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Abstract—Electrochemistry workflows utilize various instru-
ments and computing systems to execute workflows consisting
of electrocatalyst synthesis, testing and evaluation tasks. The
heterogeneity of the software and hardware of these ecosystems
makes it challenging to orchestrate a complete workflow from
production to characterization by automating its tasks. We
propose an autonomous electrochemistry computing platform
for a multi-site ecosystem that provides the services for re-
mote experiment steering, real-time measurement transfer, and
AI/ML-driven analytics. We describe the integration of a mobile
robot and synthesis workstation into the ecosystem by developing
custom hub-networks and software modules to support remote
operations over the ecosystem’s wireless and wired networks.
We describe a workflow task for generating I-V voltammetry
measurements using a potentiostat, and a machine learning
framework to ensure their normality by detecting abnormal
conditions such as disconnected electrodes. We study a number of
machine learning methods for the underlying detection problem,
including smooth, non-smooth, structural and statistical methods,
and their fusers. We present experimental results to illustrate the
effectiveness of this platform, and also validate the proposed ML
method by deriving its rigorous generalization equations.

Index Terms—instrument-computing ecosystem, autonomous
chemistry, machine learning, electrochemical workflow, cyclic
voltammetry.

I. INTRODUCTION

Instrument-computing ecosystems (ICE) that support Arti-
ficial Intelligence (AI)-automated experiments and computa-
tions are increasingly being deployed to improve scientific
productivity in various science applications, including discov-
ery of new materials, synthesis and characterization of new
organic and inorganic compounds, and design and study of
electrocatalysts and battery materials [1]–[4]. For chemistry
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applications of synthesis and characterization of compounds,
ICE examples include Materials Innovation Factory, University
of Liverpool [5], the Autonomous Lab (A-Lab), Lawrence
Berkeley National Laboratory (LBNL) [6], and the Matter
Lab, University of Toronto [7]. Several ICE workflows require
significant computing and data resources [8], [9] to implement
the services for remote controlling of physical instruments,
real-time measurement streaming across facilities, and custom
code execution on specialized computing platforms, all as part
of AI-driven orchestration for multiple rounds of experiments.

A testing workstation of electrochemistry ICE consisting of
a flow reactor connected to a mass flow controller, syringe
pump, peristaltic pump, fraction collector, and potentiostat
has been previously developed for orchestrating remote ex-
periments and analytics using real-time streaming of measure-
ments [1]. It also provides a machine learning (ML) method to
check the normality of potentiostat measurements [10] using
an adhoc method designed for two classes.

In this paper, we propose a complete electrochemistry com-
puting platform for a multi-site ICE that integrates synthesis
instrumentation and delivery mobile robot, and supports real-
time measurement transfer and sophisticated ML-driven ana-
lytics. It enables workflows spanning the synthesis of electro-
catalysts, their real-time testing on multiple heterogeneous in-
struments, and ML computations on systems dispersed across
multiple facilities. We describe an ICE implementation by
integrating a synthesis workstation that automates compound
preparation of a catalyst and a mobile robot that delivers
the catalyst in a vial to the fraction collector, which requires
two different networking and software eSolutions. We design
separate custom hub-networks to connect these instruments
to a gateway computer, and develop software modules to
integrate them into ICE. The Kuka mobile robot is integrated
over a dedicated wireless network using a media converter.
The Chemspeed SwingXL synthesis workstation is integrated
over a wired Ethernet hub-network using its custom software.

For a successful execution of an automated electrochemistry
workflow lasting for days to weeks, it is critical to ensure
that accurate I-V voltammetric measurements are collected by
the potentiostat connected to the flow reactor via electrodes.
By utilizing a “normal” shape of I-V voltammogram profile
indicated by Cyclic Voltammetry (CV) electrochemistry tech-



nique, we develop a custom ML method to detect normal
and abnormal conditions such as electrode or instrument
disconnection and related failures1. This ML method utilizes
I-V measurements collected under normal and other conditions
for training composed of two steps: (i) feature estimation: the
Gaussian process regression (GPR) method is used to extract
a 10-d feature from I-V measurements, and (ii) classification:
the extracted features are used by a classifier to determine the
normality. The underlying normality checking is a complex
task since I-V measurements sets have a varying number
points in hundreds, which makes a direct application of known
ML methods impractical, and our method addresses it by
reducing them to fixed size 10-d feature vectors. Furthermore,
there is no single best classification method that uses finite
samples [11] as a consequence of mostly unknown measure-
ment and sensing error distributions of the potentiostat. In
response, we systematically study a variety of ML methods,
including smooth, non-smooth, structural and statistical, and
their fusers that combine their strengths. Then, we identify a
fused-classifiers method based on experimental and analytical
performance analysis. Specifically, for both regression-based
feature estimation and subsequent classification, we derive
the generalization equations that establish their effectiveness
beyond the training performance [12].

