle view is a fancy array handle that returns a subset of an already existing array handle. The
array handle view uses the same memory as the existing array handle the view was created from. This means
that changes to the data in the array handle view will also change the data in the original array handle.
To use the ArrayHandleView you must supply an ArrayHandle to the vtkm::cont::ArrayHandleView class
constructor. ArrayHandleView is a templated class with a single template argument that is the ArrayHandle
type of the array that the view is being created from. The constructor for ArrayHandleView takes a target array,
starting index, and length. The following example shows a simple usage of the array handle view.

Example 26.3: Using ArrayHandleView.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > sourceArray ;
2 vtkm :: cont :: ArrayCopy (vtkm :: cont :: ArrayHandleIndex (10) , sourceArray );
3 // sourceArray has [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
4
5 vtkm :: cont :: ArrayHandleView <vtkm :: cont :: ArrayHandle <vtkm ::Id >> viewArray (
6 sourceArray , 3, 5);
7 // viewArray has [3, 4, 5, 6, 7]

The vtkm/cont/ArrayHandleView.h header contains a templated convenience function vtkm::cont::make Ar-
rayHandleView that takes a target array, index, and length.

Example 26.4: Using make ArrayHandleView.
1 vtkm :: cont :: make_ArrayHandleView ( sourceArray , 3, 5)

26.3 Uniform Random Bits Array

An uniform random bits array is a fancy array handle that generates pseudo random bits as vtkm::Unit64 in
its entries. The uniform random bits array provides this array without actually using any memory.
The constructor for ArrayHandleRandomUniformBits takes two arguments: the first argument is the length of
the array handle, the second is a seed of type vtkm::Vec<Uint32, 1>. If the seed is not specified, the C++11
std::random device is used as default.

Example 26.5: Using ArrayHandleRandomUniformBits.
1 // Create an array containing a sequence of random bits seeded
2 // by std :: random_device .
3 vtkm :: cont :: ArrayHandleRandomUniformBits randomArray (50);
4 // Create an array containing a sequence of random bits with
5 // a user supplied seed.
6 vtkm :: cont :: ArrayHandleRandomUniformBits randomArraySeeded (50 , { 123 });
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ArrayHandleRandomUniformBits is functional, in the sense that once an instance of ArrayHandleRandomUni-
formBits is created, its content does not change and always returns the same vtkm::UInt64 value given the
same index.

Example 26.6: ArrayHandleRandomUniformBits is functional
1 // ArrayHandleRandomUniformBits is functional , it returns
2 // the same value for the same entry is accessed .
3 auto r0 = randomArray . ReadPortal (). Get (5);
4 auto r1 = randomArray . ReadPortal (). Get (5);
5 assert (r0 == r1 );

To generate a new set of random bits, we need to create another instance of ArrayHandleRandomUniformBits
with a different seed, we can either let std::random device provide a unique seed or use some unique identifier
such as iteration number as the seed.

Example 26.7: Independent ArrayHandleRandomUniformBits.
1 // Create a new insance of ArrayHandleRandomUniformBits
2 // for each set of random bits.
3 vtkm :: cont :: ArrayHandleRandomUniformBits randomArray0 (50 , { 0 });
4 vtkm :: cont :: ArrayHandleRandomUniformBits randomArray1 (50 , { 1 });
5 assert ( randomArray0 . ReadPortal (). Get (5) != randomArray1 . ReadPortal (). Get (5));

26.4 Counting Arrays

A counting array is a fancy array handle that provides a sequence of numbers. These fancy arrays can represent
the data without actually using any memory.
VTK-m provides two versions of a counting array. The first version is an index array that provides a specialized
but common form of a counting array called an index array. An index array has values of type vtkm::Id that
start at 0 and count up by 1 (i.e. 0,1,2,3, . . .). The index array mirrors the array’s index.
Specifying an index array in VTK-m is done with a class named vtkm::cont::ArrayHandleIndex. The construc-
tor for ArrayHandleIndex takes the size of the array to create. The following example is a simple demonstration
of the index array handle.

Example 26.8: Using ArrayHandleIndex.
1 // Create an array containing [0, 1, 2, 3, ... , 49].
2 vtkm :: cont :: ArrayHandleIndex indexArray (50);

The vtkm::cont::ArrayHandleCounting class provides a more general form of counting. ArrayHandleCounting
is a templated class with a single template argument that is the type of value for each element in the array.
The constructor for ArrayHandleCounting takes three arguments: the start value (used at index 0), the step
from one value to the next, and the length of the array. The following example is a simple demonstration of the
counting array handle.

Example 26.9: Using ArrayHandleCounting.
1 // Create an array containing [ -1.0 , -0.9, -0.8, ... , 0.9 , 1.0]
2 vtkm :: cont :: ArrayHandleCounting <vtkm :: Float32 > sampleArray ( -1.0f, 0.1f, 21);
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In addition to being simpler to declare, ArrayHandleIndex is slightly faster than ArrayHandleCounting.
Thus, when applicable, you should prefer using ArrayHandleIndex.

Did you know?

The vtkm/cont/ArrayHandleCounting.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleCounting that also takes the start value, step, and length as arguments. This function can
sometimes be used to avoid having to declare the full array type.

Example 26.10: Using make ArrayHandleCounting.
1 // Create an array containing [ -1.0 , -0.9, -0.8, ... , 0.9 , 1.0]
2 vtkm :: cont :: make_ArrayHandleCounting ( -1.0f, 0.1f, 21)

There are no fundamental limits on how ArrayHandleCounting counts. For example, it is possible to count
backwards.

Example 26.11: Counting backwards with ArrayHandleCounting.
1 // Create an array containing [49 , 48, 47, 46, ... , 0].
2 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id > backwardIndexArray (49 , -1, 50);

It is also possible to use ArrayHandleCounting to make sequences of vtkm::Vec values with piece-wise counting
in each of the components.

Example 26.12: Using ArrayHandleCounting with vtkm::Vec objects.
1 // Create an array containg [(0 , -3 ,75) , (1 ,2 ,25) , (3 ,7 , -25)]
2 vtkm :: cont :: make_ArrayHandleCounting (
3 vtkm :: make_Vec (0, -3, 75) , vtkm :: make_Vec (1, 5, -50), 3)

26.5 Cast Arrays

A cast array is a fancy array that changes the type of the elements in an array. The cast array provides this
re-typed array without actually copying or generating any data. Instead, casts are performed as the array is
accessed.
VTK-m has a class named vtkm::cont::ArrayHandleCast to perform this implicit casting. ArrayHandleCast
is a templated class with two template arguments. The first argument is the type to cast values to. The second
argument is the type of the original ArrayHandle. The constructor to ArrayHandleCast takes the ArrayHandle
to modify by casting.

Example 26.13: Using ArrayHandleCast.
1 template < typename T>
2 VTKM_CONT void Foo( const std :: vector <T >& inputData )
3 {
4 vtkm :: cont :: ArrayHandle <T> originalArray =
5 vtkm :: cont :: make_ArrayHandle (inputData , vtkm :: CopyFlag :: On );
6
7 vtkm :: cont :: ArrayHandleCast <vtkm :: Float64 , vtkm :: cont :: ArrayHandle <T>> castArray (
8 originalArray );

The vtkm/cont/ArrayHandleCast.h header also contains the templated convenience function vtkm::cont::make -
ArrayHandleCast that constructs the cast array. The first argument is the original ArrayHandle original array
to cast. The optional second argument is of the type to cast to (or you can optionally specify the cast-to type
as a template argument.

222 Chapter 26. Fancy Array Handles



26.6. Discard Arrays

Example 26.14: Using make ArrayHandleCast.
1 vtkm :: cont :: make_ArrayHandleCast <vtkm :: Float64 >( originalArray )

26.6 Discard Arrays

It is sometimes the case where you will want to run an operation in VTK-m that fills values in two (or more)
arrays, but you only want the values that are stored in one of the arrays. It is possible to allocate space for both
arrays and then throw away the values that you do not want, but that is a waste of memory. It is also possible
to rewrite the functionality to output only what you want, but that is a poor use of developer time.
To solve this problem easily, VTK-m provides vtkm::cont::ArrayHandleDiscard. This array behaves similar
to a regular ArrayHandle in that it can be “allocated” and has size, but any values that are written to it are
immediately discarded. ArrayHandleDiscard takes up no memory.

Example 26.15: Using ArrayHandleDiscard.
1 template < typename InputArrayType ,
2 typename OutputArrayType1 ,
3 typename OutputArrayType2 >
4 VTKM_CONT void DoFoo ( InputArrayType input ,
5 OutputArrayType1 output1 ,
6 OutputArrayType2 output2 );
7
8 template < typename InputArrayType >
9 VTKM_CONT inline vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > DoBar (

10 InputArrayType input )
11 {
12 VTKM_IS_ARRAY_HANDLE ( InputArrayType );
13
14 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > keepOutput ;
15
16 vtkm :: cont :: ArrayHandleDiscard <vtkm :: FloatDefault > discardOutput ;
17
18 DoFoo (input , keepOutput , discardOutput );
19
20 return keepOutput ;
21 }

26.7 Permuted Arrays

A permutation array is a fancy array handle that reorders the elements in an array. Elements in the array can
be skipped over or replicated. The permutation array provides this reordered array without actually coping any
data. Instead, indices are adjusted as the array is accessed.
Specifying a permutation array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::Array-
HandlePermutation that takes two arrays: an array of values and an array of indices that maps an index in the
permutation to an index of the original values. The index array is specified first. The following example is a
simple demonstration of the permutation array handle.

Example 26.16: Using ArrayHandlePermutation.
1 using IdArrayType = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
2 using IdPortalType = IdArrayType :: WritePortalType ;
3
4 using ValueArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float64 >;
5 using ValuePortalType = ValueArrayType :: WritePortalType ;
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6
7 // Create array with values [0.0 , 0.1 , 0.2 , 0.3]
8 ValueArrayType valueArray ;
9 valueArray . Allocate (4);

10 ValuePortalType valuePortal = valueArray . WritePortal ();
11 valuePortal .Set (0, 0.0);
12 valuePortal .Set (1, 0.1);
13 valuePortal .Set (2, 0.2);
14 valuePortal .Set (3, 0.3);
15
16 // Use ArrayHandlePermutation to make an array = [0.3 , 0.0 , 0.1].
17 IdArrayType idArray1 ;
18 idArray1 . Allocate (3);
19 IdPortalType idPortal1 = idArray1 . WritePortal ();
20 idPortal1 .Set (0, 3);
21 idPortal1 .Set (1, 0);
22 idPortal1 .Set (2, 1);
23 vtkm :: cont :: ArrayHandlePermutation < IdArrayType , ValueArrayType > permutedArray1 (
24 idArray1 , valueArray );
25
26 // Use ArrayHandlePermutation to make an array = [0.1 , 0.2 , 0.2 , 0.3 , 0.0]
27 IdArrayType idArray2 ;
28 idArray2 . Allocate (5);
29 IdPortalType idPortal2 = idArray2 . WritePortal ();
30 idPortal2 .Set (0, 1);
31 idPortal2 .Set (1, 2);
32 idPortal2 .Set (2, 2);
33 idPortal2 .Set (3, 3);
34 idPortal2 .Set (4, 0);
35 vtkm :: cont :: ArrayHandlePermutation < IdArrayType , ValueArrayType > permutedArray2 (
36 idArray2 , valueArray );

The vtkm/cont/ArrayHandlePermutation.h header also contains the templated convenience function vtkm::-
cont::make ArrayHandlePermutation that takes instances of the index and value array handles and returns a
permutation array. This function can sometimes be used to avoid having to declare the full array type.

Example 26.17: Using make ArrayHandlePermutation.
1 vtkm :: cont :: make_ArrayHandlePermutation (idArray , valueArray )

When using an ArrayHandlePermutation, take care that all the provided indices in the index array point
to valid locations in the values array. Bad indices can cause reading from or writing to invalid memory
locations, which can be difficult to debug. Also, be wary about having duplicate indices, which means that
multiple array entries point to the same memory location. This will work fine when using the array as
input, but will cause a dangerous race condition if used as an output.

Common Errors

You can write to a ArrayHandlePermutation by, for example, using it as an output array. Writes to
the ArrayHandlePermutation will go to the respective location in the source array. However, ArrayHan-
dlePermutation cannot be resized.

Did you know?
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26.8 Zipped Arrays

A zip array is a fancy array handle that combines two arrays of the same size to pair up the corresponding values.
Each element in the zipped array is a vtkm::Pair containing the values of the two respective arrays. These pairs
are not stored in their own memory space. Rather, the pairs are generated as the array is used. Writing a pair
to the zipped array writes the values in the two source arrays.
Specifying a zipped array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::ArrayHan-
dleZip that takes the two arrays providing values for the first and second entries in the pairs. The following
example is a simple demonstration of creating a zip array handle.

Example 26.18: Using ArrayHandleZip.
1 using ArrayType1 = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
2 using PortalType1 = ArrayType1 :: WritePortalType ;
3
4 using ArrayType2 = vtkm :: cont :: ArrayHandle <vtkm :: Float64 >;
5 using PortalType2 = ArrayType2 :: WritePortalType ;
6
7 // Create an array of vtkm :: Id with values [3, 0, 1]
8 ArrayType1 array1 ;
9 array1 . Allocate (3);

10 PortalType1 portal1 = array1 . WritePortal ();
11 portal1 .Set (0, 3);
12 portal1 .Set (1, 0);
13 portal1 .Set (2, 1);
14
15 // Create a second array of vtkm :: Float32 with values [0.0 , 0.1 , 0.2]
16 ArrayType2 array2 ;
17 array2 . Allocate (3);
18 PortalType2 portal2 = array2 . WritePortal ();
19 portal2 .Set (0, 0.0);
20 portal2 .Set (1, 0.1);
21 portal2 .Set (2, 0.2);
22
23 // Zip the two arrays together to create an array of
24 // vtkm :: Pair <vtkm ::Id , vtkm :: Float64 > with values [(3 ,0.0) , (0 ,0.1) , (1 ,0.2)]
25 vtkm :: cont :: ArrayHandleZip < ArrayType1 , ArrayType2 > zipArray (array1 , array2 );

The vtkm/cont/ArrayHandleZip.h header also contains the templated convenience function vtkm::cont::make -
ArrayHandleZip that takes instances of the two array handles and returns a zip array. This function can
sometimes be used to avoid having to declare the full array type.

Example 26.19: Using make ArrayHandleZip.
1 vtkm :: cont :: make_ArrayHandleZip (array1 , array2 )

26.9 Coordinate System Arrays

Many of the data structures we use in VTK-m are described in a 3D coordinate system. Although, as we will
see in Chapter 7, we can use any ArrayHandle to store point coordinates, including a raw array of 3D vectors,
there are some common patterns for point coordinates that we can use specialized arrays to better represent the
data.
There are two fancy array handles that each handle a special form of coordinate system. The first such array
handle is vtkm::cont::ArrayHandleUniformPointCoordinates, which represents a uniform sampling of space.
The constructor for ArrayHandleUniformPointCoordinates takes three arguments. The first argument is a
vtkm::Id3 that specifies the number of samples in the x, y, and z directions. The second argument, which is
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optional, specifies the origin (the location of the first point at the lower left corner). If not specified, the origin
is set to [0,0,0]. The third argument, which is also optional, specifies the distance between samples in the x, y,
and z directions. If not specified, the spacing is set to 1 in each direction.

Example 26.20: Using ArrayHandleUniformPointCoordinates.
1 // Create a set of point coordinates for a uniform grid in the space between
2 // -5 and 5 in the x direction and -3 and 3 in the y and z directions . The
3 // uniform sampling is spaced in 0.08 unit increments in the x direction (for
4 // 126 samples ), 0.08 unit increments in the y direction (for 76 samples ) and
5 // 0.24 unit increments in the z direction (for 26 samples ). That makes
6 // 248 ,976 values in the array total .
7 vtkm :: cont :: ArrayHandleUniformPointCoordinates uniformCoordinates (
8 vtkm :: Id3 (126 , 76, 26) ,
9 vtkm :: Vec3f { -5.0f, -3.0f, -3.0f },

10 vtkm :: Vec3f { 0.08f, 0.08f, 0.24f });

The second fancy array handle for special coordinate systems is vtkm::cont::ArrayHandleCartesianProduct,
which represents a rectilinear sampling of space where the samples are axis aligned but have variable spacing.
Sets of coordinates of this type are most efficiently represented by having a separate array for each component
of the axis, and then for each [i, j,k] index of the array take the value for each component from each array using
the respective index. This is equivalent to performing a Cartesian product on the arrays.
ArrayHandleCartesianProduct is a templated class. It has three template parameters, which are the types of
the arrays used for the x, y, and z axes. The constructor for ArrayHandleCartesianProduct takes the three
arrays.

Example 26.21: Using a ArrayHandleCartesianProduct.
1 using AxisArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >;
2 using AxisPortalType = AxisArrayType :: WritePortalType ;
3
4 // Create array for x axis coordinates with values [0.0 , 1.1 , 5.0]
5 AxisArrayType xAxisArray ;
6 xAxisArray . Allocate (3);
7 AxisPortalType xAxisPortal = xAxisArray . WritePortal ();
8 xAxisPortal .Set (0, 0.0f);
9 xAxisPortal .Set (1, 1.1f);

10 xAxisPortal .Set (2, 5.0f);
11
12 // Create array for y axis coordinates with values [0.0 , 2.0]
13 AxisArrayType yAxisArray ;
14 yAxisArray . Allocate (2);
15 AxisPortalType yAxisPortal = yAxisArray . WritePortal ();
16 yAxisPortal .Set (0, 0.0f);
17 yAxisPortal .Set (1, 2.0f);
18
19 // Create array for z axis coordinates with values [0.0 , 0.5]
20 AxisArrayType zAxisArray ;
21 zAxisArray . Allocate (2);
22 AxisPortalType zAxisPortal = zAxisArray . WritePortal ();
23 zAxisPortal .Set (0, 0.0f);
24 zAxisPortal .Set (1, 0.5f);
25
26 // Create point coordinates for a " rectilinear grid" with axis - aligned points
27 // with variable spacing by taking the Cartesian product of the three
28 // previously defined arrays . This generates the following 3x2x2 = 12 values :
29 //
30 // [0.0 , 0.0 , 0.0] , [1.1 , 0.0 , 0.0] , [5.0 , 0.0 , 0.0] ,
31 // [0.0 , 2.0 , 0.0] , [1.1 , 2.0 , 0.0] , [5.0 , 2.0 , 0.0] ,
32 // [0.0 , 0.0 , 0.5] , [1.1 , 0.0 , 0.5] , [5.0 , 0.0 , 0.5] ,
33 // [0.0 , 2.0 , 0.5] , [1.1 , 2.0 , 0.5] , [5.0 , 2.0 , 0.5]
34 vtkm :: cont ::
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35 ArrayHandleCartesianProduct < AxisArrayType , AxisArrayType , AxisArrayType >
36 rectilinearCoordinates ( xAxisArray , yAxisArray , zAxisArray );

The vtkm/cont/ArrayHandleCartesianProduct.h/header also contains the templated convenience function vtkm::-
cont::make ArrayHandleCartesianProduct that takes the three axis arrays and returns an array of the Carte-
sian product. This function can sometimes be used to avoid having to declare the full array type.

Example 26.22: Using make ArrayHandleCartesianProduct.
1 vtkm :: cont :: make_ArrayHandleCartesianProduct ( xAxisArray , yAxisArray , zAxisArray )

These specialized arrays for coordinate systems greatly reduce the code duplication in VTK-m. Most sci-
entific visualization systems need separate implementations of algorithms for uniform, rectilinear, and un-
structured grids. But in VTK-m an algorithm can be written once and then applied to all these different
grid structures by using these specialized array handles and letting the compiler’s templates optimize the
code.

Did you know?

26.10 Composite Vector Arrays

A composite vector array is a fancy array handle that combines two to four arrays of the same size and value
type and combines their corresponding values to form a vtkm::Vec. A composite vector array is similar in
nature to a zipped array (described in Section 26.8) except that values are combined into vtkm::Vec s instead
of vtkm::Pair s. The created vtkm::Vec s are not stored in their own memory space. Rather, the Vecs are
generated as the array is used. Writing Vecs to the composite vector array writes values into the components of
the source arrays.
A composite vector array can be created using the vtkm::cont::ArrayHandleCompositeVector class. This
class has a variadic template argument that is a “signature” for the arrays to be combined. The constructor for
ArrayHandleCompositeVector takes instances of the array handles to combine.

Example 26.23: Using ArrayHandleCompositeVector.
1 // Create an array with [0, 1, 2, 3, 4]
2 using ArrayType1 = vtkm :: cont :: ArrayHandleIndex ;
3 ArrayType1 array1 (5);
4
5 // Create an array with [3, 1, 4, 1, 5]
6 using ArrayType2 = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
7 ArrayType2 array2 ;
8 array2 . Allocate (5);
9 ArrayType2 :: WritePortalType arrayPortal2 = array2 . WritePortal ();

10 arrayPortal2 .Set (0, 3);
11 arrayPortal2 .Set (1, 1);
12 arrayPortal2 .Set (2, 4);
13 arrayPortal2 .Set (3, 1);
14 arrayPortal2 .Set (4, 5);
15
16 // Create an array with [2, 7, 1, 8, 2]
17 using ArrayType3 = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
18 ArrayType3 array3 ;
19 array3 . Allocate (5);
20 ArrayType2 :: WritePortalType arrayPortal3 = array3 . WritePortal ();
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21 arrayPortal3 .Set (0, 2);
22 arrayPortal3 .Set (1, 7);
23 arrayPortal3 .Set (2, 1);
24 arrayPortal3 .Set (3, 8);
25 arrayPortal3 .Set (4, 2);
26
27 // Create an array with [0, 0, 0, 0]
28 using ArrayType4 = vtkm :: cont :: ArrayHandleConstant <vtkm ::Id >;
29 ArrayType4 array4 (0, 5);
30
31 // Use ArrayhandleCompositeVector to create the array
32 // [(0 ,3 ,2 ,0) , (1 ,1 ,7 ,0) , (2 ,4 ,1 ,0) , (3 ,1 ,8 ,0) , (4 ,5 ,2 ,0)].
33 using CompositeArrayType = vtkm :: cont ::
34 ArrayHandleCompositeVector < ArrayType1 , ArrayType2 , ArrayType3 , ArrayType4 >;
35 CompositeArrayType compositeArray (array1 , array2 , array3 , array4 );

The vtkm/cont/ArrayHandleCompositeVector.h header also contains the templated convenience function vtkm::-
cont::make ArrayHandleCompositeVector which takes a variable number of array handles and returns an
ArrayHandleCompositeVector. This function can sometimes be used to avoid having to declare the full array
type. ArrayHandleCompositeVector is also often used to combine scalar arrays into vector arrays.

Example 26.24: Using make ArrayHandleCompositeVector.
1 vtkm :: cont :: make_ArrayHandleCompositeVector (array1 , array2 , array3 , array4 )

26.11 Extract Component Arrays

Component extraction allows access to a single component of an ArrayHandle with a vtkm::Vec ValueType.
vtkm::cont::ArrayHandleExtractComponent allows one component of a vector array to be extracted without
creating a copy of the data. ArrayHandleExtractComponent can also be combined with ArrayHandleCompos-
iteVector (described in Section 26.10) to arbitrarily stitch several components from multiple arrays together.
As a simple example, consider an ArrayHandle containing 3D coordinates for a collection of points and a filter
that only operates on the points’ elevations (Z, in this example). We can easily create the elevation array
on-the-fly without allocating a new array as in the following example.

Example 26.25: Extracting components of Vecs in an array with ArrayHandleExtractComponent.
1 using ValueArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Vec3f_64 >;
2
3 // Create array with values [ (0.0 , 0.1 , 0.2) , (1.0 , 1.1 , 1.2) , (2.0 , 2.1 , 2.2) ]
4 ValueArrayType valueArray ;
5 valueArray . Allocate (3);
6 auto valuePortal = valueArray . WritePortal ();
7 valuePortal .Set (0, vtkm :: make_Vec (0.0 , 0.1 , 0.2));
8 valuePortal .Set (1, vtkm :: make_Vec (1.0 , 1.1 , 1.2));
9 valuePortal .Set (2, vtkm :: make_Vec (2.0 , 2.1 , 2.2));

10
11 // Use ArrayHandleExtractComponent to make an array = [1.3 , 2.3 , 3.3].
12 vtkm :: cont :: ArrayHandleExtractComponent < ValueArrayType > extractedComponentArray (
13 valueArray , 2);

The vtkm/cont/ArrayHandleExtractComponent.h header also contains the templated convenience function
vtkm::cont::make ArrayHandleExtractComponent that takes an ArrayHandle of Vecs and vtkm::IdCompo-
nent which returns an appropriately typed ArrayHandleExtractComponent containing the values for a specified
component. The index of the component to extract is provided as an argument to make ArrayHandleExtract-
Component, which is required. The use of make ArrayHandleExtractComponent can be used to avoid having to
declare the full array type.

228 Chapter 26. Fancy Array Handles



26.12. Swizzle Arrays

Example 26.26: Using make ArrayHandleExtractComponent.
1 vtkm :: cont :: make_ArrayHandleExtractComponent ( valueArray , 2)

26.12 Swizzle Arrays

It is often useful to reorder or remove specific components from an ArrayHandle with a vtkm::Vec ValueType.
vtkm::cont::ArrayHandleSwizzle provides an easy way to accomplish this.
The template parameters of ArrayHandleSwizzle specify a “component map,” which defines the swizzle opera-
tion. This map consists of the components from the input ArrayHandle, which will be exposed in the ArrayHan-
dleSwizzle. For instance, vtkm::cont::ArrayHandleSwizzle <Some3DArrayType, 3> with Some3DArray and
vtkm::Vec <vtkm::IdComponent, 3>(0, 2, 1) as constructor arguments will allow access to a 3D array, but with
the Y and Z components exchanged. This rearrangement does not create a copy, and occurs on-the-fly as data
are accessed through the ArrayHandleSwizzle’s portal. This fancy array handle can also be used to eliminate
unnecessary components from an ArrayHandle’s data, as shown below.

Example 26.27: Swizzling components of Vecs in an array with ArrayHandleSwizzle.
1 using ValueArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Vec4f_64 >;
2
3 // Create array with values
4 // [ (0.0 , 0.1 , 0.2 , 0.3) , (1.0 , 1.1 , 1.2 , 1.3) , (2.0 , 2.1 , 2.2 , 2.3) ]
5 ValueArrayType valueArray ;
6 valueArray . Allocate (3);
7 auto valuePortal = valueArray . WritePortal ();
8 valuePortal .Set (0, vtkm :: make_Vec (0.0 , 0.1 , 0.2 , 0.3));
9 valuePortal .Set (1, vtkm :: make_Vec (1.0 , 1.1 , 1.2 , 1.3));

10 valuePortal .Set (2, vtkm :: make_Vec (2.0 , 2.1 , 2.2 , 2.3));
11
12 // Use ArrayHandleSwizzle to make an array of Vec -3 with x,y,z,w swizzled to z,x,w
13 // [ (0.2 , 0.0 , 0.3) , (1.2 , 1.0 , 1.3) , (2.2 , 2.0 , 2.3) ]
14 vtkm :: cont :: ArrayHandleSwizzle < ValueArrayType , 3> swizzledArray (
15 valueArray , vtkm :: IdComponent3 (2, 0, 3));

The vtkm/cont/ArrayHandleSwizzle.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleSwizzle that takes an ArrayHandle of Vecs and returns an appropriately typed ArrayHan-
dleSwizzle containing swizzled vectors. The indices of the swizzled components are provided as arguments
to make ArrayHandleSwizzle after the ArrayHandle. The use of make ArrayHandleSwizzle can be used to
avoid having to declare the full array type.

Example 26.28: Using make ArrayHandleSwizzle.
1 vtkm :: cont :: make_ArrayHandleSwizzle ( valueArray , 2, 0, 3)

26.13 Grouped Vector Arrays

A grouped vector array is a fancy array handle that groups consecutive values of an array together to form
a vtkm::Vec. The source array must be of a length that is divisible by the requested Vec size. The created
vtkm::Vec s are not stored in their own memory space. Rather, the Vecs are generated as the array is used.
Writing Vecs to the grouped vector array writes values into the the source array.
A grouped vector array is created using the vtkm::cont::ArrayHandleGroupVec class. This templated class
has two template arguments. The first argument is the type of array being grouped and the second argument is
an integer specifying the size of the Vecs to create (the number of values to group together).
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Example 26.29: Using ArrayHandleGroupVec.
1 // Create an array containing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
2 using ArrayType = vtkm :: cont :: ArrayHandleIndex ;
3 ArrayType sourceArray (12);
4
5 // Create an array containing [(0 ,1) , (2 ,3) , (4 ,5) , (6 ,7) , (8 ,9) , (10 ,11)]
6 vtkm :: cont :: ArrayHandleGroupVec <ArrayType , 2> vec2Array ( sourceArray );
7
8 // Create an array containing [(0 ,1 ,2) , (3 ,4 ,5) , (6 ,7 ,8) , (9 ,10 ,11)]
9 vtkm :: cont :: ArrayHandleGroupVec <ArrayType , 3> vec3Array ( sourceArray );

The vtkm/cont/ArrayHandleGroupVec.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleGroupVec that takes an instance of the array to group into Vecs. You must specify the size
of the Vecs as a template parameter when using vtkm::cont::make ArrayHandleGroupVec.

Example 26.30: Using make ArrayHandleGroupVec.
1 // Create an array containing [(0 ,1 ,2 ,3) , (4 ,5 ,6 ,7) , (8 ,9 ,10 ,11)]
2 vtkm :: cont :: make_ArrayHandleGroupVec <4 >( sourceArray )

ArrayHandleGroupVec is handy when you need to build an array of vectors that are all of the same length, but
what about when you need an array of vectors of different lengths? One common use case for this is if you are
defining a collection of polygons of different sizes (triangles, quadrilaterals, pentagons, and so on). We would like
to define an array such that the data for each polygon were stored in its own Vec (or, rather, Vec-like) object.
vtkm::cont::ArrayHandleGroupVecVariable does just that.
ArrayHandleGroupVecVariable takes two arrays. The first array, identified as the “source” array, is a flat
representation of the values (much like the array used with ArrayHandleGroupVec). The second array, identified
as the “offsets” array, provides for each vector the index into the source array where the start of the vector is.
The offsets array must be monotonically increasing. The size of the offsets array is one greater than the number
of vectors in the resulting array. The first offset is always 0 and the last offset is always the size of the input
source array. The first and second template parameters to ArrayHandleGroupVecVariable are the types for the
source and offset arrays, respectively.
It is often the case that you will start with a group of vector lengths rather than offsets into the source array.
If this is the case, then the vtkm::cont::ConvertNumComponentsToOffsets helper function can convert an
array of vector lengths to an array of offsets. The first argument to this function is always the array of vector
lengths. The second argument, which is optional, is a reference to a ArrayHandle into which the offsets should
be stored. If this offset array is not specified, an ArrayHandle will be returned from the function instead. The
third argument, which is also optional, is a reference to a vtkm::Id into which the expected size of the source
array is put. Having the size of the source array is often helpful, as it can be used to allocate data for the source
array or check the source array’s size. It is also OK to give the expected size reference but not the offset array
reference.

Example 26.31: Using ArrayHandleGroupVecVariable.
1 // Create an array of counts containing [4, 2, 3, 3]
2 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > countArray =
3 vtkm :: cont :: make_ArrayHandle <vtkm :: IdComponent >({ 4, 2, 3, 3 });
4
5 // Convert the count array to an offset array [0, 4, 6, 9, 12]
6 // Returns the number of total components : 12
7 vtkm :: Id sourceArraySize ;
8 using OffsetArrayType = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
9 OffsetArrayType offsetArray =

10 vtkm :: cont :: ConvertNumComponentsToOffsets ( countArray , sourceArraySize );
11
12 // Create an array containing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
13 using SourceArrayType = vtkm :: cont :: ArrayHandleIndex ;
14 SourceArrayType sourceArray ( sourceArraySize );
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15
16 // Create an array containing [(0 ,1 ,2 ,3) , (4 ,5) , (6 ,7 ,8) , (9 ,10 ,11)]
17 vtkm :: cont :: ArrayHandleGroupVecVariable < SourceArrayType , OffsetArrayType >
18 vecVariableArray ( sourceArray , offsetArray );

The vtkm/cont/ArrayHandleGroupVecVariable.h header also contains the templated convenience function vtkm::-
cont::make ArrayHandleGroupVecVariable that takes an instance of the source array to group into Vec-like
objects and the offset array.

Example 26.32: Using MakeArrayHandleGroupVecVariable.
1 // Create an array containing [(0 ,1 ,2 ,3) , (4 ,5) , (6 ,7 ,8) , (9 ,10 ,11)]
2 vtkm :: cont :: make_ArrayHandleGroupVecVariable ( sourceArray , offsetArray )

You can write to ArrayHandleGroupVec and ArrayHandleGroupVecVariable by, for example, using it as
an output array. Writes to these arrays will go to the respective location in the source array. ArrayHandle-
GroupVec can also be allocated and resized (which in turn causes the source array to be allocated). However,
ArrayHandleGroupVecVariable cannot be resized and the source array must be pre-allocated. You can use
the source array size value returned from ConvertNumComponentsToOffsets to allocate source arrays.

Did you know?

Keep in mind that the values stored in a ArrayHandleGroupVecVariable are not actually vtkm::Vec
objects. Rather, they are “Vec-like” objects, which has some subtle but important ramifications. First, the
type will not match the vtkm::Vec template, and there is no automatic conversion to vtkm::Vec objects.
Thus, many functions that accept vtkm::Vec objects as parameters will not accept the Vec-like object.
Second, the size of Vec-like objects are not known until runtime. See Sections 4.3 and 19.5.2 for more
information on the difference between vtkm::Vec and Vec-like objects.

Common Errors
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CHAPTER

TWENTYSEVEN

ACCESSING AND ALLOCATING ARRAY
HANDLES

So far we have seen examples of creating vtkm::cont::ArrayHandle s from normal C++ arrays (Chapter 16)
and creating some special arrays (Chapter 26). However, we have so far avoided discussing how to access the
actual data in ArrayHandles. So far we have only accessed ArrayHandle data indirectly through other VTK-m
features such as worklets.
In this chapter we describe how to more directly access the data in an ArrayHandle, how to allocate space for
data in an ArrayHandle, and how data is transferred to the execution environment to be used in a worklet.

27.1 Array Portals

An array handle defines auxiliary structures called array portals that provide direct access into its data. An
array portal is a simple object that is somewhat functionally equivalent to an STL-type iterator, but with a
much simpler interface. Array portals can be read-only or read-write and they can be accessible from either
the control environment or the execution environment. All these variants have similar interfaces although some
features that are not applicable can be left out.
An array portal object contains each of the following:

ValueType The type for each item in the array.

GetNumberOfValues A method that returns the number of entries in the array.

Get A method that returns the value at a given index.

Set A method that changes the value at a given index. This method does not need to exist for read-only array
portals.

The following code example defines an array portal for a simple C array of scalar values. This definition has no
practical value (it is covered by the more general vtkm::cont::internal::ArrayPortalFromIterators), but
demonstrates the function of each component.

Example 27.1: A simple array portal implementation.
1 template < typename T>
2 class SimpleScalarArrayPortal
3 {
4 public :
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5 using ValueType = T;
6
7 // There is no specification for creating array portals , but they generally
8 // need a constructor like this to be practical .
9 VTKM_EXEC_CONT

10 SimpleScalarArrayPortal ( ValueType * array , vtkm :: Id numberOfValues )
11 : Array ( array )
12 , NumberOfValues ( numberOfValues )
13 {
14 }
15
16 VTKM_EXEC_CONT
17 SimpleScalarArrayPortal ()
18 : Array (NULL)
19 , NumberOfValues (0)
20 {
21 }
22
23 VTKM_EXEC_CONT
24 vtkm :: Id GetNumberOfValues () const { return this -> NumberOfValues ; }
25
26 VTKM_EXEC_CONT
27 ValueType Get(vtkm :: Id index ) const { return this -> Array [ index ]; }
28
29 VTKM_EXEC_CONT
30 void Set(vtkm :: Id index , ValueType value ) const { this -> Array [ index ] = value ; }
31
32 private :
33 ValueType * Array ;
34 vtkm :: Id NumberOfValues ;
35 };

Although array portals are simple to implement and use, and array portals’ functionality is similar to iterators,
there exists a great deal of code already based on STL iterators and it is often convenient to interface with an
array through an iterator rather than an array portal. The vtkm::cont::ArrayPortalToIterators class can
be used to convert an array portal to an STL-compatible iterator. The class is templated on the array portal
type and has a constructor that accepts an instance of the array portal. It contains the following features.

IteratorType The type of an STL-compatible random-access iterator that can provide the same access as the
array portal.

GetBegin A method that returns an STL-compatible iterator of type IteratorType that points to the beginning
of the array.

GetEnd A method that returns an STL-compatible iterator of type IteratorType that points to the end of the
array.

Example 27.2: Using ArrayPortalToIterators.
1 template < typename PortalType >
2 VTKM_CONT std :: vector < typename PortalType :: ValueType > CopyArrayPortalToVector (
3 const PortalType & portal )
4 {
5 using ValueType = typename PortalType :: ValueType ;
6 std :: vector <ValueType > result (
7 static_cast <std :: size_t >( portal . GetNumberOfValues ()));
8
9 vtkm :: cont :: ArrayPortalToIterators < PortalType > iterators ( portal );

10
11 std :: copy( iterators . GetBegin (), iterators . GetEnd (), result . begin ());
12
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13 return result ;
14 }

As a convenience, vtkm/cont/ArrayPortalToIterators.h also defines a pair of functions named vtkm::cont::Ar-
rayPortalToIteratorBegin() and vtkm::cont::ArrayPortalToIteratorEnd() that each take an array portal
as an argument and return a begin and end iterator, respectively.

Example 27.3: Using ArrayPortalToIteratorBegin and ArrayPortalToIteratorEnd.
1 std :: vector <vtkm :: Float32 > myContainer (
2 static_cast <std :: size_t >( portal . GetNumberOfValues ()));
3
4 std :: copy(vtkm :: cont :: ArrayPortalToIteratorBegin ( portal ),
5 vtkm :: cont :: ArrayPortalToIteratorEnd ( portal ),
6 myContainer . begin ());

ArrayHandle contains two internal type definitions for array portal types that are capable of interfacing with
the underlying data in the control environment. These are WritePortalType and ReadPortalType, which define
read-write and read-only array portals, respectively.
ArrayHandle provides the methods ReadPortal and WritePortal to get the associated array portal objects to
access the data in the control environment. These methods also have the side effect of refreshing the control
environment copy of the data as if you called SyncControlArray. Be aware that calling WritePortal will
invalidate any copy in the execution environment, meaning that any subsequent use will cause the data to be
copied back again.

Example 27.4: Using portals from an ArrayHandle.
1 template < typename T, typename Storage >
2 void SortCheckArrayHandle (vtkm :: cont :: ArrayHandle <T, Storage > arrayHandle )
3 {
4 using WritePortalType =
5 typename vtkm :: cont :: ArrayHandle <T, Storage >:: WritePortalType ;
6 using ReadPortalType =
7 typename vtkm :: cont :: ArrayHandle <T, Storage >:: ReadPortalType ;
8
9 WritePortalType readwritePortal = arrayHandle . WritePortal ();

10 // This is actually pretty dumb. Sorting would be generally faster in
11 // parallel in the execution environment using the device adapter algorithms .
12 std :: sort(vtkm :: cont :: ArrayPortalToIteratorBegin ( readwritePortal ),
13 vtkm :: cont :: ArrayPortalToIteratorEnd ( readwritePortal ));
14
15 ReadPortalType readPortal = arrayHandle . ReadPortal ();
16 for (vtkm :: Id index = 1; index < readPortal . GetNumberOfValues (); index ++)
17 {
18 if ( readPortal .Get( index - 1) > readPortal .Get( index ))
19 {
20 std :: cout << " Sorting is wrong !" << std :: endl;
21 break ;
22 }
23 }
24 }

Most operations on arrays in VTK-m should really be done in the execution environment. Keep in mind
that whenever doing an operation using a control array portal, that operation will likely be slow for large
arrays. However, some operations, like performing file I/O, make sense in the control environment.

Did you know?
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The portal returned from ReadPortal or WritePortal is only good as long as the data in the ArrayHandle
are not moved or reallocated. For example, if you call ArrayHandle::Allocate, any previously created
array portals are likely to become invalid, and using them will result in undefined behavior. Thus, you
should keep portals only as long as is necessary to complete an operation.

Common Errors

27.2 Allocating and Populating Array Handles

vtkm::cont::ArrayHandle is capable of allocating its own memory. The most straightforward way to allocate
memory is to call the ArrayHandle::Allocate method. The Allocate method takes a single argument, which
is the number of elements to make the array.

Example 27.5: Allocating an ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > arrayHandle ;
2
3 const vtkm :: Id ARRAY_SIZE = 50;
4 arrayHandle . Allocate ( ARRAY_SIZE );

By default when you Allocate an array, it potentially destroys any existing data in it. However, there are cases
where you wish to grow or shrink an array while preserving the existing data. To preserve the existing data
when allocating an array, pass vtkm::CopyFlag::On as an optional second argument.

Example 27.6: Resizing an ArrayHandle.
1 // Add space for 10 more values at the end of the array .
2 arrayHandle . Allocate ( arrayHandle . GetNumberOfValues () + 10, vtkm :: CopyFlag :: On );

The ability to allocate memory is a key difference between ArrayHandle and many other common forms
of smart pointers. When one ArrayHandle allocates new memory, all other ArrayHandles pointing to
the same managed memory get the newly allocated memory. This feature makes it possible to pass an
ArrayHandle to a method to be reallocated and filled without worrying about C++ details on how to reference
the ArrayHandle object itself.

Did you know?

Once an ArrayHandle is allocated, it can be populated by using the portal returned from ArrayHandle::-
WritePortal, as described in Section 27.1. This is roughly the method used by the readers in the I/O package
(Chapter 8).

Example 27.7: Populating a newly allocated ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > arrayHandle ;
2
3 const vtkm :: Id ARRAY_SIZE = 50;
4 arrayHandle . Allocate ( ARRAY_SIZE );
5
6 // Usually it is easier to just use the auto keyword .
7 using PortalType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >:: WritePortalType ;
8 PortalType portal = arrayHandle . WritePortal ();
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9
10 for (vtkm :: Id index = 0; index < portal . GetNumberOfValues (); index ++)
11 {
12 portal .Set(index , GetValueForArray ( index ));
13 }

27.3 Compute Array Range

It is common to need to know the minimum and/or maximum values in an array. To help find these values,
VTK-m provides the vtkm::cont::ArrayRangeCompute convenience function defined in vtkm/cont/ArrayRange-
Compute.h. ArrayRangeCompute simply takes an ArrayHandle on which to find the range of values.
If given an array with vtkm::Vec values, ArrayRangeCompute computes the range separately for each component
of the Vec. The return value for ArrayRangeCompute is vtkm::cont::ArrayHandle <vtkm::Range >. This
returned array will have one value for each component of the input array’s type. So for example if you call
ArrayRangeCompute on a vtkm::cont::ArrayHandle <vtkm::Id3 >, the returned array of Ranges will have 3
values in it. Of course, when ArrayRangeCompute is run on an array of scalar types, you get an array with a
single value in it.
Each value of vtkm::Range holds the minimum and maximum value for that component. The Range object is
documented in Section 19.3.

Example 27.8: Using ArrayRangeCompute.
1 vtkm :: cont :: ArrayHandle <vtkm :: Range > rangeArray =
2 vtkm :: cont :: ArrayRangeCompute ( arrayHandle );
3 auto rangePortal = rangeArray . ReadPortal ();
4 for (vtkm :: Id index = 0; index < rangePortal . GetNumberOfValues (); ++ index )
5 {
6 vtkm :: Range componentRange = rangePortal .Get( index );
7 std :: cout << " Values for component " << index << " go from "
8 << componentRange .Min << " to " << componentRange .Max << std :: endl;
9 }

ArrayRangeCompute will compute the minimum and maximum values in parallel. If desired, you can specify
the parallel hardware device used for the computation as an optional second argument to ArrayRangeCom-
pute. You can specify the device using a runtime device tracker, which is documented in Section 12.3.

Did you know?

27.4 Interface to Execution Environment

One of the main functions of the array handle is to allow an array to be defined in the control environment and
then be used in the execution environment. When using an ArrayHandle with filters, worklets, or algorithms,
this transition is handled automatically. However, it is also possible to invoke the transfer for a known device.
This is most useful when creating execution objects, as discussed in Chapter 29.
The ArrayHandle class manages the transition from control to execution with a set of three methods that
allocate, transfer, and ready the data in one operation. These methods all start with the prefix Prepare and are
meant to be called before some operation happens in the execution environment. The methods are as follows.
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ArrayHandle::PrepareForInput Copies data from the control to the execution environment, if necessary, and
readies the data for read-only access.

ArrayHandle::PrepareForInPlace Copies the data from the control to the execution environment, if necessary,
and readies the data for both reading and writing.

ArrayHandle::PrepareForOutput Allocates space (the size of which is given as a parameter) in the execution
environment, if necessary, and readies the space for writing.

The PrepareForInput and PrepareForInPlace methods each take two arguments. The first argument is the
device adapter tag where execution will take place (see Section 12.1 for more information on device adapter
tags). The second argument is a reference to a vtkm::cont::Token, which scopes the returned array portal.
While the given Token exists, the returned portal is guaranteed to be valid and any conflicting operations on the
ArrayHandle will block. Once the Token is destroyed, the associated array portal becomes invalid.
PrepareForOutput takes three arguments: the size of the space to allocate, the device adapter tag, and a
reference to a Token object.
Each of these Prepare methods returns an array portal that can be used in the execution environment. Pre-
pareForInput returns an object of type ArrayHandle::ReadPortalType whereas PrepareForInPlace and Pre-
pareForOutput each return an object of type ArrayHandle::WritePortalType.
Although these Prepare methods are called in the control environment, the returned array portal can only
be used in the execution environment. Thus, the portal must be passed to an invocation of the execution
environment.
Most of the time, the passing of ArrayHandle data to the execution environment is handled automatically by
VTK-m. The most common need to call one of these Prepare methods is to build execution objects (Chapter
29) or to construct derived array types (Section 36.4).
The following example is a contrived example for preparing arrays for the execution environment. It is contrived
because it would be easier to create a worklet or transform array handle to have the same effect, and in those
cases VTK-m would take of the transfers internally. More realistic examples can be found in Chapter 29 and
Section 36.4.

Example 27.9: Using an execution array portal from an ArrayHandle.
1 template < typename InputPortalType , typename OutputPortalType >
2 struct DoubleFunctor : public vtkm :: exec :: FunctorBase
3 {
4 InputPortalType InputPortal ;
5 OutputPortalType OutputPortal ;
6
7 VTKM_CONT
8 DoubleFunctor ( InputPortalType inputPortal , OutputPortalType outputPortal )
9 : InputPortal ( inputPortal )

10 , OutputPortal ( outputPortal )
11 {
12 }
13
14 VTKM_EXEC
15 void operator ()( vtkm :: Id index ) const
16 {
17 this -> OutputPortal .Set(index , 2 * this -> InputPortal .Get( index ));
18 }
19 };
20
21 template < typename T, typename Device >
22 void DoubleArray (vtkm :: cont :: ArrayHandle <T> inputArray ,
23 vtkm :: cont :: ArrayHandle <T> outputArray ,
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24 Device )
25 {
26 vtkm :: Id numValues = inputArray . GetNumberOfValues ();
27
28 vtkm :: cont :: Token token ;
29 auto inputPortal = inputArray . PrepareForInput ( Device {}, token );
30 auto outputPortal = outputArray . PrepareForOutput (numValues , Device {}, token );
31 // Token is now attached to inputPortal and outputPortal . Those two portals
32 // are guaranteed to be valid until token goes out of scope at the end of
33 // this function .
34
35 DoubleFunctor < decltype ( inputPortal ), decltype ( outputPortal )> functor ( inputPortal ,
36 outputPortal );
37
38 vtkm :: cont :: DeviceAdapterAlgorithm <Device >:: Schedule (functor , numValues );
39 }

Once one of the Prepare methods have been called, further operations on the ArrayHandle that might cause
access hazards will block. This opens the possibility of deadlock. To help prevent deadlock, the attached
Token object should be scoped to last only as long as necessary.

Common Errors
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TWENTYEIGHT

GLOBAL ARRAYS AND TOPOLOGY

When writing an algorithm in VTK-m by creating a worklet, the data each instance of the worklet has access to is
intentionally limited. This allows VTK-m to provide safety from race conditions and other parallel programming
difficulties. However, there are times when the complexity of an algorithm requires all threads to have shared
global access to a global structure. This chapter describes worklet tags that can be used to pass data globally
to all instances of a worklet.

28.1 Whole Arrays

A whole array argument to a worklet allows you to pass in an ArrayHandle. All instances of the worklet will
have access to all the data in the ArrayHandle.

The VTK-m worklet invoking mechanism performs many safety checks to prevent race conditions across
concurrently running worklets. Using a whole array within a worklet circumvents this guarantee of safety,
so be careful when using whole arrays, especially when writing to whole arrays.

Common Errors

A whole array is declared by adding a WholeArrayIn, a WholeArrayInOut, or a WholeArrayOut to the Con-
trolSignature of a worklet. The corresponding argument to the Invoker should be an ArrayHandle. The
ArrayHandle must already be allocated in all cases, including when using WholeArrayOut. When the data are
passed to the operator of the worklet, it is passed as an array portal object. (Array portals are discussed in
Section 27.1.) This means that the worklet can access any entry in the array with Get and/or Set methods.
We have already seen a demonstration of using a whole array in Example 21.2 to perform a simple array copy.
Here we will construct a more thorough example of building functionality that requires random array access.
Let’s say we want to measure the quality of triangles in a mesh. A common method for doing this is using the
equation

q = 4a
√

3
h2

1 +h2
2 +h2

3

where a is the area of the triangle and h1, h2, and h3 are the lengths of the sides. We can easily compute this
in a cell to point map, but what if we want to speed up the computations by reducing precision? After all, we
probably only care if the triangle is good, reasonable, or bad. So instead, let’s build a lookup table and then
retrieve the triangle quality from that lookup table based on its sides.
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The following example demonstrates creating such a table lookup in an array and using a worklet argument
tagged with WholeArrayIn to make it accessible.

Example 28.1: Using WholeArrayIn to access a lookup table in a worklet.
1 namespace detail
2 {
3
4 static const vtkm :: Id TRIANGLE_QUALITY_TABLE_DIMENSION = 8;
5 static const vtkm :: Id TRIANGLE_QUALITY_TABLE_SIZE =
6 TRIANGLE_QUALITY_TABLE_DIMENSION * TRIANGLE_QUALITY_TABLE_DIMENSION ;
7
8 VTKM_CONT
9 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > GetTriangleQualityTable ()

10 {
11 // Use these precomputed values for the array . A real application would
12 // probably use a larger array , but we are keeping it small for demonstration
13 // purposes .
14 static vtkm :: Float32 triangleQualityBuffer [ TRIANGLE_QUALITY_TABLE_SIZE ] = {
15 0, 0, 0, 0, 0, 0, 0, 0,
16 0, 0, 0, 0, 0, 0, 0, 0.24431f,
17 0, 0, 0, 0, 0, 0, 0.43298f, 0.47059f,
18 0, 0, 0, 0, 0, 0.54217f, 0.65923f, 0.66408f,
19 0, 0, 0, 0, 0.57972f, 0.75425f, 0.82154f, 0.81536f,
20 0, 0, 0, 0.54217f, 0.75425f, 0.87460f, 0.92567f, 0.92071f,
21 0, 0, 0.43298f, 0.65923f, 0.82154f, 0.92567f, 0.97664f, 0.98100f,
22 0, 0.24431f, 0.47059f, 0.66408f, 0.81536f, 0.92071f, 0.98100f, 1
23 };
24
25 return vtkm :: cont :: make_ArrayHandle (
26 triangleQualityBuffer , TRIANGLE_QUALITY_TABLE_SIZE , vtkm :: CopyFlag :: Off );
27 }
28
29 template < typename T>
30 VTKM_EXEC_CONT vtkm ::Vec <T, 3> TriangleEdgeLengths ( const vtkm ::Vec <T, 3>& point1 ,
31 const vtkm ::Vec <T, 3>& point2 ,
32 const vtkm ::Vec <T, 3>& point3 )
33 {
34 return vtkm :: make_Vec (vtkm :: Magnitude ( point1 - point2 ),
35 vtkm :: Magnitude ( point2 - point3 ),
36 vtkm :: Magnitude ( point3 - point1 ));
37 }
38
39 VTKM_SUPPRESS_EXEC_WARNINGS
40 template < typename PortalType , typename T>
41 VTKM_EXEC_CONT static vtkm :: Float32 LookupTriangleQuality (
42 const PortalType & triangleQualityPortal ,
43 const vtkm ::Vec <T, 3>& point1 ,
44 const vtkm ::Vec <T, 3>& point2 ,
45 const vtkm ::Vec <T, 3>& point3 )
46 {
47 vtkm ::Vec <T, 3> edgeLengths = TriangleEdgeLengths (point1 , point2 , point3 );
48
49 // To reduce the size of the table , we just store the quality of triangles
50 // with the longest edge of size 1. The table is 2D indexed by the length
51 // of the other two edges . Thus , to use the table we have to identify the
52 // longest edge and scale appropriately .
53 T smallEdge1 = vtkm :: Min( edgeLengths [0] , edgeLengths [1]);
54 T tmpEdge = vtkm :: Max( edgeLengths [0] , edgeLengths [1]);
55 T smallEdge2 = vtkm :: Min( edgeLengths [2] , tmpEdge );
56 T largeEdge = vtkm :: Max( edgeLengths [2] , tmpEdge );
57
58 smallEdge1 /= largeEdge ;
59 smallEdge2 /= largeEdge ;
60
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61 // Find index into array .
62 vtkm :: Id index1 = static_cast <vtkm ::Id >(
63 vtkm :: Floor ( smallEdge1 * ( TRIANGLE_QUALITY_TABLE_DIMENSION - 1) + 0.5));
64 vtkm :: Id index2 = static_cast <vtkm ::Id >(
65 vtkm :: Floor ( smallEdge2 * ( TRIANGLE_QUALITY_TABLE_DIMENSION - 1) + 0.5));
66 vtkm :: Id totalIndex = index1 + index2 * TRIANGLE_QUALITY_TABLE_DIMENSION ;
67
68 return triangleQualityPortal .Get( totalIndex );
69 }
70
71 } // namespace detail
72
73 struct TriangleQualityWorklet : vtkm :: worklet :: WorkletVisitCellsWithPoints
74 {
75 using ControlSignature = void ( CellSetIn cells ,
76 FieldInPoint pointCoordinates ,
77 WholeArrayIn triangleQualityTable ,
78 FieldOutCell triangleQuality );
79 using ExecutionSignature = _4(CellShape , _2 , _3 );
80 using InputDomain = _1;
81
82 template < typename CellShape ,
83 typename PointCoordinatesType ,
84 typename TriangleQualityTablePortalType >
85 VTKM_EXEC vtkm :: Float32 operator ()(
86 CellShape shape ,
87 const PointCoordinatesType & pointCoordinates ,
88 const TriangleQualityTablePortalType & triangleQualityTable ) const
89 {
90 if ( shape .Id != vtkm :: CELL_SHAPE_TRIANGLE )
91 {
92 this -> RaiseError (" Only triangles are supported for triangle quality .");
93 return vtkm :: Nan32 ();
94 }
95
96 return detail :: LookupTriangleQuality ( triangleQualityTable ,
97 pointCoordinates [0] ,
98 pointCoordinates [1] ,
99 pointCoordinates [2]);

100 }
101 };
102
103 //
104 // Later in the associated Filter class ...
105 //
106
107 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualityTable =
108 detail :: GetTriangleQualityTable ();
109
110 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualities ;
111
112 this -> Invoke ( TriangleQualityWorklet {},
113 inputDataSet . GetCellSet (),
114 inputPointCoordinatesField ,
115 triangleQualityTable ,
116 triangleQualities );

28.2 Atomic Arrays

One of the problems with writing to whole arrays is that it is difficult to coordinate the access to an array from
multiple threads. If multiple threads are going to write to a common index of an array, then you will probably
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need to use an atomic array.
An atomic array allows random access into an array of data, similar to a whole array. However, the operations
on the values in the atomic array allow you to perform an operation that modifies its value that is guaranteed
complete without being interrupted and potentially corrupted.

Due to limitations in available atomic operations, atomic arrays can currently only contain vtkm::Int32
or vtkm::Int64 values.

Common Errors

To use an array as an atomic array, first add the AtomicArrayInOut tag to the worklet’s ControlSignature.
The corresponding argument to the Invoker should be an ArrayHandle, which must already be allocated and
initialized with values.
When the data are passed to the operator of the worklet, it is passed in a vtkm::exec::AtomicArrayExecu-
tionObject structure. AtomicArrayExecutionObject has two important methods:

Add Takes as arguments an index and a value. The entry in the array corresponding to the index will have the
value added to it. If multiple threads attempt to add to the same index in the array, the requests will
be serialized so that the final result is the sum of all the additions. AtomicArrayExecutionObject::Add
returns the value that was replaced. That is, it returns the value right before the addition.

CompareAndSwap Takes as arguments an index, a new value, and an old value. If the entry in the array corre-
sponding to the index has the same value as the “old value,” then it is changed to the “new value” and the
original value is return from the method. If the entry in the array is not the same as the “old value,” then
nothing happens to the array and the value that is actually stored in the array is returned. If multiple
threads attempt to compare and swap to the same index in the array, the requests are serialized.

Atomic arrays help resolve hazards in parallel algorithms, but they come at a cost. Atomic operations are
more costly than non-thread-safe ones, and they can slow a parallel program immensely if used incorrectly.

Common Errors

The following example uses an atomic array to count the bins in a histogram. It does this by making the array
of histogram bins an atomic array and then using an atomic add. Note that this is not the fastest way to create
a histogram. We gave an implementation in Section 21.4 that is generally faster (unless your histogram happens
to be very sparse). VTK-m also comes with a histogram worklet that uses a similar approach.

Example 28.2: Using AtomicArrayInOut to count histogram bins in a worklet.
1 struct CountBins : vtkm :: worklet :: WorkletMapField
2 {
3 using ControlSignature = void ( FieldIn data , AtomicArrayInOut histogramBins );
4 using ExecutionSignature = void (_1 , _2 );
5 using InputDomain = _1;
6
7 vtkm :: Range HistogramRange ;
8 vtkm :: Id NumberOfBins ;
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9
10 VTKM_CONT
11 CountBins ( const vtkm :: Range & histogramRange , vtkm :: Id& numBins )
12 : HistogramRange ( histogramRange )
13 , NumberOfBins ( numBins )
14 {
15 }
16
17 template < typename T, typename AtomicArrayType >
18 VTKM_EXEC void operator ()(T value , const AtomicArrayType & histogramBins ) const
19 {
20 vtkm :: Float64 interp =
21 ( value - this -> HistogramRange .Min) / this -> HistogramRange . Length ();
22 vtkm :: Id bin = static_cast <vtkm ::Id >( interp * this -> NumberOfBins );
23 if (bin < 0)
24 {
25 bin = 0;
26 }
27 if (bin >= this -> NumberOfBins )
28 {
29 bin = this -> NumberOfBins - 1;
30 }
31
32 histogramBins .Add(bin , 1);
33 }
34 };

28.3 Whole Cell Sets

Section 21.2 describes how to make a topology map filter that performs an operation on cell sets. The worklet
has access to a single cell element (such as point or cell) and its immediate connections. But there are cases
when you need more general queries on a topology. For example, you might need more detailed information than
the topology map gives or you might need to trace connections from one cell to the next. To do this VTK-m
allows you to provide a whole cell set argument to a worklet that provides random access to the entire topology.
A whole cell set is declared by adding a WholeCellSetIn to the worklet’s ControlSignature. The corresponding
argument to the Invoker should be a CellSet subclass or an UnknownCellSet (both of which are described in
Section 7.2).
The WholeCellSetIn is templated and takes two arguments: the “visit” topology type and the “incident” topol-
ogy type, respectively. These template arguments must be one of the topology element tags, but for convenience
you can use Point and Cell in lieu of vtkm::TopologyElementTagPoint and vtkm::TopologyElementTag-
Cell, respectively. The “visit” and “incident” topology types define which topological elements can be queried
(visited) and which incident elements are returned. The semantics of the “visit” and “incident” topology is the
same as that for the general topology maps described in Section 21.2.3. You can look up an element of the “visit”
topology by index and then get all of the “incident” elements from it.
For example, a WholeCellSetIn<Cell, Point> allows you to find all the points that are incident on each cell (as
well as querying the cell shape). Likewise, a WholeCellSetIn<Point, Cell> allows you to find all the cells that
are incident on each point. The default parameters of WholeCellSetIn are visiting cells with incident points.
That is, WholeCellSetIn<> is equivalent to WholeCellSetIn<Cell, Point>.
When the cell set is passed to the operator of the worklet, it is passed in a special connectivity object. The
actual object type depends on the cell set, but vtkm::exec::CellSetStructured and are two common examples
vtkm::exec::CellSetExplicit. All these connectivity objects share a common interface. First, they all declare
the following public types.
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CellShapeTag The tag for the cell shapes of the cell set. (Cell shape tags are described in Section 25.1.) If
the connectivity potentially contains more than one type of cell shape, then this type will be vtkm::-
CellShapeTagGeneric.

IndicesType A Vec-like type that stores all the incident indices.

Second they all provide the following methods.

GetNumberOfElements Get the number of “to” topology elements in the cell set. All the other methods require
an element index, and this represents the range of valid indices. The return type is vtkm::Id.

GetCellShape Takes an index for an element and returns a CellShapeTag object of the corresponding cell shape.
If the “to” topology elements are not strictly cell, then a reasonably close shape is returned. For example,
if the “to” topology elements are points, then the shape is returned as a vertex.

GetNumberOfIndices Takes an index for an element and returns the number of incident “from” elements are
connected to it. The returned type is vtkm::IdComponent.

GetIndices Takes an index for an element and returns a Vec-like object of type IndicesType containing the
indices of all incident “from” elements. The size of the Vec-like object is the same as that returned from
GetNumberOfIndicices.

VTK-m comes with several functions to work with the shape and index information returned from these con-
nectivity objects. Most of these methods are documented in Chapter 25.
Let us use the whole cell set feature to help us determine the “flatness” of a polygonal mesh. We will do this
by summing up all the angles incident on each on each point. That is, for each point, we will find each incident
polygon, then find the part of that polygon using the given point, then computing the angle at that point, and
then summing for all such angles. So, for example, in the mesh fragment shown in Figure 28.1 one of the angles
attached to the middle point is labeled θj .

θj

Figure 28.1: The angles incident around a point in a mesh.

We want a worklet to compute
∑

j θ for all such attached angles. This measure is related (but not the same as)
the curvature of the surface. A flat surface will have a sum of 2π. Convex and concave surfaces have a value less
than 2π, and saddle surfaces have a value greater than 2π.
To do this, we create a visit points with cells worklet (Section 21.2.2) that visits every point and gives the index
of every incident cell. The worklet then uses a whole cell set to inspect each incident cell to measure the attached
angle and sum them together.

Example 28.3: Using WholeCellSetIn to sum the angles around each point.
1 struct SumOfAngles : vtkm :: worklet :: WorkletVisitPointsWithCells
2 {
3 using ControlSignature = void ( CellSetIn inputCells ,
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4 WholeCellSetIn <>, // Same as inputCells
5 WholeArrayIn pointCoords ,
6 FieldOutPoint angleSum );
7 using ExecutionSignature = void ( CellIndices incidentCells ,
8 InputIndex pointIndex ,
9 _2 cellSet ,

10 _3 pointCoordsPortal ,
11 _4 outSum );
12 using InputDomain = _1;
13
14 template < typename IncidentCellVecType ,
15 typename CellSetType ,
16 typename PointCoordsPortalType ,
17 typename SumType >
18 VTKM_EXEC void operator ()( const IncidentCellVecType & incidentCells ,
19 vtkm :: Id pointIndex ,
20 const CellSetType & cellSet ,
21 const PointCoordsPortalType & pointCoordsPortal ,
22 SumType & outSum ) const
23 {
24 using CoordType = typename PointCoordsPortalType :: ValueType ;
25
26 CoordType thisPoint = pointCoordsPortal .Get( pointIndex );
27
28 outSum = 0;
29 for (vtkm :: IdComponent incidentCellIndex = 0;
30 incidentCellIndex < incidentCells . GetNumberOfComponents ();
31 ++ incidentCellIndex )
32 {
33 // Get information about incident cell.
34 vtkm :: Id cellIndex = incidentCells [ incidentCellIndex ];
35 typename CellSetType :: CellShapeTag cellShape = cellSet . GetCellShape ( cellIndex );
36 typename CellSetType :: IndicesType cellConnections =
37 cellSet . GetIndices ( cellIndex );
38 vtkm :: IdComponent numPointsInCell = cellSet . GetNumberOfIndices ( cellIndex );
39 vtkm :: IdComponent numEdges ;
40 vtkm :: exec :: CellEdgeNumberOfEdges ( numPointsInCell , cellShape , numEdges );
41
42 // Iterate over all edges and find the first one with pointIndex .
43 // Use that to find the first vector .
44 vtkm :: IdComponent edgeIndex = -1;
45 CoordType vec1;
46 while (true)
47 {
48 ++ edgeIndex ;
49 if ( edgeIndex >= numEdges )
50 {
51 this -> RaiseError (" Bad cell. Could not find two incident edges .");
52 return ;
53 }
54 vtkm :: IdComponent2 edge;
55 vtkm :: exec :: CellEdgeLocalIndex (
56 numPointsInCell , 0, edgeIndex , cellShape , edge [0]);
57 vtkm :: exec :: CellEdgeLocalIndex (
58 numPointsInCell , 1, edgeIndex , cellShape , edge [1]);
59 if ( cellConnections [edge [0]] == pointIndex )
60 {
61 vec1 = pointCoordsPortal .Get( cellConnections [edge [1]]) - thisPoint ;
62 break ;
63 }
64 else if ( cellConnections [edge [1]] == pointIndex )
65 {
66 vec1 = pointCoordsPortal .Get( cellConnections [edge [0]]) - thisPoint ;
67 break ;
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68 }
69 else
70 {
71 // Continue to next iteration of loop.
72 }
73 }
74
75 // Continue iteration over remaining edges and find the second one with
76 // pointIndex . Use that to find the second vector .
77 CoordType vec2;
78 while (true)
79 {
80 ++ edgeIndex ;
81 if ( edgeIndex >= numEdges )
82 {
83 this -> RaiseError (" Bad cell. Could not find two incident edges .");
84 return ;
85 }
86 vtkm :: IdComponent2 edge;
87 vtkm :: exec :: CellEdgeLocalIndex (
88 numPointsInCell , 0, edgeIndex , cellShape , edge [0]);
89 vtkm :: exec :: CellEdgeLocalIndex (
90 numPointsInCell , 1, edgeIndex , cellShape , edge [1]);
91 if ( cellConnections [edge [0]] == pointIndex )
92 {
93 vec2 = pointCoordsPortal .Get( cellConnections [edge [1]]) - thisPoint ;
94 break ;
95 }
96 else if ( cellConnections [edge [1]] == pointIndex )
97 {
98 vec2 = pointCoordsPortal .Get( cellConnections [edge [0]]) - thisPoint ;
99 break ;

100 }
101 else
102 {
103 // Continue to next iteration of loop.
104 }
105 }
106
107 // The dot product of two unit vectors is equal to the cosine of the
108 // angle between them.
109 vtkm :: Normalize (vec1 );
110 vtkm :: Normalize (vec2 );
111 SumType cosine = static_cast <SumType >( vtkm :: Dot(vec1 , vec2 ));
112
113 outSum += vtkm :: ACos( cosine );
114 }
115 }
116 };
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Although passing whole arrays and cell sets into a worklet is a convenient way to provide data to a worklet that
is not divided by the input or output domain, they are sometimes not the best structures to represent data.
Thus, all worklets support a another type of argument called an execution object, or exec object for short, that
provides a user-defined object directly to each invocation of the worklet. This is defined by an ExecObject tag
in the ControlSignature.
The execution object must be a subclass of vtkm::cont::ExecutionObjectBase. Also, it must implement a
PrepareForExecution method declared with VTKM CONT. PrepareForExecution should take two arguments.
The first argument is the device adapter tag. The second argument is a vtkm::cont::Token object that should
be used to scope any execution objects created internally.
The PrepareForExecution function creates an execution object that can be passed from the control environment
to the execution environment and be usable in the execution environment, and any method of the produced object
used within the worklet must be declared with VTKM EXEC or VTKM EXEC CONT.
An execution object can refer to an array, but the array reference must be through an array portal for the
execution environment. This can be retrieved from the ArrayHandle::PrepareForInput method as described
in Section 27.4. Other VTK-m data objects, such as the subclasses of vtkm::cont::CellSet, have similar
methods.
Returning to the example we have in Section 28.1, we are computing triangle quality quickly by looking up
the value in a table. In Example 28.1 (page 242) the table is passed directly to the worklet as a whole array.
However, there is some additional code involved to get the appropriate index into the table for a given triangle.
Let us say that we want to have the ability to compute triangle quality in many different worklets. Rather than
pass in a raw array, it would be better to encapsulate the functionality in an object.
We can do that by creating an execution object with a PrepareForExecution method that creates an object
that has the table stored inside and methods to compute the triangle quality. The following example uses the
table built in Example 28.1 to create such an object.

Example 29.1: Using ExecObject to access a lookup table in a worklet.
1 template < typename Device >
2 class TriangleQualityTableExecutionObject
3 {
4 using TableArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >;
5 using TablePortalType = typename TableArrayType :: ReadPortalType ;
6 TablePortalType TablePortal ;
7
8 public :
9 VTKM_CONT

10 TriangleQualityTableExecutionObject ( const TablePortalType & tablePortal )
11 : TablePortal ( tablePortal )
12 {



13 }
14
15 template < typename T>
16 VTKM_EXEC vtkm :: Float32 GetQuality ( const vtkm ::Vec <T, 3>& point1 ,
17 const vtkm ::Vec <T, 3>& point2 ,
18 const vtkm ::Vec <T, 3>& point3 ) const
19 {
20 return detail :: LookupTriangleQuality (this -> TablePortal , point1 , point2 , point3 );
21 }
22 };
23
24 class TriangleQualityTable : public vtkm :: cont :: ExecutionObjectBase
25 {
26 public :
27 template < typename Device >
28 VTKM_CONT TriangleQualityTableExecutionObject <Device > PrepareForExecution (
29 Device ,
30 vtkm :: cont :: Token & token ) const
31 {
32 return TriangleQualityTableExecutionObject <Device >(
33 detail :: GetTriangleQualityTable (). PrepareForInput ( Device {}, token ));
34 }
35 };
36
37 struct TriangleQualityWorklet2 : vtkm :: worklet :: WorkletVisitCellsWithPoints
38 {
39 using ControlSignature = void ( CellSetIn cells ,
40 FieldInPoint pointCoordinates ,
41 ExecObject triangleQualityTable ,
42 FieldOutCell triangleQuality );
43 using ExecutionSignature = _4(CellShape , _2 , _3 );
44 using InputDomain = _1;
45
46 template < typename CellShape ,
47 typename PointCoordinatesType ,
48 typename TriangleQualityTableType >
49 VTKM_EXEC vtkm :: Float32 operator ()(
50 CellShape shape ,
51 const PointCoordinatesType & pointCoordinates ,
52 const TriangleQualityTableType & triangleQualityTable ) const
53 {
54 if ( shape .Id != vtkm :: CELL_SHAPE_TRIANGLE )
55 {
56 this -> RaiseError (" Only triangles are supported for triangle quality .");
57 return vtkm :: Nan32 ();
58 }
59
60 return triangleQualityTable . GetQuality (
61 pointCoordinates [0] , pointCoordinates [1] , pointCoordinates [2]);
62 }
63 };
64
65 //
66 // Later in the associated Filter class ...
67 //
68
69 TriangleQualityTable triangleQualityTable ;
70
71 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualities ;
72
73 this -> Invoke ( TriangleQualityWorklet2 {},
74 inputDataSet . GetCellSet (),
75 inputPointCoordinatesField ,
76 triangleQualityTable ,
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77 triangleQualities );
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THIRTY

LOCATORS

Locators are a special type of structure that allows you to take a point coordinate in space and then find a
topological element that contains or is near that coordinate. VTK-m comes with multiple types of locators,
which are categorized by the type of topological element that they find. For example, a cell locator takes a
coordinate in world space and finds the cell in a vtkm::cont::DataSet that contains that cell. Likewise, a point
locator takes a coordinate in world space and finds a point from a vtkm::cont::CoordinateSystem nearby.
Different locators differ in their interface slightly, but they all follow the same basic operation. First, they are
constructed and provided with one or more elements of a vtkm::cont::DataSet. Then they are built with a
call to an Update method. The locator can then be passed to a worklet as an ExecObject, which will cause the
worklet to get a special execution version of the locator that can do the queries.

Other visualization libraries, like VTK-m’s big sister toolkit VTK, provide similar locator structures that
allow iterative building by adding one element at a time. VTK-m explicitly disallows this use case. Although
iteratively adding elements to a locator is undoubtedly useful, such an operation will inevitably bottleneck
a highly threaded algorithm in critical sections. This makes iterative additions to locators too costly to
support in VTK-m.

Did you know?

30.1 Cell Locators

Cell Locators in VTK-m provide a means of building spatial search structures that can later be used to find
a cell containing a certain point. This could be useful in scenarios where the application demands the cell to
which a point belongs to to achieve a certain functionality. For example, while tracing a particle’s path through
a vector field, after every step we lookup which cell the particle has entered to interpolate the velocity at the
new location to take the next step.
Using cell locators is a two step process. The first step is to build the search structure. This is done by
instantiating one of the CellLocator classes, providing a cell set and coordinate system (usually from a vtkm::-
cont::DataSet), and then updating the structure. Once the cell locator is built, it can be used in the execution
environment within a filter or worklet.
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30.1.1 Building a Cell Locator

All cell locators in VTK-m share the same basic interface for the required features of cell locators. This generic
interface provides methods to set the cell set (with SetCellSet and GetCellSet) and to set the coordinate
system (with SetCoordinates and GetCoordinates). Once the cell set and coordinates are provided, you may
call Update to construct the search structures. Although Update is called from the control environment, the
search structure will be built on parallel devices.

Example 30.1: Constructing a CellLocator.
1 vtkm :: cont :: CellLocatorGeneral cellLocator ;
2 cellLocator . SetCellSet ( inDataSet . GetCellSet ());
3 cellLocator . SetCoordinates ( inDataSet . GetCoordinateSystem ());
4 cellLocator . Update ();

VTK-m currently exposes the implementations of the following Cell Locators.

vtkm::cont::CellLocatorGeneral This locator will automatically select another locator to use as its imple-
mentation. CellLocatorGeneral allows you to automatically select cell locators optimized for certain cell
structures without knowing the cell set type. You can change how CellLocatorGeneral selects a Cell-
Locator by providing a function to the SetConfigurator method. If no configurator is set, then a default
one is used.

vtkm::cont::CellLocatorUniformGrid This locator is optimized for structured data that has uniform axis-
aligned spacing. For this cell locator to work, it has to be given a cell set of type CellSetStructured and
a coordinate system using an ArrayHandleUniformPointCoordinates for its data.

vtkm::cont::CellLocatorRectilinearGrid This locator is optimized for structured data that has nonuniform
axis-aligned spacing. For this cell locator to work, it has to be given a cell set of type CellSetStructured
and a coordinate system using an ArrayHandleCartesianProduct for its data.

vtkm::cont::CellLocatorTwoLevel This locator builds a 2-level hierarchy of uniform bins. The first level is
a coarse partitioning of the space. Each bin in the first level has a second grid who’s size depends on the
number of cells in the first level. The density (number of cells expected in each bin) for each level can be
set with SetDensityL1 and SetDensityL2. Their default values are 32 and 2, respectively.

vtkm::cont::CellLocatorBoundingIntervalHierarchy This locator is based on the bounding interval hi-
erarchy spatial search structure. CellLocatorBoundingIntervalHierarchy takes two parameters: the
number of splitting planes used to split the cells uniformly along an axis at each level and the maximum
leaf size, which determines if a node needs to be split further. These parameters can set through the
SetNumberOfPlanes and SetMaxLeafSize methods.

vtkm::cont::CellLocatorChooser This locator is similar to CellLocatorGeneral in that it automatically
selects an appropriate locator based on the type of cell structure being used. However, unlike the other
locator, CellLocatorChooser is a templated class that chooses the correct locator based on the cell set
type and the coordinates array type provided as template arguments. This means that you have to know
the data types at compile time. CellLocatorChooser is a good choice in applications where you know
your DataSet is of a particular type.

30.1.2 Using Cell Locators in a Worklet

The CellLocator interface implements vtkm::cont::ExecutionObjectBase. This means that any CellLoca-
tor can be used in worklets as an ExecObject argument (as defined in the ControlSignature). See Chapter 29
for information on ExecObject arguments to worklets.
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When a vtkm::cont::CellLocator class is passed as an ExecObject argument to a worklet Invoke, the worklet
receives a different object defined in the vtkm::exec namespace. This vtkm::exec::CellLocator object
provides a FindCell method that identifies a containing cell given a point location in space.

Note that the vtkm::cont::CellLocator and vtkm::exec::CellLocator classes are different objects with
different interfaces despite the similar names.

Common Errors

The CellLocator::FindCell method takes 3 arguments. The first argument is an input query point. The
second argument is used to return the id of the cell containing this point (or -1 if the point is not found in any
cell). The third argument is used to return the parametric coordinates for the point within the cell (assuming
it is found in any cell). FindCell returns an ErrorCode to indicate the status of the query. If the cell and
the location within the cell are found, ErrorCode::Success is returned. If the point is not inside any cell,
ErrorCode::CellNotFound is likely to be returned.
The following example defines a simple worklet to get the value of a point field interpolated to a group of query
point coordinates provided.

Example 30.2: Using a CellLocator in a worklet.
1 struct QueryCellsWorklet : public vtkm :: worklet :: WorkletMapField
2 {
3 using ControlSignature =
4 void (FieldIn , ExecObject , WholeCellSetIn <Cell , Point >, WholeArrayIn , FieldOut );
5 using ExecutionSignature = void (_1 , _2 , _3 , _4 , _5 );
6
7 template < typename Point ,
8 typename CellLocatorExecObject ,
9 typename CellSet ,

10 typename FieldPortal ,
11 typename OutType >
12 VTKM_EXEC void operator ()( const Point & point ,
13 const CellLocatorExecObject & cellLocator ,
14 const CellSet & cellSet ,
15 const FieldPortal & field ,
16 OutType & out) const
17 {
18 // Use the cell locator to find the cell containing the point and the parametric
19 // coordinates within that cell.
20 vtkm :: Id cellId ;
21 vtkm :: Vec3f parametric ;
22 vtkm :: ErrorCode status = cellLocator . FindCell (point , cellId , parametric );
23 if ( status != vtkm :: ErrorCode :: Success )
24 {
25 this -> RaiseError (vtkm :: ErrorString ( status ));
26 }
27
28 // Use this information to interpolate the point field to the given location .
29 if ( cellId >= 0)
30 {
31 // Get shape information about the cell containing the point coordinate
32 auto cellShape = cellSet . GetCellShape ( cellId );
33 auto indices = cellSet . GetIndices ( cellId );
34
35 // Make a Vec -like containing the field data at the cell ’s points
36 auto fieldValues = vtkm :: make_VecFromPortalPermute (& indices , & field );
37
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38 // Do the interpolation
39 vtkm :: exec :: CellInterpolate ( fieldValues , parametric , cellShape , out );
40 }
41 else
42 {
43 this -> RaiseError (" Given point outside of the cell set .");
44 }
45 }
46 };
47
48 //
49 // Later in the associated Filter class ...
50 //
51
52 vtkm :: cont :: CellLocatorGeneral cellLocator ;
53 cellLocator . SetCellSet ( inDataSet . GetCellSet ());
54 cellLocator . SetCoordinates ( inDataSet . GetCoordinateSystem ());
55 cellLocator . Update ();
56
57 vtkm :: cont :: ArrayHandle <FieldType > interpolatedField ;
58
59 this -> Invoke ( QueryCellsWorklet {},
60 this -> QueryPoints ,
61 & cellLocator ,
62 inDataSet . GetCellSet (),
63 inputField ,
64 interpolatedField );

30.2 Point Locators

Point Locators in VTK-m provide a means of building spatial search structures that can later be used to find the
nearest neighbor a certain point. This could be useful in scenarios where the closest pairs of points are needed.
For example, during halo finding of particles in cosmology simulations, pairs of nearest neighbors within certain
linking length are used to form clusters of particles.
Using point locators is a two step process. The first step is to build the search structure. This is done by
instantiating one of the vtkm::cont::PointLocator classes, providing a coordinate system (usually from a
vtkm::cont::DataSet) representing the location of points that can later be found through queries, and then
updating the structure. Once the point locator is built, it can be used in the execution environment within a
filter or worklet.

30.2.1 Building Point Locators

All point locators in VTK-m share the same basic interface for the required features of point locators. This
generic interface provides methods to set the coordinate system (with SetCoordinates and GetCoordinates)
of training points. Once the coordinates are provided, you may call Update to construct the search structures.
Although Update is called from the control environment, the search structure will be built on parallel devices

Example 30.3: Constructing a PointLocator.
1 vtkm :: cont :: PointLocatorSparseGrid pointLocator ;
2 pointLocator . SetCoordinates ( inDataSet . GetCoordinateSystem ());
3 pointLocator . Update ();

VTK-m currently exposes the implementations of the following Point Locators.
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vtkm::cont::PointLocatorSparseGrid This point locator is based on the uniform grid search structure. It
divides the search space into a uniform grid of bins. A search for a point near a given coordinate starts
in the bin containing the search coordinates. If a candidate point is not found in that bin, points are
searched in an expanding neighborhood of grid bins. The size of the grid used by the locator to partition
the space can be set with SetNumberOfBins. By default, PointLocatorSparseGrid uses a 323 grid. It
is also possible to set the physical space over which the search space is constructed with the SetRange
method. If the range is not set, it will automatically be set to the space of the coordinates.

30.2.2 Using Point Locators in a Worklet

The PointLocator interface implements vtkm::cont::ExecutionObjectBase. This means that any PointLo-
cator can be used in worklets as an ExecObject argument (as defined in the ControlSignature). See Chapter
29 for information on ExecObject arguments to worklets.
When a vtkm::cont::PointLocator class is passed as an ExecObject argument to a worklet Invoke, the
worklet receives a different object defined in the vtkm::exec namespace. This vtkm::exec::PointLocator
object provides a FindNearestNeighbor method that identifies the nearest neighbor point given a coordinate in
space.

Note that vtkm::cont::PointLocator and vtkm::exec::PointLocator are different objects with different
interfaces despite the similar names.

Common Errors

The FindNearestNeighbor method takes 3 arguments. The first argument is an input query point. The second
argument is used to return the id of the nearest neighbor point (or -1 if no nearby point is found, for example,
in the case of an empty set of data set points). The third argument is used to return the squared distance for
the query point to its nearest neighbor.

Example 30.4: Using a PointLocator in a worklet.
1 /// Worklet that generates for each input coordinate a unit vector that points
2 /// to the closest point in a locator .
3 struct PointToClosestWorklet : public vtkm :: worklet :: WorkletMapField
4 {
5 using ControlSignature = void (FieldIn , ExecObject , WholeArrayIn , FieldOut );
6 using ExecutionSignature = void (_1 , _2 , _3 , _4 );
7
8 template < typename Point ,
9 typename PointLocatorExecObject ,

10 typename CoordinateSystemPortal ,
11 typename OutType >
12 VTKM_EXEC void operator ()( const Point & queryPoint ,
13 const PointLocatorExecObject & pointLocator ,
14 const CoordinateSystemPortal & coordinateSystem ,
15 OutType & out) const
16 {
17 // Use the point locator to find the point in the locator closest to the point
18 // given .
19 vtkm :: Id pointId ;
20 vtkm :: FloatDefault distanceSquared ;
21 pointLocator . FindNearestNeighbor ( queryPoint , pointId , distanceSquared );
22
23 // Use this information to find the nearest point and create a unit vector
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24 // pointing to it.
25 if ( pointId >= 0)
26 {
27 // Get nearest point coordinate .
28 auto point = coordinateSystem .Get( pointId );
29
30 // Get the vector pointing to this point
31 out = point - queryPoint ;
32
33 // Convert to unit vector (if possible )
34 if ( distanceSquared > vtkm :: Epsilon <vtkm :: FloatDefault >())
35 {
36 out = vtkm :: RSqrt ( distanceSquared ) * out;
37 }
38 }
39 else
40 {
41 this -> RaiseError (" Locator could not find closest point .");
42 }
43 }
44 };
45
46 //
47 // Later in the associated Filter class ...
48 //
49
50 vtkm :: cont :: PointLocatorSparseGrid pointLocator ;
51 pointLocator . SetCoordinates ( inDataSet . GetCoordinateSystem ());
52 pointLocator . Update ();
53
54 vtkm :: cont :: ArrayHandle <vtkm :: Vec3f > pointDirections ;
55
56 this -> Invoke ( PointToClosestWorklet {},
57 this -> QueryPoints ,
58 & pointLocator ,
59 pointLocator . GetCoordinates (),
60 pointDirections );

258 Chapter 30. Locators



CHAPTER

THIRTYONE

WORKLET INPUT OUTPUT SEMANTICS

The default scheduling of a worklet provides a 1 to 1 mapping from the input domain to the output domain. For
example, a vtkm::worklet::WorkletMapField gets run once for every item of the input array and produces one
item for the output array. Likewise, vtkm::worklet::WorkletVisitCellsWithPoints gets run once for every
cell in the input topology and produces one associated item for the output field.
However, there are many operations that do not fall well into this 1 to 1 mapping procedure. The operation
might need to pass over elements that produce no value or the operation might need to produce multiple values
for a single input element. Such non 1 to 1 mappings can be achieved by defining a scatter or a mask (or both)
on a worklet.

31.1 Scatter

A scatter allows you to specify for each input element how many output elements should be created. For example,
a scatter allows you to create two output elements for every input element. A scatter could also allow you to
drop every other input element from the output. The following types of scatter are provided by VTK-m.

vtkm::worklet::ScatterIdentity Provides a basic 1 to 1 mapping from input to output. This is the default
scatter used if none is specified.

vtkm::worklet::ScatterUniform Provides a 1 to many mapping from input to output with the same number
of outputs for each input. A template parameter provides the number of output values to produce per
input.

vtkm::worklet::ScatterCounting Provides a 1 to any mapping from input to output with different numbers
of outputs for each input. The constructor takes an ArrayHandle that is the same size as the input
containing the count of output values to produce for each input. Values can be zero, in which case that
input will be skipped.

vtkm::worklet::ScatterPermutation Reorders the indices. The constructor takes a permutation ArrayHan-
dle that is sized to the number of output values and maps output indices to input indices. For example, if
index i of the permutation array contains j, then the worklet invocation for output i will get the jth input
values. The reordering does not have to be 1 to 1. Any input not referenced by the permutation array
will be dropped, and any input referenced by the permutation array multiple times will be duplicated.
However, unlike ScatterCounting VisitIndex is always 0 even if an input value happens to be duplicated.
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Scatters are often used to create multiple outputs for a single input, but they can also be used to remove
inputs from the output. In particular, if you provide a count of 0 in a ScatterCounting count array, no
outputs will be created for the associated input. To simply mask out some elements from the input, provide
ScatterCounting with a stencil array of 0’s and 1’s with a 0 for every element you want to remove and a
1 for every element you want to pass. You can also mix 0’s with counts larger than 1 to drop some elements
and add multiple results for other elements. ScatterPermutation can similarly be used to remove input
values by leaving them out of the permutation.

Did you know?

To define a scatter procedure, the worklet must provide a type definition named ScatterType. The ScatterType
must be set to one of the aforementioned Scatter* classes. It is common, but optional, to also provide a static
method named MakeScatter that generates an appropriate scatter object for the worklet if you cannot use the
default constructor for the scatter. This static method can be used by users of the worklet to set up the scatter
for the Invoker.

Example 31.1: Declaration of a scatter type in a worklet.
1 using ScatterType = vtkm :: worklet :: ScatterCounting ;
2
3 template < typename CountArrayType >
4 VTKM_CONT static ScatterType MakeScatter ( const CountArrayType & countArray )
5 {
6 VTKM_IS_ARRAY_HANDLE ( CountArrayType );
7 return ScatterType ( countArray );
8 }

When using a scatter that produces multiple outputs for a single input, the worklet is invoked multiple times
with the same input values. In such an event the worklet operator needs to distinguish these calls to produce the
correct associated output. This is done by declaring one of the ExecutionSignature arguments as VisitIndex.
This tag will pass a vtkm::IdComponent to the worklet that identifies which invocation is being called.
It is also the case that the when a scatter can produce multiple outputs for some input that the index of the
input element is not the same as the WorkIndex. If the index to the input element is needed, you can use the
InputIndex tag in the ExecutionSignature. It is also good practice to use the OutputIndex tag if the index
to the output element is needed.
Most Scatter objects have a state, and this state must be passed to the vtkm::cont::Invoker when invoking
the worklet. In this case, the Scatter object should be passed as the second object to the call to the Invoker
(after the worklet object).

Example 31.2: Invoking with a custom scatter.
1 vtkm :: worklet :: ScatterCounting generateScatter =
2 ClipPoints :: Generate :: MakeScatter ( countArray );
3 this -> Invoke (
4 ClipPoints :: Generate {}, generateScatter , inField , clippedPointsArray );

A scatter object does not have to be tied to a single worklet/invoker instance. In some cases it makes sense
to use the same scatter object multiple times for worklets that have the same input to output mapping.
Although this is not common, it can save time by reusing the set up computations of ScatterCounting.

Did you know?
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To demonstrate using scatters with worklets, we provide some contrived but illustrative examples. The first
example is a worklet that takes a pair of input arrays and interleaves them so that the first, third, fifth, and so
on entries come from the first array and the second, fourth, sixth, and so on entries come from the second array.
We achieve this by using a vtkm::worklet::ScatterUniform of size 2 and using the VisitIndex to determine
from which array to pull a value.

Example 31.3: Using ScatterUniform.
1 struct InterleaveArrays : vtkm :: worklet :: WorkletMapField
2 {
3 using ControlSignature = void (FieldIn , FieldIn , FieldOut );
4 using ExecutionSignature = void (_1 , _2 , _3 , VisitIndex );
5 using InputDomain = _1;
6
7 using ScatterType = vtkm :: worklet :: ScatterUniform <2 >;
8
9 template < typename T>

10 VTKM_EXEC void operator ()( const T& input0 ,
11 const T& input1 ,
12 T& output ,
13 vtkm :: IdComponent visitIndex ) const
14 {
15 if ( visitIndex == 0)
16 {
17 output = input0 ;
18 }
19 else // visitIndex == 1
20 {
21 output = input1 ;
22 }
23 }
24 };

The second example takes a collection of point coordinates and clips them by an axis-aligned bounding box.
It does this using a vtkm::worklet::ScatterCounting with an array containing 0 for all points outside the
bounds and 1 for all points inside the bounds. As is typical with this type of operation, we use another worklet
with a default identity scatter to build the count array.

Example 31.4: Using ScatterCounting.
1 struct ClipPoints
2 {
3 class Count : public vtkm :: worklet :: WorkletMapField
4 {
5 public :
6 using ControlSignature = void ( FieldIn points , FieldOut count );
7 using ExecutionSignature = _2(_1 );
8 using InputDomain = _1;
9

10 VTKM_CONT Count ( const vtkm :: Bounds & bounds )
11 : Bounds ( bounds )
12 {
13 }
14
15 template < typename T>
16 VTKM_EXEC vtkm :: IdComponent operator ()( const vtkm ::Vec <T, 3>& point ) const
17 {
18 return (this -> Bounds . Contains ( point ) ? 1 : 0);
19 }
20
21 private :
22 vtkm :: Bounds Bounds ;
23 };
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24
25 class Generate : public vtkm :: worklet :: WorkletMapField
26 {
27 public :
28 using ControlSignature = void ( FieldIn inPoints , FieldOut outPoints );
29 using ExecutionSignature = void (_1 , _2 );
30 using InputDomain = _1;
31
32 using ScatterType = vtkm :: worklet :: ScatterCounting ;
33
34 template < typename CountArrayType >
35 VTKM_CONT static ScatterType MakeScatter ( const CountArrayType & countArray )
36 {
37 VTKM_IS_ARRAY_HANDLE ( CountArrayType );
38 return ScatterType ( countArray );
39 }
40
41 template < typename InType , typename OutType >
42 VTKM_EXEC void operator ()( const vtkm ::Vec <InType , 3>& inPoint ,
43 vtkm ::Vec <OutType , 3>& outPoint ) const
44 {
45 // The scatter ensures that this method is only called for input points
46 // that are passed to the output ( where the count was 1). Thus , in this
47 // case we know that we just need to copy the input to the output .
48 outPoint = vtkm ::Vec <OutType , 3>( inPoint [0] , inPoint [1] , inPoint [2]);
49 }
50 };
51 };
52
53 //
54 // Later in the associated Filter class ...
55 //
56
57 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > countArray ;
58
59 this -> Invoke ( ClipPoints :: Count (this -> Bounds ), inField , countArray );
60
61 vtkm :: cont :: ArrayHandle <T> clippedPointsArray ;
62
63 vtkm :: worklet :: ScatterCounting generateScatter =
64 ClipPoints :: Generate :: MakeScatter ( countArray );
65 this -> Invoke (
66 ClipPoints :: Generate {}, generateScatter , inField , clippedPointsArray );

The third example takes an input array and reverses the ordering. It does this using a vtkm::worklet::-
ScatterPermutation with a permutation array generated from a vtkm::cont::ArrayHandleCounting counting
down from the input array size to 0.

Example 31.5: Using ScatterPermutation.
1 struct ReverseArrayWorklet : vtkm :: worklet :: WorkletMapField
2 {
3 using ControlSignature = void ( FieldIn inputArray , FieldOut outputArray );
4 using ExecutionSignature = void (_1 , _2 );
5 using InputDomain = _1;
6
7 using ArrayStorageTag =
8 typename vtkm :: cont :: ArrayHandleCounting <vtkm ::Id >:: StorageTag ;
9 using ScatterType = vtkm :: worklet :: ScatterPermutation < ArrayStorageTag >;

10
11 VTKM_CONT
12 static ScatterType MakeScatter (vtkm :: Id arraySize )
13 {
14 return ScatterType (
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15 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id >( arraySize - 1, -1, arraySize ));
16 }
17
18 template < typename FieldType >
19 VTKM_EXEC void operator ()( FieldType inputArrayField ,
20 FieldType & outputArrayField ) const
21 {
22 outputArrayField = inputArrayField ;
23 }
24 };
25
26 //
27 // Later in the associated Filter class ...
28 //
29
30 vtkm :: cont :: ArrayHandle <T> outputField ;
31 this -> Invoke ( ReverseArrayWorklet {},
32 ReverseArrayWorklet :: MakeScatter ( inputField . GetNumberOfValues ()) ,
33 inputField ,
34 outputField );

A vtkm::worklet::ScatterPermutation can have less memory usage than a vtkm::worklet::Scatter-
Counting when zeroing indices. By default, a vtkm::worklet::ScatterPermutation will omit all fields
that are not specified in the input permutation, whereas vtkm::worklet::ScatterCounting requires 0
values. If mapping an input to an output that omits fields, consider using a vtkm::worklet::Scatter-
Permutation to save memory.

Did you know?

A permutation array provided to vtkm::worklet::ScatterPermutation can be filled with arbitrary id
values. If an input permutation id exceeds the bounds of an input provided to a worklet, an out of bounds
error will occur in the worklet functor. To prevent this kind of error, you should ensure that ids in the
vtkm::worklet::ScatterPermutation do not exceed the bounds of provided inputs.

Common Errors
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THIRTYTWO

GENERATING CELL SETS

This chapter describes techniques for designing algorithms in VTK-m that generate cell sets to be inserted in a
vtkm::cont::DataSet. Although Chapter 7 on data sets describes how to create a data set, including defining
its set of cells, these are serial functions run in the control environment that are not designed for computing
geometric structures. Rather, they are designed for specifying data sets built from existing data arrays, from
inherently slow processes (such as file I/O), or for small test data. In this chapter we discuss how to write worklets
that create new mesh topologies by writing data that can be incorporated into a vtkm::cont::CellSet.
This chapter is constructed as a set of patterns that are commonly employed to build cell sets. These techniques
apply the worklet structures documented in Chapter 21. Although it is possible for these worklets to generate
data of its own, the algorithms described here follow the more common use case of deriving one topology
from another input data set. This chapter is not (and cannot be) completely comprehensive by covering every
possible mechanism for building cell sets. Instead, we provide the basic and common patterns used in scientific
visualization.

32.1 Single Cell Type

For our first example of algorithms that generate cell sets is one that creates a set of cells in which all the cells
are of the same shape and have the same number of points. Our motivating example is an algorithm that will
extract all the edges from a cell set. The resulting cell set will comprise a collection of line cells that represent
the edges from the original cell set. Since all cell edges can be represented as lines with two endpoints, we know
all the output cells will be of the same type. As we will see later in the example, we can use a vtkm::cont::-
CellSetSingleType to represent the data.
It is rare that an algorithm generating a cell set will generate exactly one output cell for each input cell. Thus,
the first step in an algorithm generating a cell set is to count the number of cells each input item will create. In
our motivating example, this is the the number of edges for each input cell.

Example 32.1: A simple worklet to count the number of edges on each cell.
1 struct CountEdgesWorklet : vtkm :: worklet :: WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void ( CellSetIn cellSet , FieldOut numEdges );
4 using ExecutionSignature = _2(CellShape , PointCount );
5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC_CONT vtkm :: IdComponent operator ()(
9 CellShapeTag cellShape ,

10 vtkm :: IdComponent numPointsInCell ) const
11 {
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12 vtkm :: IdComponent numEdges ;
13 vtkm :: ErrorCode status =
14 vtkm :: exec :: CellEdgeNumberOfEdges ( numPointsInCell , cellShape , numEdges );
15 if ( status != vtkm :: ErrorCode :: Success )
16 {
17 // There is an error in the cell. As good as it would be to return an
18 // error , we probably don ’t want to invalidate the entire run if there
19 // is just one malformed cell. Instead , ignore the cell.
20 return 0;
21 }
22 return numEdges ;
23 }
24 };

This count array generated in Example 32.1 can be used in a vtkm::worklet::ScatterCounting of a subsequent
worklet that generates the output cells. (See Section 31.1 for information on using a scatter with a worklet.) We
will see this momentarily.

If you happen to have an operation that you know will have the same count for every input cell, then you
can skip the count step and use a vtkm::worklet::ScatterUniform instead of ScatterCount. Doing so
will simplify the code and skip some computation. We cannot use ScatterUniform in this example because
different cell shapes have different numbers of edges and therefore different counts. However, if we were
theoretically to make an optimization for 3D structured grids, we know that each cell is a hexahedron with
12 edges and could use a ScatterUniform<12> for that.

Did you know?

The second and final worklet we need to generate our wireframe cells is one that outputs the indices of an
edge. The worklet parenthesis’ operator takes information about the input cell (shape and point indices) and
an index of which edge to output. The aforementioned ScatterCounting provides a VisitIndex that signals
which edge to output. The worklet parenthesis operator returns the two indices for the line in, naturally enough,
a vtkm::Id2.

Example 32.2: A worklet to generate indices for line cells.
1 class EdgeIndicesWorklet : public vtkm :: worklet :: WorkletVisitCellsWithPoints
2 {
3 public :
4 using ControlSignature = void ( CellSetIn cellSet , FieldOut connectivityOut );
5 using ExecutionSignature = void (CellShape , PointIndices , _2 , VisitIndex );
6 using InputDomain = _1;
7
8 using ScatterType = vtkm :: worklet :: ScatterCounting ;
9

10 template < typename CellShapeTag , typename PointIndexVecType >
11 VTKM_EXEC void operator ()( CellShapeTag cellShape ,
12 const PointIndexVecType & globalPointIndicesForCell ,
13 vtkm :: Id2& connectivityOut ,
14 vtkm :: IdComponent edgeIndex ) const
15 {
16 vtkm :: IdComponent numPointsInCell =
17 globalPointIndicesForCell . GetNumberOfComponents ();
18
19 vtkm :: IdComponent pointInCellIndex0 ;
20 vtkm :: exec :: CellEdgeLocalIndex (
21 numPointsInCell , 0, edgeIndex , cellShape , pointInCellIndex0 );
22 vtkm :: IdComponent pointInCellIndex1 ;
23 vtkm :: exec :: CellEdgeLocalIndex (
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24 numPointsInCell , 1, edgeIndex , cellShape , pointInCellIndex1 );
25
26 connectivityOut [0] = globalPointIndicesForCell [ pointInCellIndex0 ];
27 connectivityOut [1] = globalPointIndicesForCell [ pointInCellIndex1 ];
28 }
29 };

Our ultimate goal is to fill a vtkm::cont::CellSetSingleType object with the generated line cells. A CellSetS-
ingleType requires 4 items: the number of points, the constant cell shape, the constant number of points in
each cell, and an array of connection indices. The first 3 items are trivial. The number of points can be taken
from the input cell set as they are the same. The cell shape and number of points are predetermined to be line
and 2, respectively. The last item, the array of connection indices, is what we are creating with the worklet in
Example 32.2.
However, there is a complication. The connectivity array for CellSetSingleType is expected to be a flat
array of vtkm::Id indices, not an array of Vec objects. We could jump through some hoops adjusting the
ScatterCounting to allow the worklet to output only one index of one cell rather than all indices of one cell.
But that would be overly complicated and inefficient.
A simpler approach is to use the vtkm::cont::ArrayHandleGroupVec fancy array handle (described in Sec-
tion 26.13) to make a flat array of indices look like an array of Vec objects. The following example shows what
the DoExecute method in the associated filter would look like. Note the use make ArrayHandleGroupVec when
calling Invoke on line 16 to make this conversion.

Example 32.3: Invoking worklets to extract edges from a cell set.
1 inline VTKM_CONT vtkm :: cont :: DataSet ExtractEdges :: DoExecute (
2 const vtkm :: cont :: DataSet & inData )
3 {
4 auto inCellSet = inData . GetCellSet ();
5
6 // Count number of edges in each cell.
7 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > edgeCounts ;
8 this -> Invoke (vtkm :: worklet :: CountEdgesWorklet {}, inCellSet , edgeCounts );
9

10 // Build the scatter object (for non 1-to -1 mapping of input to output )
11 vtkm :: worklet :: ScatterCounting scatter ( edgeCounts );
12 auto outputToInputCellMap =
13 scatter . GetOutputToInputMap ( inCellSet . GetNumberOfCells ());
14
15 vtkm :: cont :: ArrayHandle <vtkm ::Id > connectivityArray ;
16 this -> Invoke (vtkm :: worklet :: EdgeIndicesWorklet {},
17 scatter ,
18 inCellSet ,
19 vtkm :: cont :: make_ArrayHandleGroupVec <2 >( connectivityArray ));
20
21 vtkm :: cont :: CellSetSingleType <> outCellSet ;
22 outCellSet .Fill(
23 inCellSet . GetNumberOfPoints (), vtkm :: CELL_SHAPE_LINE , 2, connectivityArray );
24
25 // This lambda function maps an input field to the output data set. It is
26 // used with the CreateResult method .
27 auto fieldMapper =
28 [&]( vtkm :: cont :: DataSet & outData , const vtkm :: cont :: Field & inputField )
29 {
30 if ( inputField . IsCellField ())
31 {
32 vtkm :: filter :: MapFieldPermutation ( inputField , outputToInputCellMap , outData );
33 }
34 else
35 {
36 outData . AddField ( inputField ); // pass through
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37 }
38 };
39
40 return this -> CreateResult (inData , outCellSet , fieldMapper );
41 }

Another feature to note in Example 32.3 is that the method calls GetOutputToInputMap on the Scatter object
it creates and squirrels the map array away for later use (line 12). The reason for this behavior is to implement
mapping fields that are attached on the input cells to the indices of the output. In practice, DoExecute is called
on DataSet objects to create new DataSet objects. The method in Example 32.3 creates a new CellSet, but
we also need a method to transform the Fields on the data set. The saved outputToInputCellMap array allows
us to transform input fields to output fields.
The lambda function in Example 32.3 starting on line 27 uses this saved outputToInputCellMap array and
converts an array from an input cell field to an output cell field array. It does this using the vtkm::filter::-
MapFieldPermutation helper function while using the outputToInputCellMap as the permutation array.

32.2 Combining Like Elements

Our motivating example in Section 32.1 created a cell set with a line element representing each edge in some
input data set. However, on close inspection there is a problem with our algorithm: it is generating a lot of
duplicate elements. The cells in a typical mesh are connected to each other. As such, they share edges with
each other. That is, the edge of one cell is likely to also be part of one or more other cells. When multiple cells
contain the same edge, the algorithm we created in Section 32.1 will create multiple overlapping lines, one for
each cell using the edge, as demonstrated in Figure 32.1. What we really want is to have one line for every edge
in the mesh rather than many overlapping lines.

Figure 32.1: Duplicate lines from extracted edges. Consider the small mesh at the left comprising a square and
a triangle. If we count the edges in this mesh, we would expect to get 6. However, our näıve implementation in
Section 32.1 generates 7 because the shared edge (highlighted in red in the wireframe in the middle) is duplicated.
As seen in the exploded view at right, one line is created for the square and one for the triangle.

In this section we will re-implement the algorithm to generate a wireframe by creating a line for each edge,
but this time we will merge duplicate edges together. Our first step is the same as before. We need to count
the number of edges in each input cell and use those counts to create a vtkm::worklet::ScatterCounting for
subsequent worklets. Counting the edges is a simple worklet.

Example 32.4: A simple worklet to count the number of edges on each cell.
1 struct CountEdgesWorklet : vtkm :: worklet :: WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void ( CellSetIn cellSet , FieldOut numEdges );
4 using ExecutionSignature = _2(CellShape , PointCount );
5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC_CONT vtkm :: IdComponent operator ()(
9 CellShapeTag cellShape ,

10 vtkm :: IdComponent numPointsInCell ) const
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11 {
12 vtkm :: IdComponent numEdges ;
13 vtkm :: ErrorCode status =
14 vtkm :: exec :: CellEdgeNumberOfEdges ( numPointsInCell , cellShape , numEdges );
15 if ( status != vtkm :: ErrorCode :: Success )
16 {
17 // There is an error in the cell. As good as it would be to return an
18 // error , we probably don ’t want to invalidate the entire run if there
19 // is just one malformed cell. Instead , ignore the cell.
20 return 0;
21 }
22 return numEdges ;
23 }
24 };

In our previous version, we used the count to directly write out the lines. However, before we do that, we want
to identify all the unique edges and identify which cells share this edge. This grouping is exactly the function
that the reduce by key worklet type (described in Section 21.4) is designed to accomplish. The principal idea is
to write a “key” that uniquely identifies the edge. The reduce by key worklet can then group the edges by the
key and allow you to combine the data for the edge.
Thus, our goal of finding duplicate edges hinges on producing a key where two keys are identical if and only if
the edges are the same. One straightforward key is to use the coordinates in 3D space by, say, computing the
midpoint of the edge. The main problem with using this point coordinates approach is that a computer can hold
a point coordinate only with floating point numbers of limited precision. Computer floating point computations
are notorious for providing slightly different answers when the results should be the same. For example, if an
edge has endpoints at p1 and p2 and two different cells compute the midpoint as (p1 + p2)/2 and (p2 + p1)/2,
respectively, the answer is likely to be slightly different. When this happens, the keys will not be the same and
we will still produce 2 edges in the output.
Fortunately, there is a better choice for keys based on the observation that in the original cell set each edge
is specified by endpoints that each have unique indices. We can combine these 2 point indices to form a
“canonical” descriptor of an edge (correcting for order).1 VTK-m comes with a helper function, vtkm::exec::-
CellEdgeCanonicalId, defined in vtkm/exec/CellEdge.h, to produce these unique edge keys as vtkm::Id2 s. Our
second worklet produces these canonical edge identifiers.

Example 32.5: Worklet generating canonical edge identifiers.
1 class EdgeIdsWorklet : public vtkm :: worklet :: WorkletVisitCellsWithPoints
2 {
3 public :
4 using ControlSignature = void ( CellSetIn cellSet , FieldOut canonicalIds );
5 using ExecutionSignature = void ( CellShape cellShape ,
6 PointIndices globalPointIndices ,
7 VisitIndex localEdgeIndex ,
8 _2 canonicalIdOut );
9 using InputDomain = _1;

10
11 using ScatterType = vtkm :: worklet :: ScatterCounting ;
12
13 template < typename CellShapeTag , typename PointIndexVecType >
14 VTKM_EXEC void operator ()( CellShapeTag cellShape ,
15 const PointIndexVecType & globalPointIndicesForCell ,
16 vtkm :: IdComponent localEdgeIndex ,
17 vtkm :: Id2& canonicalIdOut ) const
18 {
19 vtkm :: IdComponent numPointsInCell =
20 globalPointIndicesForCell . GetNumberOfComponents ();

1Using indices to find common mesh elements is described by Miller et al. in “Finely-Threaded History-Based Topology Compu-
tation” (in Eurographics Symposium on Parallel Graphics and Visualization, June 2014).
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21
22 vtkm :: ErrorCode status =
23 vtkm :: exec :: CellEdgeCanonicalId ( numPointsInCell ,
24 localEdgeIndex ,
25 cellShape ,
26 globalPointIndicesForCell ,
27 canonicalIdOut );
28 if ( status != vtkm :: ErrorCode :: Success )
29 {
30 this -> RaiseError (vtkm :: ErrorString ( status ));
31 }
32 }
33 };

Our third and final worklet generates the line cells by outputting the indices of each edge. As hinted at earlier,
this worklet is a reduce by key worklet (inheriting from vtkm::worklet::WorkletReduceByKey). When the
worklet is invoked, VTK-m will collect the unique keys and call the worklet once for each unique edge. Because
there is no longer a consistent mapping from the generated lines to the elements of the input cell set, we need
pairs of indices identifying the cells/edges from which the edge information comes. We use these indices along
with a connectivity structure produced by a WholeCellSetIn to find the information about the edge. As shown
later, these indices of cells and edges can be extracted from the ScatterCounting used to execute the worklet
back in Example 32.5.
As we did in Section 32.1, this worklet writes out the edge information in a vtkm::Id2 (which in some following
code will be created with an ArrayHandleGroupVec).

Example 32.6: A worklet to generate indices for line cells from combined edges.
1 class EdgeIndicesWorklet : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 using ControlSignature = void ( KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn originCells ,
7 ValuesIn originEdges ,
8 ReducedValuesOut connectivityOut );
9 using ExecutionSignature = void (_2 inputCells ,

10 _3 originCell ,
11 _4 originEdge ,
12 _5 connectivityOut );
13 using InputDomain = _1;
14
15 template < typename CellSetType , typename OriginCellsType , typename OriginEdgesType >
16 VTKM_EXEC void operator ()( const CellSetType & cellSet ,
17 const OriginCellsType & originCells ,
18 const OriginEdgesType & originEdges ,
19 vtkm :: Id2& connectivityOut ) const
20 {
21 // Regardless of how many cells are sharing the edge we are generating , we
22 // know that each cell/edge given to us by the reduce -by -key refers to the
23 // same edge , so we can just look at the first cell to get the edge.
24 vtkm :: IdComponent numPointsInCell = cellSet . GetNumberOfIndices ( originCells [0]);
25 vtkm :: IdComponent edgeIndex = originEdges [0];
26 auto cellShape = cellSet . GetCellShape ( originCells [0]);
27
28 vtkm :: IdComponent pointInCellIndex0 ;
29 vtkm :: exec :: CellEdgeLocalIndex (
30 numPointsInCell , 0, edgeIndex , cellShape , pointInCellIndex0 );
31 vtkm :: IdComponent pointInCellIndex1 ;
32 vtkm :: exec :: CellEdgeLocalIndex (
33 numPointsInCell , 1, edgeIndex , cellShape , pointInCellIndex1 );
34
35 auto globalPointIndicesForCell = cellSet . GetIndices ( originCells [0]);
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36 connectivityOut [0] = globalPointIndicesForCell [ pointInCellIndex0 ];
37 connectivityOut [1] = globalPointIndicesForCell [ pointInCellIndex1 ];
38 }
39 };

It so happens that the vtkm::Id2 s generated by CellEdgeCanonicalId contain the point indices of the
two endpoints, which is enough information to create the edge. Thus, in this example it would be possible
to forgo the steps of looking up indices through the cell set. That said, this is more often not the case, so
for the purposes of this example we show how to construct cells without depending on the structure of the
keys.

Did you know?

With these 3 worklets, it is now possible to generate all the information we need to fill a vtkm::cont::-
CellSetSingleType object. A CellSetSingleType requires 4 items: the number of points, the constant cell
shape, the constant number of points in each cell, and an array of connection indices. The first 3 items are
trivial. The number of points can be taken from the input cell set as they are the same. The cell shape and
number of points are predetermined to be line and 2, respectively.
The last item, the array of connection indices, is what we are creating with the worklet in Example 32.6. The
connectivity array for CellSetSingleType is expected to be a flat array of vtkm::Id indices, but the worklet
needs to provide groups of indices for each cell (in this case as a Vec object). To reconcile what the worklet
provides and what the connectivity array must look like, we use the vtkm::cont::ArrayHandleGroupVec fancy
array handle (described in Section 26.13) to make a flat array of indices look like an array of Vec objects. The
following example shows what the DoExecute method in the associated filter would look like. Note the use of
make ArrayHandleGroupVec when calling Invoke on line 25 to make this conversion.

Example 32.7: Invoking worklets to extract unique edges from a cell set.
1 inline VTKM_CONT vtkm :: cont :: DataSet ExtractEdges :: DoExecute (
2 const vtkm :: cont :: DataSet & inData )
3 {
4 auto inCellSet = inData . GetCellSet ();
5
6 // First , count the edges in each cell.
7 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > edgeCounts ;
8 this -> Invoke ( CountEdgesWorklet {}, inCellSet , edgeCounts );
9

10 // Second , using these counts build a scatter that repeats a cell ’s visit
11 // for each edge in the cell.
12 vtkm :: worklet :: ScatterCounting scatter ( edgeCounts );
13 vtkm :: worklet :: ScatterCounting :: VisitArrayType outputToInputEdgeMap =
14 scatter . GetVisitArray ( inCellSet . GetNumberOfCells ());
15
16 // Third , for each edge , extract a canonical id.
17 vtkm :: cont :: ArrayHandle <vtkm ::Id2 > canonicalIds ;
18 this -> Invoke ( EdgeIdsWorklet {}, scatter , inCellSet , canonicalIds );
19
20 // Fourth , construct a Keys object to combine all like edge ids.
21 vtkm :: worklet :: Keys <vtkm ::Id2 > cellToEdgeKeys ( canonicalIds );
22
23 // Fifth , use a reduce -by -key to extract indices for each unique edge.
24 vtkm :: cont :: ArrayHandle <vtkm ::Id > connectivityArray ;
25 this -> Invoke ( EdgeIndicesWorklet {},
26 cellToEdgeKeys ,
27 inCellSet ,
28 scatter . GetOutputToInputMap ( inCellSet . GetNumberOfCells ()) ,
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29 outputToInputEdgeMap ,
30 vtkm :: cont :: make_ArrayHandleGroupVec <2 >( connectivityArray ));
31
32 // Sixth , use the created connectivity array to build a cell set.
33 vtkm :: cont :: CellSetSingleType <> outCellSet ;
34 outCellSet .Fill(
35 inCellSet . GetNumberOfPoints (), vtkm :: CELL_SHAPE_LINE , 2, connectivityArray );
36
37 // Finally , we need to create an output data set. A lambda expression is one
38 // of the easiest ways to map fields from the input to the output with the
39 // CreateResult method .
40 auto fieldMapper =
41 [&]( vtkm :: cont :: DataSet & outData , const vtkm :: cont :: Field & inField )
42 {
43 if ( inField . IsCellField ())
44 {
45 // New cells were created . Need to find cells that created the output .
46 // First , the cells were subselected with a scatter . Use the
47 // output -to - input array from the scatter to permute the array .
48 vtkm :: cont :: Field subselectionField ;
49 vtkm :: filter :: MapFieldPermutation (
50 inField ,
51 scatter . GetOutputToInputMap ( inCellSet . GetNumberOfCells ()) ,
52 subselectionField );
53 // Next , coicident edges are combined together . Use the keys object
54 // for combining the cells to average out the cell values .
55 vtkm :: filter :: MapFieldMergeAverage ( subselectionField , cellToEdgeKeys , outData );
56 }
57 else
58 {
59 outData . AddField ( inField ); // Pass through
60 }
61 };
62
63 return this -> CreateResult (inData , outCellSet , fieldMapper );
64 }

Another feature to note in Example 32.7 is that because the cells returned in the output data are not the same
as the input, the output cell fields must be similarly converted. This is done by creating a lambda function
(lines 37–61) to convert the fields that is then passed to CreateResult (line 63). The mapping process reuses
the object from before to extract the edges from the cells. It first uses GetOutputToInputMap on the Scatter
object it creates with a convenience function named vtkm::filter::MapFieldPermutation that duplicates the
cell values for each edge. It then uses the vtkm::worklet::Keys object from the duplicate edge removal with
a convenience function named vtkm::filter::MapFieldMergeAverage that averages cell values for edges of
adjacent cells.