We present experimental results illustrating the effectiveness
of the ecosystem integration tasks and the normality detection
method. The synthesis operation is activated from the gateway
computer to demonstrate the task of preparing a vial of
electrochemical compound for the robot pickup. The Kuka
robot is activated from the gateway computer to deliver the
vial from the synthesis workstation to the fraction collector
located across the laboratory room. The proposed ML method
is assessed using measurements collected under four different
conditions, and is shown to correctly determine normal and
abnormal conditions.

The organization of this paper is as follows. Related works
are briefly presented in Section II. The autonomous chem-
istry laboratory and electrochemistry workflows are briefly
described in Section III. The ML framework is presented in
Section IV. The study of multiple classifiers and their fusers
is presented in Section V. Conclusions and future research
directions are described in Section VI.

II. RELATED WORK

The A-Lab [6] is reported to develop inorganic solid-state
materials by automating various hardware and software plat-
forms of robots, incorporating chemistry instruments and soft-
ware tools utilized for different analyses. The Matter Lab [7]
at The University of Toronto is also developing self-driving
chemistry experiments using multiple pieces of equipment for
synthesis and characterization. In addition, MIF [5] at the
University of Liverpool is also another self-driving laboratory

1A demonstration of a limited version of such capability is presented as a
poster [10] using an adhoc ML method, and this paper presents a systematic
study of a variety of ML methods (since no single best method exists) to
develop a fused-classifiers method with rigorous performance guarantees.

to support automated chemistry and material experiments.
Besides these main contributions, other related works explain
experiment automation via customizable workflows with Lab-
view [13], [14], local experiment control [15], [16], experiment
orchestration using specific software control –as in case with
ChemOS [17], or distributed framework [18]. However, these
solutions generally have limited software and network design
capabilities to support real-time and autonomous orchestra-
tion of chemistry experiments across multi-site ecosystems.
Another related contribution is the hardware platform in [19],
which automates electrochemical flow reactions with special-
ized electrochemistry instruments using a directly connected
control system. This platform is mainly designed to steer the
electrochemistry experiments locally with limited workflow
orchestration and computing capabilities, and it does not sup-
port the remote orchestration of the electrochemistry setup and
the analytics on high-performance remote computing systems
as our proposed platform does. Our platform considers au-
tonomous electrochemistry workflow from synthesis produc-
tion (conducted on SwingXL) to reaction testing (performed
on the electrochemistry testing workstation), where the catalyst
is transferred between these workstations via Kuka robotic
platform.

Emerland Cloud Lab [20] is a mature cloud-based commer-
cial project for science research and development in multiple
areas, including chemistry, biotech, pharmaceutical, and ma-
terials research. It includes a variety of science instruments
autonomously orchestrated by the vendor software API that
also orchestrate the compute services deployed over the cloud.
Although there is no clear perception of how the lab ecosystem
is designed, our proposed electrochemistry ecosystem encom-
passes multiple facilities of instruments and HPC systems
located at different facility domains, which requires a notional
software and hardware design for integrating instrument and
computing systems and support autonomous electrochemistry
workflows across multiple facilities.

Current workflow frameworks (such as Pegasus, Merlin,
Fireworks, and ExaWorks) and interconnected compute ser-
vices platforms (such as Globus Compute [21], [22]), are
mainly concerned with managing interconnected computa-
tional tasks over a distributed computing environment, wherein
the data involved in these tasks are presumed to be in-situ
offloaded or generally integrated as part of the workflows [23]–
[26]. They prescribe the mapping of compute and data services
across computing nodes and the potential decisions made after
the execution of certain tasks. However, these workflow frame-
works have not fully addressed the real-time and autonomous
orchestration requirements of science experiment steering with
instrument control and computations over ICE.

Such combined capabilities have been addressed in the
proposed contribution in this paper, as well as in our previous
work that enables autonomous orchestration of instrument
control and data transfer and real-time analytics at HPC
systems [1], [2]. This is achieved through addressing soft-
ware and network infrastructure design requirements across
instrument-computing ecosystems with multiple facilities [27]
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Fig. 1: ORNL Electrochemistry ecosystem consists of instruments and computing facilities connected over networks.