For simplicity, Example 32.7 is creating an intermediate array to hold the permutation. It would be possible
to remove this temporary array for saved performance and memory, but this requires building a custom
mapping function, which adds complexity. We will show an example of such a function in the following
section.

Did you know?
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32.3 Faster Combining Like Elements with Hashes

In the previous two sections we constructed worklets that took a cell set and created a new set of cells that
represented the edges of the original cell set, which can provide a wireframe of the mesh. In Section 32.1 we
provided a pair of worklets that generate one line per edge per cell. In Section 32.2 we improved on this behavior
by using a reduce by key worklet to find and merge shared edges.
If we were to time all the operations run in the later implementation to generate the wireframe (i.e. the operations
in Example 32.7), we would find that the vast majority of the time is not spent in the actual worklets. Rather,
the majority of the time is spent in collecting the like keys, which happens in the constructor of the vtkm::-
worklet::Keys object. Internally, keys are collected by sorting them. The most fruitful way to improve the
performance of this algorithm is to improve the sorting behavior.
The details of how the sort works is dependent on the inner workings of the device adapter. It turns out that
the performance of the sort of the keys is highly dependent on the data type of the keys. For example, sorting
numbers stored in a 32-bit integer is often much faster than sorting groups of 2 or 3 64-bit integer. This is
particularly true when the sort is capable of performing a radix-based sort.
An easy way to convert collections of indices like those returned from vtkm::exec::CellEdgeCanonicalId to
a 32-bit integer is to use a hash function. To facilitate the creation of hash values, VTK-m comes with a simple
vtkm::Hash function (in the vtkm/Hash.h header file). Hash takes a Vec or Vec-like object of integers and returns
a value of type vtkm::HashType (an alias for a 32-bit integer). This hash function uses the FNV-1a algorithm
that is designed to create hash values that are quasi-random but deterministic. This means that hash values of
two different identifiers are unlikely to be the same.
That said, hash collisions can happen and become increasingly likely on larger data sets. Therefore, if we wish to
use hash values, we also have to add conditions that manage collisions when they happen. Resolving hash value
collisions adds overhead, but the time saved in faster sorting of hash values generally outweighs the overhead
added by resolving collisions.2 In this section we will improve on the implementation given in Section 32.2 by
using hash values for keys and resolving for collisions.
As always, our first step is to count the number of edges in each input cell. These counts are used to create a
vtkm::worklet::ScatterCounting for subsequent worklets.

Example 32.8: A simple worklet to count the number of edges on each cell.
1 struct CountEdgesWorklet : vtkm :: worklet :: WorkletVisitCellsWithPoints
2 {
3 using ControlSignature = void ( CellSetIn cellSet , FieldOut numEdges );
4 using ExecutionSignature = _2(CellShape , PointCount );
5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC_CONT vtkm :: IdComponent operator ()(
9 CellShapeTag cellShape ,

10 vtkm :: IdComponent numPointsInCell ) const
11 {
12 vtkm :: IdComponent numEdges ;
13 vtkm :: ErrorCode status =
14 vtkm :: exec :: CellEdgeNumberOfEdges ( numPointsInCell , cellShape , numEdges );
15 if ( status != vtkm :: ErrorCode :: Success )
16 {
17 // There is an error in the cell. As good as it would be to return an
18 // error , we probably don ’t want to invalidate the entire run if there
19 // is just one malformed cell. Instead , ignore the cell.
20 return 0;

2A comparison of the time required for completely unique keys and hash keys with collisions is studied by Lessley, et al. in
“Techniques for Data-Parallel Searching for Duplicate Elements” (in IEEE Symposium on Large Data Analysis and Visualization,
October 2017).
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21 }
22 return numEdges ;
23 }
24 };

Our next step is to generate keys that can be used to find like elements. As before, we will use the vtkm::-
exec::CellEdgeCanonicalId function to create a unique representation for each edge. However, rather than
directly use the value from CellEdgeCanonicalId, which is a vtkm::Id2, we will instead use that to generate a
hash value.

Example 32.9: Worklet generating hash values.
1 class EdgeHashesWorklet : public vtkm :: worklet :: WorkletVisitCellsWithPoints
2 {
3 public :
4 using ControlSignature = void ( CellSetIn cellSet , FieldOut hashValues );
5 using ExecutionSignature = _2( CellShape cellShape ,
6 PointIndices globalPointIndices ,
7 VisitIndex localEdgeIndex );
8 using InputDomain = _1;
9

10 using ScatterType = vtkm :: worklet :: ScatterCounting ;
11
12 template < typename CellShapeTag , typename PointIndexVecType >
13 VTKM_EXEC vtkm :: HashType operator ()(
14 CellShapeTag cellShape ,
15 const PointIndexVecType & globalPointIndicesForCell ,
16 vtkm :: IdComponent localEdgeIndex ) const
17 {
18 vtkm :: IdComponent numPointsInCell =
19 globalPointIndicesForCell . GetNumberOfComponents ();
20 vtkm :: Id2 canonicalId ;
21 vtkm :: ErrorCode status =
22 vtkm :: exec :: CellEdgeCanonicalId ( numPointsInCell ,
23 localEdgeIndex ,
24 cellShape ,
25 globalPointIndicesForCell ,
26 canonicalId );
27 if ( status != vtkm :: ErrorCode :: Success )
28 {
29 this -> RaiseError (vtkm :: ErrorString ( status ));
30 return vtkm :: HashType ( -1);
31 }
32 return vtkm :: Hash( canonicalId );
33 }
34 };

The hash values generated by the worklet in Example 32.9 will be the same for two identical edges. However,
it is no longer guaranteed that two distinct edges will have different keys, and collisions of this nature become
increasingly common for larger cell sets. Thus, our next step is to resolve any such collisions.
The following example provides a worklet that goes through each group of edges associated with the same hash
value (using a reduce by key worklet). It identifies which edges are actually the same as which other edges,
marks a local identifier for each unique edge group, and returns the number of unique edges associated with the
hash value.

Example 32.10: Worklet to resolve hash collisions occurring on edge identifiers.
1 class EdgeHashCollisionsWorklet : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 using ControlSignature = void ( KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
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6 ValuesIn originCells ,
7 ValuesIn originEdges ,
8 ValuesOut localEdgeIndices ,
9 ReducedValuesOut numEdges );

10 using ExecutionSignature = _6(_2 inputCells ,
11 _3 originCells ,
12 _4 originEdges ,
13 _5 localEdgeIndices );
14 using InputDomain = _1;
15
16 template < typename CellSetType ,
17 typename OriginCellsType ,
18 typename OriginEdgesType ,
19 typename localEdgeIndicesType >
20 VTKM_EXEC vtkm :: IdComponent operator ()(
21 const CellSetType & cellSet ,
22 const OriginCellsType & originCells ,
23 const OriginEdgesType & originEdges ,
24 localEdgeIndicesType & localEdgeIndices ) const
25 {
26 vtkm :: IdComponent numEdgesInHash = localEdgeIndices . GetNumberOfComponents ();
27
28 // Sanity checks .
29 VTKM_ASSERT ( originCells . GetNumberOfComponents () == numEdgesInHash );
30 VTKM_ASSERT ( originEdges . GetNumberOfComponents () == numEdgesInHash );
31
32 // Clear out localEdgeIndices
33 for (vtkm :: IdComponent index = 0; index < numEdgesInHash ; ++ index )
34 {
35 localEdgeIndices [ index ] = -1;
36 }
37
38 // Count how many unique edges there are and create an id for each;
39 vtkm :: IdComponent numUniqueEdges = 0;
40 for (vtkm :: IdComponent firstEdgeIndex = 0; firstEdgeIndex < numEdgesInHash ;
41 ++ firstEdgeIndex )
42 {
43 if ( localEdgeIndices [ firstEdgeIndex ] == -1)
44 {
45 vtkm :: IdComponent edgeId = numUniqueEdges ;
46 localEdgeIndices [ firstEdgeIndex ] = edgeId ;
47 // Find all matching edges .
48 vtkm :: Id firstCellIndex = originCells [ firstEdgeIndex ];
49 vtkm :: Id2 canonicalEdgeId ;
50 vtkm :: exec :: CellEdgeCanonicalId ( cellSet . GetNumberOfIndices ( firstCellIndex ),
51 originEdges [ firstEdgeIndex ],
52 cellSet . GetCellShape ( firstCellIndex ),
53 cellSet . GetIndices ( firstCellIndex ),
54 canonicalEdgeId );
55 for (vtkm :: IdComponent laterEdgeIndex = firstEdgeIndex + 1;
56 laterEdgeIndex < numEdgesInHash ;
57 ++ laterEdgeIndex )
58 {
59 vtkm :: Id laterCellIndex = originCells [ laterEdgeIndex ];
60 vtkm :: Id2 otherCanonicalEdgeId ;
61 vtkm :: exec :: CellEdgeCanonicalId ( cellSet . GetNumberOfIndices ( laterCellIndex ),
62 originEdges [ laterEdgeIndex ],
63 cellSet . GetCellShape ( laterCellIndex ),
64 cellSet . GetIndices ( laterCellIndex ),
65 otherCanonicalEdgeId );
66 if ( canonicalEdgeId == otherCanonicalEdgeId )
67 {
68 localEdgeIndices [ laterEdgeIndex ] = edgeId ;
69 }
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70 }
71 ++ numUniqueEdges ;
72 }
73 }
74
75 return numUniqueEdges ;
76 }
77 };

With all hash collisions correctly identified, we are ready to generate the connectivity array for the line elements.
This worklet uses a reduce by key worklet like the previous example, but this time we use a ScatterCounting
to run the worklet multiple times for hash values that contain multiple unique edges. The worklet takes all the
information it needs to reference back to the edges in the original mesh including a WholeCellSetIn, look back
indices for the cells and respective edges, and the unique edge group indicators produced by Example 32.9.
As in the previous sections, this worklet writes out the edge information in a vtkm::Id2 (which in some following
code will be created with an ArrayHandleGroupVec).

Example 32.11: A worklet to generate indices for line cells from combined edges and potential collisions.
1 class EdgeIndicesWorklet : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 using ControlSignature = void ( KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn originCells ,
7 ValuesIn originEdges ,
8 ValuesIn localEdgeIndices ,
9 ReducedValuesOut connectivityOut );

10 using ExecutionSignature = void (_2 inputCells ,
11 _3 originCell ,
12 _4 originEdge ,
13 _5 localEdgeIndices ,
14 VisitIndex localEdgeIndex ,
15 _6 connectivityOut );
16 using InputDomain = _1;
17
18 using ScatterType = vtkm :: worklet :: ScatterCounting ;
19
20 template < typename CellSetType ,
21 typename OriginCellsType ,
22 typename OriginEdgesType ,
23 typename LocalEdgeIndicesType >
24 VTKM_EXEC void operator ()( const CellSetType & cellSet ,
25 const OriginCellsType & originCells ,
26 const OriginEdgesType & originEdges ,
27 const LocalEdgeIndicesType & localEdgeIndices ,
28 vtkm :: IdComponent localEdgeIndex ,
29 vtkm :: Id2& connectivityOut ) const
30 {
31 // Find the first edge that matches the index given and return it.
32 for (vtkm :: IdComponent edgeIndex = 0;; ++ edgeIndex )
33 {
34 if ( localEdgeIndices [ edgeIndex ] == localEdgeIndex )
35 {
36 vtkm :: Id cellIndex = originCells [ edgeIndex ];
37 vtkm :: IdComponent numPointsInCell = cellSet . GetNumberOfIndices ( cellIndex );
38 vtkm :: IdComponent edgeInCellIndex = originEdges [ edgeIndex ];
39 auto cellShape = cellSet . GetCellShape ( cellIndex );
40
41 vtkm :: IdComponent pointInCellIndex0 ;
42 vtkm :: exec :: CellEdgeLocalIndex (
43 numPointsInCell , 0, edgeInCellIndex , cellShape , pointInCellIndex0 );
44 vtkm :: IdComponent pointInCellIndex1 ;
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45 vtkm :: exec :: CellEdgeLocalIndex (
46 numPointsInCell , 1, edgeInCellIndex , cellShape , pointInCellIndex1 );
47
48 auto globalPointIndicesForCell = cellSet . GetIndices ( cellIndex );
49 connectivityOut [0] = globalPointIndicesForCell [ pointInCellIndex0 ];
50 connectivityOut [1] = globalPointIndicesForCell [ pointInCellIndex1 ];
51
52 break ;
53 }
54 }
55 }
56 };

With these 3 worklets, it is now possible to generate all the information we need to fill a vtkm::cont::-
CellSetSingleType object. A CellSetSingleType requires 4 items: the number of points, the constant cell
shape, the constant number of points in each cell, and an array of connection indices. The first 3 items are
trivial. The number of points can be taken from the input cell set as they are the same. The cell shape and
number of points are predetermined to be line and 2, respectively.
The last item, the array of connection indices, is what we are creating with the worklet in Example 32.11. The
connectivity array for CellSetSingleType is expected to be a flat array of vtkm::Id indices, but the worklet
needs to provide groups of indices for each cell (in this case as a Vec object). To reconcile what the worklet
provides and what the connectivity array must look like, we use the vtkm::cont::ArrayHandleGroupVec fancy
array handle (described in Section 26.13) to make a flat array of indices look like an array of Vec objects.
The following example shows what the DoExecute method in the associated filter would look like.

Example 32.12: Invoking worklets to extract unique edges from a cell set using hash values.
1 inline VTKM_CONT vtkm :: cont :: DataSet ExtractEdges :: DoExecute (
2 const vtkm :: cont :: DataSet & inData )
3 {
4 auto inCellSet = inData . GetCellSet ();
5
6 // First , count the edges in each cell.
7 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > edgeCounts ;
8 this -> Invoke ( CountEdgesWorklet {}, inCellSet , edgeCounts );
9

10 // Second , using these counts build a scatter that repeats a cell ’s visit
11 // for each edge in the cell.
12 vtkm :: worklet :: ScatterCounting scatter ( edgeCounts );
13 vtkm :: worklet :: ScatterCounting :: OutputToInputMapType outputToInputCellMap =
14 scatter . GetOutputToInputMap ( inCellSet . GetNumberOfCells ());
15 vtkm :: worklet :: ScatterCounting :: VisitArrayType outputToInputEdgeMap =
16 scatter . GetVisitArray ( inCellSet . GetNumberOfCells ());
17
18 // Third , for each edge , extract a hash.
19 vtkm :: cont :: ArrayHandle <vtkm :: HashType > hashValues ;
20 this -> Invoke ( EdgeHashesWorklet {}, scatter , inCellSet , hashValues );
21
22 // Fourth , use a Keys object to combine all like hashes .
23 vtkm :: worklet :: Keys <vtkm :: HashType > cellToEdgeKeys ( hashValues );
24
25 // Fifth , use a reduce -by -key to collect like hash values , resolve collisions ,
26 // and count the number of unique edges associated with each hash.
27 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > numUniqueEdgesInEachHash ;
28 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > localEdgeIndices ;
29 this -> Invoke ( EdgeHashCollisionsWorklet {},
30 cellToEdgeKeys ,
31 inCellSet ,
32 outputToInputCellMap ,
33 outputToInputEdgeMap ,
34 localEdgeIndices ,
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35 numUniqueEdgesInEachHash );
36
37 // Sixth , use a reduce -by -key to extract indices for each unique edge.
38 vtkm :: worklet :: ScatterCounting hashCollisionScatter ( numUniqueEdgesInEachHash );
39
40 vtkm :: cont :: ArrayHandle <vtkm ::Id > connectivityArray ;
41 this -> Invoke ( EdgeIndicesWorklet {},
42 hashCollisionScatter ,
43 cellToEdgeKeys ,
44 inCellSet ,
45 outputToInputCellMap ,
46 outputToInputEdgeMap ,
47 localEdgeIndices ,
48 vtkm :: cont :: make_ArrayHandleGroupVec <2 >( connectivityArray ));
49
50 // Seventh , use the created connectivity array to build a cell set.
51 vtkm :: cont :: CellSetSingleType <> outCellSet ;
52 outCellSet .Fill(
53 inCellSet . GetNumberOfPoints (), vtkm :: CELL_SHAPE_LINE , 2, connectivityArray );
54
55 auto fieldMapper =
56 [&]( vtkm :: cont :: DataSet & dataset , const vtkm :: cont :: Field & inField )
57 {
58 MapCellEdgesField (dataset ,
59 inField ,
60 outputToInputCellMap ,
61 cellToEdgeKeys ,
62 localEdgeIndices ,
63 hashCollisionScatter );
64 };
65 return this -> CreateResult (inData , outCellSet , fieldMapper );
66 }

As noted in Section 32.2, in practice DoExecute is called on DataSet objects to create new DataSet objects.
Because Example 32.12 creates a new CellSet, it also needs a mechanism to transform the Fields on the data
set. To do this, we need to repurpose some of the data generated earlier in the algorithm. This includes the out-
putToInputCellMap retrieved from the Scatter object to replicate the cells for each edge, the cellToEdgeKeys
Keys object to find like hash values, the localEdgeIndices array used to identify edges in colliding hashes, and
the hashCollisionScatter ScatterCounting object used to separate edges from colliding hashes.
In Section 32.2 we used a convenience method to average a field attached to cells on the input to each unique
edge in the output. Unfortunately, that function does not take into account the collisions that can occur on the
keys. Instead we need a custom worklet to average those values that match the same unique edge.

Example 32.13: A worklet and helper function to average values with the same key, resolving for collisions.
1 class AverageCellEdgesFieldWorklet : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 using ControlSignature = void ( KeysIn keys ,
5 ValuesIn inFieldValues ,
6 ValuesIn localEdgeIndices ,
7 ReducedValuesOut averagedField );
8 using ExecutionSignature = void (_2 inFieldValues ,
9 _3 localEdgeIndices ,

10 VisitIndex localEdgeIndex ,
11 _4 averagedField );
12 using InputDomain = _1;
13
14 using ScatterType = vtkm :: worklet :: ScatterCounting ;
15
16 template < typename InFieldValuesType ,
17 typename LocalEdgeIndicesType ,
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18 typename OutFieldValuesType >
19 VTKM_EXEC void operator ()( const InFieldValuesType & inFieldValues ,
20 const LocalEdgeIndicesType & localEdgeIndices ,
21 vtkm :: IdComponent localEdgeIndex ,
22 OutFieldValuesType & averageField ) const
23 {
24 using FieldType = typename InFieldValuesType :: ComponentType ;
25
26 vtkm :: IdComponent numValues = 0;
27 for (vtkm :: IdComponent reduceIndex = 0;
28 reduceIndex < inFieldValues . GetNumberOfComponents ();
29 ++ reduceIndex )
30 {
31 if ( localEdgeIndices [ reduceIndex ] == localEdgeIndex )
32 {
33 FieldType fieldValue = inFieldValues [ reduceIndex ];
34 if ( numValues == 0)
35 {
36 averageField = fieldValue ;
37 }
38 else
39 {
40 averageField = averageField + fieldValue ;
41 }
42 ++ numValues ;
43 }
44 }
45 VTKM_ASSERT ( numValues > 0);
46 averageField = averageField / numValues ;
47 }
48 };
49
50 void MapCellEdgesField (
51 vtkm :: cont :: DataSet & dataset ,
52 const vtkm :: cont :: Field & inField ,
53 const vtkm :: worklet :: ScatterCounting :: OutputToInputMapType & cellPermutationMap ,
54 const vtkm :: worklet :: Keys <vtkm :: HashType >& cellToEdgeKeys ,
55 const vtkm :: cont :: ArrayHandle <vtkm :: IdComponent >& localEdgeIndices ,
56 const vtkm :: worklet :: ScatterCounting & hashCollisionScatter )
57 {
58 if ( inField . IsCellField ())
59 {
60 vtkm :: cont :: Invoker invoke ;
61 vtkm :: cont :: UnknownArrayHandle inArray = inField . GetData ();
62 vtkm :: cont :: UnknownArrayHandle outArray = inArray . NewInstanceBasic ();
63
64 // Need to pre - allocate outArray because the way it is accessed in
65 // doMap it cannot be resized .
66 outArray . Allocate ( hashCollisionScatter . GetOutputRange (
67 cellToEdgeKeys . GetUniqueKeys (). GetNumberOfValues ()));
68
69 auto doMap = [&]( auto& concreteInput )
70 {
71 using T =
72 typename std :: decay_t < decltype ( concreteInput ) >:: ValueType :: ComponentType ;
73 auto concreteOutput =
74 outArray . ExtractArrayFromComponents <T >( vtkm :: CopyFlag :: Off );
75 invoke (
76 AverageCellEdgesFieldWorklet {},
77 hashCollisionScatter ,
78 cellToEdgeKeys ,
79 vtkm :: cont :: make_ArrayHandlePermutation ( cellPermutationMap , concreteInput ),
80 localEdgeIndices ,
81 concreteOutput );
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82 };
83 inArray . CastAndCallWithExtractedArray ( doMap );
84
85 dataset . AddCellField ( inField . GetName (), outArray );
86 }
87 else
88 {
89 dataset . AddField ( inField ); // pass through
90 }
91 }

With this helper function, it is straightforward to process cell fields (as demonstrated in lines 55–64 in Example
32.12.

32.4 Variable Cell Types

So far in our previous examples we have demonstrated creating a cell set where every cell is the same shape and
number of points (i.e. a CellSetSingleType). However, it can also be the case where an algorithm must create
cells of a different type (into a vtkm::cont::CellSetExplicit). The procedure for generating cells of different
shapes is similar to that of creating a single shape. There is, however, an added step of counting the size (in
number of points) of each shape to build the appropriate structure for storing the cell connectivity.
Our motivating example is a filter that extracts all the unique faces in a cell set and stores them in a cell set
of polygons. This problem is similar to the one addressed in Sections 32.1, 32.2, and 32.3. In both cases it is
necessary to find all subelements of each cell (in this case the faces instead of the edges). It is also the case that
we expect many faces to be shared among cells in the same way edges are shared among cells. We will use the
hash-based approach demonstrated in Section 32.3 except this time applied to faces instead of edges.
The main difference between the two extraction tasks is that whereas all edges are lines with two points, faces
can come in different sizes. A tetrahedron has triangular faces whereas a hexahedron has quadrilateral faces.
Pyramid and wedge cells have both triangular and quadrilateral faces. Thus, in general the algorithm must be
capable of outputting multiple cell types.
Our algorithm for extracting unique cell faces follows the same algorithm as that in Section 32.3. We first need
three worklets (used in succession) to count the number of faces in each cell, to generate a hash value for each
face, and to resolve hash collisions. These are essentially the same as Examples 32.8, 32.9, and 32.10, respectively,
with superficial changes made (like changing Edge to Face). To make it simpler to follow the discussion, the
code is not repeated here.
When extracting edges, these worklets provide everything necessary to write out line elements. However, before
we can write out polygons of different sizes, we first need to count the number of points in each polygon. The
following example does just that. This worklet also writes out the identifier for the shape of the face, which
we will eventually require to build a CellSetExplicit. Also recall that we have to work with the information
returned from the collision resolution to report on the appropriate unique cell face.

Example 32.14: A worklet to count the points in the final cells of extracted faces
1 class CountPointsInFaceWorklet : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 using ControlSignature = void ( KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn originCells ,
7 ValuesIn originFaces ,
8 ValuesIn localFaceIndices ,
9 ReducedValuesOut faceShape ,

10 ReducedValuesOut numPointsInEachFace );
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11 using ExecutionSignature = void (_2 inputCells ,
12 _3 originCell ,
13 _4 originFace ,
14 _5 localFaceIndices ,
15 VisitIndex localFaceIndex ,
16 _6 faceShape ,
17 _7 numPointsInFace );
18 using InputDomain = _1;
19
20 using ScatterType = vtkm :: worklet :: ScatterCounting ;
21
22 template < typename CellSetType ,
23 typename OriginCellsType ,
24 typename OriginFacesType ,
25 typename LocalFaceIndicesType >
26 VTKM_EXEC void operator ()( const CellSetType & cellSet ,
27 const OriginCellsType & originCells ,
28 const OriginFacesType & originFaces ,
29 const LocalFaceIndicesType & localFaceIndices ,
30 vtkm :: IdComponent localFaceIndex ,
31 vtkm :: UInt8 & faceShape ,
32 vtkm :: IdComponent & numPointsInFace ) const
33 {
34 // Find the first face that matches the index given .
35 for (vtkm :: IdComponent faceIndex = 0;; ++ faceIndex )
36 {
37 if ( localFaceIndices [ faceIndex ] == localFaceIndex )
38 {
39 vtkm :: Id cellIndex = originCells [ faceIndex ];
40 vtkm :: exec :: CellFaceShape (
41 originFaces [ faceIndex ], cellSet . GetCellShape ( cellIndex ), faceShape );
42 vtkm :: exec :: CellFaceNumberOfPoints (
43 originFaces [ faceIndex ], cellSet . GetCellShape ( cellIndex ), numPointsInFace );
44 break ;
45 }
46 }
47 }
48 };

When extracting edges, we converted a flat array of connectivity information to an array of Vecs using an
ArrayHandleGroupVec. However, ArrayHandleGroupVec can only create Vecs of a constant size. Instead, for
this use case we need to use vtkm::cont::ArrayHandleGroupVecVariable. As described in Section 26.13,
ArrayHandleGroupVecVariable takes a flat array of values and an index array of offsets that points to the
beginning of each group to represent as a Vec-like. The worklet in Example 32.14 does not actually give us the
array of offsets we need. Rather, it gives us the count of each group. We can get the offsets from the counts by
using the vtkm::cont::ConvertNumComponentsToOffsets convenience function.

Example 32.15: Converting counts of connectivity groups to offsets for ArrayHandleGroupVecVariable.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > offsets ;
2 vtkm :: Id connectivityArraySize ;
3 vtkm :: cont :: ConvertNumComponentsToOffsets (
4 numPointsInEachFace , offsets , connectivityArraySize );
5
6 vtkm :: cont :: CellSetExplicit < >:: ConnectivityArrayType connectivityArray ;
7 connectivityArray . Allocate ( connectivityArraySize );
8 auto connectivityArrayVecs =
9 vtkm :: cont :: make_ArrayHandleGroupVecVariable ( connectivityArray , offsets );

Once we have created an ArrayHandleGroupVecVariable, we can pass that to a worklet that produces the point
connections for each output polygon. The worklet is very similar to the one for creating edge lines (shown in
Example 32.11), but we have to correctly handle the Vec-like of unknown type and size.
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Example 32.16: A worklet to generate indices for polygon cells of different sizes from combined edges and
potential collisions.

1 class FaceIndicesWorklet : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 using ControlSignature = void ( KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn originCells ,
7 ValuesIn originFaces ,
8 ValuesIn localFaceIndices ,
9 ReducedValuesOut connectivityOut );

10 using ExecutionSignature = void (_2 inputCells ,
11 _3 originCell ,
12 _4 originFace ,
13 _5 localFaceIndices ,
14 VisitIndex localFaceIndex ,
15 _6 connectivityOut );
16 using InputDomain = _1;
17
18 using ScatterType = vtkm :: worklet :: ScatterCounting ;
19
20 template < typename CellSetType ,
21 typename OriginCellsType ,
22 typename OriginFacesType ,
23 typename LocalFaceIndicesType ,
24 typename ConnectivityVecType >
25 VTKM_EXEC void operator ()( const CellSetType & cellSet ,
26 const OriginCellsType & originCells ,
27 const OriginFacesType & originFaces ,
28 const LocalFaceIndicesType & localFaceIndices ,
29 vtkm :: IdComponent localFaceIndex ,
30 ConnectivityVecType & connectivityOut ) const
31 {
32 // Find the first face that matches the index given and return it.
33 for (vtkm :: IdComponent faceIndex = 0;; ++ faceIndex )
34 {
35 if ( localFaceIndices [ faceIndex ] == localFaceIndex )
36 {
37 vtkm :: Id cellIndex = originCells [ faceIndex ];
38 vtkm :: IdComponent faceInCellIndex = originFaces [ faceIndex ];
39 auto cellShape = cellSet . GetCellShape ( cellIndex );
40 vtkm :: IdComponent numPointsInFace = connectivityOut . GetNumberOfComponents ();
41
42 auto globalPointIndicesForCell = cellSet . GetIndices ( cellIndex );
43 for (vtkm :: IdComponent localPointI = 0; localPointI < numPointsInFace ;
44 ++ localPointI )
45 {
46 vtkm :: IdComponent pointInCellIndex ;
47 vtkm :: exec :: CellFaceLocalIndex (
48 localPointI , faceInCellIndex , cellShape , pointInCellIndex );
49 connectivityOut [ localPointI ] = globalPointIndicesForCell [ pointInCellIndex ];
50 }
51
52 break ;
53 }
54 }
55 }
56 };

With these worklets in place, we can implement a filter DoExecute as follows.

Example 32.17: Invoking worklets to extract unique faces from a cell set.
1 inline VTKM_CONT vtkm :: cont :: DataSet ExtractFaces :: DoExecute (
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2 const vtkm :: cont :: DataSet & inData )
3 {
4
5 auto inCellSet = inData . GetCellSet ();
6
7 // First , count the faces in each cell.
8 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > faceCounts ;
9 this -> Invoke ( CountFacesWorklet {}, inCellSet , faceCounts );

10
11 // Second , using these counts build a scatter that repeats a cell ’s visit
12 // for each edge in the cell.
13 vtkm :: worklet :: ScatterCounting scatter ( faceCounts );
14 vtkm :: worklet :: ScatterCounting :: OutputToInputMapType outputToInputCellMap =
15 scatter . GetOutputToInputMap ( inCellSet . GetNumberOfCells ());
16 vtkm :: worklet :: ScatterCounting :: VisitArrayType outputToInputFaceMap =
17 scatter . GetVisitArray ( inCellSet . GetNumberOfCells ());
18
19 // Third , for each face , extract a hash.
20 vtkm :: cont :: ArrayHandle <vtkm :: HashType > hashValues ;
21 this -> Invoke ( FaceHashesWorklet {}, scatter , inCellSet , hashValues );
22
23 // Fourth , use a Keys object to combine all like hashes .
24 vtkm :: worklet :: Keys <vtkm :: HashType > cellToFaceKeys ( hashValues );
25
26 // Fifth , use a reduce -by -key to collect like hash values , resolve collisions ,
27 // and count the number of unique faces associated with each hash.
28 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > localFaceIndices ;
29 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > numUniqueFacesInEachHash ;
30 this -> Invoke ( FaceHashCollisionsWorklet {},
31 cellToFaceKeys ,
32 inCellSet ,
33 outputToInputCellMap ,
34 outputToInputFaceMap ,
35 localFaceIndices ,
36 numUniqueFacesInEachHash );
37
38 // Sixth , use a reduce -by -key to count the number of points in each unique face.
39 // Also identify the shape of each face.
40 vtkm :: worklet :: ScatterCounting hashCollisionScatter ( numUniqueFacesInEachHash );
41
42 vtkm :: cont :: CellSetExplicit < >:: ShapesArrayType shapeArray ;
43 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > numPointsInEachFace ;
44
45 this -> Invoke ( CountPointsInFaceWorklet {},
46 hashCollisionScatter ,
47 cellToFaceKeys ,
48 inCellSet ,
49 outputToInputCellMap ,
50 outputToInputFaceMap ,
51 localFaceIndices ,
52 shapeArray ,
53 numPointsInEachFace );
54
55 // Seventh , convert the numPointsInEachFace array to an offsets array and use that
56 // to create an ArrayHandleGroupVecVariable .
57 vtkm :: cont :: ArrayHandle <vtkm ::Id > offsets ;
58 vtkm :: Id connectivityArraySize ;
59 vtkm :: cont :: ConvertNumComponentsToOffsets (
60 numPointsInEachFace , offsets , connectivityArraySize );
61
62 vtkm :: cont :: CellSetExplicit < >:: ConnectivityArrayType connectivityArray ;
63 connectivityArray . Allocate ( connectivityArraySize );
64 auto connectivityArrayVecs =
65 vtkm :: cont :: make_ArrayHandleGroupVecVariable ( connectivityArray , offsets );
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66
67 // Eigth , use a reduce -by -key to extract indices for each unique face.
68 this -> Invoke ( FaceIndicesWorklet {},
69 hashCollisionScatter ,
70 cellToFaceKeys ,
71 inCellSet ,
72 outputToInputCellMap ,
73 outputToInputFaceMap ,
74 localFaceIndices ,
75 connectivityArrayVecs );
76
77 // Ninth , use the created connectivity array and others to build a cell set.
78 vtkm :: cont :: CellSetExplicit <> outCellSet ;
79 outCellSet .Fill(
80 inCellSet . GetNumberOfPoints (), shapeArray , connectivityArray , offsets );
81
82 auto fieldMapper =
83 [&]( vtkm :: cont :: DataSet & dataset , const vtkm :: cont :: Field & inField )
84 {
85 MapCellEdgesField (dataset ,
86 inField ,
87 outputToInputCellMap ,
88 cellToFaceKeys ,
89 localFaceIndices ,
90 hashCollisionScatter );
91 };
92 return this -> CreateResult (inData , outCellSet , fieldMapper );
93 }

As noted previously, in practice DoExecute is called on DataSet objects to create new DataSet objects. The
process for doing so is no different from our previous algorithm as described at the end of Section 32.3 (Example
32.13).
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THIRTYTHREE

UNKNOWN ARRAY HANDLES

The ArrayHandle class uses templating to make very efficient and type-safe access to data. However, it is some-
times inconvenient or impossible to specify the element type and storage at run-time. The UnknownArrayHandle
class provides a mechanism to manage arrays of data with unspecified types.
vtkm::cont::UnknownArrayHandle holds a reference to an array. Unlike ArrayHandle, UnknownArrayHandle
is not templated. Instead, it uses C++ run-type type information to store the array without type and cast it
when appropriate.
An UnknownArrayHandle can be established by constructing it with or assigning it to an ArrayHandle. The
following example demonstrates how an UnknownArrayHandle might be used to load an array whose type is not
known until run-time.

Example 33.1: Creating an UnknownArrayHandle.
1 VTKM_CONT
2 vtkm :: cont :: UnknownArrayHandle LoadUnknownArray ( const void * buffer ,
3 vtkm :: Id length ,
4 std :: string type)
5 {
6 vtkm :: cont :: UnknownArrayHandle handle ;
7 if (type == " float ")
8 {
9 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > concreteArray =

10 vtkm :: cont :: make_ArrayHandle (
11 reinterpret_cast < const vtkm :: Float32 *>( buffer ), length , vtkm :: CopyFlag :: On );
12 handle = concreteArray ;
13 }
14 else if (type == "int ")
15 {
16 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > concreteArray =
17 vtkm :: cont :: make_ArrayHandle (
18 reinterpret_cast < const vtkm :: Int32 *>( buffer ), length , vtkm :: CopyFlag :: On );
19 handle = concreteArray ;
20 }
21 return handle ;
22 }

33.1 Allocation

Data pointed to by an UnknownArrayHandle is not directly accessible. However, it is still possible to do some
type-agnostic manipulation of the array allocations.
First, it is always possible to call UnknownArrayHandle::GetNumberOfValues to retrieve the current size of
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the array. It is also possible to call UnknownArrayHandle::Allocate to change the size of an unknown array.
UnknownArrayHandle’s Allocate works exactly the same as the Allocate in the basic ArrayHandle.

Example 33.2: Checking the size of an ArrayHandle and resizing it.
1 vtkm :: cont :: UnknownArrayHandle unknownHandle = // ... some valid array
2
3 // Double the size of the array while preserving all the initial values .
4 vtkm :: Id originalArraySize = unknownHandle . GetNumberOfValues ();
5 unknownHandle . Allocate ( originalArraySize * 2, vtkm :: CopyFlag :: On );

It is often the case where you have an UnknownArrayHandle as the input to an operation and you want to
generate an output of the same type. To handle this case, use the NewInstance method to create a new array
of the same type (without having to determine the type).

Example 33.3: Creating a new instance of an unknown array handle.
1 vtkm :: cont :: UnknownArrayHandle unknownHandle = // ... some valid array
2
3 // Double the size of the array while preserving all the initial values .
4 vtkm :: Id originalArraySize = unknownHandle . GetNumberOfValues ();
5 unknownHandle . Allocate ( originalArraySize * 2, vtkm :: CopyFlag :: On );
6
7 // Create a new array of the same type as the original .
8 vtkm :: cont :: UnknownArrayHandle newArray = unknownHandle . NewInstance ();
9

10 newArray . Allocate ( originalArraySize );

That said, there are many fancy array types (described in Chapter 26) that cannot be used as outputs. Thus, if
you do not know the storage of the array, the similar array returned by NewInstance could be infeasible for use
as an output. Thus, UnknownArrayHandle also contains the NewInstanceBasic method to create a new array
with the same value type but using the basic array storage, which can always be resized and written to.

Example 33.4: Creating a new basic instance of an unknown array handle.
1 vtkm :: cont :: UnknownArrayHandle indexArray = vtkm :: cont :: ArrayHandleIndex ();
2 // Returns an array of type ArrayHandleBasic <vtkm ::Id >
3 vtkm :: cont :: UnknownArrayHandle basicArray = indexArray . NewInstanceBasic ();

It is occasionally the case that you need a new array of a similar type, but that type has to hold floating point
values. For example, if you had an operation that computed a discrete cosine transform on an array, the result
would be very inaccurate if stored as integers. In this case, you would actually want to store the result in an array
of floating point values. For this case, you can use the NewInstanceFloatBasic to create a new basic ArrayHan-
dle with the component type changed to vtkm::FloatDefault. For example, if the UnknownArrayHandle stores
an ArrayHandle of type vtkm::Id, NewInstanceFloatBasic will create an ArrayHandle of type vtkm::Float-
Default. If the UnknownArrayHandle stores an ArrayHandle of type vtkm::Id3, NewInstanceFloatBasic will
create an ArrayHandle of type vtkm::Vec3f.

Example 33.5: Creating a new array instance with floating point values.
1 vtkm :: cont :: UnknownArrayHandle intArray = vtkm :: cont :: ArrayHandleIndex ();
2 // Returns an array of type ArrayHandleBasic <vtkm :: FloatDefault >
3 vtkm :: cont :: UnknownArrayHandle floatArray = intArray . NewInstanceFloatBasic ();
4
5 vtkm :: cont :: UnknownArrayHandle id3Array = vtkm :: cont :: ArrayHandle <vtkm ::Id3 >();
6 // Returns an array of type ArrayHandleBasic <vtkm :: Vec3f >
7 vtkm :: cont :: UnknownArrayHandle float3Array = id3Array . NewInstanceFloatBasic ();
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33.2 Casting to Known Types

Data pointed to by an UnknownArrayHandle is not directly accessible. To access the data, you need to retrieve
the data as an ArrayHandle. If you happen to know (or can guess) the type, you can use the AsArrayHandle
method to retrieve the array as a specific type.

Example 33.6: Retrieving an array of a known type from UnknownArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > knownArray =
2 unknownArray . AsArrayHandle <vtkm :: cont :: ArrayHandle <vtkm :: Float32 > >();

AsArrayHandle actually has two forms. The first form, shown in the previous example, has no arguments and
returns the ArrayHandle. This form requires you to specify the type of array as a template parameter. The
alternate form has you pass a reference to a concrete ArrayHandle as an argument as shown in the following
example. This form can imply the template parameter from the argument.

Example 33.7: Alternate form for retrieving an array of a known type from UnknownArrayHandle.
1 unknownArray . AsArrayHandle ( knownArray );

AsArrayHandle treats ArrayHandleCast and ArrayHandleMultiplexer special. If the special ArrayHandle can
hold the actual array stored, then AsArrayHandle will return successfully. In the following example, AsArrayHan-
dle returns an array of type vtkm::Float32 as an ArrayHandleCast that converts the values to vtkm::Float64.

Example 33.8: Getting a cast array handle from an ArrayHandleCast.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > originalArray ;
2 vtkm :: cont :: UnknownArrayHandle unknownArray = originalArray ;
3
4 vtkm :: cont :: ArrayHandleCast <vtkm :: Float64 , decltype ( originalArray )> castArray ;
5 unknownArray . AsArrayHandle ( castArray );

The inverse retrieval works as well. If you create an UnknownArrayHandle with an ArrayHandleCast or
ArrayHandleMultiplexer, you can get the underlying array with AsArrayHandle. These relationships
also work recursively (e.g. an array placed in a cast array which is placed in a multiplexer).

Did you know?

If the UnknownArrayHandle cannot store its array in the type given to AsArrayHandle, it will throw an exception.
Thus, you should not use AsArrayHandle with types that you are not sure about. Use the CanConvert method
to determine if a given ArrayHandle type will work with AsArrayHandle.

Example 33.9: Querying whether a given ArrayHandle can be retrieved from an UnknownArrayHandle.
1 VTKM_CONT vtkm :: FloatDefault GetMiddleValue (
2 const vtkm :: cont :: UnknownArrayHandle & unknownArray )
3 {
4 if ( unknownArray . CanConvert <vtkm :: cont :: ArrayHandleConstant <vtkm :: FloatDefault > >())
5 {
6 // Fast path for known array
7 vtkm :: cont :: ArrayHandleConstant <vtkm :: FloatDefault > constantArray ;
8 unknownArray . AsArrayHandle ( constantArray );
9 return constantArray . GetValue ();

10 }
11 else
12 {
13 // General path
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14 auto ranges = vtkm :: cont :: ArrayRangeCompute ( unknownArray );
15 vtkm :: Range range = ranges . ReadPortal (). Get (0);
16 return static_cast <vtkm :: FloatDefault >(( range .Min + range .Max) / 2);
17 }
18 }

By design, CanConvert will return true for types that are not actually stored in the UnknownArrayHandle but can
be retrieved. If you need to know specifically what type is stored in the UnknownArrayHandle, you can use the
IsType method instead. If you need to query either the value type or the storage, you can use IsValueType and
IsStorageType, respectively. UnknownArrayHandle also provides GetValueTypeName and GetStorageTypeName
for debugging purposes.

CanConvert is almost always safer to use than IsType or its similar methods. Even though IsType reflects
the actual array type, CanConvert better describes how UnknownArrayHandle will behave.

Common Errors

If you do not know the exact type of the array contained in an UnknownArrayHandle, a brute force method to
get the data out is to copy it to an array of a known type. This can be done with the UnknownArrayHandle::-
DeepCopyFrom method, which will copy the contents of a target array into an existing array of a (potentially)
different type.

Example 33.10: Deep copy arrays of unknown types.
1 VTKM_CONT vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > CopyToDefaultArray (
2 const vtkm :: cont :: UnknownArrayHandle & unknownArray )
3 {
4 // Initialize the output UnknownArrayHandle with the array type we want to copy to.
5 vtkm :: cont :: UnknownArrayHandle output =
6 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault >{};
7 output . DeepCopyFrom ( unknownArray );
8 return output . AsArrayHandle <vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > >();
9 }

It is often the case that you have good reason to believe that an array is of an expected type, but you have no way
to be sure. To simplify code, the most rational thing to do is to get the array as the expected type if that is indeed
what it is, or to copy it to an array of that type otherwise. The UnknownArrayHandle::CopyShallowIfPossible
does just that.

Example 33.11: Using ArrayCopyShallowIfPossible to get an unknown array as a particular type.
1 VTKM_CONT vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > GetAsDefaultArray (
2 const vtkm :: cont :: UnknownArrayHandle & unknownArray )
3 {
4 // Initialize the output UnknownArrayHandle with the array type we want to copy to.
5 vtkm :: cont :: UnknownArrayHandle output =
6 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault >{};
7 output . CopyShallowIfPossible ( unknownArray );
8 return output . AsArrayHandle <vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > >();
9 }
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The UnknownArrayHandle copy methods behave similarly to the vtkm::cont::ArrayCopy functions. One
advantage of using the UnknownArrayHandle methods is that they do not require using a device compiler
(such as nvcc). Both versions will (potentially) perform the copy on a device, but the methods for Un-
knownArrayHandle are sufficiently hidden in a library to avoid calling code needing to compile device
instructions.

Did you know?

33.3 Casting to a List of Potential Types

Using AsArrayHandle is fine as long as the correct types are known, but often times they are not. For this use
case UnknownArrayHandle has a method named CastAndCallForTypes that attempts to cast the array to some
set of types.
The CastAndCallForTypes method accepts a functor to run on the appropriately cast array. The functor must
have an overloaded const parentheses operator that accepts an ArrayHandle of the appropriate type. You also
have to specify two template parameters that specify a vtkm::List of value types to try and a vtkm::List of
storage types to try, respectively. The macros VTKM DEFAULT TYPE LIST and VTKM DEFAULT STORAGE LIST
are often used when nothing more specific is known.

Example 33.12: Operating on an UnknownArrayHandle with CastAndCallForTypes.
1 struct PrintArrayContentsFunctor
2 {
3 template < typename T, typename S>
4 VTKM_CONT void operator ()( const vtkm :: cont :: ArrayHandle <T, S >& array ) const
5 {
6 this -> PrintArrayPortal ( array . ReadPortal ());
7 }
8
9 private :

10 template < typename PortalType >
11 VTKM_CONT void PrintArrayPortal ( const PortalType & portal ) const
12 {
13 for (vtkm :: Id index = 0; index < portal . GetNumberOfValues (); index ++)
14 {
15 // All ArrayPortal objects have ValueType for the type of each value .
16 using ValueType = typename PortalType :: ValueType ;
17 using VTraits = vtkm :: VecTraits <ValueType >;
18
19 ValueType value = portal .Get( index );
20
21 vtkm :: IdComponent numComponents = VTraits :: GetNumberOfComponents ( value );
22 for (vtkm :: IdComponent componentIndex = 0; componentIndex < numComponents ;
23 componentIndex ++)
24 {
25 std :: cout << " " << VTraits :: GetComponent (value , componentIndex );
26 }
27 std :: cout << std :: endl;
28 }
29 }
30 };
31
32 void PrintArrayContents ( const vtkm :: cont :: UnknownArrayHandle & array )
33 {
34 array . CastAndCallForTypes < VTKM_DEFAULT_TYPE_LIST , VTKM_DEFAULT_STORAGE_LIST >(
35 PrintArrayContentsFunctor {});
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36 }

The first (required) argument to CastAndCallForTypes is the functor to call with the array. You can
supply any number of optional arguments after that. Those arguments will be passed directly to the functor.
This makes it easy to pass state to the functor.

Did you know?

When an UnknownArrayHandle is used in place of an ArrayHandle as an argument to a worklet invocation,
it will internally use CastAndCallForTypes to attempt to call the worklet with an ArrayHandle of the
correct type.

Did you know?

UnknownArrayHandle has a simple subclass named vtkm::cont::UncertainArrayHandle for use when you can
narrow the array to a finite set of types. UncertainArrayHandle has two template parameters that must be
specified: a vtkm::List of value types and a vtkm::List of storage types. UncertainArrayHandle has a method
named CastAndCall that behaves the same as CastAndCallForTypes except that you do not have to specify the
types to try. Instead, the types are taken from the template parameters of the UncertainArrayHandle itself.

Example 33.13: Using UncertainArrayHandle to cast and call a functor.
1 vtkm :: cont :: UncertainArrayHandle <vtkm :: TypeListScalarAll ,
2 vtkm :: cont :: StorageListBasic >
3 uncertainArray ( unknownArray );
4 uncertainArray . CastAndCall ( PrintArrayContentsFunctor {});

Like with UnknownArrayHandle, if an UncertainArrayHandle is used in a worklet invocation, it will
internally use CastAndCall. This provides a convenient way to specify what array types the invoker should
try.

Did you know?

Both UnknownArrayHandle and UncertainArrayHandle provide a method named ResetTypes to redefine the
types to try. ResetTypes has two template parameters that are the vtkm::Lists of value and storage types.
ResetTypes returns a new UncertainArrayHandle with the given types. This is a convenient way to pass these
types to functions.

Example 33.14: Resetting the types of an UnknownArrayHandle.
1 vtkm :: cont :: Invoker invoke ;
2 invoke (
3 MyWorklet {},
4 unknownArray . ResetTypes <vtkm :: TypeListScalarAll , vtkm :: cont :: StorageListBasic >() ,
5 outArray );
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Because it returns an UncertainArrayHandle, you need to include vtkm/cont/UncertainArrayHandle.h if
you use UnknownArrayHandle::ResetTypes. This is true even if you do not directly use the returned
object.

Common Errors

33.4 Accessing Truly Unknown Arrays

So far in Sections 33.2 and 33.3 we explored how to access the data in an UnknownArrayHandle when you actually
know the array type or can narrow down the array type to some finite number of candidates. But what happens if
you cannot practically narrow down the types in the UnknownArrayHandle? For this case, UnknownArrayHandle
provides mechanisms for extracting data knowing little or nothing about the types.

33.4.1 Cast with Floating Point Fallback

The problem with UnknownArrayHandle::CastAndCallForTypes and UncertainArrayHandle::CastAndCall
is that you can only list a finite amount of value types and storage types to try. If you encounter an UnknownAr-
rayHandle containing a different ArrayHandle type, the cast and call will simply fail. Since the compiler must
create a code path for each possible ArrayHandle type, it may not even be feasible to list all known types.
UnknownArrayHandle::CastAndCallForTypesWithFloatFallback works around this problem by providing a
fallback in case the contained ArrayHandle does not match any of the types tried. If none of the types match, then
CastAndCallForTypesWithFloatFallback will copy the data to an ArrayHandle with vtkm::FloatDefault
values (or some compatible vtkm::Vec with vtkm::FloatDefault components) and basic storage. It will then
attempt to match again with this copied array.

Example 33.15: Cast and call a functor from an UnknownArrayHandle with a float fallback.
1 unknownArray . CastAndCallForTypesWithFloatFallback <vtkm :: TypeListField ,
2 VTKM_DEFAULT_STORAGE_LIST >(
3 PrintArrayContentsFunctor {});

In this case, we do not have to list every possible type because the array will be copied to a known type if
nothing matches. Note that when using CastAndCallForTypesWithFloatFallback, you still need to include an
appropriate type based on vtkm::FloatDefault in the value type list and vtkm::cont::StorageTagBasic in
the storage list so that the copied array can match.
UncertainArrayHandle has a matching method named CastAndCallWithFloatFallback that does the same
operation using the types specified in the UncertainArrayHandle.

Example 33.16: Cast and call a functor from an UncertainArrayHandle with a float fallback.
1 uncertainArray . CastAndCall ( PrintArrayContentsFunctor {});

33.4.2 Extracting Components

Using a floating point fallback allows you to use arrays of unknown types in most circumstances, but it does have
a few drawbacks. First, and most obvious, is that you may not operate on the data in its native format. If you
want to preserve the integer format of data, this may not be the method. Second, the fallback requires a copy of
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the data. If CastAndCallForTypesWithFloatFallback does not match the type of the array, it copies the array
to a new type that (hopefully) can be matched. Third, CastAndCallForTypesWithFloatFallback still needs
to match the number of components in each array value. If the contained ArrayHandle contains values that are
Vecs of length 2, then the data will be copied to an array of Vec2fs. If Vec2f is not included in the types to try,
the cast and call will still fail.
A way to get around these problems is to extract a single component from the array. You can use the Unknow-
nArrayHandle::ExtractComponent method to return an ArrayHandle with the values for a given component
for each value in the array. ExtractComponent must be given a template argument for the base component
type. The following example extracts the first component of all vtkm::Vec values in an UnknownArrayHandle
assuming that the component is of type vtkm::FloatDefault (line 11).

Example 33.17: Extracting the first component of every value in an UnknownArrayHandle.
1 vtkm :: cont :: ArrayHandleBasic <vtkm :: Vec3f > concreteArray =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Vec3f >({ { 0, 1, 2 },
3 { 3, 4, 5 },
4 { 6, 7, 8 },
5 { 9, 10, 11 },
6 { 12, 13, 14 },
7 { 15, 16, 17 } });
8
9 vtkm :: cont :: UnknownArrayHandle unknownArray ( concreteArray );

10
11 auto componentArray = unknownArray . ExtractComponent <vtkm :: FloatDefault >(0);
12 // componentArray contains [ 0, 3, 6, 9, 12, 15 ].

The code in Example 33.17 works with any array with values based on the default floating point type. If the
UnknownArrayHandle has an array containing vtkm::FloatDefault, then the returned array has all the same
values. If the UnknownArrayHandle contains values of type vtkm::Vec3f, then each value in the returned array
will be the first component of this array.
If the UnknownArrayHandle really contains an array with incompatible value types (such as ArrayHan-
dle<vtkm::Id>), then an vtkm::cont::ErrorBadType will be thrown. To check if the UnknownArrayHandle
contains an array of a compatible type, use the IsBaseComponentType method.

Example 33.18: Checking the base component type in an UnknownArrayHandle.
1 unknownArray . IsBaseComponentType <vtkm :: FloatDefault >()

This section started with the motivation of getting data from an UnknownArrayHandle without knowing anything
about the type, yet ExtractComponent still requires a type parameter. However, by limiting the type needed
to the base component type, you only need to check the base C types (standard integers and floating points)
available in C++. You do not need to know whether these components are arranged in Vecs or the size of the
vtkm::Vec. A general implementation of an algorithm might have to deal with scalars as well as Vecs of size
2, 3, and 4. If we consider operations on tensors, Vecs of size 6 and 9 can be common as well. But when using
ExtractComponent, a single condition can handle any potential Vec size.
Another advantage of ExtractComponent is that the type of storage does not need to be specified. ExtractCom-
ponent works with any type of ArrayHandle storage (with some caveats). So, Example 33.17 works equally as
well with ArrayHandleBasic, ArrayHandleSOA, ArrayHandleUniformPointCoordinates, ArrayHandleCarte-
sianProduct, and many others. Trying to capture all reasonable types of arrays could easily require hundreds
of conditions, all of which and more can be captured with ExtractComponent and the roughly 12 basic C data
types. In practice, you often only really have to worry about floating point components, which further reduces
the cases down to (usually) 2.
UnknownArrayHandle::ExtractComponent works by returning an ArrayHandleStride. This is a special Array-
Handle that can access data buffers by skipping values at regular intervals. This allows it to access data packed in
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different ways such as ArrayHandleBasic, ArrayHandleSOA, and many others. That said, ArrayHandleStride
is not magic, so if cannot directly access memory, some or all of it may be copied. If you are attempting to use
the array from ExtractComponent as an output array, pass vtkm::CopyFlag::Off as a second argument. This
will ensure that data are not copied so that any data written will go to the original array (or throw an exception
if this cannot be done).

Although UnknownArrayHandle::ExtractComponent will technically work with any ArrayHandle (of sim-
ple Vec types), it may require a very inefficient memory copy. Pay attention if ExtractComponent issues a
warning about an inefficient memory copy. This is likely a serious performance issue, and the data should
be retrieved in a different way (or better yet stored in a different way).

Common Errors

Example 33.17 access the first component of each Vec in an array. But in practice you usually want to operate
on all components stored in the array. A simple solution is to iterate over each component.

Example 33.19: Extracting each component from an UnknownArrayHandle.
1 std :: vector <vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault >> outputArrays (
2 static_cast <std :: size_t >( unknownArray . GetNumberOfComponentsFlat ()));
3 for (vtkm :: IdComponent componentIndex = 0;
4 componentIndex < unknownArray . GetNumberOfComponentsFlat ();
5 ++ componentIndex )
6 {
7 invoke ( MyWorklet {},
8 unknownArray . ExtractComponent <vtkm :: FloatDefault >( componentIndex ),
9 outputArrays [ static_cast <std :: size_t >( componentIndex )]);

10 }

To ensure that the type of the extracted component is a basic C type, the vtkm::Vec values are “flattened.”
That is, they are treated as if they are a single level vtkm::Vec. For example, if you have a value type of
vtkm::Vec<vtkm::Id3, 2>, ExtractComponent treats this type as vtkm::Vec<vtkm::Id, 6>. This allows you
to extract the components as type vtkm::Id rather than having a special case for vtkm::Id3.
Although iterating over components works fine, it can be inconvenient. An alternate mechanism is to use
UnknownArrayHandle::ExtractArrayFromComponents to get all the components at once. ExtractArrayFrom-
Components works like ExtractComponent except that instead of returning an ArrayHandleStride, it returns a
special vtkm::cont::ArrayHandleRecombineVec that behaves like an ArrayHandle to reference all component
arrays at once.

Example 33.20: Extracting all components from an UnknownArrayHandle at once.
1 invoke ( MyWorklet {},
2 unknownArray . ExtractArrayFromComponents <vtkm :: FloatDefault >() ,
3 outArray );

Although it has the same interface as other ArrayHandles, ArrayHandleRecombineVec has a special value
type that breaks some conventions. For example, when used in a worklet, the value type passed from this

Common Errors
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array to the worklet cannot be replicated. That is, you cannot create a temporary stack value of the same
type.

Because you still need to specify a base component type, you will likely still need to check several types to
safely extract data from an UnknownArrayHandle by component. To do this automatically, you can use the
CastAndCallWithExtractedArray. This method behaves similarly to CastAndCall except that it internally
uses ExtractArrayFromComponents.

Example 33.21: Calling a functor for nearly any type of array stored in an UnknownArrayHandle.
1 unknownArray . CastAndCallWithExtractedArray ( PrintArrayContentsFunctor {});

33.5 Mutability

One subtle feature of UnknownArrayHandle is that the class is, in principle, a pointer to an array pointer. This
means that the data in an UnknownArrayHandle is always mutable even if the class is declared const. The
upshot is that you can pass output arrays as constant UnknownArrayHandle references.

Example 33.22: Using a const UnknownArrayHandle for a function output.
1 void IndexInitialize (vtkm :: Id size , const vtkm :: cont :: UnknownArrayHandle & output )
2 {
3 vtkm :: cont :: ArrayHandleIndex input (size );
4 output . DeepCopyFrom ( input );
5 }

Although it seems strange, there is a good reason to allow output UnknownArrayHandles to be const. It allows
a typed ArrayHandle to be used as the argument to the function. In this case, the compiler will automatically
convert the ArrayHandle to a UnknownArrayHandle. When C++ creates objects like this, they can only be
passed as constant references or by value. So, declaring the output parameter as const UnknownArrayHandle
allows it to be used for code like this.

Example 33.23: Passing an ArrayHandle as an output UnknownArrayHandle.
1 template < typename T>
2 void Foo( const vtkm :: cont :: ArrayHandle <T >& input , vtkm :: cont :: ArrayHandle <T >& output )
3 {
4 IndexInitialize ( input . GetNumberOfValues (), output );
5 // ...

Of course, you could also declare the output by value instead of by reference, but this has the same semantics
with extra internal pointer management.

When possible, it is better to pass UnknownArrayHandles as constant references (or by value) rather than a
mutable reference, even if the array contents are going to be modified. This allows the function to support
automatic conversion of output ArrayHandles.

Did you know?

So if a constant UnknownArrayHandle can have its contents modified, what is the difference between a constant
reference and a non-constant reference? The difference is that the constant reference can change the array’s
content, but not the array itself. If you want to do operations like doing a shallow copy or changing the
underlying type of the array, a non-constant reference is needed.
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THIRTYFOUR

UNKNOWN CELL SETS

vtkm::cont::DataSet must hold a vtkm::cont::CellSet object, but it cannot know its specific type at compile
time. To manage storing CellSets without knowing their types, DataSet actually holds a reference using
vtkm::cont::UnknownCellSet. UnknownCellSet is a simple polymorphic container that stores a reference to a
vtkm::cont::CellSet of unknown type.
It is possible to create an empty UnknownCellSet. You can use the IsValid function to query whether an
UnknownCellSet holds a valid CellSet. Performing operations on an invalid UnknownCellSet can lead to
unexpected behavior.

34.1 Generic Operations

Some cell set operations in VTK-m require a specific, concrete class of CellSet. But UnknownCellSet provides
several functions that allow you to operate on a cell set without knowing the exact type.

IsValid Returns true if the UnknownCellSet holds a legitimate CellSet. Other operations on the Unknown-
CellSet may have undefined behavior if it is not valid.

GetCellSetBase All cell set classes inherit from the vtkm::cont::CellSet base class. This method returns a
pointer to the contained cell set object as this base type.

NewInstance Creates a new cell set object of the same type as that stored in the UnknownCellSet and returns
the new instance in another UnknownCellSet.

GetCellSetName Return a std::string containing the specific class name of the contained cell set.

GetNumberOfCells Returns the number of cells in the cell set.

GetNumberOfPoints Returns the number of points in the cell set.

GetCellShape Given the index of a cell, returns the identifier for the cell shape.

GetNumberOfPointsInCell Given the index of a cell, returns the number of points incident on that cell.

GetCellPointIds Given the index of a cell and an array of vtkm::Id s, returns the indices for that the cell
is incident to. The number of indices put in the array is equal to the value returned from GetNumberOf-
PointsInCell, and the array should be at least that long.

DeepCopyFrom Will copy the connectivity arrays from the provided UnknownCellSet to this one.
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PrintSummary Prints to the provided std::ostream (such as std::cout) a summary of the contents of the cell
set.

ReleaseResourcesExecution Removes any data stored on any device associated with the cell set. The data for
the cell set will still be available, but may need to be loaded back on a device before an operation. This
method has no effect if called on an invalid UnknownCellSet.

34.2 Casting to Known Types

There are many operations in VTK-m that need to know the specific type of cell set. To perform one of these
types of operation, you need to retrieve the data as a CellSet concrete subclass. If you happen to know (or
can guess) the type, you can use the AsCellSet method to retrieve the cell set as a specific type. You can
pass in a reference to a cell set object of the desired type to AsCellSet. You can also call AsCellSet with
no arguments and the cast cell set will be returned, but in this case you must specify the desired type with a
template argument.

Example 34.1: Retrieving a cell set of a known type from UnknownCellSet.
1 vtkm :: cont :: CellSetExplicit <> cellSet ;
2 unknownCells . AsCellSet ( cellSet );
3
4 // This is an equivalent way to get the cell set.
5 auto cellSet2 = unknownCells .AsCellSet <vtkm :: cont :: CellSetExplicit < > >();

If the UnknownCellSet cannot store its cell set in the type given to AsCellSet, it will throw an exception. Thus,
you should not use AsCellSet with types that you are not sure about. Use the CanConvert method to determine
if a given CellSet type will work with AsCellSet.

Example 34.2: Querying whether a given CellSet can be retrieved from an UnknownCellSet.
1 VTKM_CONT vtkm :: Id3 Get3DPointDimensions (
2 const vtkm :: cont :: UnknownCellSet & unknownCellSet )
3 {
4 if ( unknownCellSet . CanConvert <vtkm :: cont :: CellSetStructured <3 > >())
5 {
6 vtkm :: cont :: CellSetStructured <3> cellSet ;
7 unknownCellSet . AsCellSet ( cellSet );
8 return cellSet . GetPointDimensions ();
9 }

10 else if ( unknownCellSet . CanConvert <vtkm :: cont :: CellSetStructured <2 > >())
11 {
12 vtkm :: cont :: CellSetStructured <2> cellSet ;
13 unknownCellSet . AsCellSet ( cellSet );
14 vtkm :: Id2 dims = cellSet . GetPointDimensions ();
15 return vtkm :: Id3{ dims [0] , dims [1] , 1 };
16 }
17 else
18 {
19 return vtkm :: Id3{ unknownCellSet . GetNumberOfPoints (), 1, 1 };
20 }
21 }

By design, CanConvert will return true for types that are not actually stored in the UnknownCellSet but can be
retrieved. If you need to know specifically what type is stored in the UnknownCellSet, you can use the IsType
method instead. UnknownCellSet also provides GetCellSetName for debugging purposes.
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CanConvert is almost always safer to use than IsType or its similar methods. Even though IsType reflects
the actual cell set type, CanConvert better describes how UnknownCellSet will behave.

Common Errors

34.3 Casting to a List of Potential Types

Using AsCellSet is fine as long as the correct types are known, but often times they are not. For this use case
UnknownCellSet has a method named CastAndCallForTypes that attempts to cast the cell set to some set of
types.
The CastAndCallForTypes method accepts a functor to run on the appropriately cast cell set. The functor must
have an overloaded const parentheses operator that accepts a CellSet of the appropriate type. You also have to
specify a template parameter that specifies a vtkm::List of cell set types to. The macro VTKM DEFAULT CELL -
SET LIST is often used when nothing more specific is known. The macros VTKM DEFAULT CELL SET LIST -
STRUCTURED and VTKM DEFAULT CELL SET LIST UNSTRUCTURED are also useful when you want to operate on
only structured or unstructured cell sets.

Example 34.3: Operating on an UnknownCellSet with CastAndCallForTypes.
1 struct Get3DPointDimensionsFunctor
2 {
3 template <vtkm :: IdComponent Dims >
4 VTKM_CONT void operator ()( const vtkm :: cont :: CellSetStructured <Dims >& cellSet ,
5 vtkm :: Id3& outDims ) const
6 {
7 vtkm ::Vec <vtkm ::Id , Dims > pointDims = cellSet . GetPointDimensions ();
8 for (vtkm :: IdComponent d = 0; d < Dims; ++d)
9 {

10 outDims [d] = pointDims [d];
11 }
12 }
13
14 VTKM_CONT void operator ()( const vtkm :: cont :: CellSet & cellSet ,
15 vtkm :: Id3& outDims ) const
16 {
17 outDims [0] = cellSet . GetNumberOfPoints ();
18 }
19 };
20
21 VTKM_CONT vtkm :: Id3 Get3DPointDimensions (
22 const vtkm :: cont :: UnknownCellSet & unknownCellSet )
23 {
24 vtkm :: Id3 dims (1);
25 unknownCellSet . CastAndCallForTypes < VTKM_DEFAULT_CELL_SET_LIST >(
26 Get3DPointDimensionsFunctor {}, dims );
27 return dims;
28 }

The first (required) argument to CastAndCallForTypes is the functor to call with the cell set. You can
supply any number of optional arguments after that. Those arguments will be passed directly to the functor.

Did you know?
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This makes it easy to pass state to the functor.

When an UnknownCellSet is used in place of an CellSet as an argument to a worklet invocation, it will
internally use CastAndCallForTypes to attempt to call the worklet with an CellSet of the correct type.

Did you know?

UnknownCellSet has a simple subclass named vtkm::cont::UncertainCellSet for use when you can narrow
the cell set to a finite set of types. UncertainCellSet has a template parameter that must be specified: a
vtkm::List of cell set types. UncertainCellSet has a method named CastAndCall that behaves the same as
CastAndCallForTypes except that you do not have to specify the types to try. Instead, the types are taken from
the template parameters of the UncertainCellSet itself.

Example 34.4: Using UncertainCellSet to cast and call a functor.
1 using StructuredCellSetList = vtkm :: List <vtkm :: cont :: CellSetStructured <1>,
2 vtkm :: cont :: CellSetStructured <2>,
3 vtkm :: cont :: CellSetStructured <3>>;
4 vtkm :: cont :: UncertainCellSet < StructuredCellSetList > uncertainCellSet (
5 unknownCellSet );
6 uncertainCellSet . CastAndCall ( Get3DPointDimensionsFunctor {}, dims );

Like with UnknownCellSet, if an UncertainCellSet is used in a worklet invocation, it will internally use
CastAndCall. This provides a convenient way to specify what cell set types the invoker should try.

Did you know?

Both UnknownCellSet and UncertainCellSet provide a method named ResetCellSetList to redefine the types
to try. ResetCellSetList has a template parameter that is the vtkm::List of cell sets. ResetCellSetList
returns a new UncertainCellSet with the given types. This is a convenient way to pass these types to functions.

Example 34.5: Resetting the types of an UnknownCellSet.
1 using StructuredCellSetList = vtkm :: List <vtkm :: cont :: CellSetStructured <1>,
2 vtkm :: cont :: CellSetStructured <2>,
3 vtkm :: cont :: CellSetStructured <3>>;
4 vtkm :: cont :: Invoker invoke ;
5 invoke (
6 MyWorklet {}, unknownCellSet . ResetCellSetList < StructuredCellSetList >() , outArray );

Because it returns an UncertainCellSet, you need to include vtkm/cont/UncertainCellSet.h if you use
UnknownCellSet::ResetCellSetList. This is true even if you do not directly use the returned object.

Common Errors
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CHAPTER

THIRTYFIVE

DEVICE ALGORITHMS

As described in Chapter 15, VTK-m is built around the concept of a device adapter that encapsulates the
necessary features of each device on which VTK-m can run. At the core of the device adapter is a collection of
basic algorithms optimized for the specific device. Many features of VTK-m, such as worklets, are built on top
of these device algorithms. Using these higher level structures simplifies programming.
However, it is sometimes desirable to run directly run these algorithms provided by the device adapter. VTK-m
comes with the templated class vtkm::cont::Algorithm that provides a set of algorithms that can be invoked
in the control environment and are run on the execution environment. All algorithms also accept an optional
device adapter argument.
Algorithm contains no state. It only has a set of static methods that implement its algorithms. The following
methods are available.

Many of the following device adapter algorithms take input and output ArrayHandles, and these functions
will handle their own memory management. This means that it is unnecessary to allocate output arrays. For
example, it is unnecessary to call ArrayHandle::Allocate for the output array passed to the Algorithm::-
Copy method.

Did you know?

35.1 BitFieldToUnorderedSet

The Algorithm::BitFieldToUnorderedSet method creates a unique, unsorted list of indices denoting which
bits are set in a bitfield. For example, running BitFieldToUnorderedSet on an input of [0,0,1,0,1,0,1,1,0,1,1,1]
would return an array containing [2,4,6,7,9,10,11] or those numbers in some other order.

Example 35.1: Using the BitFieldToUnorderedSet algorithm.
1 vtkm :: cont :: BitField bits;
2 bits. Allocate (32);
3
4 auto fillPortal = bits. WritePortal ();
5 fillPortal . SetWord (0, vtkm :: UInt32 (0 xaa770011 ));
6
7 vtkm :: cont :: ArrayHandle <vtkm ::Id > output ;
8 auto setBits = vtkm :: cont :: Algorithm :: BitFieldToUnorderedSet (bits , output );



35.2. Copy

35.2 Copy

The Algorithm::Copy method copies data from an input array to an output array. The copy takes place in the
execution environment.

Example 35.2: Using the Copy algorithm.
1 vtkm :: cont :: ArrayHandleIndex input (12);
2
3 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > output ;
4
5 vtkm :: cont :: Algorithm :: Copy(input , output );
6
7 // output has { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }

35.3 CopyIf

The Algorithm::CopyIf method selectively removes values from an array. The copy if algorithm is also some-
times referred to as stream compact. The first argument, the input, is an ArrayHandle to be compacted (by
removing elements). The second argument, the stencil, is an ArrayHandle of equal size with flags indicating
whether the corresponding input value is to be copied to the output. The third argument is an output Array-
Handle whose length is set to the number of true flags in the stencil and the passed values are put in order to
the output array.
Algorithm::CopyIf also accepts an optional fourth argument that is a unary predicate to determine what values
in the stencil (second argument) should be considered true. See Section 35.23 for more information on unary
predicates. The unary predicate determines the true/false value of the stencil that determines whether a given
entry is copied. If no unary predicate is given, then CopyIf will copy all values whose stencil value is not equal
to 0 (or the closest equivalent to it). More specifically, it copies values not equal to vtkm::TypeTraits::-
ZeroInitialization.

Example 35.3: Using the CopyIf algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
3 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
4 vtkm :: cont :: ArrayHandle <vtkm :: UInt8 > stencil =
5 vtkm :: cont :: make_ArrayHandle <vtkm :: UInt8 >(
6 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1 });
7
8 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > output ;
9

10 vtkm :: cont :: Algorithm :: CopyIf (input , stencil , output );
11
12
13 // output has { 0, 5, 3, 8, 3 }
14
15 struct LessThan5
16 {
17 VTKM_EXEC_CONT bool operator ()( vtkm :: Int32 x) const { return x < 5; }
18 };
19
20 vtkm :: cont :: Algorithm :: CopyIf (input , input , output , LessThan5 ());
21
22 // output has { 0, 1, 1, 4, 3, 3 }
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35.4 CopySubRange

The Algorithm::CopySubRange method copies the contents of a section of one ArrayHandle to another. The
first argument is the input ArrayHandle. The second argument is the index from which to start copying data.
The third argument is the number of values to copy from the input to the output. The fourth argument is the
output ArrayHandle, which will be grown if it is not large enough. The fifth argument, which is optional, is the
index in the output array to start copying data to. If the output index is not specified, data are copied to the
beginning of the output array.

Example 35.4: Using the CopySubRange algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
3 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
4
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > output ;
6
7 vtkm :: cont :: Algorithm :: CopySubRange (input , 1, 7, output );
8
9 // output has { 0, 1, 1, 5, 5, 4, 3 }

35.5 CountSetBits

The Algorithm::CountSetBits method returns the total number of set bits in a BitField. For example, running
BitFieldToUnorderedSet on an input of [0,0,1,0,1,0,1,1,0,1,1,1] would return 7.

Example 35.5: Using the CountSetBits algorithm.
1 vtkm :: cont :: BitField bits;
2 bits. Allocate (32);
3
4 auto fillPortal = bits. WritePortal ();
5 fillPortal . SetWord (0, vtkm :: UInt32 (0 xaa770011 ));
6
7 vtkm :: cont :: ArrayHandle <vtkm ::Id > output ;
8 auto setBits = vtkm :: cont :: Algorithm :: CountSetBits (bits );
9

10 // Will return that there are 12 set bits

35.6 Fill

The Algorithm::Fill methods fill a BitField or ArrayHandle with a specific pattern of bits/values. For a
BitField, it is possible to supply a boolean value or a WordType. For boolean values, all bits are set to 1 if the
value is true, 0 if the value is false. For word masks, the WordType must be an unsigned integral type; this value
is stamped across the BitField. For a ArrayHandle, the entire array is filled with the provided value. For both
types, if a numValues argument is provided the array is resized appropriately and filled with the given value.

Example 35.6: Using the Fill algorithm.
1 // Fill a BitField
2 vtkm :: cont :: BitField bits;
3 bits. Allocate (32);
4 vtkm :: cont :: Algorithm :: Fill(bits , true );
5 // Will stamp the 8 bit word across 32 bits to result in bits = 0 xf0f0f0f0
6 vtkm :: cont :: Algorithm :: Fill(bits , vtkm :: UInt8 (0 xf0 ));
7 vtkm :: cont :: Algorithm :: Fill(bits , vtkm :: UInt8 (0 xf0), 16);
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8
9 // Fill an ArrayHandle

10 vtkm :: cont :: ArrayHandle <vtkm ::Id > arrayHandle ;
11 arrayHandle . Allocate (10);
12 vtkm :: cont :: Algorithm :: Fill( arrayHandle , vtkm :: Id (5));
13 vtkm :: cont :: Algorithm :: Fill( arrayHandle , vtkm :: Id (10) , 5);

35.7 LowerBounds

The Algorithm::LowerBounds method takes three arguments. The first argument is an ArrayHandle of sorted
values. The second argument is another ArrayHandle of items to find in the first array. LowerBounds find the
index of the first item that is greater than or equal to the target value, much like the std::lower bound STL
algorithm. The results are returned in an ArrayHandle given in the third argument.
There are two specializations of Algorithm::LowerBounds. The first takes an additional comparison function
that defines the less-than operation. The second specialization takes only two parameters. The first is an
ArrayHandle of sorted vtkm::Id s and the second is an ArrayHandle of vtkm::Id to find in the first list. The
results are written back out to the second array. This second specialization is useful for inverting index maps.

Example 35.7: Using the LowerBounds algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > sorted =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
3 { 0, 1, 1, 3, 3, 4, 5, 5, 7, 7, 8, 9 });
4 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > values =
5 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
6 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
7
8 vtkm :: cont :: ArrayHandle <vtkm ::Id > output ;
9

10 vtkm :: cont :: Algorithm :: LowerBounds (sorted , values , output );
11
12 // output has { 8, 0, 1, 1, 6, 6, 5, 3, 8, 10, 11, 3 }
13
14 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > reverseSorted =
15 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
16 { 9, 8, 7, 7, 5, 5, 4, 3, 3, 1, 1, 0 });
17
18 vtkm :: cont :: Algorithm :: LowerBounds (
19 reverseSorted , values , output , vtkm :: SortGreater ());
20
21 // output has { 2, 11, 9, 9, 4, 4, 6, 7, 2, 1, 0, 7 }

35.8 Reduce

The Algorithm::Reduce method takes an input array, initial value, and a binary function and computes a “total”
of applying the binary function to all entries in the array. The provided binary function must be associative
(but it need not be commutative). There is a specialization of Reduce that does not take a binary function and
computes the sum.

Example 35.8: Using the Reduce algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > input =
2 vtkm :: cont :: make_ArrayHandle <vtkm ::Id >({ 5, 1, 1, 6 });
3
4 vtkm :: Id sum = vtkm :: cont :: Algorithm :: Reduce (input , 0);
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5
6 // sum is 13
7
8 vtkm :: Id product = vtkm :: cont :: Algorithm :: Reduce (input , 1, vtkm :: Multiply ());
9 // product is 30

35.9 ReduceByKey

The Algorithm::ReduceByKey method works similarly to the Reduce method except that it takes an additional
array of keys, which must be the same length as the values being reduced. The arrays are partitioned into
segments that have identical adjacent keys, and a separate reduction is performed on each partition. The unique
keys and reduced values are returned in separate arrays.

Example 35.9: Using the ReduceByKey algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > keys =
2 vtkm :: cont :: make_ArrayHandle <vtkm ::Id >({ 0, 0, 3, 3, 3, 3, 5, 6, 6, 6, 6, 6 });
3 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
4 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
5 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
6
7 vtkm :: cont :: ArrayHandle <vtkm ::Id > uniqueKeys ;
8 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > sums;
9

10 vtkm :: cont :: Algorithm :: ReduceByKey (keys , input , uniqueKeys , sums , vtkm :: Add ());
11
12 // uniqueKeys is { 0, 3, 5, 6 }
13 // sums is { 7, 12, 4, 30 }
14
15 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > products ;
16
17 vtkm :: cont :: Algorithm :: ReduceByKey (
18 keys , input , uniqueKeys , products , vtkm :: Multiply ());
19
20 // products is { 0, 25, 4, 4536 }

35.10 ScanInclusive

The Algorithm::ScanInclusive method takes an input and an output ArrayHandle and performs a running
sum on the input array. For inclusive scans, the running sum value for position i in the input array includes the
element at position i. The first value in the output is the same as the first value in the input. The second value
in the output is the sum of the first two values in the input. The third value in the output is the sum of the first
three values of the input, and so on. If the input and output array are the same, then the operation is done in
place. ScanInclusive returns the sum of all values in the input. There are two forms of ScanInclusive: one
performs the sum using addition whereas the other accepts a custom binary function to use as the sum operator.

Example 35.10: Using the ScanInclusive algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
3 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
4
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningSum ;
6
7 vtkm :: cont :: Algorithm :: ScanInclusive (input , runningSum );
8
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9 // runningSum is { 7, 7, 8, 9, 14, 19, 23, 26, 33, 41, 50, 53 }
10
11 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningMax ;
12
13 vtkm :: cont :: Algorithm :: ScanInclusive (input , runningMax , vtkm :: Maximum ());
14
15 // runningMax is { 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9 }

35.11 ScanInclusiveByKey

The Algorithm::ScanInclusiveByKey method works similarly to the ScanInclusive method except that it
takes an additional array of keys, which must be the same length as the values being scanned. The arrays are
partitioned into segments that have identical adjacent keys, and a separate scan is performed on each partition.
Only the scanned values are returned.

Example 35.11: Using the ScanInclusiveByKey algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > keys =
2 vtkm :: cont :: make_ArrayHandle <vtkm ::Id >({ 0, 0, 3, 3, 3, 3, 5, 6, 6, 6, 6, 6 });
3 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
4 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
5 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
6
7 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningSums ;
8
9 vtkm :: cont :: Algorithm :: ScanInclusiveByKey (keys , input , runningSums );

10
11 // runningSums is { 7, 7, 1, 2, 7, 12, 4, 3, 10, 18, 27, 30 }
12
13 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningMaxes ;
14
15 vtkm :: cont :: Algorithm :: ScanInclusiveByKey (
16 keys , input , runningMaxes , vtkm :: Maximum ());
17
18 // runningMax is { 7, 7, 1, 1, 5, 5, 4, 3, 7, 8, 9, 9 }

35.12 ScanExclusive

The Algorithm::ScanExclusive method takes an input and an output ArrayHandle and performs a running
sum on the input array. For exclusive scans, the running sum value for position i in the input array excludes
the element at position i. The first value in the output is always 0. The second value in the output is the same
as the first value in the input. The third value in the output is the sum of the first two values in the input. The
fourth value in the output is the sum of the first three values of the input, and so on. ScanExclusive returns
the sum of all values in the input. If the input and output array are the same, then the operation is done in
place. There are two forms of ScanExclusive. The first performs the sum using addition. The second form
accepts a custom binary functor to use as the “sum” operator and a custom initial value (instead of 0).

Example 35.12: Using the ScanExclusive algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
3 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
4
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningSum ;
6
7 vtkm :: cont :: Algorithm :: ScanExclusive (input , runningSum );
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8
9 // runningSum is { 0, 7, 7, 8, 9, 14, 19, 23, 26, 33, 41, 50 }

10
11 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningMax ;
12
13 vtkm :: cont :: Algorithm :: ScanExclusive (input , runningMax , vtkm :: Maximum (), -1);
14
15 // runningMax is { -1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9 }

35.13 ScanExclusiveByKey

The Algorithm::ScanExclusiveByKey method works similarly to the ScanExclusive method except that it
takes an additional array of keys, which must be the same length as the values being scanned. The arrays are
partitioned into segments that have identical adjacent keys, and a separate scan is performed on each partition.
Only the scanned values are returned.

Example 35.13: Using ScanExclusiveByKey algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > keys =
2 vtkm :: cont :: make_ArrayHandle <vtkm ::Id >({ 0, 0, 3, 3, 3, 3, 5, 6, 6, 6, 6, 6 });
3 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
4 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
5 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
6
7 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningSums ;
8
9 vtkm :: cont :: Algorithm :: ScanExclusiveByKey (keys , input , runningSums );

10
11 // runningSums is { 0, 7, 0, 1, 2, 7, 0, 0, 3, 10, 18, 27 }
12
13 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningMaxes ;
14
15 vtkm :: cont :: Algorithm :: ScanExclusiveByKey (
16 keys , input , runningMaxes , -1, vtkm :: Maximum ());
17
18 // runningMax is { -1, 7, -1, 1, 1, 5, -1, -1, 3, 7, 8, 9 }

35.14 ScanExtended

The Algorithm::ScanExtended computes an extended prefix sum operation on the input ArrayHandle and
stores it in a provided output ArrayHandle. The output array has length 1 greater than the input array. Algo-
rithm::ScanExtended is a combination of the Algorithm::ScanInclusive and Algorithm::ScanExclusive
methods. The exclusive scan values are stored in indices 0 through size−1. The inclusive scan values are stored
in indices 1 through size. The first entry in the resulting array is 0 (or the specified initial value) like with the
exclusive scan. The last entry in the resulting array is the sum total like with the inclusive scan. Unlike the two
referenced methods, Algorithm::ScanExtended does not return the total sum. By using an ArrayHandleView,
arrays containing both inclusive and exclusive scans can be generated from an extended scan with minimal
memory usage by referencing the correct indices in the extended scan output.
This algorithm may be more efficient than Algorithm::ScanInclusive and Algorithm::ScanExclusive on
some devices; this algorithm may be able to avoid copying the total sum to the control environment to return.
Algorithm::ScanExtended is similar to the STL partial sum function, with the exception that it does not
perform a serial summation. This means that if you have defined a custom plus operator for T it must be
associative, or you will get inconsistent results.
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The first form performs the sum using addition. The second form accepts a custom binary functor to use as the
operator and a custom initial value (instead of 0).

Example 35.14: Using ScanExtended algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
3 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
4
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningSum ;
6 vtkm :: cont :: Algorithm :: ScanExtended (input , runningSum );
7
8 // runningSum is { 0, 7, 7, 8, 9, 14, 19, 23, 26, 33, 41, 50, 53 }
9

10 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningMax ;
11 vtkm :: cont :: Algorithm :: ScanExtended (input , runningMax , vtkm :: Maximum (), -1);
12
13 // runningMax is { -1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9 }

ScanExtended can be used to create a running sum that is quickly reversible. If you subtract to consecutive
values of a scan you get back the original value. This is convenient if you need both the input and output of a
scan; you can throw away the input and use differences of the output. However, ScanInclusive does not write
out the initial value, so you cannot get back the original value at the beginning without a special condition.
Likewise, ScanExclusive does not write out the total sum, so you cannot get back the original value at the end
without a special condition. ScanExtended solves this problem by extending the array by 1. The original value
for index i can be retrieved by subtracting scan value at index i from the value at index i + 1 anywhere in the
array, including the at the begin and end. This is particularly useful for storing packed arrays in structures like
vtkm::cont::CellSetExplicit and vtkm::cont::ArrayHandleGroupVecVariable.

35.15 Schedule

The Algorithm::Schedule method takes a functor as its first argument and invokes it a number of times specified
by the second argument. It should be assumed that each invocation of the functor occurs on a separate thread
although in practice there could be some thread sharing.
There are two versions of the Schedule method. The first version takes a vtkm::Id and invokes the functor that
number of times. The second version takes a vtkm::Id3 and invokes the functor once for every entry in a 3D
array of the given dimensions.
The functor is expected to be an object with a const overloaded parentheses operator. The operator takes as a
parameter the index of the invocation, which is either a vtkm::Id or a vtkm::Id3 depending on what version of
Schedule is being used. The functor must also subclass vtkm::exec::FunctorBase, which provides the error
handling facilities for the execution environment. FunctorBase contains a public method named RaiseError
that takes a message and will cause a vtkm::cont::ErrorExecution exception to be thrown in the control
environment.

35.16 Sort

The Algorithm::Sort method provides an unstable sort of an array. There are two forms of the Sort method.
The first takes an ArrayHandle and sorts the values in place. The second takes an additional argument that is
a functor that provides the comparison operation for the sort.

Example 35.15: Using the Sort algorithm.
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1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > array =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
3 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
4
5 vtkm :: cont :: Algorithm :: Sort( array );
6
7 // array has { 0, 1, 1, 3, 3, 4, 5, 5, 7, 7, 8, 9 }
8
9 vtkm :: cont :: Algorithm :: Sort(array , vtkm :: SortGreater ());

10
11 // array has { 9, 8, 7, 7, 5, 5, 4, 3, 3, 1, 1, 0 }

35.17 SortByKey

The Algorithm::SortByKey method works similarly to the Sort method except that it takes two ArrayHandles:
an array of keys and a corresponding array of values. The sort orders the array of keys in ascending values and
also reorders the values so they remain paired with the same key. Like Sort, SortByKey has a version that sorts
by the default less-than operator and a version that accepts a custom comparison functor.

Example 35.16: Using the SortByKey algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > keys =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >({ 7, 0, 1, 5, 4, 8, 9, 3 });
3 vtkm :: cont :: ArrayHandle <vtkm ::Id > values =
4 vtkm :: cont :: make_ArrayHandle <vtkm ::Id >({ 0, 1, 2, 3, 4, 5, 6, 7 });
5
6 vtkm :: cont :: Algorithm :: SortByKey (keys , values );
7
8 // keys has { 0, 1, 3, 4, 5, 7, 8, 9 }
9 // values has { 1, 2, 7, 4, 3, 0, 5, 6 }

10
11 vtkm :: cont :: Algorithm :: SortByKey (keys , values , vtkm :: SortGreater ());
12
13 // keys has { 9, 8, 7, 5, 4, 3, 1, 0 }
14 // values has { 6, 5, 0, 3, 4, 7, 2, 1 }

35.18 Synchronize

The Synchronize method waits for any asynchronous operations running on the device to complete and then
returns.

35.19 Transform

The Algorithm::Transform method applies a given binary operation function element-wise on two input arrays,
storing the result in a provided output array. The number of elements in the input arrays do not have to be the
same; the output array will have the same number of elements as the smaller of the two input arrays.

Example 35.17: Using the Transform algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input1 =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >({ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 });
3 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input2 =
4 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >({ 2, 3, 4, 5, 6, 7, 8, 9, 10 });
5
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6 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > output ;
7 vtkm :: cont :: Algorithm :: Transform (input1 , input2 , output , vtkm :: Sum ());
8
9 // output is { 3, 5, 7, 9, 11, 13, 15, 17, 19 }

35.20 Unique

The Algorithm::Unique method removes all duplicate values in an ArrayHandle. The method will only find
duplicates if they are adjacent to each other in the array. The easiest way to ensure that duplicate values are
adjacent is to sort the array first.
There are two versions of Unique. The first uses the equals operator to compare entries. The second accepts a
binary functor to perform the comparisons.

Example 35.18: Using the Unique algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > values =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
3 { 0, 1, 1, 3, 3, 4, 5, 5, 7, 7, 7, 9 });
4
5 vtkm :: cont :: Algorithm :: Unique ( values );
6
7 // values has {0, 1, 3, 4, 5, 7, 9}
8
9 vtkm :: cont :: ArrayHandle <vtkm :: Float64 > fvalues =

10 vtkm :: cont :: make_ArrayHandle <vtkm :: Float64 >(
11 { 0.0 , 0.001 , 0.0 , 1.5 , 1.499 , 2.0 });
12
13 struct AlmostEqualFunctor
14 {
15 VTKM_EXEC_CONT bool operator ()( vtkm :: Float64 x, vtkm :: Float64 y) const
16 {
17 return (vtkm :: Abs(x - y) < 0.1);
18 }
19 };
20
21 vtkm :: cont :: Algorithm :: Unique (fvalues , AlmostEqualFunctor ());
22
23 // values has {0.0 , 1.5 , 2.0}

35.21 UpperBounds

The Algorithm::UpperBounds method takes three arguments. The first argument is an ArrayHandle of sorted
values. The second argument is another ArrayHandle of items to find in the first array. UpperBounds find the
index of the first item that is greater than to the target value, much like the std::upper bound STL algorithm.
The results are returned in an ArrayHandle given in the third argument.
There are two specializations of UpperBounds. The first takes an additional comparison function that defines
the less-than operation. The second takes only two parameters. The first is an ArrayHandle of sorted vtkm::Id
s and the second is an ArrayHandle of vtkm::Id s to find in the first list. The results are written back out to
the second array. This second specialization is useful for inverting index maps.

Example 35.19: Using the UpperBounds algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > sorted =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
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3 { 0, 1, 1, 3, 3, 4, 5, 5, 7, 7, 8, 9 });
4 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > values =
5 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
6 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
7
8 vtkm :: cont :: ArrayHandle <vtkm ::Id > output ;
9

10 vtkm :: cont :: Algorithm :: UpperBounds (sorted , values , output );
11
12 // output has { 10, 1, 3, 3, 8, 8, 6, 5, 10, 11, 12, 5 }
13
14 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > reverseSorted =
15 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
16 { 9, 8, 7, 7, 5, 5, 4, 3, 3, 1, 1, 0 });
17
18 vtkm :: cont :: Algorithm :: UpperBounds (
19 reverseSorted , values , output , vtkm :: SortGreater ());
20
21 // output has { 4, 12, 11, 11, 6, 6, 7, 9, 4, 2, 1, 9 }

35.22 Specifying the Device Adapter

When you call a method in vtkm::cont::Algorithm, a device is automatically specified based on available
hardware and the VTK-m state. However, if you want to use a specific device, you can specify that device by
passing either a vtkm::cont::DeviceAdapterId or a device adapter tag as the first argument to any of these
methods.

Example 35.20: Using the DeviceAdapter with vtkm::cont::Algorithm.
1 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
2 vtkm :: cont :: make_ArrayHandle <vtkm :: Int32 >(
3 { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 });
4
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > output_no_device_specified ;
6
7 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > output_device_specified ;
8
9 vtkm :: cont :: Algorithm :: Copy(input , output_no_device_specified );

10
11 // optional we can pass the device or int id number
12 vtkm :: cont :: Algorithm :: Copy(
13 vtkm :: cont :: DeviceAdapterTagSerial (), input , output_device_specified );
14
15 // output has { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 }

35.23 Predicates and Operators

VTK-m follows certain design philosophies consistent with the functional programming paradigm. This assists
in making implementations device agnostic and ensuring that various functions operate correctly and efficiently
in multiple environments. Many basic operations, such as binary and unary comparisons and predicates, are
implemented as templated functors. These are mostly re-implementations of basic C++ STL functors that can
be used in the VTK-m execution environment.
Strictly using a functor by itself adds little in the way of functionality to the code. Their use is demonstrated
more when used as parameters to one of the vtkm::cont::Algorithm methods discussed earlier in this chapter.
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Currently, VTK-m provides 3 categories of functors: Unary Predicates, Binary Predicates, and Binary
Operators.

35.23.1 Unary Predicates

Unary Predicates are functors that take a single parameter and return a Boolean value. These types of functors
are useful in determining if values have been initialized or zeroed out correctly.

vtkm::IsZeroInitialized Returns True if argument is the identity of its type.

vtkm::NotZeroInitialized Returns True if the argument is not the identify of its type.

vtkm::LogicalNot Returns True iff the argument is False. Requires that the argument type is convertible to
a Boolean or implements the ! operator.

Example 35.21: Basic Unary Predicate.
1 vtkm :: IsZeroInitialized zero_initialized ;
2 vtkm :: NotZeroInitialized not_zero_initialized ;
3 vtkm :: LogicalNot logical_not ;
4
5 bool zeroed = zero_initialized (vtkm :: TypeTraits <vtkm ::Id >:: ZeroInitialization ());
6 bool notZeroed = not_zero_initialized (vtkm :: Id (1));
7 bool logicalNot = logical_not ( false );

35.23.2 Binary Predicates

Binary Predicates take two parameters and return a single Boolean value. These types of functors are used
when comparing two different parameters for some sort of condition.

vtkm::Equal Returns True iff the first argument is equal to the second argument. Requires that the argument
type implements the == operator.

vtkm::NotEqual Returns True iff the first argument is not equal to the second argument. Requires that the
argument type implements the != operator.

vtkm::SortLess Returns True iff the first argument is less than the second argument. Requires that the
argument type implements the < operator.

vtkm::SortGreater Returns True iff the first argument is greater than the second argument. Requires that
the argument type implements the < operator (the comparison is inverted internally).

vtkm::LogicalAnd Returns True iff the first argument and the second argument are True. Requires that the
argument type is convertible to a Boolean or implements the && operator.

vtkm::LogicalOr Returns True iff the first argument or the second argument is True. Requires that the
argument type is convertible to a Boolean or implements the || operator.

Example 35.22: Basic Binary Predicate.
1 vtkm :: Equal equal_ ;
2 vtkm :: NotEqual not_equal ;
3 vtkm :: SortLess sort_less ;
4 vtkm :: SortGreater sort_greater ;
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5 vtkm :: LogicalAnd logical_and ;
6 vtkm :: LogicalOr logical_or ;
7
8 bool equal = equal_ (vtkm :: Id (1) , vtkm :: Id (1));
9 bool notEqual = not_equal (vtkm :: Id (1) , vtkm :: Id (2));

10 bool sortLess = sort_less (vtkm :: Id (1) , vtkm :: Id (2));
11 bool sortGreater = sort_greater (vtkm :: Id (2) , vtkm :: Id (1));
12 bool logicalAnd = logical_and (true , true );
13 bool logicalOr = logical_or (true , false );

35.23.3 Binary Operators

Binary Operators take two parameters and return a single value (usually of the same type as the input argu-
ments). These types of functors are useful when performing reductions or transformations of a dataset.

vtkm::Sum Returns the sum of two arguments. Requires that the argument type implements the + operator.

vtkm::Product Returns the product (multiplication) of two arguments. Requires that the argument type
implements the * operator.

vtkm::Maximum Returns the larger of two arguments. Requires that the argument type implements the <
operator.

vtkm::Minimum Returns the smaller of two arguments. Requires that the argument type implements the <
operator.

vtkm::MinAndMax Returns a vtkm::Vec <T,2> that represents the minimum and maximum values. Requires
that the argument type implements the vtkm::Min and vtkm::Max functions.

vtkm::BitwiseAnd Returns the bitwise and of two arguments. Requires that the argument type implements
the & operator.

vtkm::BitwiseOr Returns the bitwise or of two arguments. Requires that the argument type implements the
| operator.

vtkm::BitwiseXor Returns the bitwise xor of two arguments. Requires that the argument type implements
the ˆ operator.

Example 35.23: Basic Binary Operator.
1 vtkm :: Sum sum_;
2 vtkm :: Product product_ ;
3 vtkm :: Maximum maximum_ ;
4 vtkm :: Minimum minimum_ ;
5 vtkm :: MinAndMax <vtkm ::Id > min_and_max ;
6 vtkm :: BitwiseAnd bitwise_and ;
7 vtkm :: BitwiseOr bitwise_or ;
8 vtkm :: BitwiseXor bitwise_xor ;
9

10 vtkm :: Id sum = sum_(vtkm :: Id (1) , vtkm :: Id (1));
11 vtkm :: Id product = product_ (vtkm :: Id (2) , vtkm :: Id (2));
12 vtkm :: Id max = maximum_ (vtkm :: Id (1) , vtkm :: Id (2));
13 vtkm :: Id min = minimum_ (vtkm :: Id (1) , vtkm :: Id (2));
14 vtkm :: Id2 minAndMax = min_and_max (vtkm :: Id (3) , vtkm :: Id (4));
15 vtkm :: Id bitwiseAnd = bitwise_and (vtkm :: Id (1) , vtkm :: Id (3));
16 vtkm :: Id bitwiseOr = bitwise_or (vtkm :: Id (1) , vtkm :: Id (2));
17 vtkm :: Id bitwiseXor = bitwise_xor (vtkm :: Id (7) , vtkm :: Id (4));
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35.23.4 Creating Custom Comparators

In addition to using the built in operators and predicates, it is possible to create your own custom functors to
be used in one of the vtkm::cont::Algorithm. Custom operator and predicate functors can be used to apply
specific logic used to manipulate your data. The following example creates a unary predicate that checks if the
input is a power of 2.

Example 35.24: Custom Unary Predicate Implementation.
1 struct PowerOfTwo
2 {
3 VTKM_EXEC_CONT bool operator ()( const vtkm :: Id& x) const
4 {
5 if (x <= 0)
6 {
7 return false ;
8 }
9 vtkm :: BitwiseAnd bitwise_and ;

10 return bitwise_and (x, vtkm :: Id(x - 1)) == 0;
11 }
12 };

Example 35.25: Custom Unary Predicate Usage.
1 PowerOfTwo power_of_two ;
2
3 bool powerOfTwo = power_of_two (vtkm :: Id (4)); // returns true
4 powerOfTwo = power_of_two (vtkm :: Id (5)); // returns false
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CHAPTER

THIRTYSIX

CUSTOM ARRAY STORAGE

Chapters 16, 26, and 27 introduce the vtkm::cont::ArrayHandle class. In them, we learned how an Array-
Handle manages the memory allocation of an array, provides access to the data via array portals, and supervises
the movement of data between the control and execution environments.
In addition to these data management features, ArrayHandle also provides a configurable storage mechanism
that allows you, through efficient template configuration, to redefine how data are stored and retrieved. The
storage object provides an encapsulated interface around the data so that any necessary strides, offsets, or other
access patterns may be handled internally. The relationship between array handles and their storage object is
shown in Figure 36.1.

Array Handle
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Figure 36.1: Array handles, storage objects, and the underlying data source.

As previously discussed in Chapter 16, vtkm::cont::ArrayHandle takes two template arguments.

Example 36.1: Declaration of the vtkm::cont::ArrayHandle templated class (again).
1 template < typename T, typename StorageTag = VTKM_DEFAULT_STORAGE_TAG >
2 class ArrayHandle ;
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The first argument is the only one required and has been demonstrated multiple times before. The second (op-
tional) argument specifies something called a storage, which provides the interface between the generic vtkm::-
cont::ArrayHandle class and a specific storage mechanism in the control environment. If the storage parameter
is not explicitly defined, it is set to VTKM DEFAULT STORAGE TAG, which is a macro that resolves to vtkm::-
cont::StorageTagBasic.
The default storage can always be overridden by specifying an array storage tag. Here is an example of specifying
the storage type when declaring an array handle.

Example 36.2: Specifying the storage type for an ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 , vtkm :: cont :: StorageTagBasic > arrayHandle ;

Although setting an ArrayHandle’s storage explicitly to StorageTagBasic as in Example 36.2 is seldom useful
(since this is the default value), setting the storage is a good way to propagate the storage mechanism through
template parameters. The remainder of this chapter uses the storage mechanism to customize the representation
of arrays.
By replacing the storage template parameter for ArrayHandle, we can change how data are stored in memory.
For example, when storing vtkm::Vec objects, the basic storage writes all vtkm::Vec s sequentially in a single
array. This is known as an array of structures. An alternate representation would be to store each component
of the vtkm::Vec s in a separate array. This alternate layout is known as a structure of arrays. There are
reasons one might want to represent vector data in a structure of arrays, and VTK-m provides a separate storage
to implement that: vtkm::cont::StorageTagSOA. From an interface perspective, the two ArrayHandles behave
the same, but they have very different implementations.
As is typical of different types of storage, the basic and SOA storage types have convenience ArrayHandle
subclasses: vtkm::cont::ArrayHandleBasic and vtkm::cont::ArrayHandleSOA, respectively. These are trivial
subclasses of vtkm::cont::ArrayHandle with the appropriate storage, but provide convenience methods for
construction and data access.
One interesting consequence of using a generic storage object to manage data within an array handle is that
the storage can be defined functionally rather than point to data stored in physical memory. Thus, implicit
array handles are easily created by adapting to functional “storage.” For example, the point coordinates of a
uniform rectilinear grid are implicit based on the topological position of the point. Thus, the point coordinates
for uniform rectilinear grids can be implemented as an implicit array with the same interface as explicit arrays
(where unstructured grid points would be stored). Many examples of this are listed in Chapter 26.
In this chapter we explore the many ways you can manipulate the ArrayHandle storage. There are many ways
to create custom storage for ArrayHandle. As we explore these different ways, we will start with the easiest but
most restrictive ways and move to the most expressive ways.

36.1 Implicit Array Handles

The generic array handle and storage templating in VTK-m allows for any type of operations to retrieve a
particular value. Typically this is used to convert an index to some location or locations in memory. However,
it is also possible to compute a value directly from an index rather than look up some value in memory. Such
an array is completely functional and requires no storage in memory at all. Such a functional array is called
an implicit array handle. Implicit arrays are an example of fancy array handles, which are array handles that
behave like regular arrays but do special processing under the covers to provide values.
Specifying a functional or implicit array in VTK-m is straightforward. VTK-m has a special class named
vtkm::cont::ArrayHandleImplicit that makes an implicit array containing values generated by a user-specified
functor. A functor is simply a C++ class or struct that contains an overloaded parenthesis operator so that it
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can be used syntactically like a function.
To demonstrate the use of ArrayHandleImplicit, let us say we want an array of even numbers. The array has
the values [0,2,4,6, . . .] (double the index) up to some given size. Although we could easily create this array in
memory, we can save space and possibly time by computing these values on demand.

VTK-m already comes with an implicit array handle named vtkm::cont::ArrayHandleCounting that can
make implicit even numbers as well as other more general counts. (See Section 26.4 for details.) So in
practice you would not have to create a special implicit array, but we are doing so here for demonstrative
purposes.

Did you know?

The first step to using ArrayHandleImplicit is to declare a functor. The functor’s parenthesis operator should
accept a single argument of type vtkm::Id and return a value appropriate for that index. The parenthesis
operator should also be declared const because it is not allowed to change the class’ state.

Example 36.3: Functor that doubles an index.
1 struct DoubleIndexFunctor
2 {
3 VTKM_EXEC_CONT
4 vtkm :: Id operator ()( vtkm :: Id index ) const { return 2 * index ; }
5 };

The functor used with ArrayHandleImplicit may contain state, but it must be trivially copiable across
memory spaces. That means it cannot contain any virtual methods nor hold any pointers or references. It
also means it cannot hold objects like an ArrayHandle or ArrayPortal. Such behavior may seem to work
at first, but will quickly break down on different devices. The point of an implicit array is that it completely
computes each value without referencing any external data. Later in this chapter we will explore many
ways to create storage that access data stored in memory or other ArrayHandles.

Common Errors

Once the functor is defined, an implicit array can be declared using the templated vtkm::cont::ArrayHan-
dleImplicit class. The single template argument is the functor’s type.

Example 36.4: Declaring a ArrayHandleImplicit.
1 vtkm :: cont :: ArrayHandleImplicit < DoubleIndexFunctor > implicitArray (
2 DoubleIndexFunctor (), 50);

For convenience, vtkm/cont/ArrayHandleImplicit.h also declares the vtkm::cont::make ArrayHandleImplicit
function. This function takes a functor and the size of the array and returns the implicit array.

Example 36.5: Using make ArrayHandleImplicit.
1 vtkm :: cont :: make_ArrayHandleImplicit ( DoubleIndexFunctor (), 50);

If the implicit array you are creating tends to be generally useful and is something you use multiple times, it
might be worthwhile to make a convenience subclass of vtkm::cont::ArrayHandleImplicit for your array.
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Example 36.6: Custom implicit array handle for even numbers.
1 # include <vtkm/cont/ ArrayHandleImplicit .h>
2
3 class ArrayHandleDoubleIndex
4 : public vtkm :: cont :: ArrayHandleImplicit < DoubleIndexFunctor >
5 {
6 public :
7 VTKM_ARRAY_HANDLE_SUBCLASS_NT (
8 ArrayHandleDoubleIndex ,
9 (vtkm :: cont :: ArrayHandleImplicit < DoubleIndexFunctor >));

10
11 VTKM_CONT
12 ArrayHandleDoubleIndex (vtkm :: Id numberOfValues )
13 : Superclass ( DoubleIndexFunctor (), numberOfValues )
14 {
15 }
16 };

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the types Superclass, ValueType, and StorageTag as well as a
set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.
The ArrayHandle subclass in Example 36.6 is not templated, so it uses the VTKM ARRAY HANDLE SUBCLASS NT
macro. This macro takes two parameters. The first parameter is the name of the subclass where the macro
is defined and the second parameter is the immediate superclass including the full template specification. The
second parameter of the macro must be enclosed in parentheses so that the C pre-processor correctly handles
commas in the template specification. (The other macro is described in Section 36.2 on page 318).

36.2 Transformed Arrays

Another type of fancy array handle is the transformed array. A transformed array takes another array and
applies a function to all of the elements to produce a new array. A transformed array behaves much like a map
operation except that a map operation writes its values to a new memory location whereas the transformed array
handle produces its values on demand so that no additional storage is required.
Specifying a transformed array in VTK-m is straightforward. VTK-m has a special class named vtkm::cont::-
ArrayHandleTransform that takes an array handle and a functor and provides an interface to a new array
comprising values of the functor applied the first array.
To demonstrate the use of ArrayHandleTransform, let us say that we want to scale and bias all of the values in
a target array. That is, each value in the target array is going to be multiplied by a given scale and then offset
by adding a bias value. (The scale and bias are uniform across all entries.) We could, of course, easily create a
worklet to apply this scale and bias to each entry in the target array and save the result in a new array, but we
can save space and possibly time by computing these values on demand.
The first step to using ArrayHandleTransform is to declare a functor. The functor’s parenthesis operator should
accept a single argument of the type of the target array and return the transformed value. For more generally
applicable transform functors, it is often useful to make the parenthesis operator a template. The parenthesis
operator should also be declared const because it is not allowed to change the class’ state.

Example 36.7: Functor to scale and bias a value.
1 template < typename T>
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2 struct ScaleBiasFunctor
3 {
4 VTKM_EXEC_CONT
5 ScaleBiasFunctor (T scale = T(1) , T bias = T(0))
6 : Scale ( scale )
7 , Bias(bias)
8 {
9 }

10
11 VTKM_EXEC_CONT
12 T operator ()(T x) const { return this -> Scale * x + this ->Bias; }
13
14 T Scale ;
15 T Bias;
16 };

As with functors for implicit arrays, a functor for ArrayHandleTransform must be trivially copiable. It
may not hold in its state reference to any other arrays. The functor may only access the one value from
the input array that is passed as an argument to the parenthesis operator. Mechanisms to build arrays with
more expressive access to one or more other arrays are described later in this chapter.

Common Errors

Once the functor is defined, a transformed array can be declared using the templated vtkm::cont::ArrayHan-
dleTransform class. The first template argument is the type of array being transformed. The second template
argument is the type of functor used for the transformation. The third template argument, which is optional, is
the type for an inverse functor that provides the inverse operation of the functor in the second argument. This
inverse functor is used for writing values into the array. For arrays that will only be read from, there is no need
to supply this inverse functor.
That said, it is generally easier to use the vtkm::cont::make ArrayHandleTransform convenience function.
This function takes an array and a functor (and optionally an inverse functor) and returns a transformed array.

Example 36.8: Using make ArrayHandleTransform.
1 vtkm :: cont :: make_ArrayHandleTransform (array ,
2 ScaleBiasFunctor <vtkm :: Float32 >(2 , 3))

If the transformed array you are creating tends to be generally useful and is something you use multiple times,
it might be worthwhile to make a convenience subclass of vtkm::cont::ArrayHandleTransform or convenience
make ArrayHandle* function for your array.

Example 36.9: Custom transform array handle for scale and bias.
1 # include <vtkm/cont/ ArrayHandleTransform .h>
2
3 template < typename ArrayHandleType >
4 class ArrayHandleScaleBias
5 : public vtkm :: cont :: ArrayHandleTransform <
6 ArrayHandleType ,
7 ScaleBiasFunctor < typename ArrayHandleType :: ValueType >>
8 {
9 VTKM_IS_ARRAY_HANDLE ( ArrayHandleType );

10
11 public :
12 VTKM_ARRAY_HANDLE_SUBCLASS (
13 ArrayHandleScaleBias ,
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14 ( ArrayHandleScaleBias < ArrayHandleType >),
15 (vtkm :: cont :: ArrayHandleTransform <
16 ArrayHandleType ,
17 ScaleBiasFunctor < typename ArrayHandleType :: ValueType > >));
18
19 VTKM_CONT
20 ArrayHandleScaleBias ( const ArrayHandleType & array , ValueType scale , ValueType bias)
21 : Superclass (array , ScaleBiasFunctor <ValueType >( scale , bias ))
22 {
23 }
24 };
25
26 template < typename ArrayHandleType >
27 VTKM_CONT ArrayHandleScaleBias < ArrayHandleType > make_ArrayHandleScaleBias (
28 const ArrayHandleType & array ,
29 typename ArrayHandleType :: ValueType scale ,
30 typename ArrayHandleType :: ValueType bias)
31 {
32 return ArrayHandleScaleBias < ArrayHandleType >( array , scale , bias );
33 }

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the types Superclass, ValueType, and StorageTag as well as a
set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.
The ArrayHandle subclass in Example 36.9 is templated, so it uses the VTKM ARRAY HANDLE SUBCLASS macro.
This macro takes three parameters. The first parameter is the name of the subclass where the macro is defined,
the second parameter is the type of the subclass including the full template specification, and the third parameter
is the immediate superclass including the full template specification. The second and third parameters of the
macro must be enclosed in parentheses so that the C pre-processor correctly handles commas in the template
specification. (The other macro is described in Section 36.1 on page 316).

36.3 Decorated Arrays

In the previous section, we saw how to augment a single array to modify its values in place. However, Array-
HandleTransform is limited in that it only allows you to augment one array at a time, and it does not allow you
to adjust the index lookups into the array.
If ArrayHandleTransform is not powerful enough, VTK-m provides vtkm::cont::ArrayHandleDecorator for
more general augmentation of arrays. ArrayHandleDecorator provides a much more expressive (albeit compli-
cated) interface.
In this section we will demonstrate the steps required to create a more general derived storage. For the purposes
of the example in this section, let us say we want 2 array handles to behave as one array with the contents
interlaced together. That is, the first w items are the same as the first w of the first array, the second w items
are the same as the first w of the second array, the third w items are the same as the second w of the first array,
the fourth w items are the same as the second w of the second array, and so on. We could of course actually
copy the data, but we can also do it in place.
Using ArrayHandleDecorator requires creating functors for getting and setting data in the arrays plus creating
another “interface” structure to manage the functors and data. As always, these can be used to define new
ArrayHandle classes.
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36.3.1 Functors

Like ArrayHandleImplicit and ArrayHandleTransform, you define the behavior of ArrayHandleDecorator
by defining functors. However, unlike the functors for the other ArrayHandles, we relax the restrictions on
ArrayHandleDecorator’s functors and allow them to hold array portals as part of its state. Note that there are
still restrictions on where these portals come from. They are generated internally by ArrayHandleDecorator
and are passed to the functors as described in Section 36.3.2.
The decorator needs a functor with a parentheses operator that is given an index and returns a value for that
index. The interface is the same as that for ArrayHandleImplicit, but the returned result can come from data
in array portals.

Example 36.10: Functor that interlaces two array portals.
1 template < typename PortalType1 , typename PortalType2 >
2 class InterlaceFunctor
3 {
4 PortalType1 Portal1 ;
5 PortalType2 Portal2 ;
6 vtkm :: Id Width ;
7
8 public :
9 InterlaceFunctor ( const PortalType1 & portal1 ,

10 const PortalType2 & portal2 ,
11 vtkm :: Id width )
12 : Portal1 ( portal1 )
13 , Portal2 ( portal2 )
14 , Width ( width )
15 {
16 }
17
18 VTKM_EXEC_CONT typename PortalType1 :: ValueType operator ()( vtkm :: Id index ) const
19 {
20 vtkm :: Id interleaveGroup = index / (this -> Width * 2);
21 vtkm :: Id interleaveIndex = index % (this -> Width * 2);
22 if ( interleaveIndex < this -> Width )
23 {
24 return this -> Portal1 .Get( interleaveIndex + ( interleaveGroup * this -> Width ));
25 }
26 else
27 {
28 return this -> Portal2 .Get (( interleaveIndex - this -> Width ) +
29 ( interleaveGroup * this -> Width ));
30 }
31 }
32 };

This functor will be used for retrieving data. If the array being generated is intended to be read-only, then this
is all you need. However, if you wish to create a writable array, then you need a second “inverse” functor to set
data to the array. Fundamentally, there is no reason why we should not support writing data to the interlaced
arrays, so we define a secondary inverse functor.

Example 36.11: Inverse functor for writing data to interlaced array portals.
1 template < typename PortalType1 , typename PortalType2 >
2 class InterlaceInverseFunctor
3 {
4 PortalType1 Portal1 ;
5 PortalType2 Portal2 ;
6 vtkm :: Id Width ;
7
8 public :
9 InterlaceInverseFunctor ( const PortalType1 & portal1 ,
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10 const PortalType2 & portal2 ,
11 vtkm :: Id width )
12 : Portal1 ( portal1 )
13 , Portal2 ( portal2 )
14 , Width ( width )
15 {
16 }
17
18 template < typename T>
19 VTKM_EXEC_CONT void operator ()( vtkm :: Id index , const T& value ) const
20 {
21 vtkm :: Id interleaveGroup = index / (this -> Width * 2);
22 vtkm :: Id interleaveIndex = index % (this -> Width * 2);
23 if ( interleaveIndex < this -> Width )
24 {
25 this -> Portal1 .Set( interleaveIndex + ( interleaveGroup * this -> Width ), value );
26 }
27 else
28 {
29 this -> Portal2 .Set(
30 ( interleaveIndex - this -> Width ) + ( interleaveGroup * this -> Width ), value );
31 }
32 }
33 };

36.3.2 Interface

The next step in creating a decorator array is to define an “interface” class that tells ArrayHandleDecorator
how to read, write, and resize the array. This is just a normal class or struct containing the following members.

CreateFunctor A method that takes one or more array portals and returns a functor used to get information
from these portals. These portals will respectively come from the arrays being decorated. This method is
required.

CreateInverseFunctor A method that takes one or more array portals and returns a functor used to set
information in these portals. These portals will respectively come from the arrays being decorated. This
method is optional. If it is omitted, then the decorated array will be read-only.

AllocateSourceArrays A method that resizes the arrays being decorated. The first three arguments are the
new size of the array, a vtkm::CopyFlag indicating whether data should be preserved, and a vtkm::-
cont::Token, respectively. The remaining arguments are the arrays being decorated. This method is
optional. If it is omitted, then the decorated array cannot be resized after creation.

Our implementation of interlaced array handles produces the functors presented in Exercises 36.10 and 36.11. It
also provides a mechanism to resize the arrays.

Example 36.12: Decorator implementation class for interleaving ArrayHandles.
1 struct InterlaceImplementation
2 {
3 vtkm :: Id Width ;
4
5 InterlaceImplementation (vtkm :: Id width = 1)
6 : Width ( width )
7 {
8 }
9

10 template < typename PortalType1 , typename PortalType2 >
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11 VTKM_CONT InterlaceFunctor < PortalType1 , PortalType2 > CreateFunctor (
12 const PortalType1 & portal1 ,
13 const PortalType2 portal2 ) const
14 {
15 return InterlaceFunctor < PortalType1 , PortalType2 >( portal1 , portal2 , this -> Width );
16 }
17
18 template < typename PortalType1 , typename PortalType2 >
19 VTKM_CONT InterlaceInverseFunctor < PortalType1 , PortalType2 > CreateInverseFunctor (
20 const PortalType1 & portal1 ,
21 const PortalType2 portal2 ) const
22 {
23 return InterlaceInverseFunctor < PortalType1 , PortalType2 >(
24 portal1 , portal2 , this -> Width );
25 }
26
27 template < typename ArrayType1 , typename ArrayType2 >
28 VTKM_CONT void AllocateSourceArrays (vtkm :: Id numValues ,
29 vtkm :: CopyFlag preserve ,
30 vtkm :: cont :: Token & token ,
31 ArrayType1 & array1 ,
32 ArrayType2 & array2 ) const
33 {
34 vtkm :: Id numInterleaveGroups = ( numValues / (this -> Width * 2));
35 vtkm :: Id remainder = numValues - ( numInterleaveGroups * this -> Width * 2);
36 if ( remainder < this -> Width )
37 {
38 array1 . Allocate (
39 ( numInterleaveGroups * this -> Width ) + remainder , preserve , token );
40 array2 . Allocate (( numInterleaveGroups * this -> Width ), preserve , token );
41 }
42 else
43 {
44 array1 . Allocate (( numInterleaveGroups + 1) * this ->Width , preserve , token );
45 array2 . Allocate (( numInterleaveGroups * this -> Width ) + remainder - this ->Width ,
46 preserve ,
47 token );
48 }
49 }
50 };

36.3.3 Subclass

If the array decorator you are creating tends to be generally useful and is something you use multiple times, it
might be worthwhile to make a convenience subclass of vtkm::cont::ArrayHandleDecorator or convenience
make ArrayHandle* function for your array.

Example 36.13: Custom decorator array handle for interleaving arrays.
1 template < typename ArrayType1 , typename ArrayType2 >
2 class ArrayHandleInterlace
3 : public vtkm :: cont ::
4 ArrayHandleDecorator < InterlaceImplementation , ArrayType1 , ArrayType2 >
5 {
6 VTKM_IS_ARRAY_HANDLE ( ArrayType1 );
7 VTKM_IS_ARRAY_HANDLE ( ArrayType2 );
8
9 public :

10 VTKM_ARRAY_HANDLE_SUBCLASS (
11 ArrayHandleInterlace ,
12 ( ArrayHandleInterlace < ArrayType1 , ArrayType2 >),
13 (vtkm :: cont ::
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14 ArrayHandleDecorator < InterlaceImplementation , ArrayType1 , ArrayType2 >));
15
16 VTKM_CONT ArrayHandleInterlace ( const ArrayType1 & array1 ,
17 const ArrayType2 & array2 ,
18 vtkm :: Id width = 1)
19 : Superclass (vtkm :: cont :: make_ArrayHandleDecorator (
20 array1 . GetNumberOfValues () + array2 . GetNumberOfValues (),
21 InterlaceImplementation ( width ),
22 array1 ,
23 array2 ))
24 {
25 }
26 };
27
28 template < typename ArrayType1 , typename ArrayType2 >
29 VTKM_CONT ArrayHandleInterlace < ArrayType1 , ArrayType2 > make_ArrayHandleInterlace (
30 const ArrayType1 & array1 ,
31 const ArrayType2 & array2 ,
32 vtkm :: Id width = 1)
33 {
34 return ArrayHandleInterlace < ArrayType1 , ArrayType2 >( array1 , array2 , width );
35 }

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the types Superclass, ValueType, and StorageTag as well as a
set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.
The ArrayHandle subclass in Example 36.13 is templated, so it uses the VTKM ARRAY HANDLE SUBCLASS macro.
This macro takes three parameters. The first parameter is the name of the subclass where the macro is defined,
the second parameter is the type of the subclass including the full template specification, and the third parameter
is the immediate superclass including the full template specification. The second and third parameters of the
macro must be enclosed in parentheses so that the C pre-processor correctly handles commas in the template
specification. (The other macro is described in Section 36.1 on page 316).

36.4 Derived Storage

A derived storage is a type of fancy array that takes one or more other arrays and changes their behavior in
some way. A transformed array (Section 36.2) is a specific type of derived array with a simple mapping. In this
section we will demonstrate the steps required to create a more general derived storage. When applicable, it
is much easier to create a derived array as a transformed array or using the other fancy arrays than to create
your own derived storage. However, if these pre-existing fancy arrays do not work work, for example if your
derivation uses multiple arrays or requires general lookups, you can do so by creating your own derived storage.
For the purposes of the example in this section, let us say we want 2 array handles to behave as one array with
the contents interlaced together. That is, the first w items are the same as the first w of the first array, the
second w items are the same as the first w of the second array, the third w items are the same as the second w
of the first array, the fourth w items are the same as the second w of the second array, and so on. We could of
course actually copy the data, but we can also do it in place.
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36.4.1 Array Portal

The first step to creating a derived storage is to build an array portal that will take portals from arrays being
derived. The portal must work in both the control and execution environment.
Because the intention of our custom ArrayHandle is to augment the behavior of other ArrayHandle, it is typical
for an ArrayPortal of this nature to reference other ArrayPortals.

Example 36.14: Derived array portal for concatenated arrays.
1 template < typename PortalType1 , typename PortalType2 >
2 class ArrayPortalInterlace
3 {
4 PortalType1 Portal1 ;
5 PortalType2 Portal2 ;
6 vtkm :: Id Width ;
7
8 public :
9 using ValueType = typename PortalType1 :: ValueType ;

10
11 VTKM_EXEC_CONT ArrayPortalInterlace ()
12 : Portal1 ()
13 , Portal2 ()
14 , Width (1)
15 {
16 }
17
18 VTKM_EXEC_CONT ArrayPortalInterlace ( const PortalType1 & portal1 ,
19 const PortalType2 & portal2 ,
20 vtkm :: Id width )
21 : Portal1 ( portal1 )
22 , Portal2 ( portal2 )
23 , Width ( width )
24 {
25 }
26
27 /// Copy constructor for any other ArrayPortalInterlace with a portal type
28 /// that can be copied to this portal type. This allows us to do any type
29 /// casting that the portals do (like the non - const to const cast ).
30 template < typename OtherP1 , typename OtherP2 >
31 VTKM_EXEC_CONT ArrayPortalInterlace (
32 const ArrayPortalInterlace <OtherP1 , OtherP2 >& src)
33 : Portal1 (src. GetPortal1 ())
34 , Portal2 (src. GetPortal2 ())
35 , Width (src. GetWidth ())
36 {
37 }
38
39 VTKM_EXEC_CONT
40 vtkm :: Id GetNumberOfValues () const
41 {
42 return this -> Portal1 . GetNumberOfValues () + this -> Portal2 . GetNumberOfValues ();
43 }
44
45 VTKM_EXEC_CONT
46 ValueType Get(vtkm :: Id index ) const
47 {
48 vtkm :: Id interleaveGroup = index / (this -> Width * 2);
49 vtkm :: Id interleaveIndex = index % (this -> Width * 2);
50 if ( interleaveIndex < this -> Width )
51 {
52 return this -> Portal1 .Get( interleaveIndex + ( interleaveGroup * this -> Width ));
53 }
54 else
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55 {
56 return this -> Portal2 .Get (( interleaveIndex - this -> Width ) +
57 ( interleaveGroup * this -> Width ));
58 }
59 }
60
61 // The template is a trick to use SFINAE semantics to only define this Set
62 // method if both Portal1 and Portal2 define a Set method .
63 template <
64 typename P1 = PortalType1 ,
65 typename P2 = PortalType2 ,
66 typename =
67 typename std :: enable_if <vtkm :: internal :: PortalSupportsSets <P1 >:: value >:: type ,
68 typename =
69 typename std :: enable_if <vtkm :: internal :: PortalSupportsSets <P2 >:: value >:: type >
70 VTKM_EXEC_CONT void Set(vtkm :: Id index , const ValueType & value ) const
71 {
72 vtkm :: Id interleaveGroup = index / (this -> Width * 2);
73 vtkm :: Id interleaveIndex = index % (this -> Width * 2);
74 if ( interleaveIndex < this -> Width )
75 {
76 this -> Portal1 .Set( interleaveIndex + ( interleaveGroup * this -> Width ), value );
77 }
78 else
79 {
80 this -> Portal2 .Set(
81 ( interleaveIndex - this -> Width ) + ( interleaveGroup * this -> Width ), value );
82 }
83 }
84
85 VTKM_EXEC_CONT const PortalType1 & GetPortal1 () const { return this -> Portal1 ; }
86 VTKM_EXEC_CONT const PortalType2 & GetPortal2 () const { return this -> Portal2 ; }
87
88 VTKM_EXEC_CONT vtkm :: Id GetWidth () const { return this -> Width ; }
89 };

36.4.2 Storage

The next step in creating a custom storage is to define a tag for the adapter. We shall call ours StorageTagIn-
terlace and it will be templated on the two array handle types that we are deriving. Then, we need to create
a specialization of the templated vtkm::cont::internal::Storage class. The ArrayHandle will instantiate an
object using the array container tag we give it, and we define our own specialization so that it runs our interface
into the code.
vtkm::cont::internal::Storage has two template arguments: the base type of the array and the storage tag.

Example 36.15: Prototype for vtkm::cont::internal::Storage.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace internal
6 {
7
8 template < typename T, class StorageTag >
9 class Storage ;

10
11 }
12 }
13 } // namespace vtkm :: cont :: internal
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The vtkm::cont::internal::Storage must define the following items.

ReadPortalType The type of an array portal that can be used to access the underlying data. This array portal
needs only be read-only. That is, the Set method is optional.

WritePortalType The type of an array portal that can be used to access the underlying data. This array portal
should be both read and write capable. If the storage is intended to be read-only, then WritePortalType
should be left out and VTKM STORAGE NO WRITE PORTAL should be declared in the storage class instead.

CreateBuffers The actual data of an ArrayHandle is stored in a std::vector of vtkm::cont::internal::-
Buffer objects. The Storage builds the array of Buffer objects in the CreateBuffers method. A derived
array usually contains all the Buffers from the ArrayHandles it is referencing plus an additional Buffer
for its own metadata. See Section 36.5.1 for details on Buffer.

GetNumberOfValues This is a static method that takes a std::vector of vtkm::cont::internal::Buffer
objects and returns the number of values in the represented array. The number of values is either derived
from the size of the Buffers, the size of the arrays being referenced, or stored in the metadata.

ResizeBuffers This is a static method that takes a number of values for the arrays, a std::vector of vtkm::-
cont::internal::Buffer objects, a vtkm::CopyFlag, and a vtkm::cont::Token. It then resizes the
memory in the Buffer objects to match the requested number of values. If the storage cannot be resized
after it is created, then this method should be left out and the VTKM STORAGE NO RESIZE macro should
be declared in the storage class instead.

CreateReadPortal This is a static method that takes a std::vector of vtkm::cont::internal::Buffer ob-
jects, a vtkm::cont::DeviceAdapterId, and a vtkm::cont::Token. It returns a ReadPortalType that
can be used to read the data on the given device.

CreateWritePortal This is a static method that takes a std::vector of vtkm::cont::internal::Buffer
objects, a vtkm::cont::DeviceAdapterId, and a vtkm::cont::Token. It returns a WritePortalType
that can be used to read the data on the given device. If the storage is intended to be read-only, then
CreateWritePortal should be left out and VTKM STORAGE NO WRITE PORTAL should be declared in the
storage class instead.

The CreateBuffers method must have a form that takes no arguments so that the ArrayHandle can initialize
itself. Although it is not necessary, it is often convenient to have overloads of CreateBuffers to create the
std::vector of vtkm::cont::internal::Buffer objects used for the storage based on some initial data (such
as arrays it is based on). The vtkm::cont::internal::CreateBuffers function is often helpful for this task.
It will push all of its arguments into a std::vector. Arguments that are ArrayHandles or std::vectors of
Buffers will have their containing Buffers add. Arguments that do not contain any Buffer object will be added
to the metadata of an empty Buffer object.
If the storage is working directly with data in memory, then the function of these items can be implemented
through the vtkm::cont::internal::Buffer objects. However, if the storage is modifying the functionality
of other array types, then the implementation is mostly performed using the storage for those respective array
types. The following example shows the implementation of Storage for our example derived array type.

Example 36.16: Storage for derived container of interlaced arrays.
1 template < typename StorageType1 , typename StorageType2 >
2 struct StorageTagInterlace
3 {
4 };
5
6 namespace vtkm
7 {
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8 namespace cont
9 {

10 namespace internal
11 {
12
13 template < typename T, typename StorageTag1 , typename StorageTag2 >
14 class Storage <T, StorageTagInterlace < StorageTag1 , StorageTag2 >>
15 {
16 // We will be deriving the behavior of two other arrays , so we will be
17 // using the Storage objects for those arrays to implement ours.
18 using SourceStorage1 = vtkm :: cont :: internal :: Storage <T, StorageTag1 >;
19 using SourceStorage2 = vtkm :: cont :: internal :: Storage <T, StorageTag2 >;
20
21 // Convenience aliases for the types of the ArrayHandles being modified .
22 using Array1 = vtkm :: cont :: ArrayHandle <T, StorageTag1 >;
23 using Array2 = vtkm :: cont :: ArrayHandle <T, StorageTag2 >;
24
25 // A structure holding the metadata needed to implement interlaced array
26 // storage .
27 struct Info
28 {
29 vtkm :: Id Width ;
30 std :: size_t BufferOffset1 ;
31 std :: size_t BufferOffset2 ;
32 };
33
34 // All storage objects store the actual data in a std :: vector of Buffer objects .
35 // We will use the first object to store the metadata .
36 // The next objects will be for the first array , the remaining for the
37 // second array . These functions make it convenient to access these Buffers .
38 VTKM_CONT static std :: vector <vtkm :: cont :: internal :: Buffer > Buffers1 (
39 const std :: vector <vtkm :: cont :: internal :: Buffer >& allbuffers )
40 {
41 Info info = allbuffers [0]. GetMetaData <Info >();
42 return std :: vector <vtkm :: cont :: internal :: Buffer >(
43 allbuffers . begin () + info. BufferOffset1 ,
44 allbuffers . begin () + info. BufferOffset2 );
45 }
46 VTKM_CONT static std :: vector <vtkm :: cont :: internal :: Buffer > Buffers2 (
47 const std :: vector <vtkm :: cont :: internal :: Buffer >& allbuffers )
48 {
49 Info info = allbuffers [0]. GetMetaData <Info >();
50 return std :: vector <vtkm :: cont :: internal :: Buffer >(
51 allbuffers . begin () + info. BufferOffset2 , allbuffers .end ());
52 }
53
54 public :
55 using ReadPortalType =
56 ArrayPortalInterlace < typename SourceStorage1 :: ReadPortalType ,
57 typename SourceStorage2 :: ReadPortalType >;
58 using WritePortalType =
59 ArrayPortalInterlace < typename SourceStorage1 :: WritePortalType ,
60 typename SourceStorage2 :: WritePortalType >;
61
62 // Not necessary for Storage , but useful .
63 VTKM_CONT static vtkm :: Id GetWidth (
64 const std :: vector <vtkm :: cont :: internal :: Buffer >& buffers )
65 {
66 return buffers [0]. GetMetaData <Info >(). Width ;
67 }
68
69 // Note that the default parameters create an overload that takes no arguments ,
70 // which is necessary for all Storage objects .
71 VTKM_CONT static auto CreateBuffers ( const Array1 & array1 = Array1 {},
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72 const Array2 & array2 = Array2 {},
73 vtkm :: Id width = 1)
74 -> decltype (vtkm :: cont :: internal :: CreateBuffers ())
75 {
76 Info info;
77 info. Width = width ;
78 info. BufferOffset1 = 1;
79 info. BufferOffset2 = info. BufferOffset1 + array1 . GetBuffers (). size ();
80 return vtkm :: cont :: internal :: CreateBuffers (info , array1 , array2 );
81 }
82
83 VTKM_CONT static vtkm :: Id GetNumberOfValues (
84 const std :: vector <vtkm :: cont :: internal :: Buffer >& buffers )
85 {
86 return ( SourceStorage1 :: GetNumberOfValues ( Buffers1 ( buffers )) +
87 SourceStorage2 :: GetNumberOfValues ( Buffers2 ( buffers )));
88 }
89
90 VTKM_CONT static void ResizeBuffers (
91 vtkm :: Id numValues ,
92 const std :: vector <vtkm :: cont :: internal :: Buffer >& buffers ,
93 vtkm :: CopyFlag preserve ,
94 vtkm :: cont :: Token & token )
95 {
96 vtkm :: Id width = GetWidth ( buffers );
97 vtkm :: Id numInterleaveGroups = ( numValues / ( width * 2));
98 vtkm :: Id remainder = numValues - ( numInterleaveGroups * width * 2);
99 if ( remainder < width )

100 {
101 SourceStorage1 :: ResizeBuffers (( numInterleaveGroups * width ) + remainder ,
102 Buffers1 ( buffers ),
103 preserve ,
104 token );
105 SourceStorage2 :: ResizeBuffers (
106 ( numInterleaveGroups * width ), Buffers2 ( buffers ), preserve , token );
107 }
108 else
109 {
110 SourceStorage1 :: ResizeBuffers (
111 ( numInterleaveGroups + 1) * width , Buffers1 ( buffers ), preserve , token );
112 SourceStorage2 :: ResizeBuffers (( numInterleaveGroups * width ) + remainder -
113 width ,
114 Buffers2 ( buffers ),
115 preserve ,
116 token );
117 }
118 }
119
120 VTKM_CONT static ReadPortalType CreateReadPortal (
121 const std :: vector <vtkm :: cont :: internal :: Buffer >& buffers ,
122 vtkm :: cont :: DeviceAdapterId device ,
123 vtkm :: cont :: Token & token )
124 {
125 return ReadPortalType (
126 SourceStorage1 :: CreateReadPortal ( Buffers1 ( buffers ), device , token ),
127 SourceStorage2 :: CreateReadPortal ( Buffers2 ( buffers ), device , token ),
128 GetWidth ( buffers ));
129 }
130
131 VTKM_CONT static WritePortalType CreateWritePortal (
132 const std :: vector <vtkm :: cont :: internal :: Buffer >& buffers ,
133 vtkm :: cont :: DeviceAdapterId device ,
134 vtkm :: cont :: Token & token )
135 {
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136 return WritePortalType (
137 SourceStorage1 :: CreateWritePortal ( Buffers1 ( buffers ), device , token ),
138 SourceStorage2 :: CreateWritePortal ( Buffers2 ( buffers ), device , token ),
139 GetWidth ( buffers ));
140 }
141
142 // These functions are not necessary for a Storage , but they are helpful for
143 // getting back the original arrays being derived .
144 VTKM_CONT static Array1 GetArray1 (
145 const std :: vector <vtkm :: cont :: internal :: Buffer >& buffers )
146 {
147 return Array1 ( Buffers1 ( buffers ));
148 }
149 VTKM_CONT static Array2 GetArray2 (
150 const std :: vector <vtkm :: cont :: internal :: Buffer >& buffers )
151 {
152 return Array2 ( Buffers2 ( buffers ));
153 }
154 };
155
156 } // namespace internal
157 } // namespace cont
158 } // namespace vtkm

36.4.3 Subclass

The final step to make a derived storage is to create a mechanism to construct an ArrayHandle with a storage
derived from the desired arrays. This can be done by creating a trivial subclass of vtkm::cont::ArrayHandle
that simply constructs the array handle to the state of an existing storage. It uses a protected constructor of
vtkm::cont::ArrayHandle that accepts a constructed storage.

Example 36.17: ArrayHandle for derived storage of concatenated arrays.
1 template < typename ArrayHandleType1 , typename ArrayHandleType2 >
2 class ArrayHandleInterlace
3 : public vtkm :: cont :: ArrayHandle <
4 typename ArrayHandleType1 :: ValueType ,
5 StorageTagInterlace < typename ArrayHandleType1 :: StorageTag ,
6 typename ArrayHandleType2 :: StorageTag >>
7 {
8 VTKM_IS_ARRAY_HANDLE ( ArrayHandleType1 );
9 VTKM_IS_ARRAY_HANDLE ( ArrayHandleType2 );

10
11 public :
12 VTKM_ARRAY_HANDLE_SUBCLASS (
13 ArrayHandleInterlace ,
14 ( ArrayHandleInterlace < ArrayHandleType1 , ArrayHandleType2 >),
15 (vtkm :: cont :: ArrayHandle <
16 typename ArrayHandleType1 :: ValueType ,
17 StorageTagInterlace < typename ArrayHandleType1 :: StorageTag ,
18 typename ArrayHandleType2 :: StorageTag > >));
19
20 public :
21 VTKM_CONT
22 ArrayHandleInterlace ( const ArrayHandleType1 & array1 ,
23 const ArrayHandleType2 & array2 ,
24 vtkm :: Id width = 1)
25 : Superclass ( StorageType :: CreateBuffers (array1 , array2 , width ))
26 {
27 }
28
29 // These extra methods may be appriciated by users .
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30 ArrayHandleType1 GetArray1 () const
31 {
32 return StorageType :: GetArray1 (this -> GetBuffers ());
33 }
34 ArrayHandleType2 GetArray2 () const
35 {
36 return StorageType :: GetArray2 (this -> GetBuffers ());
37 }
38 };

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. The difference between these two macros is that VTKM ARRAY HANDLE SUBCLASS is used in
templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT is used in non-templated classes. VTKM ARRAY -
HANDLE SUBCLASS takes three arguments. The first is the classname of the subclass being defined (without any
template arguments). The second argument is the fully resolved template with the template arguments given.
The third argument is the full name of the superclass, again with the template arguments specified. The second
and third arguments must be encased in parentheses. The VTKM ARRAY HANDLE SUBCLASS NT is similar but
only has 2 arguments: the derived class’ name and the superclass.
Both of these macros define the following convenience types:

Superclass The fully resolved type of the superclass (given as the last argument to VTKM ARRAY HANDLE -
SUBCLASS or VTKM ARRAY HANDLE SUBCLASS NT).

ValueType The value type of the ArrayHandle (same as Superclass::ValueType).

StorageTag The storage tag of the ArrayHandle (same as Superclass::StorageTag).

StorageType The resolved template of vtkm::cont::internal::Storage. This is useful for interacting with
the Storage object appropriate for your ArrayHandle.

ReadPortalType The type of read portals for the ArrayHandle (same as Superclass::ReadPortalType).

WritePortalType The type of write portals for the ArrayHandle (same as Superclass::WritePortalType).

The macros also provide a set of constructors and operators expected of all ArrayHandle classes.
The ArrayHandle subclass in Example 36.17 is templated, so it uses the VTKM ARRAY HANDLE SUBCLASS macro.
(The other macro is described in Section 36.1 on page 316). This macro takes three parameters. The first
parameter is the name of the subclass where the macro is defined, the second parameter is the type of the
subclass including the full template specification, and the third parameter is the immediate superclass including
the full template specification. The second and third parameters of the macro must be enclosed in parentheses
so that the C pre-processor correctly handles commas in the template specification.
It is also customary to create helper functions for creating ArrayHandles. This makes it simpler than creating
matching template interfaces.

Example 36.18: Helper function for creating a custom derived ArrayHandle.
1 template < typename ArrayHandle1 , typename ArrayHandle2 >
2 VTKM_CONT ArrayHandleInterlace < ArrayHandle1 , ArrayHandle2 > make_ArrayHandleInterlace (
3 const ArrayHandle1 & array1 ,
4 const ArrayHandle2 & array2 ,
5 vtkm :: Id width = 1)
6 {
7 VTKM_IS_ARRAY_HANDLE ( ArrayHandle1 );
8 VTKM_IS_ARRAY_HANDLE ( ArrayHandle2 );
9
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10 return ArrayHandleInterlace < ArrayHandle1 , ArrayHandle2 >( array1 , array2 , width );
11 }

vtkm::cont::ArrayHandleCompositeVector is an example of a derived array handle provided by VTK-m. It
references some fixed number of other arrays, pulls a specified component out of each, and produces a new
component that is a tuple of these retrieved components.

36.5 Adapting Data Structures

The intention of the storage parameter for vtkm::cont::ArrayHandle is to implement the strategy design
pattern to enable VTK-m to interface directly with the data of any third party code source. VTK-m is designed
to work with data originating in other libraries or applications. By creating a new type of storage, VTK-m can
be entirely adapted to new kinds of data structures.

VTK-m comes with several types of ArrayHandle that can adapt memory in different ways. In practice, it
is rare to have to write a custom ArrayHandle to adapt to a data structure, and this example is particularly
contrived. However, we document it here for completeness.

Did you know?

Keep in mind that memory layout used can have an effect on the running time of algorithms in VTK-m.
Different data layouts and memory access can change cache performance and introduce memory affinity
problems. The example code given in this section will likely have poorer cache performance than the basic
storage provided by VTK-m. However, that might be an acceptable penalty to avoid data copies.

Common Errors

In this section we demonstrate the steps required to adapt the array handle to a data structure provided by a
third party. For the purposes of the example, let us say that some fictitious library named “foo” has a simple
structure named FooAttributes that holds the field values for a particular part of a mesh, and then maintain
the field values for all locations in a mesh in a FooFields object.

Example 36.19: Fictitious field storage used in custom array storage examples.
1 struct FooAttributes
2 {
3 float Pressure ;
4 float Temperature ;
5 float Velocity [3];
6 // And so on ...
7 };
8
9 class FooFields

10 {
11 public :
12 FooAttributes * GetAttributesArray ();
13
14 std :: size_t GetSize () const ;
15
16 void Resize (std :: size_t numberOfElements );
17 };
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There are few restrictions on the structure of the data. The only real restriction is that you must be able to
get the data in buffers of raw C pointers containing trivially copiable objects. In this example, we note that
FooFields can return an array of FooAttributes, which satisfies this requirement.
VTK-m expects separate arrays for each of the fields rather than a single array containing a structure holding
all of the fields. However, rather than copy each field to its own array, we can create a storage for each field that
points directly to the data in a FooFields object.

36.5.1 Buffer Objects

VTK-m manages data across devices using the vtkm::cont::internal::Buffer object. As its name implies,
Buffer manages a buffer in memory. This block of bytes can be allocated on different devices and the data it
contains will be transferred across them. The Buffer object operates by specifying its size and then requesting
pointers to the reserved memory on different devices.
Buffer contains the following methods.

GetNumberOfBytes Returns the number of bytes held by the buffer. Buffer actually allocates memory lazily, so
there might not actually be any memory allocated anywhere. It is also possible that memory is simultane-
ously allocated on multiple devices. The number of bytes is returned as a vtkm::BufferSizeType, which
might be a larger integer than vtkm::Id.

SetNumberOfBytes Changes the size of the buffer. SetNumberOfBytes has three arguments. The first argument
is the number of bytes to allocate. The second argument is a vtkm::CopyFlag that indicates whether any
existing data in the buffer should be preserved. The third argument is a vtkm::cont::Token that ensures
that the resize will not interfere with other operations happening on the Buffer’s data.

IsAllocatedOnHost Returns true if the Buffer has memory allocated on the host (for the control environment).

IsAllocatedOnDevice Returns true if the Buffer has memory allocated on the device specified by a given
device adapter tag. If vtkm::cont::DeviceAdapterTagAny is given as the device, then this returns true if
the Buffer is allocated on any device. If vtkm::cont::DeviceAdapterTagUnknown is given as the device,
then this returns true if the Buffer is allocated on the host (same as IsAllocatedOnHost).

ReadPointerHost Returns a readable host (control environment) pointer to the buffer. Memory will be allocated
and data will be copied as necessary. A vtkm::cont::Token object is passed to ReadPointerHost, and
the memory at the pointer will be valid as long as the Token is still in scope. Any write operation to this
buffer will be blocked until then.

ReadPointerDevice Returns a readable device pointer to the buffer. The first argument to ReadPointerDe-
vice is a vtkm::cont::DeviceAdapterId, and the pointer returned will only be valid for this device. If
the device is vtkm::cont::DeviceAdapterTagUnknown, then this method has the same behavior as Read-
PointerHost. Memory will be allocated and data will be copied as necessary. A vtkm::cont::Token
object is passed to ReadPointerDevice, and the memory at the pointer will be valid as long as the Token
is still in scope. Any write operation to this buffer will be blocked until then.

WritePointerHost Returns a writable host (control environment) pointer to the buffer. Memory will be allo-
cated and data will be copied as necessary. A vtkm::cont::Token object is passed to WritePointerHost,
and the memory at the pointer will be valid as long as the Token is still in scope. Any read or write
operation to this buffer will be blocked until then.

WritePointerDevice Returns a writable device pointer to the buffer. The first argument to WritePointerDe-
vice is a vtkm::cont::DeviceAdapterId, and the pointer returned will only be valid for this device. If the
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device is vtkm::cont::DeviceAdapterTagUnknown, then this method has the same behavior as Write-
PointerHost. Memory will be allocated and data will be copied as necessary. A vtkm::cont::Token
object is passed to WritePointerDevice, and the memory at the pointer will be valid as long as the Token
is still in scope. Any read or write operation to this buffer will be blocked until then.

DeepCopyFrom Copies the data from the provided buffer into this buffer. If a device is given, then the copy will
be preferred for that device.

ReleaseDeviceResources Unallocates the buffer from all devices. This method preserves the data on the host
even if the data must be transferred there.

SetMetaData Takes an arbitrary object and copies it to the metadata of this buffer. Any existing metadata is
deleted. Any object can be used as metadata as long as the object has a default constructor and is copiable.
Holding metadata in a Buffer is optional, but it can be helpful for storing additional information or objects
that cannot be implied by the buffer itself.

GetMetaData Gets the metadata for the buffer. When you call this method, you have to specify a template
parameter for the type of the metadata. If the metadata has not yet been set in this buffer, a new
metadata object is created, set to this buffer, and returned. If metadata of a different type has already
been set, then an exception is thrown. The returned value is a reference that can be manipulated to alter
the metadata of the buffer.

HasMetaData Returns whether the Buffer holds metadata.

MetaDataIsType Determines if the metadata for the buffer is set to a particular type. Specify the type of
metadata as a template argument.

In addition to using Buffer to allocate data on devices and the host, you can wrap a Buffer around data that
is already allocated. This is done by using the vtkm::cont::internal::MakeBuffer function. This method
takes 6 arguments: the vtkm::cont::DeviceAdapterId of where the memory is allocated (vtkm::cont::-
DeviceAdapterTagUnknown if on the host), the pointer to the memory buffer, a pointer to a container managing
the buffer, the size of the buffer in bytes, a function used to delete the buffer, and a function used to deallocate
the buffer. An example of using MakeBuffer is given later.

36.5.2 Array Portal

The first step in creating an adapter storage is to create an array portal to the data. This is described in more
detail in Section 27.1 and is generally straightforward for simple containers like this, which simple set and get
values in a C array. Here is an example implementation for our FooFields container.

Example 36.20: Array portal to adapt a third-party container to VTK-m.
1 namespace vtkm
2 {
3 namespace internal
4 {
5
6 // Note: FooAttributesPointer expected to be either FooAttributes * or
7 // const FooAttributes *
8 template < typename FooAttributesPointer >
9 class ArrayPortalFooPressure

10 {
11 FooAttributesPointer AttributesArray = nullptr ;
12 vtkm :: Id NumberOfValues = 0;
13
14 public :
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15 using ValueType = float ;
16
17 ArrayPortalFooPressure () = default ;
18
19 VTKM_CONT ArrayPortalFooPressure ( FooAttributesPointer array ,
20 vtkm :: Id numberOfValues )
21 : AttributesArray ( array )
22 , NumberOfValues ( numberOfValues )
23 {
24 }
25
26 VTKM_EXEC_CONT vtkm :: Id GetNumberOfValues () const { return this -> NumberOfValues ; }
27
28 VTKM_EXEC_CONT ValueType Get(vtkm :: Id index ) const
29 {
30 VTKM_ASSERT ( index >= 0);
31 VTKM_ASSERT ( index < this -> GetNumberOfValues ());
32 return this -> AttributesArray [ index ]. Pressure ;
33 }
34
35 // This template is a trick to not define Set if FooAttributesPointer
36 // is const . That saves us from having to create separate implementations
37 // of this portal for the read and write versions .
38 template < typename T = FooAttributesPointer ,
39 typename = typename std :: enable_if <
40 !std :: is_const <std :: remove_pointer <T > >:: value >:: type >
41 VTKM_EXEC_CONT void Set(vtkm :: Id index , ValueType value ) const
42 {
43 VTKM_ASSERT ( index >= 0);
44 VTKM_ASSERT ( index < this -> GetNumberOfValues ());
45 this -> AttributesArray [ index ]. Pressure = value ;
46 }
47 };
48
49 }
50 } // namespace vtkm :: internal

36.5.3 Storage

The next step in creating an adapter storage is to define a tag for the adapter. We shall call ours Storage-
TagFooPressure. Then, we need to create a specialization of the templated vtkm::cont::internal::Storage
class. The ArrayHandle will instantiate an object using the array container tag we give it, and we define our
own specialization so that it runs our interface into the code.
vtkm::cont::internal::Storage has two template arguments: the base type of the array and the storage tag.

Example 36.21: Prototype for vtkm::cont::internal::Storage.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace internal
6 {
7
8 template < typename T, class StorageTag >
9 class Storage ;

10
11 }
12 }
13 } // namespace vtkm :: cont :: internal
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The vtkm::cont::internal::Storage must define the following items.

ReadPortalType The type of an array portal that can be used to access the underlying data. This array portal
needs only be read-only. That is, the Set method is optional.

WritePortalType The type of an array portal that can be used to access the underlying data. This array portal
should be both read and write capable. If the storage is intended to be read-only, then WritePortalType
should be left out and VTKM STORAGE NO WRITE PORTAL should be declared in the storage class instead.

CreateBuffers The actual data of an ArrayHandle is stored in a std::vector of vtkm::cont::internal::-
Buffer objects. The Storage builds the array of Buffer objects in the CreateBuffers method. A derived
array usually contains all the Buffers from the ArrayHandles it is referencing plus an additional Buffer
for its own metadata. See Section 36.5.1 for details on Buffer.

GetNumberOfValues This is a static method that takes a std::vector of vtkm::cont::internal::Buffer
objects and returns the number of values in the represented array. The number of values is either derived
from the size of the Buffers, the size of the arrays being referenced, or stored in the metadata.

ResizeBuffers This is a static method that takes a number of values for the arrays, a std::vector of vtkm::-
cont::internal::Buffer objects, a vtkm::CopyFlag, and a vtkm::cont::Token. It then resizes the
memory in the Buffer objects to match the requested number of values. If the storage cannot be resized
after it is created, then this method should be left out and the VTKM STORAGE NO RESIZE macro should
be declared in the storage class instead.

CreateReadPortal This is a static method that takes a std::vector of vtkm::cont::internal::Buffer ob-
jects, a vtkm::cont::DeviceAdapterId, and a vtkm::cont::Token. It returns a ReadPortalType that
can be used to read the data on the given device.

CreateWritePortal This is a static method that takes a std::vector of vtkm::cont::internal::Buffer
objects, a vtkm::cont::DeviceAdapterId, and a vtkm::cont::Token. It returns a WritePortalType
that can be used to read the data on the given device. If the storage is intended to be read-only, then
CreateWritePortal should be left out and VTKM STORAGE NO WRITE PORTAL should be declared in the
storage class instead.

The following provides an example implementation of our adapter to FooFields. It relies on the ArrayPortal-
FooPressure provided in Example 36.20.

Example 36.22: Storage to adapt a third-party container to VTK-m.
1 // Includes or definition for ArrayPortalFooPressure
2
3 namespace vtkm
4 {
5 namespace cont
6 {
7 namespace internal
8 {
9

10 struct StorageTagFooPressure
11 {
12 };
13
14 template <>
15 class Storage <float , StorageTagFooPressure >
16 {
17 public :
18 using ReadPortalType =
19 vtkm :: internal :: ArrayPortalFooPressure < const FooAttributes *>;
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20 using WritePortalType = vtkm :: internal :: ArrayPortalFooPressure < FooAttributes *>;
21
22 // Note that the default parameters create an overload that takes no arguments ,
23 // which is necessary for all Storage objects .
24 VTKM_CONT static std :: vector <vtkm :: cont :: internal :: Buffer > CreateBuffers (
25 const FooFields & fields = FooFields {})
26 {
27 FooFields * fieldsCopy = new FooFields ( fields );
28 vtkm :: cont :: internal :: Buffer memoryManager =
29 vtkm :: cont :: internal :: MakeBuffer (
30 vtkm :: cont :: DeviceAdapterTagUndefined {},
31 fieldsCopy -> GetAttributesArray (),
32 fieldsCopy ,
33 static_cast <vtkm :: BufferSizeType >( fieldsCopy -> GetSize () *
34 sizeof ( FooAttributes )),
35 FooFieldsDeleter ,
36 FooFieldsReallocater );
37 return std :: vector <vtkm :: cont :: internal :: Buffer >(1 , memoryManager );
38 }
39
40 VTKM_CONT static vtkm :: Id GetNumberOfValues (
41 const std :: vector <vtkm :: cont :: internal :: Buffer >& buffers )
42 {
43 return static_cast <vtkm ::Id >(
44 buffers [0]. GetNumberOfBytes () /
45 static_cast <vtkm :: BufferSizeType >( sizeof ( FooAttributes )));
46 }
47
48 VTKM_CONT static void ResizeBuffers (
49 vtkm :: Id numValues ,
50 const std :: vector <vtkm :: cont :: internal :: Buffer >& buffers ,
51 vtkm :: CopyFlag preserve ,
52 vtkm :: cont :: Token & token )
53 {
54 buffers [0]. SetNumberOfBytes (
55 vtkm :: internal :: NumberOfValuesToNumberOfBytes < FooAttributes >( numValues ),
56 preserve ,
57 token );
58 }
59
60 VTKM_CONT static ReadPortalType CreateReadPortal (
61 const std :: vector <vtkm :: cont :: internal :: Buffer >& buffers ,
62 vtkm :: cont :: DeviceAdapterId device ,
63 vtkm :: cont :: Token & token )
64 {
65 return ReadPortalType ( reinterpret_cast < const FooAttributes *>(
66 buffers [0]. ReadPointerDevice (device , token )),
67 GetNumberOfValues ( buffers ));
68 }
69
70 VTKM_CONT static WritePortalType CreateWritePortal (
71 const std :: vector <vtkm :: cont :: internal :: Buffer >& buffers ,
72 vtkm :: cont :: DeviceAdapterId device ,
73 vtkm :: cont :: Token & token )
74 {
75 return WritePortalType (
76 reinterpret_cast < FooAttributes *>( buffers [0]. WritePointerDevice (device , token )),
77 GetNumberOfValues ( buffers ));
78 }
79 };
80
81 } // namespace internal
82 } // namespace cont
83 } // namespace vtkm
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One interesting feature of this example is the CreateBuffers method on line 24 that wraps the Buffer around an
existing FooFields object. This allows VTK-m to read and write directly to and from the memory shared with
the FooFields. To make this work, CreateBuffers creates a new vtkm::cont::internal::Buffer object using
the vtkm::cont::internal::MakeBuffer function (lines 29–36). The first 4 arguments are straightforward:
device holding the memory, the actual memory, the object containing the memory, and the number of bytes in
the buffer. The fifth and sixth arguments are function pointers that handle deleting and reallocating the buffer
(in the control environment). These functions can be defined as follows.

Example 36.23: Memory handling functions to adapt a third-party data structure to ArrayHandle.
1 VTKM_CONT void FooFieldsDeleter ( void * container )
2 {
3 FooFields * fields = reinterpret_cast < FooFields *>( container );
4 delete fields ;
5 }
6
7 VTKM_CONT void FooFieldsReallocater ( void *& memory ,
8 void *& container ,
9 vtkm :: BufferSizeType oldSize ,

10 vtkm :: BufferSizeType newSize )
11 {
12 FooFields * fields = reinterpret_cast < FooFields *>( container );
13 VTKM_ASSERT ( static_cast <std :: size_t >( oldSize ) == fields -> GetSize ());
14 fields -> Resize ( static_cast <std :: size_t >( newSize ) / sizeof ( FooAttributes ));
15 memory = fields -> GetAttributesArray ();
16 }

36.5.4 Subclass

The final step to make a storage adapter is to make a mechanism to construct an ArrayHandle that points to
a particular storage. This can be done by creating a trivial subclass of vtkm::cont::ArrayHandle that simply
constructs the array handle to the state of an existing container.

Example 36.24: Array handle to adapt a third-party container to VTK-m.
1 class ArrayHandleFooPressure
2 : public vtkm :: cont :: ArrayHandle <float ,
3 vtkm :: cont :: internal :: StorageTagFooPressure >
4 {
5 public :
6 VTKM_ARRAY_HANDLE_SUBCLASS_NT (
7 ArrayHandleFooPressure ,
8 (vtkm :: cont :: ArrayHandle <float , vtkm :: cont :: internal :: StorageTagFooPressure >));
9

10 VTKM_CONT ArrayHandleFooPressure ( const FooFields & fields )
11 : Superclass ( StorageType :: CreateBuffers ( fields ))
12 {
13 }
14 };

With this new version of ArrayHandle, VTK-m can now read to and write from the FooFields structure directly.

Example 36.25: Using an ArrayHandle with custom container.
1 struct AirPressureWorklet : vtkm :: worklet :: WorkletMapField
2 {
3 using ControlSignature = void ( FieldIn elevation , FieldOut airPressure );
4
5 VTKM_EXEC void operator ()( vtkm :: Vec3f position , float & airPressure ) const
6 {
7 // Use linear interpolation to estimate atmospheric pressure based on
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8 // elevation in meters (0 = sea level ). Atmospheric pressure is 101325 Pa
9 // at sea level and drops about 12 Pa per meter .

10 airPressure =
11 vtkm :: Lerp (101325.0f, 77325.0f, static_cast <float >( position [2] / 2000.0 f));
12 }
13 };
14
15 VTKM_CONT
16 void GetElevationAirPressure (vtkm :: cont :: DataSet grid , const FooFields & fields )
17 {
18 // Make an array handle that points to the pressure values in the fields .
19 ArrayHandleFooPressure pressureHandle ( fields );
20
21 vtkm :: cont :: Invoker invoke ;
22 invoke ( AirPressureWorklet {},
23 grid. GetCoordinateSystem (). GetDataAsMultiplexer (),
24 pressureHandle );
25
26 // Make sure the values are flushed back to the control environment .
27 pressureHandle . SyncControlArray ();
28
29 // Now the pressure field is in the fields container .
30 }

When using an ArrayHandle in VTK-m some code may be executed in an execution environment with a
different memory space. In these cases data written to an ArrayHandle with a custom storage will not
be written directly to the storage system you defined. Rather, they will be written to a separate array in
the execution environment. If you need to access data in your custom data structure, make sure you call
SyncControlArray on the ArrayHandle, as is demonstrated in Example 36.25.

Common Errors

One of the challenges of introducing a new storage for ArrayHandle is that if the rest of the VTK-m does
not recognize the new ArrayHandle, they will not be built with compile support for it. Thus, if you do make
a custom data adapter for ArrayHandle, you will likely need to define a new set of default types that adds
the new storage to VTKM DEFAULT STORAGE LIST.

Common Errors
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DISTRIBUTED SYSTEMS

37.1 Introduction

As an HPC visualization toolkit, VTK-m is designed to be executed in distributed systems. This is a key
requirement for resource expensive applications where a computational job can be partitioned into different tasks
which are then assigned to different processes located in potentially different nodes. Those nodes as a composite
will normally form a cluster of computers or a supercomputer. These computing tasks can communicate and
coordinate with each other by the use of a middle-ware like library which in the case of VTK-m corresponds
to the DIY library. Furthermore, for both launching the jobs and ultimately to communicate between tasks we
delegate into MPI (Message Passing Interface).
Despite of the fact that only some of the VTK-m filters can run out-of-the-box as a distributed job, many other
VTK-m components can run as a distributed job by manually partitioning the computational problem data and
assigning to each of the tasks one of those partitions.

37.2 DIY

DIY is a block-parallel library for implementing scalable algorithms that can execute both in-core and out-of-
core. The same program can be executed with one or more threads per MPI process, seamlessly combining
distributed-memory message passing with shared-memory thread parallelism. The abstraction enabling these
capabilities is block parallelism: blocks and their message queues are mapped onto processing elements, consisting
of either MPI processes or threads, and are migrated between memory and storage by the DIY runtime. Complex
communication patterns, including neighbor exchange, merge reduction, swap reduction, and all-to-all exchange
are possible in DIY both in-core and out-of-core.
A full description of using DIY to perform distributed visualization is beyond the scope of this guide. For a full
description, reference the documentation provided by DIY. The basic procedure of any DIY algorithm is to first
define a set of blocks, assign them to the ranks of an MPI job, and define neighborhood relationships between
them. The following example demonstrates defining a set of blocks, one per MPI rank.

Example 37.1: Communication setup of an example DIY application.
1 vtkmdiy :: mpi :: communicator comm;
2 vtkm :: cont :: EnvironmentTracker :: SetCommunicator (comm );
3
4 auto nblocks = comm.size ();
5 std :: vector <int > gids;
6
7 vtkmdiy :: RoundRobinAssigner assigner (comm.size (), nblocks );
8 assigner . local_gids (comm.rank (), gids );
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9
10 // In our example nblocks == num_ranks , thus gids.size () == 1
11 auto gid = gids [0];
12
13 // The link will be eventually freed by DIY.
14 auto link = new vtkmdiy :: Link;
15
16 // Connect each blocks with itself .
17 vtkmdiy :: BlockID neighbor ;
18 neighbor .gid = gid;
19 neighbor .proc = assigner .rank( neighbor .gid );
20 link -> add_neighbor ( neighbor );

When using DIY objects from inside VTK-m, use the objects in the mangled vtkmdiy rather than diy.
VTK-m uses this mangled namespace to prevent conflicts if it is used with another library or executable
that uses a different version of DIY.

Did you know?

Communication in DIY is managed by the vtkmdiy::Master object. References to the defined blocks are added
to the Master object. You can then run an operation on each of these blocks using the foreach method, which
is given a function to execute on each block. This function is provided with a proxy that enables communicating
data with other nodes using a variety of communication patterns. These communications do not happen right
away but rather are queued for later exchange. This exchange is done by calling the free function vtkm::cont::-
DIYMasterExchange. The following example, which builds on the previous one, finds the median value of an
array on each rank and then finds the maximum median value. The blocks and communication used by these
examples are outlined in Figure 37.1.

Example 37.2: Example DIY application which finds the maximum of the medians of different ArrayHandle.
1 vtkmdiy :: Master master (comm );
2
3 struct MyBlock
4 {
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > in;
6 };
7
8 MyBlock block { inputArrayHandle };
9 master .add(gid , &block , link );

10
11 master . foreach (
12 [&]( MyBlock * b, const vtkmdiy :: Master :: ProxyWithLink & cp)
13 {
14 vtkm :: cont :: Algorithm :: Sort(b->in );
15 cp. enqueue (cp.link ()-> target (0) , b->in );
16 });
17 vtkm :: cont :: DIYMasterExchange ( master );
18 master . foreach (
19 [&]( MyBlock * b, const vtkmdiy :: Master :: ProxyWithLink & cp)
20 {
21 cp. dequeue (cp.link ()-> target (0). gid , b->in );
22
23 auto median_idx = (b->in. GetNumberOfValues () / 2) - 1;
24 auto median = vtkm :: cont :: ArrayGetValue ( median_idx , b->in );
25
26 cp. all_reduce (median , vtkmdiy :: mpi :: maximum <vtkm :: Int32 >());
27 });
28 vtkm :: cont :: DIYMasterExchange ( master );
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Figure 37.1: Communication topology of the example DIY application shown in the listings 37.1 and 37.2.

29
30 if (comm.rank () == 0)
31 {
32 std :: cout << "Max( median ): "
33 << master . proxy ( master . loaded_block ()). get <vtkm :: Int32 >() << std :: endl;
34 }

Normally, the DIY exchange process is done by calling the Master::exchange method. However, when
using DIY with VTK-m, the exchange should be done instead by calling vtkm::cont::DIYMasterExchange.
This function allows VTK-m to enable state to interface between DIY and VTK-m data (without otherwise
affecting exchanges that happen outside of VTK-m).

Common Errors

37.3 Object Serialization

When data are transferred among ranks, the format needs to be packed in a way the message layer understands.
Objects that might have complex structure typically need to be converted to one or more buffers through
serialization.
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DIY provides out-of-the-box serialization of common C++ stdlib types such as std::vector and std::string,
VTK-m also provides serialization for common VTK-m data types such as vtkm::cont::ArrayHandle and
vtkm::cont::DataSet. This list is not exhaustive since VTK-m also provides DIY serialization to many other
data types. For custom data types the user can specify how to serialize and deserialize the desired type by
defining an additional template specialization for struct vtkmdiy::Serialization. An example of this can be
found in the listing 37.3.

Example 37.3: Example DIY application which displays how to serialize custom data types in DIY.
1 struct TimedCoords
2 {
3 vtkm :: cont :: ArrayHandle <vtkm :: UInt64 > TimeStamps ;
4 vtkm :: cont :: ArrayHandle <vtkm :: Vec3i > Coordinates ;
5 };
6
7 namespace vtkmdiy
8 {
9 template <>

10 struct Serialization < TimedCoords >
11 {
12 static void save( BinaryBuffer & bb , const TimedCoords & p)
13 {
14 vtkmdiy :: save(bb , p. TimeStamps );
15 vtkmdiy :: save(bb , p. Coordinates );
16 }
17 static void load( BinaryBuffer & bb , TimedCoords & p)
18 {
19 vtkmdiy :: load(bb , p. TimeStamps );
20 vtkmdiy :: load(bb , p. Coordinates );
21 }
22 };
23 }
24
25 void compute ( vtkmdiy :: Master & master , vtkmdiy :: Link* link , int gid)
26 {
27 TimedCoords timedCoords ;
28 master .add(gid , & timedCoords , link );
29
30 master . foreach (
31 [&]( TimedCoords * tc , const vtkmdiy :: Master :: ProxyWithLink & cp)
32 {
33 *tc = ComputeLocalCoords (gid );
34 cp. enqueue (cp.link ()-> target (0) , *tc );
35 });
36 vtkm :: cont :: DIYMasterExchange ( master );
37 master . foreach (
38 [&]( TimedCoords * tc , const vtkmdiy :: Master :: ProxyWithLink & cp)
39 {
40 cp. dequeue (cp.link ()-> target (0). gid , *tc );
41 auto expectedVec = ComputeLocalCoords (gid );
42 if (* tc != expectedVec )
43 {
44 std :: cerr << " ERROR : recieved incorrect vec values ." << std :: endl;
45 }
46 });
47 }
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37.4 GPU-aware MPI

Modern HPC GPUs allow direct GPU-to-GPU communication. This provides GPUs with an efficient mechanism
to directly send data stored in their device memory to the target GPU device memory. This is a significant
departure from the traditional approach where the NIC is solely accessible from the CPU constraining us to a
costly GPU communication pattern consisting in first copying the desired data from the device memory to host
memory, transferring it over the network, and then again copying the received data from host memory to device
memory.
Both major GPUs parallel platforms ROCM and CUDA provide an API which supports direct GPU-to-GPU
communication. Nevertheless, to avoid vendor lock in VTK-m does not directly use these APIs. Instead,
VTK-m delegates on MPI which implements an unified and standardized API for GPU-to-GPU communication.
Consequently, VTK-m provides the user with the capability of using direct GPU-to-GPU communication during
MPI (distributed) executions of VTK-m applications.
VTK-m can autonomously determine if GPU-to-GPU communication is possible. Consequently, it does not
provide a specific API to control this type of communication. This decision on the type of communication is
done at each call to the free function vtkm::cont::DIYMasterExchange (demonstrated in Example 37.2, line
17), which internally decorates the method DIY::Master::exchange so that it can perform this GPU-to-GPU
communication if the situation allows it. Currently this is only possible with AMD GPUs that supports this
feature such as the AMD MI250X which is used by both OLCF Crusher and OLCF Frontier.
This GPU-aware MPI feature can be enabled with the flag VTKm ENABLE GPU MPI=ON. Lastly, enabling this
feature in target supercomputers often requires additional setup which is dependent on the particular system,
please refer to the target system documentation for further information.
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REGRESSION TESTING

VTK-m has hundreds of regression tests built-in, to test the functionality of the entire VTK-m infrastructure on
new platforms. In this chapter we will discuss how to run regression tests in VTK-m, as well as how to create
new regression tests.

VTK-m’s regression test infrastructure is enabled by default. If you don’t need regression tests and are
looking for a faster compile time, you can disable it using the CMake configuration variable described in
Section 2.2.

Did you know?

38.1 Running Regression Testing

This section details how to run VTK-m’s regression tests. First will explore how to use ctest to run these tests.
ctest is the easiest option for running regression tests, as it sets a number of required arguments to the testing
infrastructure automatically. Second, we will give an overview of how to run the regression tests without using
ctest, and list the primary command line arguments for doing so.

38.1.1 Regression Testing Using ctest

The following code examples show how to run the regression tests in VTK-m using ctest. Example 38.1 shows
how to run all of the enabled regression tests in VTK-m.

Example 38.1: Running all regression tests (Unix commands).
1 cd vtkm - build
2 ctest

You can get a list of all the available tests by giving ctest the -N option, which suppresses actually running the
tests (see Example 38.2).

Example 38.2: List all available regression tests (Unix commands).
1 cd vtkm - build
2 ctest -N

Tests can be selected by using the -R option to ctest. The -R option is followed by a string or regular expression
to match the names of tests to run (see Example 38.3).
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Example 38.3: Running a single regression test (Unix commands).
1 cd vtkm - build
2 ctest -R SystemInformation

Verbose testing output can be selected by using the -V option to ctest. The -V options causes the tests to
print the underlying run command used to launch each test, along with detailed test progression information
(see Example 38.4).

Example 38.4: Running a single regression test with verbose output (Unix commands). The verbose output will
first give the exact command used to run the regression test, along with detailed test progression information.

1 cd vtkm - build
2 ctest -R -V SystemInformation

Some of the regression tests in VTK-m use data files stored in git LFS. These files are automatically pulled
when the VTK-m repository is cloned. However, if the device you are compiling on does not have git LFS
installed, these unit tests will fail.

Common Errors

38.1.2 Regression Testing Without ctest

It is also possible to run VTK-m regression tests without using ctest. This can be accomplished by running
individual unit test wrappers that are located in the <path/to/vtk-m/build>/bin directory. These tests require
specific command line options in order for tests to run correctly.
Example 38.5 shows how to run a specific rendering test by passing in the location of the VTK-m data-dir and
the baseline-dir

Example 38.5: Running a single regression test without calling ctest (Unix commands).
1 UnitTests_vtkm_rendering_testing \
2 UnitTestMapperVolume \
3 --data -dir=path/to/vtk-m /data \
4 --baseline -dir=path/to/vtk-m / baseline

38.2 Creating Regression Tests

This section will detail the process and expectations for new regression tests in VTK-m.

38.2.1 How to Add Data to VTK-m

VTK-m uses Git LFS for all regression test data. In order to download or add test data to VTK-m you will
need to have Git LFS installed. Once installed, you will add unit test data to the data directory in the VTK-m
repository. Data in this directory is classified according to its type: structured or unstructured.

Example 38.6: Adding test data to the VTK-m repository (Unix commands).
1 cd vtkm -src -dir
2 cd data/data/<data type >
3 git add <file -name >
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CHAPTER

THIRTYNINE

TRY EXECUTE

Most operations in VTK-m do not require specifying on which device to run. For example, you may have noticed
that when using vtkm::cont::Invoker to execute a worklet, you do not need to specify a device; it chooses a
device for you. Internally, the Invoker has a mechanism to automatically select a device, try it, and fall back
to other devices if the first one fails. We saw this at work in the implementation of filters in Chapter 22.
The Invoker is internally using a function named vtkm::cont::TryExecute to choose a device. This TryExecute
function can be also be used in other instances where a specific device needs to be chosen.
TryExecute is a simple, generic mechanism to run an algorithm that requires a device adapter without directly
specifying a device adapter. vtkm::cont::TryExecute is a templated function. The first argument is a functor
object whose parenthesis operator takes a device adapter tag and returns a bool that is true if the call succeeds
on the given device. If any further arguments are given to TryExecute, they are passed on to the functor. Thus,
the parenthesis operator on the functor should take a device adapter tag as its first argument and any remaining
arguments must match those passed to TryExecute.
To demonstrate the operation of TryExecute, consider an operation to find the average value of an array. Doing
so with a given device adapter is a straightforward use of the reduction operator.

Example 39.1: A function to find the average value of an array in parallel.
1 template < typename T, typename Storage , typename Device >
2 VTKM_CONT T ArrayAverage ( const vtkm :: cont :: ArrayHandle <T, Storage >& array , Device )
3 {
4 T sum = vtkm :: cont :: Algorithm :: Reduce (array , T (0));
5 return sum / T( array . GetNumberOfValues ());
6 }

The function in Example 39.1 requires a device adapter. We want to make an alternate version of this function
that does not need a specific device adapter but rather finds one to use. To do this, we first make a functor
as described earlier. It takes a device adapter tag as an argument, calls the version of the function shown in
Example 39.1, and returns true when the operation succeeds. We then create a new version of the array average
function that does not need a specific device adapter tag and calls TryExecute with the aforementioned functor.

Example 39.2: Using TryExecute.
1 namespace detail
2 {
3
4 struct ArrayAverageFunctor
5 {
6 template < typename Device , typename T, typename Storage >
7 VTKM_CONT bool operator ()( Device ,
8 const vtkm :: cont :: ArrayHandle <T, Storage >& inArray ,
9 T& outValue ) const

10 {



11 // Call the version of ArrayAverage that takes a DeviceAdapter .
12 outValue = ArrayAverage (inArray , Device ());
13
14 return true;
15 }
16 };
17
18 } // namespace detail
19
20 template < typename T, typename Storage >
21 VTKM_CONT T ArrayAverage ( const vtkm :: cont :: ArrayHandle <T, Storage >& array )
22 {
23 T outValue ;
24
25 bool foundAverage =
26 vtkm :: cont :: TryExecute ( detail :: ArrayAverageFunctor {}, array , outValue );
27
28 if (! foundAverage )
29 {
30 throw vtkm :: cont :: ErrorExecution (" Could not compute array average .");
31 }
32
33 return outValue ;
34 }

When TryExecute calls the operation of your functor, it will catch any exceptions that the functor might
throw. TryExecute will interpret any thrown exception as a failure on that device and try another device.
If all devices fail, TryExecute will return a false value rather than throw its own exception. This means if
you want to have an exception thrown from a call to TryExecute, you will need to check the return value
and throw the exception yourself.

Common Errors
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FORTY

IMPLEMENTING DEVICE ADAPTERS

VTK-m comes with several implementations of device adapters so that it may be ported to a variety of platforms.
It is also possible to provide new device adapters to support yet more devices, compilers, and libraries. A new
device adapter provides a tag, a class to manage arrays in the execution environment, a collection of algorithms
that run in the execution environment, and (optionally) a timer.
Most device adapters are associated with some type of device or library, and all source code related directly to that
device is placed in a subdirectory of vtkm/cont. For example, files associated with CUDA are in vtkm/cont/cuda,
files associated with the Intel Threading Building Blocks (TBB) are located in vtkm/cont/tbb, and files associated
with OpenMP are in vtkm/cont/openmp. The documentation here assumes that you are adding a device adapter
to the VTK-m source code and following these file conventions.
For the purposes of discussion in this section, we will give a simple example of implementing a device adapter
using the std::thread class provided by C++11. We will call our device Cxx11Thread and place it in the
directory vtkm/cont/cxx11.
By convention the implementation of device adapters within VTK-m are divided into 6 header files with the names
DeviceAdapterTag∗.h, DeviceAdapterRuntimeDetector∗.h, DeviceAdapterMemoryManager∗.h, RuntimeDeviceConfig-
uration∗.h, and DeviceAdapterAlgorithm∗.h, which are hidden in internal directories. The DeviceAdapter∗.h that
most code includes is a trivial header that simply includes these other 7 files. For our example std::thread
device, we will create the base header at vtkm/cont/cxx11/DeviceAdapterCxx11Thread.h. The contents are the
following (with minutia like include guards removed).

Example 40.1: Contents of the base header for a device adapter.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterRuntimeDetectorCxx11Thread .h>
3 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterMemoryManagerCxx11Thread .h>
4 # include <vtkm/cont/ cxx11 / internal / RuntimeDeviceConfigurationCxx11Thread .h>
5 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterAlgorithmCxx11Thread .h>

The reason VTK-m breaks up the code for its device adapters this way is that there is an interdependence between
the implementation of each device adapter and the mechanism to pick a default device adapter. Breaking up
the device adapter code in this way maintains an acyclic dependence among header files.

40.1 Tag

The device adapter tag, as described in Section 12.1 is a simple empty type that is used as a template parameter
to identify the device adapter. Every device adapter implementation provides one. The device adapter tag is
typically defined in an internal header file with a prefix of DeviceAdapterTag.
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The device adapter tag should be created with the macro VTKM VALID DEVICE ADAPTER. This adapter takes
an abbreviated name that it will append to DeviceAdapterTag to make the tag structure. It will also create
some support classes that allow VTK-m to introspect the device adapter. The macro also expects a unique
integer identifier that is usually stored in a macro prefixed with VTKM DEVICE ADAPTER . These identifiers for
the device adapters provided by the core VTK-m are declared in vtkm/cont/internal/DeviceAdapterTag.h.
The following example gives the implementation of our custom device adapter, which by convention would be
placed in the vtkm/cont/cxx11/internal/DeviceAdapterTagCxx11Thread.h header file.

Example 40.2: Implementation of a device adapter tag.
1 # include <vtkm/cont/ DeviceAdapterTag .h>
2
3 // If this device adapter were to be contributed to VTK -m, then this macro
4 // declaration should be moved to DeviceAdapterTag .h and given a unique
5 // number . It also has te be less than VTK_MAX_DEVICE_ADAPTER_ID
6 # define VTKM_DEVICE_ADAPTER_CXX11_THREAD 6
7
8 VTKM_VALID_DEVICE_ADAPTER ( Cxx11Thread , VTKM_DEVICE_ADAPTER_CXX11_THREAD );

This new device adapter tag needs to be added to vtkm::cont::DeviceAdapterListCommon, which is defined
in vtkm/cont/DeviceAdapterList.h. Other components of VTK-m will use this list to write code for the device.
If you do not add the device tag to this list, then the device will not be tried when things are invoked in the
execution environment, and directly specifying execution on this device will likely fail.

Example 40.3: Modification of DeviceAdapterListCommon in DeviceAdapterList.h
1 using DeviceAdapterListCommon = vtkm :: List <vtkm :: cont :: DeviceAdapterTagCuda ,
2 vtkm :: cont :: DeviceAdapterTagTBB ,
3 vtkm :: cont :: DeviceAdapterTagOpenMP ,
4 vtkm :: cont :: DeviceAdapterTagCxx11Thread ,
5 vtkm :: cont :: DeviceAdapterTagSerial >;

The order of device adapter tags in vtkm::cont::DeviceAdapterListCommon matters. Devices will be
tried in the order listed in this list. Thus, the most “preferred” devices should be listed first. In Example
40.3, our new C++11 thread device will be used before the serial device but after the other parallel devices.

It is OK for vtkm::cont::DeviceAdapterListCommon to contain device adapter tags for devices that are
not being compiled for. These devices will be registered as inactive and be skipped.

Did you know?

40.2 Runtime Detector

VTK-m defines a template named vtkm::cont::DeviceAdapterRuntimeDetector that provides the ability to
detect whether a given device is available on the current system. DeviceAdapterRuntimeDetector has a single
template argument that is the device adapter tag.

Example 40.4: Prototype for DeviceAdapterRuntimeDetector.
1 namespace vtkm
2 {
3 namespace cont
4 {
5
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6 template < typename DeviceAdapterTag >
7 class DeviceAdapterRuntimeDetector ;
8 }
9 } // namespace vtkm

All device adapter implementations must create a specialization of DeviceAdapterRuntimeDetector. They
must contain a method named DeviceAdapterRuntimeDetector::Exists that returns a true or false value to
indicate whether the device is available on the current runtime system. For our simple C++ threading example,
the C++ threading is always available (even if only one such processing element exists) so our implementation
simply returns true if the device has been compiled.

Example 40.5: Implementation of DeviceAdapterRuntimeDetector specialization
1 namespace vtkm
2 {
3 namespace cont
4 {
5
6 template <>
7 class DeviceAdapterRuntimeDetector <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
8 {
9 public :

10 VTKM_CONT bool Exists () const
11 {
12 return vtkm :: cont :: DeviceAdapterTagCxx11Thread :: IsEnabled ;
13 }
14 };
15
16 } // namespace cont
17 } // namespace vtkm

40.3 Memory Manager

VTK-m defines a template named vtkm::cont::internal::DeviceAdapterMemoryManager that provides the
ability to allocate memory on the device and copy data. DeviceAdapterMemoryManager has a single template
argument that is the device adapter tag.

Example 40.6: Prototype for DeviceAdapterMemoryManager.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace internal
6 {
7
8 template < typename DeviceAdapterTag >
9 class DeviceAdapterMemoryManager ;

10
11 }
12 }
13 } // namespace vtkm :: cont :: internal

All device adapter implementations must create a specialization of DeviceAdapterMemoryManager. This special-
ization of DeviceAdapterMemoryManager must inherit from vtkm::cont::internal::DeviceAdapterMemory-
ManagerBase. The DeviceAdapterMemoryManager allocates memory and returns it wrapped in a vtkm::cont::-
internal::BufferInfo object. The superclass provides the DeviceAdapterMemoryManagerBase::ManageArray
method to take a raw pointer for the device (captured as a void ∗) along with some metadata and management
functions and returns that pointer wrapped in a BufferInfo management object.
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A specialization of DeviceAdapterMemoryManager must override the following pure virtual methods (which are
defined in the DeviceAdapterMemoryManagerBase superclass).

GetDevice Return a vtkm::cont::DeviceAdapterId for the device that this memory manager allocates and
deallocates for.

Allocate Given a buffer size in bytes, allocates the buffer on the device and returns it in a BufferInfo object.

CopyHostToDevice Copies a BufferInfo object for memory allocated on the host to the device. De-
viceAdapterMemoryManager must implement two forms of CopyHostToDevice. The first form takes just
a source BufferInfo and returns a new BufferInfo containing a copy of the data on the device. If the
device supports shared or unified memory, this can be a shallow copy. The second form takes both a source
BufferInfo and a pre-allocated destination BufferInfo.

CopyDeviceToHost Copies a BufferInfo object for memory allocated on the device to the host. De-
viceAdapterMemoryManager must implement two forms of CopyDeviceToHost. The first form takes just
a source BufferInfo and returns a new BufferInfo containing a copy of the data on the host. If the
device supports shared or unified memory, this can be a shallow copy. The second form takes both a source
BufferInfo and a pre-allocated destination BufferInfo.

CopyDeviceToDevice Copies a BufferInfo object for memory allocated on the device to another buffer on
the device. DeviceAdapterMemoryManager must implement two forms of CopyDeviceToDevice. The first
form takes just a source BufferInfo and returns a new BufferInfo containing a copy of the data on the
device. The second form takes both a source BufferInfo and a pre-allocated destination BufferInfo.

If the control and execution environments share the same memory space, the execution array manager
can, and should, share buffers among host and “device” and shallow copy data when possible. VTK-m
comes with a class called vtkm::cont::internal::DeviceAdapterMemoryManagerShared that provides the
implementation for a device memory manager that shares a memory space with the control environment.
In this case, the DeviceAdapterMemoryManager specialization need only override the GetDevice method.
(DeviceAdapterMemoryManagerShared will provide all other necessary overrides.)
Continuing our example of a device adapter based on C++11’s std::thread class, here is the im-
plementation of DeviceAdapterMemoryManager, which by convention would be placed in the vtkm/con-
t/cxx11/internal/DeviceAdapterMemoryManagerCxx11Thread.h header file.

Example 40.7: Specialization of DeviceAdapterMemoryManager.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / DeviceAdapterMemoryManager .h>
4 # include <vtkm/cont/ internal / DeviceAdapterMemoryManagerShared .h>
5
6 namespace vtkm
7 {
8 namespace cont
9 {

10 namespace internal
11 {
12
13 template <>
14 class DeviceAdapterMemoryManager <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
15 : public vtkm :: cont :: internal :: DeviceAdapterMemoryManagerShared
16 {
17 public :
18 VTKM_CONT vtkm :: cont :: DeviceAdapterId GetDevice () const override
19 {
20 return vtkm :: cont :: DeviceAdapterTagCxx11Thread {};
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21 }
22 };
23
24 }
25 }
26 } // namespace vtkm :: cont :: internal

You may notice that although vtkm::cont::internal::DeviceAdapterMemoryManager requires methods
to allocate memory, it has no methods to delete memory. This is because all memory created by a vtkm::-
cont::internal::DeviceAdapterMemoryManager is wrapped in a vtkm::cont::internal::BufferInfo
object. Responsibility for the memory management is taken over by BufferInfo and the memory will be
automatically deleted once it is no longer used.

Did you know?

40.4 Runtime Device Configuration

VTK-m defines a template named vtkm::cont::internal::RuntimeDeviceConfiguration that makes it pos-
sible to initialize various runtime configuration parameters of the underlying devices. RuntimeDeviceConfigu-
ration has a single template argument that is the device adapter tag.

Example 40.8: Prototype for RuntimeDeviceConfiguration.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace internal
6 {
7
8 template < typename DeviceAdapterTag >
9 class RuntimeDeviceConfiguration ;

10
11 }
12 }
13 } // namespace vtkm :: cont :: internal

All device adapter implementations must create a specialization of RuntimeDeviceConfiguration. This special-
ization of RuntimeDeviceConfiguration must inherit from vtkm::cont::internal::RuntimeDeviceConfig-
urationBase. The RuntimeDeviceConfiguration provides various RuntimeDeviceConfigurationBase::Set*
and RuntimeDeviceConfigurationBase::Get* methods for setting and accessing device specific runtime pa-
rameters. The superclass provides the RuntimeDeviceConfigurationBase::Initialize method that takes
in a RuntimeDeviceConfigurationOptions argument used to set various device parameters when VTK-m is
initialized.
Specializations of RuntimeDeviceConfiguration must override the GetDevice virtual method, which returns
a vtkm::cont::DeviceAdapterId for the device that this runtime device configuration is overseeing. Special-
izations of RuntimeDeviceConfiguration are not required to override the following methods defined in Run-
timeDeviceConfigurationBase. These methods should be overridden only if suitable device specific runtime
parameters can be set or queried.

SetThreads Takes the provided vtkm::Id and attempts to set the number of threads to use for this specific
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device. Return a vtkm::cont::internal::RuntimeDeviceConfigReturnCode representing the success/-
failure of the device operation.

SetNumaRegions Takes the provided vtkm::Id and attempts to set the number of numa regions to use for
this specific device Return a vtkm::cont::internal::RuntimeDeviceConfigReturnCode representing the
success/failure of the device operation.

SetDeviceInstance Takes the provided vtkm::Id and attempts to set the specific device instance to use for
this device Return a vtkm::cont::internal::RuntimeDeviceConfigReturnCode representing the suc-
cess/failure of the device operation.

GetThreads Takes the provided vtkm::Id and attempts to set it to the number of threads this device is currently
specified to use. Return a vtkm::cont::internal::RuntimeDeviceConfigReturnCode representing the
success/failure of the device operation.

GetNumaRegions Takes the provided vtkm::Id and attempts to set it to the number of numa regions this
device is currently specified to use. Return a vtkm::cont::internal::RuntimeDeviceConfigReturnCode
representing the success/failure of the device operation.

GetDeviceInstance Takes the provided vtkm::Id and attempts to set it to the specific device instance this
device is currently set to use. Return a vtkm::cont::internal::RuntimeDeviceConfigReturnCode rep-
resenting the success/failure of the device operation.

GetMaxThreads Takes the provided vtkm::Id and attempts to set it to the maximum number of threads allowed
by this device. Return a vtkm::cont::internal::RuntimeDeviceConfigReturnCode representing the
success/failure of the device operation.

GetMaxDevices Takes the provided vtkm::Id and attempts to set it to the mximum number of devices currently
allowed by this device. Return a vtkm::cont::internal::RuntimeDeviceConfigReturnCode representing
the success/failure of the device operation.

ParseExtraArguments Called before RuntimeDeviceConfigurationBase::Initialize, used to perform extra
command line argument parsing specific for a given device. Currently only overriden by the vtkm::cont::-
internal::RuntimeDeviceConfigurationKokkos device.

InitializeSubsystem Called at the very end of RuntimeDeviceConfigurationBase::Initialize, and is used
to perform additional subystem initialize for a given device. Currently over overriden by the vtkm::cont::-
internal::RuntimeDeviceConfigurationKokkos device.

Continuing our example of a device adapter based on C++11’s std::thread class, here is the im-
plementation of RuntimeDeviceConfiguration, which by convention would be placed in the vtkm/con-
t/cxx11/internal/RuntimeDeviceConfigurationCxx11Thread.h header file.

Example 40.9: Specialization of RuntimeDeviceConfiguration.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / RuntimeDeviceConfiguration .h>
4
5 # include <thread >
6
7 namespace vtkm
8 {
9 namespace cont

10 {
11 namespace internal
12 {
13
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14 template <>
15 class RuntimeDeviceConfiguration <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
16 : public vtkm :: cont :: internal :: RuntimeDeviceConfigurationBase
17 {
18 public :
19 VTKM_CONT RuntimeDeviceConfiguration <vtkm :: cont :: DeviceAdapterTagCxx11Thread >()
20 : NumThreads (std :: thread :: hardware_concurrency ())
21 {
22 }
23
24 VTKM_CONT vtkm :: cont :: DeviceAdapterId GetDevice () const override
25 {
26 return vtkm :: cont :: DeviceAdapterTagCxx11Thread {};
27 }
28
29 VTKM_CONT vtkm :: cont :: internal :: RuntimeDeviceConfigReturnCode GetThreads (
30 vtkm :: Id& value ) const override
31 {
32 value = this -> NumThreads ;
33 return vtkm :: cont :: internal :: RuntimeDeviceConfigReturnCode :: SUCCESS ;
34 }
35
36 VTKM_CONT vtkm :: cont :: internal :: RuntimeDeviceConfigReturnCode SetThreads (
37 const vtkm :: Id& value ) override
38 {
39 if (( value <= 0) ||
40 ( value > static_cast <vtkm ::Id >( std :: thread :: hardware_concurrency ())))
41 {
42 this -> NumThreads = std :: thread :: hardware_concurrency ();
43 }
44 else
45 {
46 this -> NumThreads = value ;
47 }
48 return vtkm :: cont :: internal :: RuntimeDeviceConfigReturnCode :: SUCCESS ;
49 }
50
51 VTKM_CONT vtkm :: cont :: internal :: RuntimeDeviceConfigReturnCode GetMaxThreads (
52 vtkm :: Id& value ) const override
53 {
54 value = std :: thread :: hardware_concurrency ();
55 return vtkm :: cont :: internal :: RuntimeDeviceConfigReturnCode :: SUCCESS ;
56 }
57
58 private :
59 vtkm :: Id NumThreads ;
60 };
61
62 }
63 }
64 } // namespace vtkm :: cont :: internal

vtkm::cont::Initialize automatically initializes the vtkm::cont::internal::RuntimeDeviceConfig-
uration for all available devices using parse VTK-m command line arguments. These device runtime
configurations are statically managed through the vtkm::cont::RuntimeDeviceInformation class, which
ensures that there is exactly one initialized instance of each vtkm::cont::internal::RuntimeDeviceCon-
figuration available for each device. This guarantees that vtkm::cont::internal::RuntimeDeviceCon-

Common Errors
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figuration device classes cannot be initialized more than once, but may lead to device initialization in-
consistencies when attempting to access a vtkm::cont::internal::RuntimeDeviceConfiguration before
calling vtkm::cont::Initialize. When creating a new vtkm::cont::internal::RuntimeDeviceCon-
figuration it is important to add an include for the new DeviceAdapterRuntimeDetector::header to
vtkm::cont::RuntimeDeviceInformation so that the new device is compiled correctly. Additionally, it
is important to note that accessing a vtkm::cont::internal::RuntimeDeviceConfiguration via Run-
timeDeviceInformation::GetRuntimeConfiguration inside the DeviceAdapterRuntimeDetector::Ex-
ists method will initialize the underlying device incorrectly since VTK-m performs device existence checks
while parsing command line arguments.

40.5 Algorithms

A device adapter implementation must also provide a specialization of vtkm::cont::DeviceAdapterAlgorithm,
which provides the underlying implementation of the algorithms described in Chapter 35. The implementation
for the device adapter algorithms is typically placed in a header file with a prefix of DeviceAdapterAlgorithm.
Although there are many methods in DeviceAdapterAlgorithm, it is seldom necessary to implement them all.
Instead, VTK-m comes with vtkm::cont::internal::DeviceAdapterAlgorithmGeneral that provides generic
implementation for most of the required algorithms. By deriving the specialization of DeviceAdapterAlgorithm
from DeviceAdapterAlgorithmGeneral, only the implementations for Schedule and Synchronize need to be
implemented. All other algorithms can be derived from those.
That said, not all of the algorithms implemented in DeviceAdapterAlgorithmGeneral are optimized for all
types of devices. Thus, it is worthwhile to provide algorithms optimized for the specific device when possible.
In particular, it is best to provide specializations for the sort, scan, and reduce algorithms.
It is standard practice to implement a specialization of DeviceAdapterAlgorithm by having it inherit
from vtkm::cont::internal::DeviceAdapterAlgorithmGeneral and specializing those methods that are
optimized for a particular system. DeviceAdapterAlgorithmGeneral is a templated class that takes as
its single template parameter the type of the subclass. For example, a device adapter algorithm struc-
ture named DeviceAdapterAlgorithm<DeviceAdapterTagFoo> will subclass DeviceAdapterAlgorithmGen-
eral<DeviceAdapterAlgorithm<DeviceAdapterTagFoo> >.

The convention of having a subclass be templated on the derived class’ type is known as the Curiously
Recurring Template Pattern (CRTP). In the case of DeviceAdapterAlgorithmGeneral, VTK-m uses
this CRTP behavior to allow the general implementation of these algorithms to run Schedule and other
specialized algorithms in the subclass.

Did you know?

One point to note when implementing the Schedule methods is to make sure that errors handled in the execution
environment are handled correctly. As described in Chapter 23, errors are signaled in the execution environment
by calling RaiseError on a functor or worklet object. This is handled internally by the vtkm::exec::inter-
nal::ErrorMessageBuffer class. ErrorMessageBuffer really just holds a small string buffer, which must be
provided by the device adapter’s Schedule method.
So, before Schedule executes the functor it is given, it should allocate a small string array in the execution
environment, initialize it to the empty string, encapsulate the array in an ErrorMessageBuffer object, and set
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this buffer object in the functor. When the execution completes, Schedule should check to see if an error exists
in this buffer and throw a vtkm::cont::ErrorExecution if an error has been reported.

Exceptions are generally not supposed to be thrown in the execution environment, but it could happen on
devices that support them. Nevertheless, few thread schedulers work well when an exception is thrown in
them. Thus, when implementing adapters for devices that do support exceptions, it is good practice to catch
them within the thread and report them through the ErrorMessageBuffer.

Common Errors

The following example is a minimal implementation of device adapter algorithms using C++11’s std::thread
class. Note that no attempt at providing optimizations has been attempted (and many are possible). By
convention this code would be placed in the vtkm/cont/cxx11/internal/DeviceAdapterAlgorithmCxx11Thread.h
header file.

Example 40.10: Minimal specialization of DeviceAdapterAlgorithm.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ DeviceAdapterAlgorithm .h>
4 # include <vtkm/cont/ ErrorExecution .h>
5 # include <vtkm/cont/ internal / DeviceAdapterAlgorithmGeneral .h>
6
7 # include <thread >
8
9 namespace vtkm

10 {
11 namespace cont
12 {
13
14 template <>
15 struct DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
16 : vtkm :: cont :: internal :: DeviceAdapterAlgorithmGeneral <
17 DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >,
18 vtkm :: cont :: DeviceAdapterTagCxx11Thread >
19 {
20 private :
21 template < typename FunctorType >
22 struct ScheduleKernel1D
23 {
24 VTKM_CONT
25 ScheduleKernel1D ( const FunctorType & functor )
26 : Functor ( functor )
27 {
28 }
29
30 VTKM_EXEC
31 void operator ()() const
32 {
33 try
34 {
35 for (vtkm :: Id threadId = this -> BeginId ; threadId < this -> EndId ; threadId ++)
36 {
37 this -> Functor ( threadId );
38 // If an error is raised , abort execution .
39 if (this -> ErrorMessage . IsErrorRaised ())
40 {
41 return ;
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42 }
43 }
44 }
45 catch ( const vtkm :: cont :: Error & error )
46 {
47 this -> ErrorMessage . RaiseError ( error . GetMessage (). c_str ());
48 }
49 catch ( const std :: exception & error )
50 {
51 this -> ErrorMessage . RaiseError ( error .what ());
52 }
53 catch (...)
54 {
55 this -> ErrorMessage . RaiseError (" Unknown exception raised .");
56 }
57 }
58
59 FunctorType Functor ;
60 vtkm :: exec :: internal :: ErrorMessageBuffer ErrorMessage ;
61 vtkm :: Id BeginId ;
62 vtkm :: Id EndId ;
63 };
64
65 template < typename FunctorType >
66 struct ScheduleKernel3D
67 {
68 VTKM_CONT
69 ScheduleKernel3D ( const FunctorType & functor , vtkm :: Id3 maxRange )
70 : Functor ( functor )
71 , MaxRange ( maxRange )
72 {
73 }
74
75 VTKM_EXEC
76 void operator ()() const
77 {
78 vtkm :: Id3 threadId3D (this -> BeginId % this -> MaxRange [0] ,
79 (this -> BeginId / this -> MaxRange [0]) % this -> MaxRange [1] ,
80 this -> BeginId / (this -> MaxRange [0] * this -> MaxRange [1]));
81
82 try
83 {
84 for (vtkm :: Id threadId = this -> BeginId ; threadId < this -> EndId ; threadId ++)
85 {
86 this -> Functor ( threadId3D );
87 // If an error is raised , abort execution .
88 if (this -> ErrorMessage . IsErrorRaised ())
89 {
90 return ;
91 }
92
93 threadId3D [0]++;
94 if ( threadId3D [0] >= MaxRange [0])
95 {
96 threadId3D [0] = 0;
97 threadId3D [1]++;
98 if ( threadId3D [1] >= MaxRange [1])
99 {

100 threadId3D [1] = 0;
101 threadId3D [2]++;
102 }
103 }
104 }
105 }
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106 catch ( const vtkm :: cont :: Error & error )
107 {
108 this -> ErrorMessage . RaiseError ( error . GetMessage (). c_str ());
109 }
110 catch ( const std :: exception & error )
111 {
112 this -> ErrorMessage . RaiseError ( error .what ());
113 }
114 catch (...)
115 {
116 this -> ErrorMessage . RaiseError (" Unknown exception raised .");
117 }
118 }
119
120 FunctorType Functor ;
121 vtkm :: exec :: internal :: ErrorMessageBuffer ErrorMessage ;
122 vtkm :: Id BeginId ;
123 vtkm :: Id EndId ;
124 vtkm :: Id3 MaxRange ;
125 };
126
127 template < typename KernelType >
128 VTKM_CONT static void DoSchedule ( KernelType kernel , vtkm :: Id numInstances )
129 {
130 if ( numInstances < 1)
131 {
132 return ;
133 }
134
135 const vtkm :: Id MESSAGE_SIZE = 1024;
136 char errorString [ MESSAGE_SIZE ];
137 errorString [0] = ’\0’;
138 vtkm :: exec :: internal :: ErrorMessageBuffer errorMessage ( errorString , MESSAGE_SIZE );
139 kernel . Functor . SetErrorMessageBuffer ( errorMessage );
140 kernel . ErrorMessage = errorMessage ;
141
142 vtkm :: Id numThreads ;
143
144 auto config = internal :: RuntimeDeviceConfiguration <
145 vtkm :: cont :: DeviceAdapterTagCxx11Thread >();
146 config . SetThreads ( numInstances );
147 config . GetThreads ( numThreads );
148 vtkm :: Id numInstancesPerThread = ( numInstances + numThreads - 1) / numThreads ;
149
150 std :: thread * threadPool = new std :: thread [ numThreads ];
151 vtkm :: Id beginId = 0;
152 for (vtkm :: Id threadIndex = 0; threadIndex < numThreads ; threadIndex ++)
153 {
154 vtkm :: Id endId = std :: min( beginId + numInstancesPerThread , numInstances );
155 KernelType threadKernel = kernel ;
156 threadKernel . BeginId = beginId ;
157 threadKernel . EndId = endId ;
158 std :: thread newThread ( threadKernel );
159 threadPool [ threadIndex ]. swap( newThread );
160 beginId = endId ;
161 }
162
163 for (vtkm :: Id threadIndex = 0; threadIndex < numThreads ; threadIndex ++)
164 {
165 threadPool [ threadIndex ]. join ();
166 }
167
168 delete [] threadPool ;
169
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170 if ( errorMessage . IsErrorRaised ())
171 {
172 throw vtkm :: cont :: ErrorExecution ( errorString );
173 }
174 }
175
176 public :
177 template < typename FunctorType >
178 VTKM_CONT static void Schedule ( FunctorType functor , vtkm :: Id numInstances )
179 {
180 DoSchedule ( ScheduleKernel1D < FunctorType >( functor ), numInstances );
181 }
182
183 template < typename FunctorType >
184 VTKM_CONT static void Schedule ( FunctorType functor , vtkm :: Id3 maxRange )
185 {
186 vtkm :: Id numInstances = maxRange [0] * maxRange [1] * maxRange [2];
187 DoSchedule ( ScheduleKernel3D < FunctorType >( functor , maxRange ), numInstances );
188 }
189
190 VTKM_CONT
191 static void Synchronize ()
192 {
193 // Nothing to do. This device schedules all of its operations using a
194 // split /join paradigm . This means that the if the control threaad is
195 // calling this method , then nothing should be running in the execution
196 // environment .
197 }
198 };
199
200 } // namespace cont
201 } // namespace vtkm

40.6 Timer Implementation

The VTK-m timer, described in Chapter 13, delegates to an internal class named vtkm::cont::DeviceAdapter-
TimerImplementation. The interface for this class is the same as that for vtkm::cont::Timer. A default im-
plementation of this templated class uses the system timer and the Synchronize method in the device adapter
algorithms.
However, some devices might provide alternate or better methods for implementing timers. For example, the TBB
and CUDA libraries come with high resolution timers that have better accuracy than the standard system timers.
Thus, the device adapter can optionally provide a specialization of DeviceAdapterTimerImplementation, which
is typically placed in the same header file as the device adapter algorithms.
Continuing our example of a custom device adapter using C++11’s std::thread class, we could use the de-
fault timer and it would work fine. But C++11 also comes with a std::chrono package that contains some
portable time functions. The following code demonstrates creating a custom timer for our device adapter us-
ing this package. By convention, DeviceAdapterTimerImplementation is placed in the same header file as
DeviceAdapterAlgorithm.

Example 40.11: Specialization of DeviceAdapterTimerImplementation.
1 # include <chrono >
2
3 namespace vtkm
4 {
5 namespace cont
6 {
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7
8 template <>
9 class DeviceAdapterTimerImplementation <vtkm :: cont :: DeviceAdapterTagCxx11Thread >

10 {
11 public :
12 VTKM_CONT
13 DeviceAdapterTimerImplementation () { this -> Reset (); }
14
15 VTKM_CONT
16 void Reset ()
17 {
18 vtkm :: cont :: DeviceAdapterAlgorithm <
19 vtkm :: cont :: DeviceAdapterTagCxx11Thread >:: Synchronize ();
20 this -> StartTime = std :: chrono :: high_resolution_clock :: now ();
21 }
22
23 VTKM_CONT
24 vtkm :: Float64 GetElapsedTime ()
25 {
26 vtkm :: cont :: DeviceAdapterAlgorithm <
27 vtkm :: cont :: DeviceAdapterTagCxx11Thread >:: Synchronize ();
28 std :: chrono :: high_resolution_clock :: time_point endTime =
29 std :: chrono :: high_resolution_clock :: now ();
30
31 std :: chrono :: high_resolution_clock :: duration elapsedTicks =
32 endTime - this -> StartTime ;
33
34 std :: chrono :: duration <vtkm :: Float64 > elapsedSeconds ( elapsedTicks );
35
36 return elapsedSeconds . count ();
37 }
38
39 private :
40 std :: chrono :: high_resolution_clock :: time_point StartTime ;
41 };
42
43 } // namespace cont
44 } // namespace vtkm
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CHAPTER

FORTYONE

FUNCTION INTERFACE OBJECTS

For flexibility’s sake a worklet is free to declare a ControlSignature with whatever number of arguments are
sensible for its operation. The Invoker is expected to support arguments that match these arguments, and part
of the invocation operation may require these arguments to be augmented before the worklet is scheduled. This
leaves the invoker with the tricky task of managing some collection of arguments of unknown size and unknown
types.
To simplify this management, VTK-m has the vtkm::internal::FunctionInterface class. FunctionInter-
face is a templated class that manages a generic set of arguments and return value from a function. An instance
of FunctionInterface holds an instance of each argument. You can apply the arguments in a FunctionInter-
face object to a functor of a compatible prototype, and the resulting value of the function call is saved in the
FunctionInterface.

41.1 Declaring and Creating

vtkm::internal::FunctionInterface is a templated class with a single parameter. The parameter is the
signature of the function. A signature is a function type. The syntax in C++ is the return type followed by the
argument types encased in parentheses.

Example 41.1: Declaring vtkm::internal::FunctionInterface.
1 // FunctionInterfaces matching some common POSIX functions .
2 vtkm :: internal :: FunctionInterface < size_t ( const char *)> strlenInterface ;
3
4 vtkm :: internal :: FunctionInterface <char *( char*, const char* s2 , size_t )>
5 strncpyInterface ;

The vtkm::internal::make FunctionInterface function provides an easy way to create a FunctionInterface
and initialize the state of all the parameters. make FunctionInterface takes a variable number of arguments,
one for each parameter. Since the return type is not specified as an argument, you must always specify it as a
template parameter.

Example 41.2: Using vtkm::internal::make FunctionInterface.
1 const char* s = " Hello World ";
2 static const size_t BUFFER_SIZE = 100;
3 char* buffer = (char *) malloc ( BUFFER_SIZE );
4
5 strlenInterface = vtkm :: internal :: make_FunctionInterface <size_t >(s);
6
7 strncpyInterface =
8 vtkm :: internal :: make_FunctionInterface <char *>( buffer , s, BUFFER_SIZE );
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41.2 Parameters

Once created, FunctionInterface contains methods to query and manage the parameters and objects associated
with them. The number of parameters can be retrieved either with the constant field ARITY or with the GetArity
method.

Example 41.3: Getting the arity of a FunctionInterface.
1 VTKM_STATIC_ASSERT (vtkm :: internal :: FunctionInterface < size_t ( const char *) >:: ARITY ==
2 1);
3
4 vtkm :: IdComponent arity = strncpyInterface . GetArity (); // arity = 3

You can use the vtkm::internal::ParameterGet function to retrieve a parameter from a FunctionInterface.
When using ParameterGet, you have to specify the index of the parameter using a template argument. Note that
the parameters in FunctionInterface start at index 1. Although this is uncommon in C++, it is customary to
number function arguments starting at 1.

Example 41.4: Using ParameterGet.
1 template < typename FunctionSignature >
2 void GetFirstParameter (
3 const vtkm :: internal :: FunctionInterface < FunctionSignature >& interface )
4 {
5 // The following two uses of GetParameter are equivalent
6 std :: cout << vtkm :: internal :: ParameterGet <1 >( interface ) << std :: endl;
7 }

41.3 Transformations

Rather than replace a single item in a FunctionInterface, it is desirable to change them all in a similar way.
FunctionInterface supports a “static transform” that will replace all of the arguments with new types defined
at compile time.
The static transform method (named StaticTransformCont) operates by accepting a functor that defines a
function with two arguments. The first argument is the FunctionInterface parameter to transform. The
second argument is an instance of the vtkm::internal::IndexTag templated class that statically identifies the
parameter index being transformed. An IndexTag object has no state, but the class contains a static integer
named INDEX. The function returns the transformed argument.
The functor must also contain a templated class named ReturnType with an internal type named type that
defines the return type of the transform for a given parameter type. ReturnType must have two template
parameters. The first template parameter is the type of the FunctionInterface parameter to transform. It is
the same type as passed to the operator. The second template parameter is a vtkm::IdComponent specifying
the index.
The transformation is only applied to the parameters of the function. The return argument is unaffected.
The return type can be determined with the StaticTransformType template in the FunctionInterface class.
StaticTransformType has a single parameter that is the transform functor and contains a type named type
that is the transformed FunctionInterface.
In the following example, a static transform is used to convert a FunctionInterface to a new object that has
the pointers to the parameters rather than the values themselves. The parameter index is always ignored as all
parameters are uniformly transformed.
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Example 41.5: Using a static transform of function interface class.
1 struct ParametersToPointersFunctor
2 {
3 template < typename T, vtkm :: IdComponent Index >
4 struct ReturnType
5 {
6 using type = const T*;
7 };
8
9 template < typename T, vtkm :: IdComponent Index >

10 VTKM_CONT const T* operator ()( const T& x, vtkm :: internal :: IndexTag <Index >) const
11 {
12 return &x;
13 }
14 };
15
16 template < typename FunctionInterfaceType >
17 VTKM_CONT typename FunctionInterfaceType :: template StaticTransformType <
18 ParametersToPointersFunctor >:: type
19 ParametersToPointers ( FunctionInterfaceType & functionInterface )
20 {
21 return functionInterface . StaticTransformCont ( ParametersToPointersFunctor ());
22 }
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CHAPTER

FORTYTWO

WORKLET ARGUMENTS

From the ControlSignature and ExecutionSignature defined in worklets, VTK-m uses template meta-
programming to build the code required to manage data from the control to the execution environment. These
signatures contain tags that define the meaning of each argument and control how the argument data are trans-
ferred from the control to execution environments and broken up for each worklet instance.
Chapter 21 documents the many ControlSignature and ExecutionSignature tags that come with the worklet
types. This chapter discusses the internals of these tags and how they control data management. Defining new
worklet argument types can allow you to define new data structures in VTK-m. New worklet arguments are also
usually a critical components for making new worklet types, as described in Chapter 43.
The management of data in worklet arguments is handled by three classes that provide type checking, trans-
portation, and fetching, respectively. This chapter will first describe these type checking, transportation, and
fetching classes and then describe how ControlSignature and ExecutionSignature tags specify these classes.
Throughout this chapter we demonstrate the definition of worklet arguments using an example of a worklet
argument that represents line segments in 2D. The input for such an argument expects an ArrayHandle containing
floating point vtkm::Vec s of size 2 to represent coordinates in the plane. The values in the array are paired up to
define the two endpoints of each segment, and the worklet instance will receive a Vec-2 of Vec-2’s representing the
two endpoints. In practice, it is generally easier to use a vtkm::cont::ArrayHandleGroupVec (see Section 26.13),
but this is a simple example for demonstration purposes. Plus, we will use this special worklet argument for our
example of a custom worklet type in Chapter 43.

42.1 Type Checks

Before attempting to move data from the control to the execution environment, the VTK-m invokers check the
input types to ensure that they are compatible with the associated ControlSignature concept. This is done
with the vtkm::cont::arg::TypeCheck struct.
The TypeCheck struct is templated with two parameters. The first parameter is a tag that identifies which
check to perform. The second parameter is the type of the control argument (after any dynamic casts). The
TypeCheck class contains a static constant Boolean named value that is true if the type in the second parameter
is compatible with the tag in the first or false otherwise.
Type checks are implemented with a defined type check tag (which, by convention, is defined in the vtkm::-
cont::arg namespace and starts with TypeCheckTag) and a partial specialization of the vtkm::cont::arg::-
TypeCheck structure. The following type checks (identified by their tags) are provided in VTK-m.

vtkm::cont::arg::TypeCheckTagExecObject True if the type is an execution object. All execution objects
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must derive from vtkm::cont::ExecutionObjectBase and follow the conventions of that class.

vtkm::cont::arg::TypeCheckTagArrayIn True if the type is a vtkm::cont::ArrayHandle that is capable of
reading.

vtkm::cont::arg::TypeCheckTagArrayOut True if the type is a vtkm::cont::ArrayHandle that is capable
of writing.

vtkm::cont::arg::TypeCheckTagArrayInOut True if the type is a vtkm::cont::ArrayHandle that is capable
of reading and writing.

vtkm::cont::arg::TypeCheckTagAtomicArray Similar to TypeCheckTagArrayInOut except it only returns
true for array types with values that are supported for atomic arrays.

vtkm::cont::arg::TypeCheckTagBitField True if the type is a vtkm::cont::BitField.

vtkm::cont::arg::TypeCheckTagCellSet True if and only if the object is a vtkm::cont::CellSet or one of
its subclasses.

vtkm::cont::arg::TypeCheckTagCellSetStructured True if the object is a vtkm::cont::CellSetStruc-
tured.

vtkm::cont::arg::TypeCheckTagExecObject True if the type is a subclass of vtkm::cont::ExecutionOb-
jectBase. See Chapter 29 for more information on execution objects for worklets.

vtkm::cont::arg::TypeCheckTagKeys True if and only if the object is a vtkm::worklet::Keys class.

Here are some trivial examples of using TypeCheck. Typically these checks are done internally in the base
VTK-m invoker code, so these examples are for demonstration only.

Example 42.1: Behavior of vtkm::cont::arg::TypeCheck.
1 struct MyExecObject : vtkm :: cont :: ExecutionObjectBase
2 {
3 vtkm :: Id Value ;
4 };
5
6 void DoTypeChecks ()
7 {
8 using vtkm :: cont :: arg :: TypeCheck ;
9 using vtkm :: cont :: arg :: TypeCheckTagArrayIn ;

10 using vtkm :: cont :: arg :: TypeCheckTagExecObject ;
11
12 bool check1 = TypeCheck < TypeCheckTagExecObject , MyExecObject >:: value ; // true
13 bool check2 = TypeCheck < TypeCheckTagExecObject , vtkm ::Id >:: value ; // false
14
15 using ArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >;
16
17 bool check3 = TypeCheck < TypeCheckTagArrayIn , ArrayType >:: value ; // true
18 bool check4 = TypeCheck < TypeCheckTagExecObject , ArrayType >:: value ; // false
19 }

A type check is created by first defining a type check tag object, which by convention is placed in the vtkm::-
cont::arg namespace and whose name starts with TypeCheckTag. Then, create a specialization of the vtkm::-
cont::arg::TypeCheck template class with the first template argument matching the aforementioned tag. As
stated previously, the TypeCheck class must contain a value static constant Boolean representing whether the
type is acceptable for the corresponding Invoker argument.
This example of a TypeCheck returns true for control objects that are ArrayHandles with a value type that is a
floating point vtkm::Vec of size 2.
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Example 42.2: Defining a custom TypeCheck.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace arg
6 {
7
8 struct TypeCheckTag2DCoordinates
9 {

10 };
11
12 template < typename ArrayType >
13 struct TypeCheck < TypeCheckTag2DCoordinates , ArrayType >
14 {
15 static constexpr bool value = false ;
16 };
17
18 template < typename T, typename Storage >
19 struct TypeCheck < TypeCheckTag2DCoordinates , vtkm :: cont :: ArrayHandle <T, Storage >>
20 {
21 static constexpr bool value = vtkm :: ListHas <vtkm :: TypeListFieldVec2 , T >:: value ;
22 };
23
24 } // namespace arg
25 } // namespace cont
26 } // namespace vtkm

42.2 Transport

After all the argument types are checked, the VTK-m dispatch mechanism must load the data into the execution
environment before scheduling a job to run there. This is done with the vtkm::cont::arg::Transport struct.
The Transport struct is templated with three parameters. The first parameter is a tag that identifies which
transport to perform. The second parameter is the type of the control parameter (after any dynamic casts). The
third parameter is a device adapter tag for the device on which the data will be loaded.
A Transport contains a type named ExecObjectType that is the type used after data is moved to the execution
environment. A Transport also has a const parenthesis operator that takes 5 arguments: the control-side object
that is to be transported to the execution environment, the control-side object that represents the input domain,
the size of the input domain, the size of the output domain, and a reference to a vtkm::cont::Token object that
is used to define the scope of any generated execution environment objects. The parenthesis operator returns
an execution-side object. This operator is called in the control environment, and the operator returns an object
that is ready to be used in the execution environment.
Transports are implemented with a defined transport tag (which, by convention, is defined in the vtkm::cont::-
arg namespace and starts with TransportTag) and a partial specialization of the vtkm::cont::arg::Transport
structure. The following transports (identified by their tags) are provided in VTK-m.

vtkm::cont::arg::TransportTagExecObject Calls PrepareForInput on the provided object. The returned
execution object is what is provided by PrepareForInput. See Chapter 29 for more information on exe-
cution objects for worklets.

vtkm::cont::arg::TransportTagArrayIn Loads data from a vtkm::cont::ArrayHandle onto the specified
device using the array handle’s PrepareForInput method. The size of the array must be the same as the
input domain. The returned execution object is an array portal.
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vtkm::cont::arg::TransportTagArrayOut Allocates data onto the specified device for a vtkm::cont::Ar-
rayHandle using the array handle’s PrepareForOutput method. The array is allocated to the size of the
output domain. The returned execution object is an array portal.

vtkm::cont::arg::TransportTagArrayInOut Loads data from a vtkm::cont::ArrayHandle onto the speci-
fied device using the array handle’s PrepareForInPlace method. The size of the array must be the same
size as the output domain (which is not necessarily the same size as the input domain). The returned
execution object is an array portal.

vtkm::cont::arg::TransportTagWholeArrayIn Loads data from a vtkm::cont::ArrayHandle onto the spec-
ified device using the array handle’s PrepareForInput method. This transport is designed to be used with
random access whole arrays, so unlike TransportTagArrayIn the array size can be unassociated with the
input domain. The returned execution object is an array portal.

vtkm::cont::arg::TransportTagWholeArrayOut Readies data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForOutput method. This transport is designed to be used
with random access whole arrays, so unlike TransportTagArrayOut the array size can be unassociated
with the input domain. Thus, the array must be pre-allocated and its size is not changed. The returned
execution object is an array portal.

vtkm::cont::arg::TransportTagWholeArrayInOut Loads data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForInPlace method. This transport is designed to be used
with random access whole arrays, so unlike TransportTagArrayInOut the array size can be unassociated
with the input domain. The returned execution object is an array portal.

vtkm::cont::arg::TransportTagAtomicArray Loads data from a vtkm::cont::ArrayHandle and creates a
vtkm::exec::AtomicArray.

vtkm::cont::arg::TransportTagBitFieldIn Loads data from a vtkm::cont::BitField onto the specified
device using the PrepareForInput method.

vtkm::cont::arg::TransportTagBitFieldInOut Loads data from a vtkm::cont::BitField onto the speci-
fied device using the PrepareForInPlace method.

vtkm::cont::arg::TransportTagBitFieldInOut This is essentially the same as TransportTagBitField-
InOut. Because a bit field does not follow the size of the domain, the array must be sized before passed to
an invoke.

vtkm::cont::arg::TransportTagCellSetIn Loads data from a vtkm::cont::CellSet object. The Trans-
portTagCellSetIn it a templated class with two parameters: the “from” topology and the “to” topology.
(See Section 21.2.3 for a description of “from” and “to” topologies.) The returned execution object is a
connectivity object (as described in Section 28.3).

vtkm::cont::arg::TransportTagTopologyFieldIn Similar to TransportTagArrayIn except that the size is
checked against the “from” topology of a cell set for the input domain. The input domain object is assumed
to be a vtkm::cont::CellSet.

vtkm::cont::arg::TransportTagKeysIn Loads data from a vtkm::worklet::Keys object. This transport
is intended to be used for the input domain of a vtkm::worklet::WorkletReduceByKey. The returned
execution object is of type vtkm::exec::internal::ReduceByKeyLookup.

vtkm::cont::arg::TransportTagKeyedValuesIn Loads data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForInput method. This transport uses the input do-
main object, which is expected to be a vtkm::worklet::Keys object, and groups the entries in the array
by unique keys. The returned execution object is an array portal of grouped values.
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vtkm::cont::arg::TransportTagKeyedValuesOut Loads data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForOutput method. This transport uses the input domain
object, which is expected to be a vtkm::worklet::Keys object, and groups the entries in the array by
unique keys. The returned execution object is an array portal of grouped values.

vtkm::cont::arg::TransportTagKeyedValuesInOut Loads data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForInPlace method. This transport uses the input
domain object, which is expected to be a vtkm::worklet::Keys object, and groups the entries in the
array by unique keys. The returned execution object is an array portal of grouped values.

Here are some trivial examples of using Transport. Typically this movement is done internally in the VTK-m
dispatching code, so these examples are for demonstration only.

Example 42.3: Behavior of vtkm::cont::arg::Transport.
1 template < typename ArrayType , typename Device >
2 void DoTransport ( ArrayType inArray , ArrayType outArray , Device )
3 {
4 VTKM_IS_ARRAY_HANDLE ( ArrayType );
5 VTKM_IS_DEVICE_ADAPTER_TAG ( Device );
6
7 using vtkm :: cont :: arg :: Transport ;
8 using vtkm :: cont :: arg :: TransportTagArrayIn ;
9 using vtkm :: cont :: arg :: TransportTagArrayOut ;

10 using vtkm :: cont :: arg :: TransportTagWholeArrayInOut ;
11
12 vtkm :: cont :: Token token ;
13
14 // The array in transport returns a read -only array portal .
15 using ArrayInTransport = Transport < TransportTagArrayIn , ArrayType , Device >;
16 typename ArrayInTransport :: ExecObjectType inPortal =
17 ArrayInTransport ()( inArray , inArray , 10, 10, token );
18
19 // The array out transport returns an allocated array portal .
20 using ArrayOutTransport = Transport < TransportTagArrayOut , ArrayType , Device >;
21 typename ArrayOutTransport :: ExecObjectType outPortal =
22 ArrayOutTransport ()( outArray , inArray , 10, 10, token );
23
24 // The whole array in transport returns a read -only array portal wrapped in
25 // a vtkm :: exec :: ExecutionWholeArrayConst .
26 using WholeArrayTransport =
27 Transport < TransportTagWholeArrayInOut , ArrayType , Device >;
28 typename WholeArrayTransport :: ExecObjectType wholeArray =
29 WholeArrayTransport ()( inArray , inArray , 10, 10, token );
30 }

A transport is created by first defining a transport tag object, which by convention is placed in the vtkm::-
cont::arg namespace and whose name starts with TransportTag. Then, create a specialization of the vtkm::-
cont::arg::Transport template class with the first template argument matching the aforementioned tag. As
stated previously, the Transport class must contain an ExecObjectType type and a parenthesis operator turning
the associated control argument into an execution environment object.
This example internally uses a vtkm::cont::ArrayHandleGroupVec to take values from an input ArrayHandle
and pair them up to represent line segments. The resulting execution object is an array portal containing Vec-2
values of Vec-2’s.

Example 42.4: Defining a custom Transport.
1 namespace vtkm
2 {
3 namespace cont

Chapter 42. Worklet Arguments 373



42.3. Fetch

4 {
5 namespace arg
6 {
7
8 struct TransportTag2DLineSegmentsIn
9 {

10 };
11
12 template < typename ContObjectType , typename Device >
13 struct Transport <vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn ,
14 ContObjectType ,
15 Device >
16 {
17 VTKM_IS_ARRAY_HANDLE ( ContObjectType );
18
19 using GroupedArrayType = vtkm :: cont :: ArrayHandleGroupVec < ContObjectType , 2>;
20
21 using ExecObjectType = typename GroupedArrayType :: ReadPortalType ;
22
23 template < typename InputDomainType >
24 VTKM_CONT ExecObjectType operator ()( const ContObjectType & object ,
25 const InputDomainType &,
26 vtkm :: Id inputRange ,
27 vtkm ::Id ,
28 vtkm :: cont :: Token & token ) const
29 {
30 if ( object . GetNumberOfValues () != inputRange * 2)
31 {
32 throw vtkm :: cont :: ErrorBadValue (
33 "2D line segment array size does not agree with input size .");
34 }
35
36 GroupedArrayType groupedArray ( object );
37 return groupedArray . PrepareForInput ( Device {}, token );
38 }
39 };
40
41 } // namespace arg
42 } // namespace cont
43 } // namespace vtkm

It is fair to assume that the Transport’s control object type matches whatever the associated TypeCheck
allows. However, it is good practice to provide a secondary compile-time check in the Transport class, like
the one on line 17 in Example 42.4, for debugging purposes in case there is a problem with the TypeCheck
or this Transport is used with an unexpected TypeCheck.

Common Errors

42.3 Fetch

Before the function of a worklet is invoked, the VTK-m internals pull the appropriate data out of the execution
object and pass it to the worklet function. A class named vtkm::exec::arg::Fetch is responsible for pulling
this data out and putting computed data in to the execution objects.
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The Fetch struct is templated with three parameters. The first parameter is a tag that identifies which type
of fetch to perform. The second parameter is a different tag that identifies the aspect of the data to fetch.
The third template parameter to a Fetch struct is the type of the execution object that is created by the
Transport (as described in Section 42.2). This is generally where the data are fetched from.
A Fetch also has a pair of methods named Load and Store that get data from and add data to the execution
object at a given domain or thread index.
In both Load and Store methods, its first parameter is a thread indices object which manages the multiple
indices that are relevant to the worklet invocation including the input index, output index, and visit index, all
of which can be different.
The specific type of the thread indices object depends on the type of worklet begin invoked, but all thread
indices classes implement methods named GetInputIndex, GetOutputIndex, and GetVisitIndex to get those
respective indices. The thread indices object may also contain other methods to get information pertinent to
the associated worklet’s execution. For example a thread indices object associated with a topology map has
methods to get the shape identifier and incident from indices of the current input object. Thread indices objects
are discussed in more detail in Section 43.2.
Fetches are specified with a pair of fetch and aspect tags. Fetch tags are by convention defined in the vtkm::-
exec::arg namespace and start with FetchTag. Likewise, aspect tags are also defined in the vtkm::exec::arg
namespace and start with AspectTag. The Fetch class is partially specialized on these two tags.
The most common aspect tag is vtkm::exec::arg::AspectTagDefault, and all fetch tags should have a spe-
cialization of vtkm::exec::arg::Fetch with this tag. The following list of fetch tags describes the execution
objects they work with and the data they pull for each aspect tag they support.

vtkm::exec::arg::FetchTagExecObject Simply returns an execution object. This fetch only supports the
AspectTagDefault aspect. The Load returns the executive object in the associated parameter. The Store
does nothing.

vtkm::exec::arg::FetchTagWholeCellSetIn Loads data from a cell set. The Load simply returns the execu-
tion object created with a TransportTagCellSetIn and the Store does nothing.

vtkm::exec::arg::FetchTagArrayDirectIn Loads data from an array portal. This fetch only supports the
AspectTagDefault aspect. The Load gets data directly from the domain (thread) index. The Store does
nothing.

vtkm::exec::arg::FetchTagArrayDirectOut Stores data to an array portal. This fetch only supports the
AspectTagDefault aspect. The Store sets data directly to the domain (thread) index. The Load does
nothing.

vtkm::exec::arg::FetchTagCellSetIn Load data from a cell set. This fetch is used with the worklet topol-
ogy maps to pull topology information from a cell set. The Load simply returns the cell shape of the given
input cells and the Store method does nothing. This tag is typically used with the input domain object,
and aspects like vtkm::exec::arg::AspectTagIncidentElementCount and vtkm::exec::arg::Aspect-
TagIncidentElementIndices are used to get more detailed information.

vtkm::exec::arg::FetchTagArrayTopologyMapIn Loads data from the “from” topology in a topology map.
For example, in a point to cell topology map, this fetch will get the field values for all points attached to
the cell being visited. The Load returns a Vec-like object containing all the incident field values whereas
the Store method does nothing. This fetch is designed for use in topology maps and expects the input
domain to be a cell set.
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A fetch is created by first defining a fetch tag object, which by convention is placed in the vtkm::exec::arg
namespace and whose name starts with FetchTag. Then, create a specialization of the vtkm::exec::arg::-
Fetch template class with the first template argument matching the aforementioned tag. As stated previously,
the Fetch class must contain a pair of Load and Store methods that get a value out of the data and store a
value in the data, respectively.

Example 42.5: Defining a custom Fetch.
1 namespace vtkm
2 {
3 namespace exec
4 {
5 namespace arg
6 {
7
8 struct FetchTag2DLineSegmentsIn
9 {

10 };
11
12 template < typename ExecObjectType >
13 struct Fetch <vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ,
14 vtkm :: exec :: arg :: AspectTagDefault ,
15 ExecObjectType >
16 {
17 using ValueType = typename ExecObjectType :: ValueType ;
18
19 VTKM_SUPPRESS_EXEC_WARNINGS
20 template < typename ThreadIndicesType >
21 VTKM_EXEC ValueType Load( const ThreadIndicesType & indices ,
22 const ExecObjectType & arrayPortal ) const
23 {
24 return arrayPortal .Get( indices . GetInputIndex ());
25 }
26
27 template < typename ThreadIndicesType >
28 VTKM_EXEC void Store ( const ThreadIndicesType &,
29 const ExecObjectType &,
30 const ValueType &) const
31 {
32 // Store is a no -op for this fetch .
33 }
34 };
35
36 } // namespace arg
37 } // namespace exec
38 } // namespace vtkm

The fetch defined in Example 42.5 could actually be replaced by the more general FetchTagArrayDirectIn
that already comes with VTK-m. This example is mostly provided for demonstrative purposes.

Did you know?

In addition to the aforementioned aspect tags that are explicitly paired with fetch tags, VTK-m also provides
some aspect tags that either modify the behavior of a general fetch or simply ignore the type of fetch.

vtkm::exec::arg::AspectTagDefault Performs the “default” fetch. Every fetch tag should have an imple-
mentation of vtkm::exec::arg::Fetch with that tag and AspectTagDefault.

376 Chapter 42. Worklet Arguments



42.3. Fetch

vtkm::exec::arg::AspectTagWorkIndex Simply returns the domain (or thread) index ignoring any associated
data. This aspect is used to implement the WorkIndex execution signature tag.

vtkm::exec::arg::AspectTagInputIndex Returns the index of the element being used from the input domain.
This is often the same as the work index but can be different if a scatter is being used. (See Section 31.1
for information on scatters in worklets.)

vtkm::exec::arg::AspectTagOutputIndex Returns the index of the element being written to the output.
This is generally the same as the work index.

vtkm::exec::arg::AspectTagVisitIndex Returns the visit index corresponding to the current input. To-
gether the pair of input index and visit index are unique.

vtkm::exec::arg::AspectTagCellShape Returns the cell shape from the input domain. This aspect is de-
signed to be used with topology maps.

vtkm::exec::arg::AspectTagIncidentElementCount Returns the number of elements associated with the
“from” topology that are incident to the input element of the “to” topology. This aspect is designed to be
used with topology maps.

vtkm::exec::arg::AspectTagIncidentElementIndices Returns a Vec-like object containing the indices to
the elements associated with the “from” topology that are incident to the input element of the “to” topology.
This aspect is designed to be used with topology maps.

vtkm::exec::arg::AspectTagValueCount Returns the number of times the key associated with the current
input. This aspect is designed to be used with reduce by key maps.

An aspect is created by first defining an aspect tag object, which by convention is placed in the vtkm::exec::arg
namespace and whose name starts with AspectTag. Then, create specializations of the vtkm::exec::arg::-
Fetch template class where appropriate with the second template argument matching the aforementioned tag.
This example creates a specialization of a Fetch to retrieve the first point of a line segment.

Example 42.6: Defining a custom Aspect.
1 namespace vtkm
2 {
3 namespace exec
4 {
5 namespace arg
6 {
7
8 struct AspectTagFirstPoint
9 {

10 };
11
12 template < typename ExecObjectType >
13 struct Fetch <vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ,
14 vtkm :: exec :: arg :: AspectTagFirstPoint ,
15 ExecObjectType >
16 {
17 using ValueType = typename ExecObjectType :: ValueType :: ComponentType ;
18
19 VTKM_SUPPRESS_EXEC_WARNINGS
20 template < typename ThreadIndicesType >
21 VTKM_EXEC ValueType Load( const ThreadIndicesType & indices ,
22 const ExecObjectType & arrayPortal ) const
23 {
24 return arrayPortal .Get( indices . GetInputIndex ())[0];
25 }
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26
27 template < typename ThreadIndicesType >
28 VTKM_EXEC void Store ( const ThreadIndicesType &,
29 const ExecObjectType &,
30 const ValueType &) const
31 {
32 // Store is a no -op for this fetch .
33 }
34 };
35
36 } // namespace arg
37 } // namespace exec
38 } // namespace vtkm

42.4 Creating New ControlSignature Tags

The type checks, transports, and fetches defined in the previous sections of this chapter conspire to interpret the
arguments given to a Invoker and provide data to an instance of a worklet. What remains to be defined are the
tags used in the ControlSignature and ExecutionSignature that bring these three items together. These two
types of tags are defined differently. In this section we discuss the ControlSignature tags.
A ControlSignature tag is defined by a struct (or equivocally a class). This struct is typically defined inside
a worklet (or, more typically, a worklet superclass) so that it can be used without qualifying its namespace.
VTK-m has requirements for every defined ControlSignature tag.
The first requirement of a ControlSignature tag is that it must inherit from vtkm::cont::arg::ControlSig-
natureTagBase. You will get a compile error if you attempt to use a type that is not a subclass of ControlSig-
natureTagBase in a ControlSignature.
The second requirement of a ControlSignature tag is that it must contain the following three types: TypeCheck-
Tag, TransportTag, and FetchTag. As the names would imply, these specify tags for TypeCheck, Transport,
and Fetch classes, respectively, which were discussed earlier in this chapter.
The following example defines a ControlSignature tag for an array that represents 2D line segments using the
classes defined in previous examples.

Example 42.7: Defining a new ControlSignature tag.
1 struct LineSegment2DCoordinatesIn : vtkm :: cont :: arg :: ControlSignatureTagBase
2 {
3 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
4 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn ;
5 using FetchTag = vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ;
6 };

Once defined, this tag can be used like any other ControlSignature tag.

Example 42.8: Using a custom ControlSignature tag.
1 using ControlSignature = void ( LineSegment2DCoordinatesIn coordsIn ,
2 FieldOut vecOut ,
3 FieldIn index );

42.5 Creating New ExecutionSignature Tags

An ExecutionSignature tag is defined by a struct (or equivocally a class). This struct is typically defined
inside a worklet (or, more typically, a worklet superclass) so that it can be used without qualifying its namespace.
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VTK-m has requirements for every defined ExecutionSignature tag.
The first requirement of an ExecutionSignature tag is that it must inherit from vtkm::exec::arg::Execu-
tionSignatureTagBase. You will get a compile error if you attempt to use a type that is not a subclass of
ExecutionSignatureTagBase in an ExecutionSignature.
The second requirement of an ExecutionSignature tag is that it must contain a type named AspectTag, which
is set to an aspect tag. As discussed in Section 42.3, the aspect tag is passed as a template argument to the
vtkm::exec::arg::Fetch class to modify the data it loads and stores. The numerical ExecutionSignature
tags (i.e. 1, 2, etc.) operate by setting the AspectTag to vtkm::exec::arg::AspectTagDefault, effectively
engaging the default fetch.
The third requirement of an ExecutionSignature tag is that it contains an INDEX member that is a static
const vtkm::IdComponent. The number that INDEX is set to refers to the ControlSignature argument from
which that data come from (indexed starting at 1). The numerical ExecutionSignature tags (i.e. 1, 2, etc.)
operate by setting their INDEX values to the corresponding number (i.e. 1, 2, etc.). An ExecutionSignature tag
might take another tag as a template argument and copy the INDEX from one to another. This allows you to use
a tag to modify the aspect of another tag. Most often this is used to apply a particular aspect to a numerical
ExecutionSignature tag (i.e. 1, 2, etc.). Still other ExecutionSignature tags might not need direct access
to any ControlSignature arguments (such as those that pull information from thread indices). If the INDEX
does not matter (because the execution object parameter to the Fetch Load and Store is ignored). In this case,
the ExecutionSignature tag can set the INDEX to 1, because there is guaranteed to be at least one control
argument.
The following example defines an ExecutionSignature tag to get the coordinates for only the first point in a
2D line segment. The defined tag takes as an argument another tag (generally one of the numeric tags), which
is expected to point to a ControlSignature argument with a LineSegment2DCoordinatesIn (as defined in
Example 42.7).

Example 42.9: Defining a new ExecutionSignature tag.
1 template < typename ArgTag >
2 struct FirstPoint : vtkm :: exec :: arg :: ExecutionSignatureTagBase
3 {
4 static const vtkm :: IdComponent INDEX = ArgTag :: INDEX ;
5 using AspectTag = vtkm :: exec :: arg :: AspectTagFirstPoint ;
6 };

Once defined, this tag can be used like any other ExecutionSignature tag.

Example 42.10: Using a custom ExecutionSignature tag.
1 using ControlSignature = void ( LineSegment2DCoordinatesIn coordsIn ,
2 FieldOut vecOut ,
3 FieldIn index );
4 using ExecutionSignature = void ( FirstPoint <_1 >, SecondPoint <_1 >, _2 );
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CHAPTER

FORTYTHREE

NEW WORKLET TYPES

The basic building block for an algorithm in VTK-m is the worklet. Chapter 21 describes the different types of
worklet types provided by VTK-m and how to use them to create algorithms. However, it is entirely possible that
this set of worklet types does not directly cover what is needed to implement a particular algorithm. One way
around this problem is to use some of the numerous back doors provided by VTK-m to provide less restricted
access in the execution environment such as using whole arrays for random access.
However, it make come to pass that you encounter a particular pattern of execution that you find useful for
implementing several algorithms. If such is the case, it can be worthwhile to create a new worklet type that
directly supports such a pattern. Creating a new worklet type can provide two key advantages. First, it
makes implementing algorithms of this nature easier, which saves developer time. Second, it can make the
implementation of such algorithms safer. By encapsulating the management of structures and regulating the
data access, users of the worklet type can be more assured of correct behavior.
This chapter documents the process for creating new worklet types. The operation of a worklet requires the
coordination of several different object types such as dispatchers, argument handlers, and thread indices. This
chapter will provide examples of all these required components. To tie all these features together, we start this
chapter with a motivating example for an implementation of a custom worklet type. The chapter then discusses
the individual components of the worklet, which in the end come together for the worklet type that is then
demonstrated.

43.1 Motivating Example

For our motivation to create a new worklet type, let us consider the use case of building fractals. Fractals are
generally not a primary concern of visualization libraries like VTK-m, but building a fractal (or approximations
of fractals) has similarities the the computational geometry problems in scientific visualization. In particular,
we consider the class of fractals that is generated by replacing each line in a shape with some collection of lines.
These types of fractals are interesting because, in addition to other reasons, the right parameters result in a
shape that has infinite length confined to a finite area.
A simple but well known example of a line fractal is the Koch Snowflake. The Koch Snowflake starts as a line
or triangle that gets replaced with the curve shown in Figure 43.1.
The fractal is formed by iteratively replacing the curve’s lines with this basic shape. Figure 43.2 shows the
second iteration and then several subsequent iterations that create a “fuzzy” curve. The curve is confined to a
limited area regardless of how many iterations are performed, but the length of the curve approaches infinity as
the number of iterations approaches infinity.
In our finite world we want to estimate the curve of the Koch Snowflake by performing a finite amount of
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Figure 43.1: Basic shape for the Koch Snowflake.

Figure 43.2: The Koch Snowflake after the second iteration (left image) and after several more iterations (right
image).

iterations. This is similar to a Lindenmayer system but with less formality. The size of the curve grows quickly
and in practice it takes few iterations to make close approximations.

The Koch Snowflake is just one example of many line fractals we can make with this recursive line sub-
stitution, which is why it is fruitful to create a worklet type to implement such fractals. We use the Koch
Snowflake to set up the example here. Section 43.6 provides several more examples.

Did you know?

To implement line fractals of this nature, we want to be able to define the lines of the base shape in terms of
parametric coordinates and then transform the coordinates to align with a line segment. For example, the Koch
Snowflake base shape could be defined with parametric coordinates shown in Figure 43.3.

(0,0) (0.33,0)

(0.5,0.29)

(0.67,0) (1,0)

Figure 43.3: Parametric coordinates for the Koch Snowflake shape.

Given these parametric coordinates, for each line we define an axis with the main axis along the line segment
and the secondary axis perpendicular to that. Given this definition, we can perform each fractal iteration by
applying this transform for each line segment as shown in Figure 43.4.
To implement the application of the line fractal demonstrated in Figure 43.4, let us define a class named Line-
FractalTransform that takes as its constructor the coordinates of two ends of the original line. As its operator,
LineFractalTransform takes a point in parametric space and returns the coordinates in world space in respect
to the original line segment. We define this class in the vtkm::exec namespace because the intended use case
is by worklets of the type we are making. A definition of LineFractalTransform is given in Example 43.1

Example 43.1: A support class for a line fractal worklet.
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Figure 43.4: Applying the line fractal transform for the Koch Snowflake.

1 namespace vtkm
2 {
3 namespace exec
4 {
5
6 class LineFractalTransform
7 {
8 public :
9 template < typename T>

10 VTKM_EXEC LineFractalTransform ( const vtkm ::Vec <T, 2>& point0 ,
11 const vtkm ::Vec <T, 2>& point1 )
12 {
13 this -> Offset = point0 ;
14 this -> UAxis = point1 - point0 ;
15 this -> VAxis = vtkm :: make_Vec (-this -> UAxis [1] , this -> UAxis [0]);
16 }
17
18 template < typename T>
19 VTKM_EXEC vtkm ::Vec <T, 2> operator ()( const vtkm ::Vec <T, 2>& ppoint ) const
20 {
21 vtkm :: Vec2f ppointCast ( ppoint );
22 vtkm :: Vec2f transform =
23 ppointCast [0] * this -> UAxis + ppointCast [1] * this -> VAxis + this -> Offset ;
24 return vtkm ::Vec <T, 2>( transform );
25 }
26
27 template < typename T>
28 VTKM_EXEC vtkm ::Vec <T, 2> operator ()(T x, T y) const
29 {
30 return (* this )( vtkm ::Vec <T, 2>(x, y));
31 }
32
33 private :
34 vtkm :: Vec2f Offset ;
35 vtkm :: Vec2f UAxis ;
36 vtkm :: Vec2f VAxis ;
37 };
38
39 } // namespace exec
40 } // namespace vtkm

The definition of LineFractalTransform (or something like it) is not strictly necessary for implementing
a worklet type. However, it is common to implement such supporting classes that operate in the execution
environment in support of the operations typically applied by the worklet type.

Did you know?

The remainder of this chapter is dedicated to defining a WorkletLineFractal class and supporting objects that
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allow you to easily make line fractals. Example 43.2 demonstrates how we intend to use this worklet type.

Example 43.2: Demonstration of how we want to use the line fractal worklet.
1 struct KochSnowflake
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 using ControlSignature = void ( SegmentsIn , SegmentsOut <4 >);
6 using ExecutionSignature = void (Transform , _2 );
7 using InputDomain = _1;
8
9 template < typename SegmentsOutVecType >

10 void operator ()( const vtkm :: exec :: LineFractalTransform & transform ,
11 SegmentsOutVecType & segmentsOutVec ) const
12 {
13 segmentsOutVec [0][0] = transform (0.00f, 0.00f);
14 segmentsOutVec [0][1] = transform (0.33f, 0.00f);
15
16 segmentsOutVec [1][0] = transform (0.33f, 0.00f);
17 segmentsOutVec [1][1] = transform (0.50f, 0.29f);
18
19 segmentsOutVec [2][0] = transform (0.50f, 0.29f);
20 segmentsOutVec [2][1] = transform (0.67f, 0.00f);
21
22 segmentsOutVec [3][0] = transform (0.67f, 0.00f);
23 segmentsOutVec [3][1] = transform (1.00f, 0.00f);
24 }
25 };
26
27 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > Run(
28 vtkm :: IdComponent numIterations )
29 {
30 vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > points ;
31
32 // Initialize points array with a single line
33 points . Allocate (2);
34 points . WritePortal (). Set (0, vtkm :: Vec2f (0.0f, 0.0f));
35 points . WritePortal (). Set (1, vtkm :: Vec2f (1.0f, 0.0f));
36
37 vtkm :: cont :: Invoker invoke ;
38 KochSnowflake :: FractalWorklet worklet ;
39
40 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
41 {
42 vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > outPoints ;
43 invoke (worklet , points , outPoints );
44 points = outPoints ;
45 }
46
47 return points ;
48 }
49 };

43.2 Thread Indices

The first internal support class for implementing a worklet type is a class that manages indices for a thread.
As the name would imply, the thread indices class holds a reference to an index identifying work to be done
by the current thread. This includes indices to the current input element and the current output element.
The thread indices object can also hold other information (that may not strictly be index data) about the

384 Chapter 43. New Worklet Types



43.2. Thread Indices

input and output data. For example, the thread indices object for topology maps (named vtkm::exec::arg::-
ThreadIndicesTopologyMap) maintains cell shape and connection indices for the current input object.
As is discussed briefly in Section 42.3, a thread indices object is passed to the methods of the class vtkm::-
exec::arg::Fetch to retrieve data from the execution object. The thread indices object serves two important
functions for the Fetch. The first function is to cache information about the current thread that is likely to be
used by multiple objects retrieving information. For example, in a point to cell topology map data from point
fields must be retrieved by looking up indices in the topology connections. It is more efficient to retrieve the
topology connections once and store them in the thread indices than it is to look them up independently for
each field.
The second function of thread indices is to make it easier to find information about the input domain when
fetching data. Once again, getting point data in a point to cell topology map requires looking up connectivity
information in the input domain. However, the Fetch object for the point field does not have direct access to
the data for the input domain. Instead, it gets this information from the thread indices.
All worklet classes have a method named GetThreadIndices that constructs a thread indices object for a given
thread. GetThreadIndices is called with 5 parameters: a unique index for the thread (i.e. worklet instance),
an array portal that maps output indices to input indices (which might not be one-to-one if a scatter is being
used), an array portal that gives the visit index for each output index, an array portal that maps each unique
thread index to the output index for that thread, and the execution object for the input domain.
The base worklet implementation provides an implementation of GetThreadIndices that creates a vtkm::-
exec::arg::ThreadIndicesBasic object. This provides the minimum information required in a thread indices
object, but non-trivial worklet types are likely to need to provide their own thread indices type. This following
example shows the implementation of GetThreadIndices we will use in our worklet type superclass (discussed
in more detail in Section 43.4).

Example 43.3: Implementation of GetThreadIndices in a worklet superclass.
1 VTKM_SUPPRESS_EXEC_WARNINGS
2 template < typename OutToInPortalType ,
3 typename VisitPortalType ,
4 typename ThreadToOutType ,
5 typename InputDomainType >
6 VTKM_EXEC vtkm :: exec :: arg :: ThreadIndicesLineFractal GetThreadIndices (
7 vtkm :: Id threadIndex ,
8 const OutToInPortalType & outToIn ,
9 const VisitPortalType & visit ,

10 const ThreadToOutType & threadToOut ,
11 const InputDomainType & inputPoints ) const
12 {
13 vtkm :: Id outputIndex = threadToOut .Get( threadIndex );
14 vtkm :: Id inputIndex = outToIn .Get( outputIndex );
15 vtkm :: IdComponent visitIndex = visit .Get( outputIndex );
16 return vtkm :: exec :: arg :: ThreadIndicesLineFractal (
17 threadIndex , inputIndex , visitIndex , outputIndex , inputPoints );
18 }

As we can see in Example 43.3, our new worklet type needs a custom thread indices class. Specifically, we want
the thread indices class to manage the coordinate information of the input line segment.

The implementation of a thread indices object we demonstrate here stores point coordinate information in
addition to actual indices. It is acceptable for a thread indices object to store data that are not strictly
indices. That said, the thread indices object should only load data (index or not) that is almost certain to

Did you know?
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be used by any worklet implementation. The thread indices object is created before any time that the worklet
operator is called. If the thread indices object loads data that is never used by a worklet, that is a waste.

An implementation of a thread indices object usually derives from vtkm::exec::arg::ThreadIndicesBasic (or
some other existing thread indices class) and adds to it information specific to a particular worklet type.

Example 43.4: Implementation of a thread indices class.
1 namespace vtkm
2 {
3 namespace exec
4 {
5 namespace arg
6 {
7
8 class ThreadIndicesLineFractal : public vtkm :: exec :: arg :: ThreadIndicesBasic
9 {

10 using Superclass = vtkm :: exec :: arg :: ThreadIndicesBasic ;
11
12 public :
13 using CoordinateType = vtkm :: Vec2f ;
14
15 VTKM_SUPPRESS_EXEC_WARNINGS
16 template < typename InputPointPortal >
17 VTKM_EXEC ThreadIndicesLineFractal (vtkm :: Id threadIndex ,
18 vtkm :: Id inputIndex ,
19 vtkm :: IdComponent visitIndex ,
20 vtkm :: Id outputIndex ,
21 const InputPointPortal & inputPoints )
22 : Superclass ( threadIndex , inputIndex , visitIndex , outputIndex )
23 {
24 this -> Point0 = inputPoints .Get(this -> GetInputIndex ())[0];
25 this -> Point1 = inputPoints .Get(this -> GetInputIndex ())[1];
26 }
27
28 VTKM_EXEC
29 const CoordinateType & GetPoint0 () const { return this -> Point0 ; }
30
31 VTKM_EXEC
32 const CoordinateType & GetPoint1 () const { return this -> Point1 ; }
33
34 private :
35 CoordinateType Point0 ;
36 CoordinateType Point1 ;
37 };
38
39 } // namespace arg
40 } // namespace exec
41 } // namespace vtkm

43.3 Signature Tags

It is common that when defining a new worklet type, the new worklet type is associated with new types of data.
Thus, it is common that implementing new worklet types involves defining custom tags for ControlSignatures
and ExecutionSignatures. This in turn typically requires creating custom TypeCheck, Transport, and Fetch
classes.
Chapter 42 describes in detail the process of defining new worklet types and the associated code to manage data
from a vtkm::cont::Invoker argument to the data that are passed to the worklet operator. Rather than repeat
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the discussion, readers should review Chapter 42 for details on how custom arguments are defined for a new
worklet type. In particular, we use the code from Examples 42.2 (page 371), 42.4 (page 373), and 42.5 (page
376) to implement an argument representing 2D line segments (which is our input domain). All these examples
culminate in the definition of a ControlSignature tag in our worklet superclass.

Example 43.5: Custom ControlSignature tag for the input domain of our example worklet type.
1 struct SegmentsIn : vtkm :: cont :: arg :: ControlSignatureTagBase
2 {
3 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
4 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn ;
5 using FetchTag = vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ;
6 };

As you have worked with different existing worklet types, you have likely noticed that different worklet types
have special ExecutionSignature tags to point to information in the input domain. For example, a point to cell
topology map has special ExecutionSignature tags for getting the input cell shape and the indices to all points
incident on the current input cell. We described in the beginning of the chapter that we wanted our worklet
type to provide worklet implementations an object named LineFractalTransform (Example 43.1), so it makes
sense to define our own custom ExecutionSignature tag to provide this object.
Chapter 42 gives an example of a custom ExecutionSignature tag that modifies what information is fetched
from an argument (Examples 42.6 and 42.9). However, ExecutionSignature tags that only pull data from input
domain behave a little differently because they only get information from the thread indices object and ignore
the associated data object. This is done by providing a partial specialization of vtkm::exec::arg::Fetch that
specializes on the aspect tag but not on the fetch tag.

Example 43.6: A Fetch for an aspect that does not depend on any control argument.
1 namespace vtkm
2 {
3 namespace exec
4 {
5 namespace arg
6 {
7
8 struct AspectTagLineFractalTransform
9 {

10 };
11
12 template < typename FetchTag , typename ExecObjectType >
13 struct Fetch <FetchTag ,
14 vtkm :: exec :: arg :: AspectTagLineFractalTransform ,
15 ExecObjectType >
16 {
17 using ValueType = LineFractalTransform ;
18
19 VTKM_SUPPRESS_EXEC_WARNINGS
20 VTKM_EXEC
21 ValueType Load( const vtkm :: exec :: arg :: ThreadIndicesLineFractal & indices ,
22 const ExecObjectType &) const
23 {
24 return ValueType ( indices . GetPoint0 (), indices . GetPoint1 ());
25 }
26
27 VTKM_EXEC
28 void Store ( const vtkm :: exec :: arg :: ThreadIndicesLineFractal &,
29 const ExecObjectType &,
30 const ValueType &) const
31 {
32 // Store is a no -op for this fetch .
33 }
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34 };
35
36 } // namespace arg
37 } // namespace exec
38 } // namespace vtkm

The definition of an associated ExecutionSignature tag simply has to use the define aspect as its AspectTag.
The tag also has to define a INDEX member (which is required of all ExecutionSignature tags). This is problem-
atic as this execution argument does not depend on any particular control argument. Thus, it is customary to
simply set the INDEX to 1. There is guaranteed to be at least one ControlSignature argument for any worklet
implementation. Thus, the first argument is sure to exist and can then be ignored.

Example 43.7: Custom ExecutionSignature tag that only relies on input domain information in the thread
indices.

1 struct Transform : vtkm :: exec :: arg :: ExecutionSignatureTagBase
2 {
3 static const vtkm :: IdComponent INDEX = 1;
4 using AspectTag = vtkm :: exec :: arg :: AspectTagLineFractalTransform ;
5 };

So far we have discussed how to get input line segments into our worklet. We also need a ControlSignature
tag to represent the output line segments created by instances of our worklet. The motivating example has each
worklet outputting a fixed number (greater than 1) of line segments for each input line segment. To manage
this, we will define another ControlSignature tag that outputs these line segments (as two Vec-2 coordinates).
This is defined as a Vec of Vec-2’s. The tag takes the number of line segments as a template argument.

Example 43.8: Output ControlSignature tag for our motivating example.
1 template <vtkm :: IdComponent NumSegments >
2 struct SegmentsOut : vtkm :: cont :: arg :: ControlSignatureTagBase
3 {
4 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
5 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsOut < NumSegments >;
6 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectOut ;
7 };

You can see that the tag in Example 43.8 relies on a custom transport named TransportTag2DLineSegmentsOut.
There is nothing particularly special about this transport, but we provide the implementation here for complete-
ness.

Example 43.9: Implementation of Transport for the output in our motivating example.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace arg
6 {
7
8 template <vtkm :: IdComponent NumOutputPerInput >
9 struct TransportTag2DLineSegmentsOut

10 {
11 };
12
13 template <vtkm :: IdComponent NumOutputPerInput ,
14 typename ContObjectType ,
15 typename Device >
16 struct Transport <vtkm :: cont :: arg :: TransportTag2DLineSegmentsOut < NumOutputPerInput >,
17 ContObjectType ,
18 Device >
19 {
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20 VTKM_IS_ARRAY_HANDLE ( ContObjectType );
21
22 using GroupedArrayType = vtkm :: cont :: ArrayHandleGroupVec <
23 vtkm :: cont :: ArrayHandleGroupVec < ContObjectType , 2>,
24 NumOutputPerInput >;
25
26 using ExecObjectType = typename GroupedArrayType :: WritePortalType ;
27
28 template < typename InputDomainType >
29 VTKM_CONT ExecObjectType operator ()( const ContObjectType & object ,
30 const InputDomainType &,
31 vtkm ::Id ,
32 vtkm :: Id outputRange ,
33 vtkm :: cont :: Token & token ) const
34 {
35 GroupedArrayType groupedArray (vtkm :: cont :: make_ArrayHandleGroupVec <2 >( object ));
36 return groupedArray . PrepareForOutput ( outputRange , Device {}, token );
37 }
38 };
39
40 } // namespace arg
41 } // namespace cont
42 } // namespace vtkm

In addition to these special ControlSignature tags that are specific to the nature of our worklet type, it is
common to need to replicate some more common or general ControlSignature tags. One such tag, which is
appropriate for our worklet type, is a “field” type that takes an array with exactly one value associated with
each input or output element. We can build these field tags using existing type checks, transports, and fetches.
The following example defines a FieldIn tag for our fractal worklet type. A FieldOut tag can be made in a
similar manner.

Example 43.10: Implementing a FieldIn tag.
1 struct FieldIn : vtkm :: cont :: arg :: ControlSignatureTagBase
2 {
3 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTagArrayIn ;
4 using TransportTag = vtkm :: cont :: arg :: TransportTagArrayIn ;
5 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectIn ;
6 };

43.4 Worklet Superclass

The penultimate step in defining a new worklet type is to define a class that will serve as the superclass of
all implementations of worklets of this type. This class itself must inherit from vtkm::worklet::internal::-
WorkletBase. By convention the worklet superclass is placed in the vtkm::worklet namespace and its name
starts with Worklet.
Within the worklet superclass we define the signature tags (as discussed in Section 43.3) and the Get-
ThreadIndices method (as discussed in Section 43.2. The worklet superclass can also override other default
behavior of the WorkletBase (such as special scatter). And the worklet superclass can provide other items that
might be particularly useful to its subclasses (such as commonly used tags). Also, the worklet superclass must
declare a Dispatcher template that points to a dispatcher object used to invoke the worklet. The dispatcher is
created in Section 43.5.

Example 43.11: Superclass for a new type of worklet.
1 namespace vtkm
2 {
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3 namespace worklet
4 {
5
6 template < typename WorkletType >
7 class DispatcherLineFractal ;
8
9 class WorkletLineFractal : public vtkm :: worklet :: internal :: WorkletBase

10 {
11 public :
12 /// The dispatcher used to invoke worklets of this type.
13 ///
14 template < typename Worklet >
15 using Dispatcher = vtkm :: worklet :: DispatcherLineFractal <Worklet >;
16
17 /// Control signature tag for line segments in the plane . Used as the input
18 /// domain .
19 ///
20 struct SegmentsIn : vtkm :: cont :: arg :: ControlSignatureTagBase
21 {
22 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
23 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn ;
24 using FetchTag = vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ;
25 };
26
27 /// Control signature tag for a group of output line segments . The template
28 /// argument specifies how many line segments are outputted for each input .
29 /// The type is a Vec -like (of size NumSegments ) of Vec -2’s.
30 ///
31 template <vtkm :: IdComponent NumSegments >
32 struct SegmentsOut : vtkm :: cont :: arg :: ControlSignatureTagBase
33 {
34 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
35 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsOut < NumSegments >;
36 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectOut ;
37 };
38
39 /// Control signature tag for input fields . There is one entry per input line
40 /// segment . This tag takes a template argument that is a type list tag that
41 /// limits the possible value types in the array .
42 ///
43 struct FieldIn : vtkm :: cont :: arg :: ControlSignatureTagBase
44 {
45 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTagArrayIn ;
46 using TransportTag = vtkm :: cont :: arg :: TransportTagArrayIn ;
47 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectIn ;
48 };
49
50 /// Control signature tag for input fields . There is one entry per input line
51 /// segment . This tag takes a template argument that is a type list tag that
52 /// limits the possible value types in the array .
53 ///
54 struct FieldOut : vtkm :: cont :: arg :: ControlSignatureTagBase
55 {
56 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTagArrayOut ;
57 using TransportTag = vtkm :: cont :: arg :: TransportTagArrayOut ;
58 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectOut ;
59 };
60
61 /// Execution signature tag for a LineFractalTransform from the input .
62 ///
63 struct Transform : vtkm :: exec :: arg :: ExecutionSignatureTagBase
64 {
65 static const vtkm :: IdComponent INDEX = 1;
66 using AspectTag = vtkm :: exec :: arg :: AspectTagLineFractalTransform ;
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67 };
68
69 VTKM_SUPPRESS_EXEC_WARNINGS
70 template < typename OutToInPortalType ,
71 typename VisitPortalType ,
72 typename ThreadToOutType ,
73 typename InputDomainType >
74 VTKM_EXEC vtkm :: exec :: arg :: ThreadIndicesLineFractal GetThreadIndices (
75 vtkm :: Id threadIndex ,
76 const OutToInPortalType & outToIn ,
77 const VisitPortalType & visit ,
78 const ThreadToOutType & threadToOut ,
79 const InputDomainType & inputPoints ) const
80 {
81 vtkm :: Id outputIndex = threadToOut .Get( threadIndex );
82 vtkm :: Id inputIndex = outToIn .Get( outputIndex );
83 vtkm :: IdComponent visitIndex = visit .Get( outputIndex );
84 return vtkm :: exec :: arg :: ThreadIndicesLineFractal (
85 threadIndex , inputIndex , visitIndex , outputIndex , inputPoints );
86 }
87 };
88
89 } // namespace worklet
90 } // namespace vtkm

Be wary of creating worklet superclasses that are templated. The C++ compiler rules for superclass tem-
plates that are only partially specialized are non-intuitive. If a subclass does not fully resolve the template,
features of the superclass such as signature tags will have to be qualified with typename keywords, which
reduces the usability of the class.

Common Errors

43.5 Dispatcher

Worklets are instantiated in the control environment and run in the execution environment. This means that
the control environment must have a means to invoke worklets that start running in the execution environment.
This is ostensibly done by the vtkm::cont::Invoker object, but the Invoker does this through a dispatcher
object.
A dispatcher object is an object in the control environment that has an instance of a worklet and can invoke that
worklet with a set of arguments. There are multiple types of dispatcher objects, each corresponding to a type
of worklet object. All dispatcher objects have at least one template parameter: the worklet class being invoked,
which is always the first argument. All dispatcher objects must be constructed with an instance of the worklet
they are to invoke.
All dispatcher classes have a method named Invoke that launches the worklet in the execution environment.
The arguments to Invoke must match those expected by the worklet, which is specified by something called a
control signature.
The following is a list of the dispatchers defined in VTK-m. The dispatcher classes correspond to the list of
worklet types specified in Chapter 21.
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vtkm::worklet::DispatcherMapField The dispatcher used in conjunction with a worklet that subclasses
vtkm::worklet::WorkletMapField. The dispatcher class has one template argument: the worklet type.

vtkm::worklet::DispatcherMapTopology The dispatcher used in conjunction with a worklet that subclasses
vtkm::worklet::WorkletMapTopology or one of its sibling classes (such as vtkm::worklet::WorkletVis-
itCellsWithPoints). The dispatcher class has one template argument: the worklet type.

vtkm::worklet::DispatcherPointNeighborhood The dispatcher used in conjunction with a worklet that sub-
classes vtkm::worklet::WorkletPointNeighborhood. The dispatcher class has one template argument:
the worklet type.

vtkm::worklet::DispatcherReduceByKey The dispatcher used in conjunction with a worklet that subclasses
vtkm::worklet::WorkletReduceByKey. The dispatcher class has one template argument: the worklet
type.

The final element required for a new worklet type is an associated dispatcher class for invoking the worklet.

Example 43.12: Standard template arguments for a dispatcher class.
1 template < typename WorkletType >
2 class DispatcherLineFractal

A dispatcher implementation inherits from vtkm::worklet::internal::DispatcherBase. DispatcherBase is
itself a templated class with the following three templated arguments.

1. The dispatcher class that is subclassing DispatcherBase. All template arguments must be given.

2. The type of the worklet being dispatched (which by convention is the first argument of the dispatcher’s
template).

3. The expected superclass of the worklet, which is associated with the dispatcher implementation. Dis-
patcherBase will check that the worklet has the appropriate superclass and provide a compile error if
there is a mismatch.

The convention of having a subclass be templated on the derived class’ type is known as the Curiously
Recurring Template Pattern (CRTP). In the case of DispatcherBase, VTK-m uses this CRTP behavior
to allow the general implementation of Invoke to run DoInvoke in the subclass, which as we see in a
moment is itself templated.

Did you know?

Example 43.13: Subclassing DispatcherBase.
1 template < typename WorkletType >
2 class DispatcherLineFractal
3 : public vtkm :: worklet :: internal :: DispatcherBase <
4 DispatcherLineFractal < WorkletType >,
5 WorkletType ,
6 vtkm :: worklet :: WorkletLineFractal >

The dispatcher should have two constructors. The first constructor takes a worklet and a dispatcher. Both
arguments should have a default value that is a new object created with its default constructor. It is good
practice to put a warning on this constructor letting users know if they get a compile error there it is probably
because the worklet or dispatcher does not have a default constructor and they need to provide one. The second
constructor just takes a dispatcher.
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Example 43.14: Typical constructor for a dispatcher.
1 // If you get a compile error here about there being no appropriate constructor
2 // for ScatterType , then that probably means that the worklet you are trying to
3 // execute has defined a custom ScatterType and that you need to create one
4 // ( because there is no default way to construct the scatter ). By convention ,
5 // worklets that define a custom scatter type usually provide a static method
6 // named MakeScatter that constructs a scatter object .
7 VTKM_CONT
8 DispatcherLineFractal ( const WorkletType & worklet = WorkletType (),
9 const ScatterType & scatter = ScatterType ())

10 : Superclass (worklet , scatter )
11 {
12 }
13
14 VTKM_CONT
15 DispatcherLineFractal ( const ScatterType & scatter )
16 : Superclass ( WorkletType (), scatter )
17 {
18 }

Finally, the dispatcher must implement a const method named DoInvoke. The DoInvoke method should take a
single argument. The argument will be an object of type vtkm::internal::Invocation although it is usually
more convenient to just express the argument type as a single template parameter. The Invocation could
contain several data items, so it is best to pass this argument as a constant reference.

Example 43.15: Declaration of DoInvoke of a dispatcher.
1 template < typename Invocation >
2 VTKM_CONT void DoInvoke ( Invocation & invocation ) const

Invocation is an object that encapsulates the state and data relevant to the invoke. Invocation contains
multiple types and data items. For brevity only the ones most likely to be used in a DoInvoke method are
documented here. We discuss these briefly before getting back to the implementation of DoInvoke.
vtkm::internal::Invocation contains a data member named Parameters that contains the data passed to
the Invoke method of the dispatcher (with some possible transformations applied). Parameters is stored in a
vtkm::internal::FunctionInterface template object. (FunctionInterface is described in Chapter 41.) The
specific type of Parameters is defined as type ParameterInterface in the Invoke object.
The Invoke object also contains the types ControlInterface and ExecutionInterface that are FunctionIn-
terface classes built from the ControlSignature and ExecutionSignature of the worklet. These Function-
Interface classes provide a simple mechanism for introspecting the arguments of the worklet’s signatures.
All worklets must also define an input domain index, which points to one of the ControlSignature/Invoke
arguments. This number is also captured in the vtkm::internal::Invocation object in a field named In-
putDomainIndex. For convenience, Invocation also has the type InputDomainTag set to be the same as the
ControlSignature argument corresponding to the input domain. Likewise, Invocation has the type InputDo-
mainType set to be the same type as the (transformed) input domain argument to Invoke. Invocation also has
a method name GetInputDomain that returns the invocation object passed to Invoke.
Getting back to the implementation of a dispatcher, the DoInvoke should first verify that the ControlSignature
argument associated with the input domain is of the expected type. This can be done by comparing the
Invocation::InputDomainTag with the expected signature tag using a tool like std::is same. This step
is not strictly necessary, but is invaluable to users diagnosing issues with using the dispatcher. It does not
hurt to also check that the Invoke argument for the input domain is also the same as expected (by checking
Invocation::InputDomainType). It is additionally helpful to have a descriptive comment near these checks.

Example 43.16: Checking the input domain tag and type.
1 // Get the control signature tag for the input domain .
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2 using InputDomainTag = typename Invocation :: InputDomainTag ;
3
4 // If you get a compile error on this line , then you have set the input
5 // domain to something that is not a SegmentsIn parameter , which is not
6 // valid .
7 VTKM_STATIC_ASSERT (
8 (std :: is_same < InputDomainTag ,
9 vtkm :: worklet :: WorkletLineFractal :: SegmentsIn >:: value ));

10
11 // This is the type for the input domain
12 using InputDomainType = typename Invocation :: InputDomainType ;
13
14 // If you get a compile error on this line , then you have tried to use
15 // something that is not a vtkm :: cont :: ArrayHandle as the input domain to a
16 // topology operation (that operates on a cell set connection domain ).
17 VTKM_IS_ARRAY_HANDLE ( InputDomainType );

Next, DoInvoke must determine the size in number of elements of the input domain. When the default identity
scatter is used, the input domain size corresponds to the number of instances the worklet is executed. (Other scat-
ters will transform the input domain size to an output domain size, and that output domain size will determine the
number of instances.) The input domain size is generally determined by using Invocation::::GetInputDomain
and querying the input domain argument. In our motivating example, the input domain is an ArrayHandle and
the input domain size is half the size of the array (since array entries are paired up into line segments).
The final thing DoInvoke does is call BasicInvoke on its DispatcherBase superclass. BasicInvoke does the
complicated work of transferring arguments, scheduling the parallel job, and calling the worklet’s operator.
BasicInvoke takes three arguments: the Invocation object, the size of the input domain, and the device
adapter tag to run on.

Example 43.17: Calling BasicInvoke from a dispatcher’s DoInvoke.
1 // We can pull the input domain parameter (the data specifying the input
2 // domain ) from the invocation object .
3 const InputDomainType & inputDomain = invocation . GetInputDomain ();
4
5 // Now that we have the input domain , we can extract the range of the
6 // scheduling and call BasicInvoke .
7 this -> BasicInvoke ( invocation , inputDomain . GetNumberOfValues () / 2);

Putting this all together, the following example demonstrates the full implementation of the dispatcher for our
motivating example.

Example 43.18: Implementation of a dispatcher for a new type of worklet.
1 namespace vtkm
2 {
3 namespace worklet
4 {
5
6 template < typename WorkletType >
7 class DispatcherLineFractal
8 : public vtkm :: worklet :: internal :: DispatcherBase <
9 DispatcherLineFractal < WorkletType >,

10 WorkletType ,
11 vtkm :: worklet :: WorkletLineFractal >
12 {
13 using Superclass =
14 vtkm :: worklet :: internal :: DispatcherBase < DispatcherLineFractal < WorkletType >,
15 WorkletType ,
16 vtkm :: worklet :: WorkletLineFractal >;
17 using ScatterType = typename Superclass :: ScatterType ;
18
19 public :
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20 // If you get a compile error here about there being no appropriate constructor
21 // for ScatterType , then that probably means that the worklet you are trying to
22 // execute has defined a custom ScatterType and that you need to create one
23 // ( because there is no default way to construct the scatter ). By convention ,
24 // worklets that define a custom scatter type usually provide a static method
25 // named MakeScatter that constructs a scatter object .
26 VTKM_CONT
27 DispatcherLineFractal ( const WorkletType & worklet = WorkletType (),
28 const ScatterType & scatter = ScatterType ())
29 : Superclass (worklet , scatter )
30 {
31 }
32
33 VTKM_CONT
34 DispatcherLineFractal ( const ScatterType & scatter )
35 : Superclass ( WorkletType (), scatter )
36 {
37 }
38
39 template < typename Invocation >
40 VTKM_CONT void DoInvoke ( Invocation & invocation ) const
41 {
42 // Get the control signature tag for the input domain .
43 using InputDomainTag = typename Invocation :: InputDomainTag ;
44
45 // If you get a compile error on this line , then you have set the input
46 // domain to something that is not a SegmentsIn parameter , which is not
47 // valid .
48 VTKM_STATIC_ASSERT (
49 (std :: is_same < InputDomainTag ,
50 vtkm :: worklet :: WorkletLineFractal :: SegmentsIn >:: value ));
51
52 // This is the type for the input domain
53 using InputDomainType = typename Invocation :: InputDomainType ;
54
55 // If you get a compile error on this line , then you have tried to use
56 // something that is not a vtkm :: cont :: ArrayHandle as the input domain to a
57 // topology operation (that operates on a cell set connection domain ).
58 VTKM_IS_ARRAY_HANDLE ( InputDomainType );
59
60 // We can pull the input domain parameter (the data specifying the input
61 // domain ) from the invocation object .
62 const InputDomainType & inputDomain = invocation . GetInputDomain ();
63
64 // Now that we have the input domain , we can extract the range of the
65 // scheduling and call BasicInvoke .
66 this -> BasicInvoke ( invocation , inputDomain . GetNumberOfValues () / 2);
67 }
68 };
69
70 } // namespace worklet
71 } // namespace vtkm

43.6 Using the Worklet

Now that we have our full implementation of a worklet type that generates line fractals, let us have some fun
with it. The beginning of this chapter shows an implementation of the Koch Snowflake. The remainder of this
chapter demonstrates other fractals that are easily implemented with our worklet type.
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43.6.1 Quadratic Type 2 Curve

There are multiple variants of the Koch Snowflake. One simple but interesting version is the quadratic type 1
curve. This fractal has a shape similar to what we used for Koch but has right angles and goes both up and
down as shown in Figure 43.5.

Figure 43.5: The quadratic type 2 curve fractal. The left image gives the first iteration. The middle image gives
the second iteration. The right image gives the result after a few iterations.

The quadratic type 2 curve is implemented exactly like the Koch Snowflake except we output 8 lines to every
input instead of 4, and, of course, the positions of the lines we generate are different.

Example 43.19: A worklet to generate a quadratic type 2 curve fractal.
1 struct QuadraticType2
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 using ControlSignature = void ( SegmentsIn , SegmentsOut <8 >);
6 using ExecutionSignature = void (Transform , _2 );
7 using InputDomain = _1;
8
9 template < typename SegmentsOutVecType >

10 void operator ()( const vtkm :: exec :: LineFractalTransform & transform ,
11 SegmentsOutVecType & segmentsOutVec ) const
12 {
13 segmentsOutVec [0][0] = transform (0.00f, 0.00f);
14 segmentsOutVec [0][1] = transform (0.25f, 0.00f);
15
16 segmentsOutVec [1][0] = transform (0.25f, 0.00f);
17 segmentsOutVec [1][1] = transform (0.25f, 0.25f);
18
19 segmentsOutVec [2][0] = transform (0.25f, 0.25f);
20 segmentsOutVec [2][1] = transform (0.50f, 0.25f);
21
22 segmentsOutVec [3][0] = transform (0.50f, 0.25f);
23 segmentsOutVec [3][1] = transform (0.50f, 0.00f);
24
25 segmentsOutVec [4][0] = transform (0.50f, 0.00f);
26 segmentsOutVec [4][1] = transform (0.50f, -0.25f);
27
28 segmentsOutVec [5][0] = transform (0.50f, -0.25f);
29 segmentsOutVec [5][1] = transform (0.75f, -0.25f);
30
31 segmentsOutVec [6][0] = transform (0.75f, -0.25f);
32 segmentsOutVec [6][1] = transform (0.75f, 0.00f);
33
34 segmentsOutVec [7][0] = transform (0.75f, 0.00f);
35 segmentsOutVec [7][1] = transform (1.00f, 0.00f);
36 }
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37 };
38
39 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > Run(
40 vtkm :: IdComponent numIterations )
41 {
42 vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > points ;
43
44 // Initialize points array with a single line
45 points . Allocate (2);
46 points . WritePortal (). Set (0, vtkm :: Vec2f (0.0f, 0.0f));
47 points . WritePortal (). Set (1, vtkm :: Vec2f (1.0f, 0.0f));
48
49 vtkm :: cont :: Invoker invoke ;
50 QuadraticType2 :: FractalWorklet worklet ;
51
52 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
53 {
54 vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > outPoints ;
55 invoke (worklet , points , outPoints );
56 points = outPoints ;
57 }
58
59 return points ;
60 }
61 };

43.6.2 Tree Fractal

Another type of fractal we can make is a tree fractal. We will make a fractal similar to a Pythagoras tree except
using lines instead of squares. Our fractal will start with a vertical line that will be replaced with the off-center
“Y” shape shown in Figure 43.6. Iterative replacing using this “Y” shape produces a bushy tree shape.

Figure 43.6: The tree fractal replaces each line with the “Y” shape shown at left. An iteration grows branches
at the end (middle). After several iterations the tree branches out to the bushy shape at right.

One complication of implementing this tree fractal is that we really only want to apply the “Y” shape to the
“leaves” of the tree. For example, once we apply the “Y” to the trunk, we do not want to apply it to the trunk
again. If we were to apply it to the trunk again, we would create duplicates of the first layer of branches.
We can implement this feature in our worklet by using a count scatter. (Worklet scatters are described in
Section 31.1.) Instead of directing the fractal worklet to generate 3 output line segments for every input line
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segment, we tell the fractal worklet to generate just 1 output line segment. We then use a scatter counting to
generate 3 line segments for the leaves and 1 line segment for all other line segments. The count array for the
initial iteration is initialized to a single 3. Each iteration then creates the count array for the next iteration by
writing a 1 for the base line segment and a 3 from the other two line segments.

Example 43.20: A worklet to generate a tree fractal.
1 struct TreeFractal
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 using ControlSignature = void ( SegmentsIn ,
6 SegmentsOut <1>,
7 FieldOut countNextIteration );
8 using ExecutionSignature = void (Transform , VisitIndex , _2 , _3 );
9 using InputDomain = _1;

10
11 using ScatterType = vtkm :: worklet :: ScatterCounting ;
12
13 template < typename Storage >
14 VTKM_CONT static ScatterType MakeScatter (
15 const vtkm :: cont :: ArrayHandle <vtkm :: IdComponent , Storage >& count )
16 {
17 return ScatterType ( count );
18 }
19
20 template < typename SegmentsOutVecType >
21 void operator ()( const vtkm :: exec :: LineFractalTransform & transform ,
22 vtkm :: IdComponent visitIndex ,
23 SegmentsOutVecType & segmentsOutVec ,
24 vtkm :: IdComponent & countNextIteration ) const
25 {
26 switch ( visitIndex )
27 {
28 case 0:
29 segmentsOutVec [0][0] = transform (0.0f, 0.0f);
30 segmentsOutVec [0][1] = transform (1.0f, 0.0f);
31 countNextIteration = 1;
32 break ;
33 case 1:
34 segmentsOutVec [0][0] = transform (1.0f, 0.0f);
35 segmentsOutVec [0][1] = transform (1.5f, -0.25f);
36 countNextIteration = 3;
37 break ;
38 case 2:
39 segmentsOutVec [0][0] = transform (1.0f, 0.0f);
40 segmentsOutVec [0][1] = transform (1.5f, 0.35f);
41 countNextIteration = 3;
42 break ;
43 default :
44 this -> RaiseError (" Unexpected visit index .");
45 }
46 }
47 };
48
49 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > Run(
50 vtkm :: IdComponent numIterations )
51 {
52 vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > points ;
53
54 // Initialize points array with a single line
55 points . Allocate (2);
56 points . WritePortal (). Set (0, vtkm :: Vec2f (0.0f, 0.0f));
57 points . WritePortal (). Set (1, vtkm :: Vec2f (0.0f, 1.0f));
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58
59 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > count ;
60
61 // Initialize count array with 3 ( meaning iterate )
62 count . Allocate (1);
63 count . WritePortal (). Set (0, 3);
64
65 vtkm :: cont :: Invoker invoke ;
66 TreeFractal :: FractalWorklet worklet ;
67
68 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
69 {
70 auto scatter = TreeFractal :: FractalWorklet :: MakeScatter ( count );
71 vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > outPoints ;
72 invoke (worklet , scatter , points , outPoints , count );
73 points = outPoints ;
74 }
75
76 return points ;
77 }
78 };

43.6.3 Dragon Fractal

The next fractal we will implement is known as the dragon fractal. The dragon fractal is also sometimes known
as the Heighway dragon or the Harter-Heighway dragon after creators John Heighway, Bruce Banks, and William
Harter. It is also sometimes colloquially referred to as the Jurassic Park dragon as the fractal was prominently
featured in the Jurassic Park novel by Michael Crichton.
The basic building block is simple. Each line segment is replaced by two line segments bent at 90 degrees and
attached to the original segments endpoints as shown in Figure 43.7. As you can see by the fourth iteration a
more complicated pattern starts to emerge. Figure 43.8 shows the twelfth iteration a demonstrates a repeating
spiral.

Figure 43.7: The first four iterations of the dragon fractal. The cyan lines give the previous iteration for reference.

What makes the dragon fractal different than the Koch Snowflake and similar fractals like the the quadratic
curves implementation-wise is that the direction shape flips from one side to another. Note in the second image
of Figure 43.7 the first bend is under the its associated line segment whereas the second is above its line segment.
The easiest way for us to control the bend is to alternate the direction of the line segments. In Figure 43.7 each
line segment has an arrowhead indicating the orientation of the first and second point with the arrowhead at the
second point. Note that the shape is defined such that the first point of both line segments meet at the right
angle. With the shape defined this way, each iteration is applied to put the bend to the left of the segment with
respect to an observer at the first point looking at the second point.
Other than reversing the direction of half the line segments, the implementation of the dragon fractal is nearly
identical to the Koch Snowflake.

Chapter 43. New Worklet Types 399



43.6. Using the Worklet

Figure 43.8: The dragon fractal after 12 iterations.

Example 43.21: A worklet to generate the dragon fractal.
1 struct DragonFractal
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 using ControlSignature = void ( SegmentsIn , SegmentsOut <2 >);
6 using ExecutionSignature = void (Transform , _2 );
7 using InputDomain = _1;
8
9 template < typename SegmentsOutVecType >

10 void operator ()( const vtkm :: exec :: LineFractalTransform & transform ,
11 SegmentsOutVecType & segmentsOutVec ) const
12 {
13 segmentsOutVec [0][0] = transform (0.5f, 0.5f);
14 segmentsOutVec [0][1] = transform (0.0f, 0.0f);
15
16 segmentsOutVec [1][0] = transform (0.5f, 0.5f);
17 segmentsOutVec [1][1] = transform (1.0f, 0.0f);
18 }
19 };
20
21 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > Run(
22 vtkm :: IdComponent numIterations )
23 {
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24 vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > points ;
25
26 // Initialize points array with a single line
27 points . Allocate (2);
28 points . WritePortal (). Set (0, vtkm :: Vec2f (0.0f, 0.0f));
29 points . WritePortal (). Set (1, vtkm :: Vec2f (1.0f, 0.0f));
30
31 vtkm :: cont :: Invoker invoke ;
32 DragonFractal :: FractalWorklet worklet ;
33
34 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
35 {
36 vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > outPoints ;
37 invoke (worklet , points , outPoints );
38 points = outPoints ;
39 }
40
41 return points ;
42 }
43 };

43.6.4 Hilbert Curve

For our final example we will look into using our fractal worklet to construct a space-filling curve. A space-filling
curve is a type of fractal that defines a curve that, when iterated to its infinite length, completely fills a space.
Space-filling curves have several practical uses by allowing you to order points in a 2 dimensional or higher space
in a 1 dimensional array in such a way that points close in the higher dimensional space are usually close in the
1 dimensional ordering. For this fractal we will be generating the well-known Hilbert curve. (Specifically, we
will be generating the 2D Hilbert curve.)
The 2D Hilbert curve fills in a rectangular region in space. (Our implementation will fill a unit square in the [0,1]
range, but a simple scaling can generalize it to any rectangle.) Without loss of generality, we will say that the
curve starts in the lower left corner of the region and ends in the lower right corner. The Hilbert curve starts by
snaking around the lower-left corner then into the upper-left followed by the upper-right and then lower-right.
The curve is typically generated by recursively dividing and orienting these quadrants.
To generate the Hilbert curve in our worklet system, we will define our line segments as the connection from
the lower left of (entrance to) the region to the lower right of (exit from) the region. The fractal generation
breaks this line to a 4 segment curve that moves up, then right, then back down. Figure 43.9 demonstrates
the Hilbert curve. (Readers familiar with the Hilbert curve might notice the shape is a bit different than other
representations. Where many derivations derive the Hilbert curve by connecting the center of oriented boxes,
our derivation uses a line segment along one edge of these boxes. The result is a more asymmetrical shape in
early iterations, but the two approaches are equivalent as the iterations approach infinity.)
Like the dragon fractal, the Hilbert curve needs to flip the shape in different directions. For example, the first
iteration, shown at left in Figure 43.9, is drawn to the “left” of the initial line along the horizontal axis. The
next iteration, the second image in Figure 43.9, is created by drawing the shape to the “right” of the vertical
line segments but to the left of the horizontal segments.
Section 43.6.3 solved this problem for the dragon fractal by flipping the direction of some of the line segments.
Such an approach would work for the Hilbert curve, but it results in line segments being listed out of order and
with inconsistent directions with respect to the curve. For the dragon fractal, the order and orientation of line
segments is of little consequence. But for many applications of a space-filling curve the distance along the curve
is the whole point, so we want the order of the line segments to be consistent with the curve.
To support this flipped shape while preserving the line segment order, we will use a data field attached to the
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Figure 43.9: The first, second, third, and sixth iterations, respectively, of the Hilbert curve fractal.

line segments. That is, each line segment will have a value to represent which way to draw the shape. If the field
value is set to 1 (represented by the blue line segments in Figure 43.9), then the shape is drawn to the “left.” If
the field value is set to -1 (represented by the red line segments in Figure 43.9), then the shape is inverted and
drawn to the “right.” This field is passed in and out of the worklet using the FieldIn and FieldOut tags.

Example 43.22: A worklet to generate the Hilbert curve.
1 struct HilbertCurve
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 using ControlSignature = void ( SegmentsIn ,
6 FieldIn directionIn ,
7 SegmentsOut <4>,
8 FieldOut directionOut );
9 using ExecutionSignature = void (Transform , _2 , _3 , _4 );

10 using InputDomain = _1;
11
12 template < typename SegmentsOutVecType >
13 void operator ()( const vtkm :: exec :: LineFractalTransform & transform ,
14 vtkm :: Int8 directionIn ,
15 SegmentsOutVecType & segmentsOutVec ,
16 vtkm :: Vec4i_8 & directionOut ) const
17 {
18 segmentsOutVec [0][0] = transform (0.0f, directionIn * 0.0f);
19 segmentsOutVec [0][1] = transform (0.0f, directionIn * 0.5f);
20 directionOut [0] = -directionIn ;
21
22 segmentsOutVec [1][0] = transform (0.0f, directionIn * 0.5f);
23 segmentsOutVec [1][1] = transform (0.5f, directionIn * 0.5f);
24 directionOut [1] = directionIn ;
25
26 segmentsOutVec [2][0] = transform (0.5f, directionIn * 0.5f);
27 segmentsOutVec [2][1] = transform (1.0f, directionIn * 0.5f);
28 directionOut [2] = directionIn ;
29
30 segmentsOutVec [3][0] = transform (1.0f, directionIn * 0.5f);
31 segmentsOutVec [3][1] = transform (1.0f, directionIn * 0.0f);
32 directionOut [3] = -directionIn ;
33 }
34 };
35
36 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > Run(
37 vtkm :: IdComponent numIterations )
38 {
39 vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > points ;
40
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41 // Initialize points array with a single line
42 points . Allocate (2);
43 points . WritePortal (). Set (0, vtkm :: Vec2f (0.0f, 0.0f));
44 points . WritePortal (). Set (1, vtkm :: Vec2f (1.0f, 0.0f));
45
46 vtkm :: cont :: ArrayHandle <vtkm :: Int8 > directions ;
47
48 // Initialize direction with positive .
49 directions . Allocate (1);
50 directions . WritePortal (). Set (0, 1);
51
52 vtkm :: cont :: Invoker invoke ;
53 HilbertCurve :: FractalWorklet worklet ;
54
55 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
56 {
57 vtkm :: cont :: ArrayHandle <vtkm :: Vec2f > outPoints ;
58 vtkm :: cont :: ArrayHandle <vtkm :: Int8 > outDirections ;
59 invoke (worklet ,
60 points ,
61 directions ,
62 outPoints ,
63 vtkm :: cont :: make_ArrayHandleGroupVec <4 >( outDirections ));
64 points = outPoints ;
65 directions = outDirections ;
66 }
67
68 return points ;
69 }
70 };
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CreateResult, 135, 136, 189, 194, 195, 272
CreateResultCoordinateSystem, 195
CreateResultField, 136, 189–191
CreateWritePortal, 325, 334
Cross, 204
cross product, 75–76, 204
CrossProduct, 75

GetOutputFieldName, 76
GetPrimaryCoordinateSystemIndex, 76
GetPrimaryFieldName, 76
GetSecondaryCoordinateSystemIndex, 76
GetSecondaryFieldName, 76
GetUseCoordinateSystemAsPrimaryField, 76

GetUseCoordinateSystemAsSecondaryField, 76
SetOutputFieldName, 76
SetPrimaryCoordinateSystem, 76
SetPrimaryField, 76
SetSecondaryCoordinateSystem, 76
SetSecondaryField, 76
SetUseCoordinateSystemAsPrimaryField, 76
SetUseCoordinateSystemAsSecondaryField, 76

ctest, 345–346
cube root, 202
CUDA, 9, 107, 122
cuda namespace, 121
Cylinder, 114

SetAxis, 114
SetCenter, 114
SetRadius, 114

cylinder, 114
cylindrical coordinate system transform, 64, 68
CylindricalCoordinateTransform, 64

SetCartesianToCylindrical, 64
SetCylindricalToCartesian, 64

data set, 29–43
building, 29–36
cell set, see cell set
clean, 50–51
coordinate system, see coordinate system
field, see field
generate, 265–284
partitioned, see partitioned data set

data set filter, 193–195
data set with field filter, 195–197
DataSet, 16, 29–31, 40, 41, 45–47, 49, 50, 85, 89, 121, 123,

133, 135, 136, 189, 192, 253, 256, 265, 295, 342
AddCellField, 35
AddPointField, 35
GetCellSet, 40, 192

DataSet.h, 121
DataSetBuilderExplicit, 32

Create, 32
DataSetBuilderExplicitIterative, 34

AddCell, 34
AddPoint, 34

DataSetBuilderRectilinear, 30
Create, 30

DataSetBuilderUniform, 30
Create, 30

Debug, 9
decompression

zfp, 80
deep array copy, 126
DeepCopyFrom, 124, 126, 288, 295, 332
DefaultAnyDevice, 27, 28
DegenerateCellDetected, 159
density, 56–59

histogram, 56–57

Index 413



Index

particle, 57–59
cloud in cell, 58–59
nearest grid point, 57–58

density estimate namespace, 56
derivative, 213–214
derived storage, 322–330
detail namespace, 121
determinant, 206
Device, 28
device adapter, 107, 351–363

algorithm, 299–309, 358–362
bit field to unordered set, 299
copy, 300
copy if, 300
copy sub range, 301
count set bits, 301
fill, 301
lower bounds, 302
reduce, 302
reduce by key, 303
scan extend, 305
schedule, 306
sort, 306
stream compact, 300
synchronize, 307
transform, 307
unique, 308
upper bounds, 308

any, 108
id, 108–109

provided, 108
implementing, 351–363
memory manager, 353–355
runtime detector, 352–353
runtime device configuration, 355–358
runtime tracker, 109–110

getting, 109
scoped, 110

tag, 107–108, 351–352
provided, 107–108

timer, 362–363
try execute, 349–350
undefined, 108

DeviceAdapterAlgorithm, 358
DeviceAdapterAlgorithmGeneral, 358
DeviceAdapterCuda.h, 107
DeviceAdapterId, 28, 108–110, 309, 325, 331, 332, 334, 354,

355
GetId, 108
GetName, 108
IsValueValid, 108, 109

DeviceAdapterKokkos.h, 107
DeviceAdapterList.h, 352
DeviceAdapterListCommon, 352
DeviceAdapterMemoryManager, 353, 355

Allocate, 354
CopyDeviceToDevice, 354
CopyDeviceToHost, 354
CopyHostToDevice, 354
GetDevice, 354

DeviceAdapterMemoryManagerBase, 353
ManageArray, 353

DeviceAdapterMemoryManagerShared, 354
DeviceAdapterNameType, 108
DeviceAdapterOpenMP.h, 107
DeviceAdapterRuntimeDetector, 352

Exists, 353, 358
h, 358

DeviceAdapterSerial.h, 107
DeviceAdapterTag, 109
DeviceAdapterTag.h, 352
DeviceAdapterTagAny, 28, 108, 112, 331
DeviceAdapterTagCuda, 107
DeviceAdapterTagKokkos, 107
DeviceAdapterTagOpenMP, 107
DeviceAdapterTagSerial, 107
DeviceAdapterTagTBB, 107
DeviceAdapterTagUndefined, 28, 108
DeviceAdapterTagUnknown, 331, 332
DeviceAdapterTBB.h, 107
DeviceAdapterTimerImplementation, 362
DiagonalRatio, 73
Dimension, 73
DimensionalityTag, 145
Disable, 110
DisableDevice, 109
discard array handle, 223
Dispatcher, 389
dispatcher, 391–395

creating new, 392–395
invocation object, 393

DispatcherBase, 392
Invoke, 391

DispatcherMapField, 392
DispatcherMapTopology, 392
DispatcherPointNeighborhood, 392
DispatcherReduceByKey, 392
DistributedSystems, 339
diy, 339
DIYMasterExchange, 340, 341, 343
DoExecute, xxiii, 133–136, 189, 191–194, 196, 267, 268, 271,

277, 278, 282, 284
DoExecutePartitions, 134, 189
Dolly, 97
Dot, 140
dot product, 76–77
DotProduct, 76

GetOutputFieldName, 77
GetPrimaryCoordinateSystemIndex, 76
GetPrimaryFieldName, 76
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GetSecondaryCoordinateSystemIndex, 77
GetSecondaryFieldName, 76
GetUseCoordinateSystemAsPrimaryField, 76
GetUseCoordinateSystemAsSecondaryField, 77
SetOutputFieldName, 77
SetPrimaryCoordinateSystem, 76
SetPrimaryField, 76
SetSecondaryCoordinateSystem, 77
SetSecondaryField, 76
SetUseCoordinateSystemAsPrimaryField, 76
SetUseCoordinateSystemAsSecondaryField, 77

dragon fractal, 399–401

edge, 36, 214–216
Elevation, 96
elevation, 66–67, 95
Enable, 110
entity extraction, 59–62

external faces, 59
external geometry, 60
extract structured, 60–61
ghost cells, 61
threshold, 61–62

entity extraction namespace, 59
environment, 119, 120

control, 119, 120
execution, 119, 120

Epsilon, 202
Equal, 310
Error, 103, 162

GetMessage, 103
error codes, 158–159
ErrorBadAllocation, 103, 109
ErrorBadDevice, 110
ErrorBadType, 103, 292
ErrorBadValue, 103, 109
ErrorCode, 158, 212, 213, 215, 216

CellNotFound, 159, 255
DegenerateCellDetected, 159
InvalidEdgeId, 158
InvalidFaceId, 158
InvalidNumberOfPoints, 158
InvalidPointId, 158
InvalidShapeId, 158
MalformedCellDetected, 159
MatrixFactorizationFailed, 158
OperationOnEmptyCell, 159
SolutionDidNotConverge, 158
Success, 158, 159, 255

ErrorExecution, 103, 199, 306, 359
ErrorInternal, 104
ErrorIO, 104
ErrorMessageBuffer, 358
ErrorOnBadArgument, 27
ErrorOnBadOption, 27
errors, 103–105, 199

assert, 104–105, 199
control environment, 103–104
execution environment, 103, 199, 306
worklet, 199

ErrorString, 159
exec namespace, 120, 121, 255, 257, 382
ExecObject, xxv, 169, 172, 174, 177, 179, 184, 249, 253–255,

257
ExecObjectType, 371, 373
Execute, 16, 43, 49, 57, 69, 78
execution environment, 119, 120
execution object, 249–251
execution signature, xv, xxi, xxviii, xxix, 129–131, 169, 172,

174, 177, 179, 180, 184, 260, 369, 378, 379, 386–
388, 393

tags, 378–379
ExecutionObjectBase, 169, 172, 174, 177, 179, 184, 249,

254, 257, 370
PrepareForExecution, 169, 172, 174, 177, 179, 184, 249
PrepareForInput, 371

ExecutionSignatureTagBase, 379
AspectTag, 379
INDEX, 379

Exists, 353, 358
Exp, 202
Exp10, 202
Exp2, 202
explicit cell set, 37–38

single type, 37–38
explicit mesh, 31

connectivity, 31
offsets, 31
shapes, 31

ExpM1, 202
exponential, 202
export macro, 190
external faces, 59
external geometry, 60
ExternalFaces, 59

GetCompactPoints, 59
GetPassPolyData, 59
SetCompactPoints, 59
SetPassPolyData, 59

ExternalGeometry, 60
GetExtractInside, 60
GetImplicitFunction, 60
SetExtractInside, 60
SetImplicitFunction, 60

extract, 61
extract component array handle, 228–229
extract structured, 60
ExtractArrayFromComponents, 293, 294
ExtractBoundaryCellsOff, 60
ExtractBoundaryCellsOn, 60
ExtractComponent, 292, 293

Index 415



Index

ExtractGeometry
ExtractBoundaryCellsOff, 60
ExtractBoundaryCellsOn, 60
ExtractInsideOff, 60
ExtractInsideOn, 60
ExtractOnlyBoundaryCellsOff, 60
ExtractOnlyBoundaryCellsOn, 60
GetExtractBoundaryCells, 60
GetExtractOnlyBoundaryCells, 60
SetExtractBoundaryCells, 60
SetExtractOnlyBoundaryCells, 60

ExtractInsideOff, 60
ExtractInsideOn, 60
ExtractOnlyBoundaryCellsOff, 60
ExtractOnlyBoundaryCellsOn, 60
ExtractStructured, 60

GetIncludeBoundary, 61
GetSampleRate, 61
GetVOI, 61
SetIncludeBoundary, 61
SetSampleRate, 61
SetVOI, 61

face, 36, 214, 216–218
external, 59

false type, 105
fancy array handle, 219–231, 330
far clip plane, 95
Fatal, 162
Fetch, 374–377, 379, 385, 387

Load, 375, 376, 379
Store, 375, 376, 379

fetch, 374–378
aspect, see aspect
cell set, 375
direct input array, 375
direct output array, 375
execution object, 375
topology map array input, 375
whole cell set, 375

FetchTag, 378
FetchTagArrayDirectIn, 375
FetchTagArrayDirectOut, 375
FetchTagArrayTopologyMapIn, 375
FetchTagCellSetIn, 375
FetchTagExecObject, 375
FetchTagWholeCellSetIn, 375
Field, 41, 42, 85, 86, 189

Association::Any, 85
Association::Cells, 85
Association::Points, 85
Association::WholeMesh, 85
AssociationEnum, 86
GetRange, 41, 42

field, 29, 40–41, 50
field conversion, 62–63

cell average, 63
point average, 63

field filter, 190–193
using cells, 192–193

field map worklet, 167–170
field of view, 95
field to colors, 64–66
field transform, 63–70

cylindrical coordinate transform, 64
field to colors, 64–66
generate ids, 66
spherical coordinate transform, 68
warp scalar, 68–69
warp vector, 69–70

FieldIn, 130, 131, 168, 178, 389
FieldInCell, 171, 173
FieldInIncident, 176
FieldInNeighborhood, 178, 180
FieldInOut, 168, 171, 174, 176, 178
FieldInOutCell, 171
FieldInOutPoint, 173, 174
FieldInPoint, 171, 173
FieldInVisit, 176
FieldNeighborhood, 178, 180

Get, 180
FieldOut, 130, 168, 171, 173, 176, 178, 389
FieldOutCell, 171
FieldOutPoint, 173
FieldPointIn, 130, 213, 214
FieldRangeCompute, 42
FieldRangeGlobalCompute, 42
FieldSelection, xx, 86

Mode::Exclude, 86
Mode::None, 86

FieldToColors, 64
GetColorTable, 65
GetMappingComponent, 65
GetMappingMode, 65
GetNumberOfSamplingPoints, 65
GetOutputMode, 65
InputMode, 64
IsMappingComponent, 65
IsMappingMagnitude, 65
IsMappingScalar, 65
IsOutputRGB, 65
IsOutputRGBA, 65
OutputMode, 64
SetColorTable, 65
SetMappingComponent, 65
SetMappingMode, 65
SetMappingToComponent, 65
SetMappingToMagnitude, 65
SetMappingToScalar, 65
SetNumberOfSamplingPoints, 65
SetOutputMode, 65
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SetOutputToRGB, 65
SetOutputToRGBA, 65

FieldToColors::InputMode, 65
Component, 64, 65
Magnitude, 64, 65
Scalar, 64, 65

FieldToColors::OutputMode, 65
RGB, 64, 65
RGBA, 65

file I/O, 45–48
read, 15–16, 45–46
write, 46–47

Fill, 301
fill, 301
Filter, 86, 133, 189–191, 193, 194

CastAndCall, 190
CastAndCallScalarField, 135, 189
CastAndCallVecField, 135, 189, 191
CreateResult, 135, 136, 189, 194, 195, 272
CreateResultCoordinateSystem, 195
CreateResultField, 136, 189–191
DoExecute, xxiii, 133–136, 189, 191–194, 196, 267, 268,

271, 277, 278, 282, 284
DoExecutePartitions, 134, 189
Execute, 43, 49, 57
GetFieldFromDataSet, 135, 189–191
GetOutputFieldName, 192
Invoke, 135, 267, 271
SetActiveCoordinateSystem, 85
SetActiveField, 85
SetFieldsToPass, 86
SetOutputFieldName, 63, 191
SetPassCoordinateSystems, 86
SetUseCoordinateSystemAsField, 85

filter, 16, 49–87, 119
clean grid, 50–51
connected components, 51–52
contour, 53–54
contouring, 52–56
data set, 193–195
data set with field, 195–197
density, 56–59
entity extraction, 59–62
export macro, 190
field, 190–193

using cells, 192–193
field conversion, 62–63
fields, 84–87

input, 85
passing, 85–87

FTLE, 81
implementation, 133–136, 189–197
input fields, 85
isosurface, 53–54
Lagrangian coherent structures, 81

passing fields, 85–87
pathlines, 84
stream tracing, 82–84
streamline, 82
streamlines, 82
streamsurface, 83
supported types, 192

filter namespace, 49, 121, 133, 189
FindCell, 255
FindNearestNeighbor, 257
finite time Lyapunov exponent, see FTLE
Float32, xxii, 21, 139, 145, 150, 203, 287
Float64, 21, 139, 143, 144, 150, 203, 287
FloatDefault, 21, 22, 66, 113, 124, 139, 286, 291, 292
FloatDistance, 202
Floor, 202
floor, 202
flow

FTLE, 81
Lagrangian coherent structures, 81
pathlines, 84
stream tracing, 82–84
streamline, 82
streamlines, 82
streamsurface, 83

FMod, 202
focal point, 95
Force, 110
ForceDevice, 109
ForEach, 156
foreground color, 91
Frustum, 115

CreateFromPoints, 115
SetNormal, 115
SetNormals, 115
SetPlane, 115
SetPlanes, 115

frustum, 115
FTLE, 81
function interface, 365–367

static transform, 366–367
function modifier, 121, 122, 131, 249
function signature, 365
function types, 130
functional array, 314–316
FunctionInterface, xxviii, 365, 393

ARITY, 366
GetArity, 366
StaticTransformCont, 366
StaticTransformType, 366

functions
implicit, 113–116

functor, 119, 314
FunctorBase, 199, 306

RaiseError, 159, 199, 306
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generate ids, 66
GenerateIds, 66

GetCellFieldName, 66
GetGenerateCellIds, 66
GetGeneratePointIds, 66
GetPointFieldName, 66
GetUseFloat, 66
SetCellFieldName, 66
SetGenerateCellIds, 66
SetGeneratePointIds, 66
SetPointFieldName, 66
SetUseFloat, 66

geometry refinement, 70–72
split sharp edges, 70
tetrahedralize, 71
triangulate, 71
tube, 71
vertex clustering, 72

Get, 155, 180, 233, 241
Get*, 355
GetActiveFieldName, 57, 58, 80
GetAdvectionTime, 81
GetAllInRange, 62
GetArity, 366
GetAutoOrientNormals, 78
GetAuxiliaryGridDimensions, 81
GetBegin, 234
GetBinDelta, 57
GetBounds, 41, 58, 59
GetCamera, 93
GetCellFieldName, 66
GetCellNormalsName, 79
GetCellPointIds, 295
GetCellSet, 40, 192, 254
GetCellSetBase, 295
GetCellSetName, 295, 296
GetCellShape, 246, 295
GetChangeCoordinateSystem, 67
GetClipValue, 55
GetColorBuffer, 99
GetColorTable, 65
GetCompactPointFields, 50
GetCompactPoints, 59
GetComponent, 147
GetComputeDivergence, 77
GetComputedRange, 57
GetComputeFastNormalsForStructured, 53, 54
GetComputeFastNormalsForUnstructured, 53, 54
GetComputeGradient, 77
GetComputeNumberDensity, 58
GetComputePointGradient, 77
GetComputeQCriterion, 77
GetComputeVorticity, 77
GetConsistency, 79
GetCoordinates, 254, 256

GetDevice, 112, 354, 355
GetDeviceInstance, 356
GetDimension, 58, 59
GetDivergenceName, 78
GetDivideByVolume, 57, 58
GetElapsedTime, 111, 112
GetEnd, 234
GetExtractBoundaryCells, 60
GetExtractInside, 60
GetExtractOnlyBoundaryCells, 60
GetFastMerge, 51
GetFeatureAngle, 70
GetField, 42
GetFieldFromDataSet, 135, 189–191
GetFlipNormals, 79
GetFlowMapOutput, 81
GetGenerateCellIds, 66
GetGenerateCellNormals, 78
GetGenerateNormals, 53, 54
GetGeneratePointIds, 66
GetGeneratePointNormals, 78
GetHumanReadableSize, 165
GetId, 108
GetImplicitFunction, 54, 56, 60
GetIncludeBoundary, 61
GetIndices, 246
GetInputIndex, 375
GetInvert, 62
GetIsoValue, 53
GetLogLevelName, 162
GetLowerThreshold, 62
GetMappingComponent, 65
GetMappingMode, 65
GetMaxDevices, 356
GetMaxThreads, 356
GetMergeDuplicatePoints, 53, 54
GetMergePoints, 51
GetMessage, 103
GetMetaData, 332
GetName, 108
GetNormalArrayName, 53, 54
GetNormalizeCellNormals, 78
GetNumaRegions, 356
GetNumberOfBins, 57
GetNumberOfBytes, 331
GetNumberOfCells, 295
GetNumberOfComponents, 147
GetNumberOfDimensions, 72
GetNumberOfElements, 246
GetNumberOfIndices, 246
GetNumberOfIndicices, 246
GetNumberOfIsoValues, 53
GetNumberOfPartitions, 41
GetNumberOfPoints, 295
GetNumberOfPointsInCell, 295
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GetNumberOfSamplingPoints, 65
GetNumberOfSteps, 81
GetNumberOfValues, 123, 233, 285, 325, 334
GetOrigin, 58, 59
GetOutputFieldName, 76, 77, 81, 192
GetOutputIndex, 375
GetOutputMode, 65
GetOutputToInputMap, 268, 272
GetPartition, 41
GetPartitions, 41
GetPassPolyData, 59
GetPointFieldName, 66
GetPointNormalsName, 79
GetPrimaryCoordinateSystemIndex, 76
GetPrimaryFieldName, 76
GetQCriterionName, 78
GetRange, 41, 42, 57
GetRate, 80
GetReadPointer, 99
GetRemoveDegenerateCells, 51
GetRuntimeConfiguration, 358
GetRuntimeDeviceTracker, 109
GetSampleRate, 61
GetSecondaryCoordinateSystemIndex, 76, 77
GetSecondaryFieldName, 76
GetSizeString, 165
GetSpacing, 58, 59
GetSpatialBounds, 98
GetStackTrace, 165
GetStepSize, 81
GetStorageTypeName, 288
GetThreadName, 161
GetThreads, 356
GetTolerance, 51
GetToleranceIsAbsolute, 51
GetUpperThreshold, 62
GetUseAuxiliaryGrid, 81
GetUseCoordinateSystemAsPrimaryField, 76
GetUseCoordinateSystemAsSecondaryField, 76, 77
GetUseFloat, 66
GetUseFlowMapOutput, 81
GetValueTypeName, 288
GetVisitIndex, 375
GetVOI, 61
GetVorticityName, 78
GHOST, 61
Ghost, 72
ghost cell

classify, 72
remove, 61

Ghost., 72
GhostCellClassify, 72
GhostCellRemove, 61

RemoveAllGhost, 61
RemoveByType, 61

git, 7
Gradient, 77, 113

ComputePointGradient, 77
GetComputeDivergence, 77
GetComputeGradient, 77
GetComputePointGradient, 77
GetComputeQCriterion, 77
GetComputeVorticity, 77
GetDivergenceName, 78
GetQCriterionName, 78
GetVorticityName, 78
SetColumnMajorOrdering, 77
SetComputeDivergence, 77
SetComputeGradient, 77
SetComputePointGradient, 77
SetComputeQCriterion, 77
SetComputeVorticity, 77
SetDivergenceName, 77, 78
SetOutputFieldName, 77
SetQCriterionName, 77, 78
SetRowMajorOrdering, 77
SetVorticityName, 77, 78

gradient, 213–214
gradients, 77–78
group vector array handle, 229–231

h, 227, 358
Harter-Heighway dragon, 399
Hash, 273
Hash.h, 273
HashType, 273
HasMetaData, 332
HasMultipleComponents, 146
Heighway dragon, 399
hexahedron, 32, 38, 210
Hilbert curve, 401–403
Histogram, 56

GetBinDelta, 57
GetComputedRange, 57
GetNumberOfBins, 57
GetRange, 57
SetNumberOfBins, 57
SetOutputFieldName, 57
SetRange, 57

histogram, 56–57, 184, 244
hyperbolic arccossine, 201
hyperbolic arcsine, 201
hyperbolic cosine, 202
hyperbolic sine, 204
hyperbolic tangent, 202, 204

I/O, 45–48
Id, 22, 23, 31, 52, 66, 124, 139, 140, 146, 149, 150, 169, 172,

174, 175, 177–179, 184, 209, 221, 230, 246, 267,
271, 277, 286, 292, 293, 295, 302, 306, 308, 315,
331, 355, 356
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id
device adapter, 108–109

provided, 108
Id2, 23, 140, 149, 150, 215, 266, 269–271, 274, 276
Id3, xxii, 23, 58, 59, 72, 140, 146, 147, 149, 150, 216, 225,

237, 286, 293, 306
Id4, 23, 140
IdComponent, 22, 139, 140, 150, 151, 169, 172, 174, 177,

179, 180, 184, 209, 211, 215, 216, 228, 229, 246,
260, 366, 379

IdComponent2, 23, 140
IdComponent3, 23
IdComponent4, 23, 140
identity matrix, 206
image, 30
ImageConnectivity, 52
ImageReaderPNG, 46

ReadDataSet, 46
SetPointFieldName, 46

ImageReaderPNM, 46
PixelDepth, 47
ReadDataSet, 46
SetPixelDepth, 47
SetPointFieldName, 46
WriteDataSet, 47

ImageWriterPNG, 47
PixelDepth, 47
SetPixelDepth, 47
WriteDataSet, 47

ImageWriterPNM, 47
implicit array handle, 314–316
implicit function

clip, 55–56
implicit functions, 113–116

box, 115
cylinder, 114
frustum, 115
general, 115–116
plane, 113
sphere, 113

implicit storage, 314–316
ImplicitFunction, 113

Gradient, 113
Value, 113

ImplicitFunctionGeneral, 54, 115
InBoundary, 180
IncidentElementCount, 177
IncidentElementIndices, 177
Include, 143, 144
INDEX, 379
index array handle, 221
IndexTag, 366
IndicesType, 246
Infinity, 202
Info, 162

initialization, 15, 27–28
Initialize, 15, 27, 161–163, 355–358
Initialize.h, 15
InitializeOptions, 27

AddHelp, 27
DefaultAnyDevice, 27, 28
ErrorOnBadArgument, 27
ErrorOnBadOption, 27
None, 27
RequireDevice, 27
Strict, 27

InitializeResult, 27, 28
Device, 28

InitializeSubsystem, 356
input domain, xxi, 129, 131, 168, 171, 173, 176, 178, 183
input index, 260
InputIndex, 169, 172, 175, 178, 179, 184, 260
InputMode, 64
InsertPartition, 42
int, 21
Int16, 22, 139
Int32, 22, 139, 244
Int64, 22, 139, 244
Int8, 22, 108, 139
Intel Threading Building Blocks, 9, 107
interactive rendering, 98–101

OpenGL, 98–99
internal namespace, 121
interoperability, 121
interpolation, 213
INVALID, 61
InvalidEdgeId, 158
InvalidFaceId, 158
InvalidNumberOfPoints, 158
InvalidPointId, 158
InvalidShapeId, 158
inverse cosine, 201
inverse hyperbolic cosine, 201
inverse hyperbolic sine, 201
inverse hyperbolic tangent, 202
inverse matrix, 206
inverse sine, 201
inverse tangent, 201
Invocation, 393
invocation object, 393
Invoke, 135, 267, 271, 391
invoke, 391
Invoker, 131, 260, 349, 386, 391
InXBoundary, 180
InYBoundary, 180
InZBoundary, 181
io namespace, 29, 45, 46, 121
is same, 105
IsAllocatedOnDevice, 331
IsAllocatedOnHost, 331
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IsBaseComponentType, 292
IsFinite, 203
IsInf, 203
IsMappingComponent, 65
IsMappingMagnitude, 65
IsMappingScalar, 65
IsNan, 203
IsNegative, 203
IsNonEmpty, 143, 144
IsOnDevice, 124
IsOnHost, 124
isosurface, 53–54
IsOutputRGB, 65
IsOutputRGBA, 65
isovolume, 54–55
IsSizeFixed, 211
IsSizeStatic, 146
IsStorageType, 288
IsType, 288, 296, 297
IsValid, 295
IsValueType, 288
IsValueValid, 108, 109
IsZeroInitialized, 310
IteratorType, 234

Jacobian, 73
Jurassic Park dragon, 399

kernel, 119
Keys, xxiii, 183, 185, 272, 273, 370, 372, 373
KeysIn, 183, 185
Koch Snowflake, 381
Kokkos, 9, 107

Lagrangian coherent structures, 81
LagrangianStructures, 81

GetAdvectionTime, 81
GetAuxiliaryGridDimensions, 81
GetFlowMapOutput, 81
GetNumberOfSteps, 81
GetOutputFieldName, 81
GetStepSize, 81
GetUseAuxiliaryGrid, 81
GetUseFlowMapOutput, 81
SetAdvectionTime, 81
SetAuxiliaryGridDimensions, 81
SetFlowMapOutput, 81
SetNumberOfSteps, 81
SetOutputFieldName, 81
SetStepSize, 81
SetUseAuxiliaryGrid, 81
SetUseFlowMapOutput, 81

LCS, see Lagrangian coherent structures
Length, 143
Lerp, 205
less, 148

level of detail, 72
Lindenmayer system, 382
line, 32, 38, 210
linear interpolation, 205
linear system, 206
List, 149, 151–154, 289, 290, 297, 298
List.h, 149, 151, 152
ListAppend, 152
ListApply, 152
ListAt, 151
ListCross, 153
ListEmpty, 149
ListForEach, 154
ListHas, 151
ListIndexOf, 151
ListIntersect, 152
ListRemoveIf, 153
lists, 149–154

types, 149–150
ListSize, 151
ListTransform, 153
ListUniversal, 149, 151–153
Load, 375, 376, 379
locator

cell, 253–256
point, 256–258

LOD, 72
Log, 203
Log10, 203
Log1P, 203
Log2, 203
logarithm, 203
logging, 161–165

initialization, 161
levels, 161–163

Logging.h, 163, 165
LogicalAnd, 310
LogicalNot, 310
LogicalOr, 310
LogLevel, 162

Cast, 162
Error, 162
Fatal, 162
Info, 162
MemCont, 162
MemExec, 162
MemTransfer, 162
Off, 162
Perf, 162
UserFirst, 162
UserLast, 162
UserVerboseFirst, 162
UserVerboseLast, 162
Warn, 162

loguru, 161
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look at, 95
lower bounds, 302
LowerBounds, 302

Magnitude, 64, 65, 205
magnitude, 79
MagnitudeSquared, 205
make ArrayHandle, 124
make ArrayHandleCartesianProduct, 227
make ArrayHandleCast, 222
make ArrayHandleCompositeVector, 228
make ArrayHandleConstant, 220
make ArrayHandleCounting, 222
make ArrayHandleExtractComponent, 228
make ArrayHandleGroupVec, 230
make ArrayHandleGroupVecVariable, 231
make ArrayHandleImplicit, 315
make ArrayHandleMove, 126
make ArrayHandlePermutation, 224
make ArrayHandleSwizzle, 229
make ArrayHandleTransform, 317
make ArrayHandleView, 220
make ArrayHandleZip, 225
make FunctionInterface, xxviii, 365
make Pair, 155
make Vec, 139
make VecC, 141
MakeBuffer, 332, 336
MakeTuple, 155
MalformedCellDetected, 159
ManageArray, 353
map, 167
map field, 168–170
map point neighborhood, 178–182
map topology, 175–178
MapFieldAverage, 195
MapFieldMergeAverage, 272
MapFieldPermutation, 195, 268, 272
Mapper, 90
mapper, 17, 90–93
MapperCylinder, 90
MapperGlyphScalar, 90, 92
MapperGlyphVector, 90
MapperQuad, 90
MapperRayTracer, 90
MapperVolume, 90
MapperWireframer, 91, 92
math, 201–208
Math.h, 201
Matrix, 205, 206
matrix, 205–206
Matrix.h, 205, 206
MatrixDeterminant, 206
MatrixFactorizationFailed, 158
MatrixGetColumn, 206
MatrixGetRow, 206

MatrixIdentity, 206
MatrixInverse, 206
MatrixMultiply, 206
MatrixRow, 206
MatrixSetColumn, 206
MatrixSetRow, 206
MatrixTranspose, 206
Max, 143, 203, 311
MaxAngle, 73
MaxDiagonal, 73
Maximum, 311
maximum, 203
MaxNeighborIndices, 180, 181
MemCont, 162
MemExec, 162
MemTransfer, 162
mesh information, 72–74

ghost cell classification, 72
quality, 72–74

mesh quality, 72–74
MeshQuality, 16, 72, 73

Execute, 16
SetOutputFieldName, 73

MeshQuality.h, 16
MetaDataIsType, 332
metaprogramming, 149
method modifier, 121, 122, 131, 249
Min, 143, 203, 311
MinAndMax, 311
MinAngle, 73
MinDiagonal, 73
Minimum, 311
minimum, 203
MinNeighborIndices, 180, 181
Mode::Exclude, 86
Mode::None, 86
ModF, 203
modifier

control, 121, 122, 131, 249
execution, 121, 122, 131, 249

mouse rotation, 100
multi-block, 74–75

AMR arrays, 75

namespace, 120
detail, 121
internal, 121
vtkm, 31, 120, 121, 201, 209
vtkm::cont, 120, 121
vtkm::cont::arg, 369–371, 373
vtkm::cont::cuda, 121
vtkm::cont::tbb, 121
vtkm::exec, 120, 121, 255, 257, 382
vtkm::exec::arg, 375–377
vtkm::filter, 49, 121, 133, 189
vtkm::filter::clean grid, 50
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vtkm::filter::connected components, 51
vtkm::filter::contour, 52
vtkm::filter::density estimate, 56
vtkm::filter::entity extraction, 59
vtkm::filter::vector calculus, 190
vtkm::io, 29, 45, 46, 121
vtkm::opengl, 121
vtkm::rendering, 89, 121
vtkm::worklet, 121, 389

Nan, 203
natural logarithm, 203
NDEBUG, 104
near clip plane, 95
nearest grid point, 57–59
negative, 203
NegativeInfinity, 203
neighborhood worklet, 178–182

radius, 180
NewInstance, 286, 295
NewInstanceBasic, 286
NewInstanceFloatBasic, 286
Newton’s method, 206–208
NewtonsMethod, 206
NewtonsMethod.h, 206
NewtonsMethodResult, 207
None, 27
NORMAL, 61
Normal, 72, 205
Normalize, 205
normals, 78–79

auto orient, 78
consistency, 78
flip, 78

not a number, 203
NotEqual, 310
NotZeroInitialized, 310
NUM COMPONENTS, 147
NUM POINTS, 211
NumericTag, 145

Oddy, 73
Off, 125, 162, 293
On, 125, 126, 236
OpenGL, 98–99, 121
opengl namespace, 121
OpenMP, 9, 107
OperationOnEmptyCell, 159
output index, 260
OutputIndex, 169, 172, 175, 178, 179, 184, 260
OutputMode, 64

packages, 120–121
Paint, 17, 91, 99
Pair, 86, 155, 225, 227
Pan, 94, 97, 100
ParameterGet, 366

parametric coordinates, 212–213
ParametricCoordinates.h, 212
ParametricCoordinatesCenter, 212
ParametricCoordinatesPoint, 212
ParametricCoordinatesToWorldCoordinates, 213
ParseExtraArguments, 356
Particle, 82–84
particle density, 57–59

cloud in cell, 58–59
nearest grid point, 57–58

ParticleDensityCloudInCell, 58
GetActiveFieldName, 58
GetBounds, 59
GetComputeNumberDensity, 58
GetDimension, 59
GetDivideByVolume, 58
GetOrigin, 59
GetSpacing, 59
SetActiveField, 58
SetBounds, 59
SetComputeNumberDensity, 58
SetDimension, 59
SetDivideByVolume, 58
SetOrigin, 59
SetSpacing, 59

ParticleDensityNearestGridPoint, 57
GetActiveFieldName, 57
GetBounds, 58
GetComputeNumberDensity, 58
GetDimension, 58
GetDivideByVolume, 57
GetOrigin, 58
GetSpacing, 58
SetActiveField, 57
SetBounds, 58
SetComputeNumberDensity, 58
SetDimension, 58
SetDivideByVolume, 57
SetOrigin, 58
SetSpacing, 58

partitioned data set, 41–43
PartitionedDataSet, 29, 41, 42, 49, 74, 75, 134, 189

AppendPartition, 41
AppendPartitions, 42
GetField, 42
GetNumberOfPartitions, 41
GetPartition, 41
GetPartitions, 41
InsertPartition, 42
ReplacePartition, 42

Pathline, 83
SetNextDataSet, 84
SetNextTime, 84
SetNumberOfSteps, 84
SetPreviousTime, 84
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SetSeeds, 84
Pathlines

SetStepSize, 84
pathlines, 83–84
Perf, 162
permutation cell set, 38–39
permuted array handle, 223–225
pervasive parallelism, 119
Pi, 203
Pi 2, 203
Pi 3, 203
Pi 4, 203
pinhole camera, 95
PIXEL 16, 47
PIXEL 8, 47
PixelDepth, 47

PIXEL 16, 47
PIXEL 8, 47

Plane, 113
SetNormal, 113
SetOrigin, 113

plane, 113
Point, 245
point, 36, 214
point average, 63
point elevation, 66–67
point gradients, 77–78
point locator, 253, 256–258

sparse grid, 256
point neighborhood worklet, 167, 178–182
point transform, 67–68
PointAverage, 63

SetOutputFieldName, 63
PointCount, 172
PointElevation, 66

SetHighPoint, 66
SetLowPoint, 66
SetOutputFieldName, 66
SetRange, 66

PointIndices, 172, 215, 216
PointLocator, 256, 257

FindNearestNeighbor, 257
GetCoordinates, 256
SetCoordinates, 256
Update, 256

PointLocatorSparseGrid, 257
SetNumberOfBins, 257
SetRange, 257

PointTransform, 67
GetChangeCoordinateSystem, 67
SetChangeCoordinateSystem, 67
SetOutputFieldName, 67
SetRotation, 67
SetRotationX, 67
SetRotationY, 67

SetRotationZ, 67
SetScale, 67
SetTransform, 67
SetTranslation, 67

poly line, 32, 38, 210
polygon, 32, 38, 210
Pow, 203
power, 203
predicates and operators, 309–312

binary operators, 311
binary predicates, 310–311
creating custom comparators, 312
unary predicates, 310

PrepareForExecution, 169, 172, 174, 177, 179, 184, 249
PrepareForInPlace, 124, 238, 372, 373
PrepareForInput, 124, 238, 249, 371, 372
PrepareForOutput, 124, 127, 238, 372, 373
PrintSummary, 296
Product, 311
pseudocolor, 101
pyramid, 32, 38, 210

quadratic roots, 204
QuadraticRoots, 204
quadrilateral, 32, 38, 210

RaiseError, 159, 199, 306
random bits array, 220–221
Range, xxii, 41, 42, 94, 143, 144, 237

Center, 143
Contains, 143
Include, 143
IsNonEmpty, 143
Length, 143
Max, 143
Min, 143
Union, 143

range
array, 237
field, 41

RCbrt, 204
read file, 15–16, 45–46
ReadDataSet, 16, 45, 46
ReadPointerDevice, 331
ReadPointerHost, 331
ReadPortal, 124, 235, 236
ReadPortalType, 235, 238, 325, 329, 334
Ready, 112
reciprocal cube root, 204
reciprocal square root, 204
rectilinear grid, 30
rectilinear point coordinates array handle, 226–227
Reduce, 302, 303
reduce, 302
reduce by key, 303
reduce by key worklet, 167, 182–187, 269
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ReduceByKey, 303
ReduceByKeyLookup, 372
ReducedValuesIn, 183
ReducedValuesInOut, 183
ReducedValuesOut, 183
regular grid, 30
RelativeSizeSquared, 74
Release, 9
ReleaseDeviceResources, 332
ReleaseResources, 123, 127
ReleaseResourcesExecution, 123, 296
Remainder, 204
remainder, 202, 204
RemainderQuotient, 204
RemoveAllGhost, 61
RemoveByType, 61
rendering, 16–17, 89–102

actor, 89
camera, 93–98

2D, 94–95
3D, 95–98
azimuth, 95
clipping range, 95
elevation, 95
far clip plane, 95
field of view, 95
focal point, 95
look at, 95
mouse, 99–101
near clip plane, 95
pan, 94, 97
position, 95
reset, 98
up, 95
view range, 94
view up, 95
zoom, 95, 97–98

canvas, 90
color tables, 101–102

default, 102
interactive, 98–101
mapper, 90–93
OpenGL, 98–99
scene, 89
view, 91–92

rendering namespace, 89, 121
ReplacePartition, 42
ReportAllocationFailure, 109
ReportBadDeviceFailure, 110
RequireDevice, 27
Reset, 109, 112
ResetCellSetList, 298
ResetDevice, 109
ResetToBounds, 98
ResetTypes, 290, 291

ResizeBuffers, 325, 334
RGB, 64, 65
RGBA, 65
RMagnitude, 205
Roll, 97
Round, 204
round down, see floor
round up, see ceiling
row, 206
RSqrt, 204
runtime device tracker, 109–110

getting, 109
scoped, 110

RuntimeDeviceConfigReturnCode, 356
RuntimeDeviceConfiguration, 355, 357, 358

GetDevice, 355
GetDeviceInstance, 356
GetMaxDevices, 356
GetMaxThreads, 356
GetNumaRegions, 356
GetThreads, 356
InitializeSubsystem, 356
ParseExtraArguments, 356
SetDeviceInstance, 356
SetNumaRegions, 356
SetThreads, 355

RuntimeDeviceConfigurationBase, 355
Get*, 355
Initialize, 355, 356
Set*, 355

RuntimeDeviceConfigurationKokkos, 356
RuntimeDeviceInformation, 357, 358

GetRuntimeConfiguration, 358
RuntimeDeviceTracker, 109

CanRunOn, 109
DisableDevice, 109
ForceDevice, 109
ReportAllocationFailure, 109
ReportBadDeviceFailure, 110
Reset, 109
ResetDevice, 109

RuntimeDeviceTrackerMode, 110
Disable, 110
Enable, 110
Force, 110

SaveAs, 17, 92
Scalar, 64, 65
scalar, 68–69
ScaledJacobian, 74
scan

exclusive, 304
exclusive by key, 305
inclusive, 303
inclusive by key, 304

scan extend, 305
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ScanExclusive, 304–306
ScanExclusiveByKey, 305
ScanExtended, 305, 306
ScanInclusive, 303–306
ScanInclusiveByKey, 304
scatter, 259–263
scatter type, 260
ScatterCounting, 259, 261, 263, 266, 268, 273

GetOutputToInputMap, 268, 272
ScatterIdentity, 259
ScatterPermutation, 259, 262, 263
ScatterUniform, 259, 261, 266
Scene, 89, 98

AddActor, 89
GetSpatialBounds, 98

scene, 17, 89
Schedule, 306
schedule, 306
scoped device adapter, 110
ScopedRuntimeDeviceTracker, 110
serial, 107
Set, 233, 241, 325, 334
Set*, 355
SetActiveCoordinateSystem, 85
SetActiveField, 57, 58, 79, 80, 85
SetAdvectionTime, 81
SetAllInRange, 62
SetAutoOrientNormals, 78
SetAuxiliaryGridDimensions, 81
SetAxis, 114
SetBackground, 91
SetBounds, 58, 59, 115
SetCamera, 93
SetCapping, 71
SetCartesianToCylindrical, 64
SetCartesianToSpherical, 68
SetCellFieldName, 66
SetCellNormalsName, 78, 79
SetCellSet, 254
SetCenter, 113, 114
SetChangeCoordinateSystem, 67
SetClippingRange, 95
SetClipValue, 55
SetColorTable, 65
SetColumnMajorOrdering, 77
SetCompactPointFields, 50
SetCompactPoints, 59
SetComponent, 147
SetComponentToTest, 62
SetComponentToTestToAll, 62
SetComponentToTestToAny, 62
SetComputeDivergence, 77
SetComputeFastNormalsForStructured, 53, 54
SetComputeFastNormalsForUnstructured, 53, 54
SetComputeGradient, 77

SetComputeNumberDensity, 58
SetComputePointGradient, 77
SetComputeQCriterion, 77
SetComputeVorticity, 77
SetConfigurator, 254
SetConsistency, 78, 79
SetCoordinates, 254, 256
SetCylindricalToCartesian, 64
SetDensityL1, 254
SetDensityL2, 254
SetDeviceInstance, 356
SetDimension, 58, 59
SetDivergenceName, 77, 78
SetDivideByVolume, 57, 58
SetExtractBoundaryCells, 60
SetExtractInside, 60
SetExtractOnlyBoundaryCells, 60
SetFastMerge, 51
SetFeatureAngle, 70
SetFieldOfView, 95
SetFieldsToPass, 86
SetFlipNormals, 78, 79
SetFlowMapOutput, 81
SetForeground, 91
SetGenerateCellIds, 66
SetGenerateCellNormals, 78
SetGenerateNormals, 53, 54
SetGeneratePointIds, 66
SetGeneratePointNormals, 78
SetHighPoint, 66
SetImplicitFunction, 54, 56, 60
SetIncludeBoundary, 61
SetInvert, 62
SetInvertClip, 55, 56
SetIsoValue, 53
SetLogLevelName, 162
SetLookAt, 95
SetLowerThreshold, 62
SetLowPoint, 66
SetMappingComponent, 65
SetMappingMode, 65
SetMappingToComponent, 65
SetMappingToMagnitude, 65
SetMappingToScalar, 65
SetMaxLeafSize, 254
SetMaxPoint, 115
SetMergeDuplicatePoints, 53, 54
SetMergePoints, 51
SetMetaData, 332
SetMinPoint, 115
SetModeTo2D, 93
SetModeTo3D, 93
SetNextDataSet, 84
SetNextTime, 84
SetNormal, 113, 115
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SetNormalArrayName, 53, 54
SetNormalField, 69
SetNormalizeCellNormals, 78
SetNormals, 115
SetNumaRegions, 356
SetNumberOfBins, 57, 257
SetNumberOfBytes, 331
SetNumberOfDivisions, 72
SetNumberOfIsoValues, 53
SetNumberOfPlanes, 254
SetNumberOfSamplingPoints, 65
SetNumberOfSides, 71
SetNumberOfSteps, 81–84
SetOrigin, 58, 59, 113
SetOutputFieldName, 57, 63, 66, 67, 69, 73, 76–79, 81, 191
SetOutputMode, 65
SetOutputToRGB, 65
SetOutputToRGBA, 65
SetPassCoordinateSystems, 86
SetPassPolyData, 59
SetPixelDepth, 47
SetPlane, 115
SetPlanes, 115
SetPointFieldName, 46, 66
SetPointNormalsName, 78, 79
SetPosition, 95
SetPreviousTime, 84
SetPrimaryCoordinateSystem, 76
SetPrimaryField, 76
SetQCriterionName, 77, 78
SetRadius, 71, 113, 114
SetRange, 57, 66, 257
SetRate, 80
SetRemoveDegenerateCells, 51
SetRotation, 67
SetRotationX, 67
SetRotationY, 67
SetRotationZ, 67
SetRowMajorOrdering, 77
SetSampleRate, 61
SetScalarFactorField, 69
SetScale, 67
SetSecondaryCoordinateSystem, 76, 77
SetSecondaryField, 76
SetSeeds, 82–84
SetSpacing, 58, 59
SetSphericalToCartesian, 68
SetStderrLogLevel, 163
SetStepSize, 81–84
SetThreadName, 161
SetThreads, 355
SetThresholdAbove, 62
SetThresholdBelow, 62
SetThresholdBetween, 62
SetTolerance, 51

SetToleranceIsAbsolute, 51
SetTransform, 67
SetTranslation, 67
SetUpperThreshold, 62
SetUseAuxiliaryGrid, 81
SetUseCoordinateSystemAsField, 85
SetUseCoordinateSystemAsPrimaryField, 76
SetUseCoordinateSystemAsSecondaryField, 76, 77
SetUseFloat, 66
SetUseFlowMapOutput, 81
SetVectorField, 69
SetViewRange2D, 94
SetViewUp, 95
SetVOI, 61
SetVorticityName, 77, 78
Shape, 74
shape, 36, 209–212, 214

edge, 36, 214–216
face, 36, 214, 216–218
point, 36, 214

ShapeAndSize, 74
Shear, 74
signature, 130, 365

control, xv, xxi, xxviii, xxix, 129–130, 132, 168–170,
172–174, 176–180, 183–185, 241, 244, 245, 249,
257, 365, 369, 378, 379, 386–389, 393

tags, 378
execution, xv, xxi, xxviii, xxix, 129–131, 169, 172, 174,

177, 179, 180, 184, 260, 369, 378, 379, 386–388,
393

tags, 378–379
signature tags, 130

1, 130, 131, 169, 172, 174, 177, 179, 184, 379
2, 130, 131, 169, 172, 174, 177, 179, 184, 379

AtomicArrayInOut, xxv, 168, 171, 174, 177, 179, 184,
244

Boundary, 179, 180
Cell, 245
CellCount, 174
CellIndices, 174
CellSetIn, 131, 170, 171, 173, 176, 178
CellShape, 172, 177
ExecObject, xxv, 169, 172, 174, 177, 179, 184, 249,

253–255, 257
FieldIn, 130, 131, 168, 178, 389
FieldInCell, 171, 173
FieldInIncident, 176
FieldInNeighborhood, 178, 180
FieldInOut, 168, 171, 174, 176, 178
FieldInOutCell, 171
FieldInOutPoint, 173, 174
FieldInPoint, 171, 173
FieldInVisit, 176
FieldOut, 130, 168, 171, 173, 176, 178, 389
FieldOutCell, 171
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FieldOutPoint, 173
FieldPointIn, 130, 213, 214
IncidentElementCount, 177
IncidentElementIndices, 177
InputIndex, 169, 172, 175, 178, 179, 184, 260
KeysIn, 183, 185
OutputIndex, 169, 172, 175, 178, 179, 184, 260
Point, 245
PointCount, 172
PointIndices, 172, 215, 216
ReducedValuesIn, 183
ReducedValuesInOut, 183
ReducedValuesOut, 183
ThreadIndices, 169, 172, 175, 178, 179, 184
ValueCount, 184, 186
ValuesIn, 183, 184
ValuesInOut, 183
ValuesOut, 183
VisitIndex, 169, 172, 174, 177, 179, 184, 260, 261, 266
WholeArrayIn, xxiv, 168, 171, 174, 176, 178, 183, 241,

242
WholeArrayInOut, 168, 171, 174, 177, 179, 183, 241
WholeArrayOut, 168, 169, 171, 174, 177, 179, 183, 241
WholeCellSetIn, xxv, 169, 171, 174, 177, 179, 184, 245,

246, 270, 276
WorkIndex, 130, 131, 169, 172, 174, 175, 177–179, 184,

260, 377
SignBit, 204
Sin, 204
sine, 204
single type cell set, 37–38
SinH, 204
size t, 22
Skew, 74
Slice, 54

GetImplicitFunction, 54
SetImplicitFunction, 54

SolutionDidNotConverge, 158
SolveLinearSystem, 206
Sort, 306, 307
sort, 306

by key, 307
SortByKey, 307
SortGreater, 310
SortLess, 310
Sphere, 56, 113, 115

SetCenter, 113
SetRadius, 113

sphere, 113
spherical coordinate system transform, 68
SphericalCoordinateTransform, 68

SetCartesianToSpherical, 68
SetSphericalToCartesian, 68

split sharp edges, 70
SplitSharpEdges, 70

GetFeatureAngle, 70
SetFeatureAngle, 70

Sqrt, 204
square root, 204
Start, 111, 112
Started, 112
static assert, 104–105
StaticAssert.h, 104
StaticTransformCont, 366
StaticTransformType, 366
std::pair, 155
std::tuple, 155
std::vector, 125
Stop, 111, 112
Stopped, 112
Storage, xxvii, 324, 325, 329, 333, 334

CreateBuffers, 325, 334, 336
CreateReadPortal, 325, 334
CreateWritePortal, 325, 334
GetNumberOfValues, 325, 334
ReadPortalType, 325, 334
ResizeBuffers, 325, 334
WritePortalType, 325, 334

storage, 126–127, 313–337
adapting, 330–337
default, 313, 337
derived, 322–330
implicit, 314–316

StorageTag, 316, 318, 322, 329
StorageTagBasic, 127, 291, 314
StorageTagSOA, 314
StorageType, 329
Store, 375, 376, 379
stream compact, 300
stream tracing, 82–84
Streamline, 82

SetNumberOfSteps, 82
SetSeeds, 82
SetStepSize, 82

streamlines, 82
StreamSurface, 83

SetNumberOfSteps, 83
SetSeeds, 83
SetStepSize, 83

streamsurface, 83
Stretch, 74
Strict, 27
structure of arrays, 314
structured cell set, 36
Success, 158, 159, 255
Sum, 311
Superclass, 316, 318, 322, 329
supported types, 192
surface normals, 78–79

auto orient, 78
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consistency, 78
flip, 78

surface simplification, 72
SurfaceNormals, 78

Execute, 78
GetAutoOrientNormals, 78
GetCellNormalsName, 79
GetConsistency, 79
GetFlipNormals, 79
GetGenerateCellNormals, 78
GetGeneratePointNormals, 78
GetNormalizeCellNormals, 78
GetPointNormalsName, 79
SetAutoOrientNormals, 78
SetCellNormalsName, 78, 79
SetConsistency, 78, 79
SetFlipNormals, 78, 79
SetGenerateCellNormals, 78
SetGeneratePointNormals, 78
SetNormalizeCellNormals, 78
SetOutputFieldName, 78
SetPointNormalsName, 78, 79

swizzle array handle, 229
SyncControlArray, 124, 235, 337
Synchronize, 112
synchronize, 307

Tag, 210
tag, 144

cell shape, 209–211
device adapter, 107–108

provided, 107–108
dimensionality, 145
lists, 149–154
multiple components, 146
numeric, 145
shape, 209–211
single component, 146
static vector size, 146
topology element, 176
type lists, 149–150
type traits, 145–146
variable vector size, 146
vector traits, 146–148

Tan, 204
tangent, 204
TanH, 204
Taper, 74
TBB, 9, 107
tbb namespace, 121
template metaprogramming, 149
testing, 345–346

creating tests, 346
ctest, 345–346
without ctest, 346

Tetrahedralize, 71

tetrahedralize, 71
tetrahedron, 32, 38, 210
thread indices, 375, 384–386
thread name, 161
ThreadIndices, 169, 172, 175, 178, 179, 184
ThreadIndicesBasic, 385, 386

GetInputIndex, 375
GetOutputIndex, 375
GetVisitIndex, 375

ThreadIndicesTopologyMap, 385
Threshold, 61

GetAllInRange, 62
GetInvert, 62
GetLowerThreshold, 62
GetUpperThreshold, 62
SetAllInRange, 62
SetComponentToTest, 62
SetComponentToTestToAll, 62
SetComponentToTestToAny, 62
SetInvert, 62
SetLowerThreshold, 62
SetThresholdAbove, 62
SetThresholdBelow, 62
SetThresholdBetween, 62
SetUpperThreshold, 62

threshold, 61–62
Timer, xxi, 111, 112, 362

GetDevice, 112
GetElapsedTime, 111, 112
Ready, 112
Reset, 112
Start, 111, 112
Started, 112
Stop, 111, 112
Stopped, 112
Synchronize, 112

timer, 111–112, 362–363
Token, 238, 249, 320, 325, 331, 332, 334, 371
TOPOLOGICAL DIMENSIONS, 211
TopologicalDimensionsTag, 211
topology element tag, 176
topology map worklet, 167, 175–178
TopologyElementTag.h, 176
TopologyElementTagCell, 176, 245
TopologyElementTagEdge, 176
TopologyElementTagFace, 176
TopologyElementTagPoint, 176, 245
TrackballRotate, 100
traits, 144–148

type, 145–146
vector, 146–148

Transform, 157, 307
transform, 67–68, 307
transformed array, 316–318
Transport, xxviii, 371, 373
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ExecObjectType, 371, 373
transport, 371–374

atomic array, 372
bit field, 372
cell set, 372
execution object, 371
input array, 371
input array keyed values, 372
input/output array, 372
input/output array keyed values, 373
keys, 372
output array, 372
output array keyed values, 373
topology mapped field, 372
whole array input, 372
whole array input/output, 372
whole array output, 372

TransportTag, 378
TransportTagArrayIn, 371
TransportTagArrayInOut, 372
TransportTagArrayOut, 372
TransportTagAtomicArray, 372
TransportTagBitFieldIn, 372
TransportTagBitFieldInOut, 372
TransportTagCellSetIn, 372
TransportTagExecObject, 371
TransportTagKeyedValuesIn, 372
TransportTagKeyedValuesInOut, 373
TransportTagKeyedValuesOut, 373
TransportTagKeysIn, 372
TransportTagTopologyFieldIn, 372
TransportTagWholeArrayIn, 372
TransportTagWholeArrayInOut, 372
TransportTagWholeArrayOut, 372
transpose matrix, 206
triangle, 32, 38, 210
TriangleNormal, 205
Triangulate, 71
triangulate, 71
true type, 105
try execute, 349–350
TryExecute, 349
Tube, 71

SetCapping, 71
SetNumberOfSides, 71
SetRadius, 71

tube, 71
Tuple, 155, 158

Apply, 157, 158
ForEach, 156
Get, 155
Transform, 157

TupleElement, 155
TupleSize, 155
TwoPi, 204

type check, 369–371
array, 370
atomic array, 370
cell set, 370
execution object, 369, 370
keys, 370

type check bit field, 370
type lists, 149–150
type traits, 145–146
type traits, 105
TypeCheck, xxviii, 369, 370

value, 370
TypeCheckTag, 378
TypeCheckTagArrayIn, 370
TypeCheckTagArrayInOut, 370
TypeCheckTagArrayOut, 370
TypeCheckTagAtomicArray, 370
TypeCheckTagBitField, 370
TypeCheckTagCellSet, 370
TypeCheckTagCellSetStructured, 370
TypeCheckTagExecObject, 369, 370
TypeCheckTagKeys, 370
TypeList.h, 149, 150
TypeListAll, 150
TypeListCommon, 150
TypeListField, 150
TypeListFieldScalar, 150
TypeListFieldVec2, 150
TypeListFieldVec3, 150
TypeListFieldVec4, 150
TypeListId, 149
TypeListId2, 149
TypeListId3, 149
TypeListIdComponent, 150
TypeListIndex, 150
TypeListScalarAll, 150
TypeListVecAll, 150
TypeListVecCommon, 150
Types.h, 21, 121, 141, 150
TypeToString, 165
TypeTraits, xxii, 145, 300

DimensionalityTag, 145
NumericTag, 145
ZeroInitialization, 145, 300

TypeTraitsIntegerTag, 145
TypeTraitsRealTag, 145
TypeTraitsScalarTag, 145
TypeTraitsVectorTag, 145

UInt16, 22, 139
UInt32, 22, 139
UInt64, 22, 139, 221
UInt8, 22, 31, 61, 139
UncertainArrayHandle, 290

CastAndCall, 290, 291, 294
CastAndCallWithFloatFallback, 291
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ResetTypes, 290
UncertainArrayHandle.h, 291
UncertainCellSet, 298

CastAndCall, 298
ResetCellSetList, 298

UncertainCellSet.h, 298
uniform grid, 30
uniform point coordinates array handle, 225–226
Union, 143, 144
Unique, 308
unique, 308
Unit64, 220
unknown array handle, 285–294

allocation, 285
cast, 287–291

fallback, 291
const, 294
construct, 285
copy, 288–289
extract component, 292–294
query type, 287–288

unknown cell set, 295–298
cast, 296–298
query type, 296–297

UnknownArrayHandle, 154, 191, 285
Allocate, 286
AsArrayHandle, 287, 289
CanConvert, 287, 288
CastAndCallForTypes, 289–291
CastAndCallForTypesWithFloatFallback, 291, 292
CastAndCallWithExtractedArray, 294
CopyShallowIfPossible, 288
DeepCopyFrom, 288
ExtractArrayFromComponents, 293, 294
ExtractComponent, 292, 293
GetNumberOfValues, 285
GetStorageTypeName, 288
GetValueTypeName, 288
IsBaseComponentType, 292
IsStorageType, 288
IsType, 288
IsValueType, 288
NewInstance, 286
NewInstanceBasic, 286
NewInstanceFloatBasic, 286
ResetTypes, 290, 291

UnknownCellSet, 40, 295
AsCellSet, 296, 297
CanConvert, 296, 297
CastAndCallForTypes, 297, 298
DeepCopyFrom, 295
GetCellPointIds, 295
GetCellSetBase, 295
GetCellSetName, 295, 296
GetCellShape, 295

GetNumberOfCells, 295
GetNumberOfPoints, 295
GetNumberOfPointsInCell, 295
IsType, 296, 297
IsValid, 295
NewInstance, 295
PrintSummary, 296
ReleaseResourcesExecution, 296
ResetCellSetList, 298

unstructured grid, 31
Update, 254, 256
upper bounds, 308
UpperBounds, 308
UserFirst, 162
UserLast, 162
UserVerboseFirst, 162
UserVerboseLast, 162

Value, 113
value, 370
ValueCount, 184, 186
ValuesIn, 183, 184
ValuesInOut, 183
ValuesOut, 183
ValueType, 228, 229, 233, 316, 318, 322, 329
Vec, xxii, xxiv, 135, 139–141, 144, 146, 147, 150, 180, 189,

191, 204–207, 212–214, 222, 227–229, 231, 237,
291–293, 311, 314, 369, 370

CopyInto, 141
Vec-like, 141–142, 146
Vec2f, 22, 140
Vec2f 32, 140
Vec2f 64, 140
Vec2i, 23, 140
Vec2i 16, 140
Vec2i 32, 140
Vec2i 64, 140
Vec2i 8, 140
Vec2ui, 23, 140
Vec2ui 16, 140
Vec2ui 32, 140
Vec2ui 64, 140
Vec2ui 8, 140
Vec3f, 22, 113, 115, 140, 286, 292
Vec3f 32, 22, 140
Vec3f 64, 22, 140
Vec3i, 23, 140
Vec3i 16, 140
Vec3i 32, 140
Vec3i 64, 140
Vec3i 8, 140
Vec3ui, 23, 140
Vec3ui 16, 140
Vec3ui 32, 140
Vec3ui 64, 140
Vec3ui 8, 64, 140
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Vec4f, 22, 140
Vec4f 32, 140
Vec4f 64, 140
Vec4i, 23, 140
Vec4i 16, 140
Vec4i 32, 140
Vec4i 64, 140
Vec4i 8, 140
Vec4ui, 23, 140
Vec4ui 16, 140
Vec4ui 32, 140
Vec4ui 64, 140
Vec4ui 8, 23, 65, 140
Vec¡Uint32, 1¿, 220
VecC, 141, 142
VecCConst, xxii, 141, 142
VecFromPortal, 142
VecFromPortalPermute, 142
VecRectilinearPointCoordinates, 142
vector, 69–70, 125
vector analysis, 75–79, 204–205

cross product, 75–76
dot product, 76–77
gradients, 77–78
surface normals, 78–79
vector magnitude, 79

vector magnitude, 79
vector traits, 146–148
vector calculus namespace, 190
VectorAnalysis.h, 204
VectorMagnitude, 79

SetActiveField, 79
SetOutputFieldName, 79

VecTraits, xxii, 146, 147
ComponentType, 146
CopyInto, 147
GetComponent, 147
GetNumberOfComponents, 147
HasMultipleComponents, 146
IsSizeStatic, 146
NUM COMPONENTS, 147
SetComponent, 147

VecTraitsTagMultipleComponents, 146
VecTraitsTagSingleComponent, 146
VecTraitsTagSizeStatic, 146
VecTraitsTagSizeVariable, 146
VecVariable, xxii, 142
version, 25–26

CMake, 25
macro, 25–26

Version.h, 25, 26
vertex, 32, 38, 210
vertex clustering, 72
VertexClustering, 72

GetNumberOfDimensions, 72

SetNumberOfDivisions, 72
View, 91, 93, 98

GetCamera, 93
Paint, 17, 91, 99
SaveAs, 17, 92
SetBackground, 91
SetCamera, 93
SetForeground, 91

view, 17, 91–92
view array handle, 220
view up, 95
View2D, 91
View3D, 91
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