Fig. 2: ACL facility map generated by Kuka robot using its
LiDAR range sensor system, which is used for navigation.

to steer experiments and support real-time AI-driven analytics
remotely, example illustrated in [10]. However, the proposed
platform integrate new capabilities into the electrochemistry
ICE – for synthesizing the catalyst and transferring it across
the facility– and more fine-tuned ML for CV experiments
carried out across multi-facility ecosystems, which has not
been presented previously.

III. ELECTROCHEMISTRY ICE AND WORKFLOWS

The autonomous electrochemistry experiments require real-
time remote orchestration of workflows across the Oak Ridge
National Laboratory (ORNL) ecosystem shown in Fig. 1. The
electrochemical testing workstation portion of the ecosystem
with a limited normality detection capability was described
in [1], [10]. In this paper, we describe the complete ICE
augmented with a synthesis workstation, Kuka mobile robot,
and a comprehensive ML pipeline for real-time normality
detection under different testing experiment failures modes.

A. Cross-Facility Electrochemistry Ecosystem

The ORNL ICE spans computing and instrument platforms
deployed at two facilities that are connected to distinct network
domains, as shown in Fig. 1.

1) Autonomous Chemistry Laboratory: The Autonomous
Chemistry Laboratory (ACL) at ORNL supports R&D in the
synthesis and testing of organic and inorganic compounds in
liquid or solid state. It is utilized to investigate testing of cat-
alyst compounds by utilizing multiple specialized instruments
and robotic workstations. The SwingXL Robotic synthesis
workstation (from Chemspeed) is a recent addition that enables
the preparation of liquid catalyst solutions with prescribed
automated composition. The prepared vial is positioned to
be picked up by Kuka mobile robot, which transfers it to
the testing workstation along the pre-trained path depicted
in Fig. 2. The figure illustrates a 2D scan of ACL taken
by the Kuka on-board LiDAR (Light Detection and Ranging)
sensors, which is used as a map of the workspace. The ACL
workplace includes numbered locations, called nodes, which
the Kuka mobile platform navigates to while following the
arrows, called edges. The blue route shows the path the mobile
platform takes from its home location (1) to the SwingXL
pick up location (4). The red route shows the path from the
SwingXL to the electrochemistry testing workstation (ECTW)
(6), and the green route shows the path back to home (1).

The robot training and calibration on the selected path
is programmed, and its actions are triggered from a remote
computing system. These steps include moving from the home
position towards SwingXL to pick the vial with synthesized
liquid compound, and place it at the prescribed location
on the faction collector of at the electrochemistry testing
workstation. The testing workstation consists of specialized
chemistry instruments of a syringe pump, fraction collector,
and mass-flow controller, which together deliver a required
amount of liquid from the vial to the flow reactor. Then,
a potentiostat connected to the flow reactor via electrodes
collects the voltagram I-V measurements (described in detail
in the next section).
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Fig. 4: Electrochemistry workflow components

2) K200 Facility: This facility hosts high-performance
computing workstations and clusters, as well as storage and
server systems. For instance, it hosts Nvidia DGX workstations
with multiple GPU and CPU units, such as DGX-1 with
eight GPUs and twenty CPUs which is operated by Linux
Ubuntu 20.04LTS. The workflow proposed in this paper is
executed from DGX-1 over ORNL ecosystem to autonomously
orchestrate the workflow control and compute services.

B. Integration of SwingXL and Kuka Robot

The ACL platforms, SwingXL robotic synthesis worksta-
tion, Kuka mobile robot, and electrochemistry testing worksta-
tion, are locally controlled using specialized APIs embedded
in their control agents. They require integration solutions to
enable autonomous workflow control and real-time measure-
ment transfer and analytics on remote computing systems. We
integrate the electrochemistry platforms at ACL using custom
designed hub-networks connected to the back of ACL gateway
computer, which in turn is connected to ORNL network, as
shown in Fig. 3. The network channels are utilized to transfer

data and control messages over respective planes managed by
services and control agents.

The SwingXL system is integrated via a custom local
network connected to the back of ACL gateway computer.
We mounted the experiment file system at the control agent
using CIFS protocol on the gateway computer to be accessed
over the local network. The synthesis experiment at SwingXL
is triggered from the gateway computer by moving the ex-
periment configuration and metadata files into the experiment
directory at the control agent, which are predefined in the
workflow created by the Chemspeed control software.

Kuka robot, on the other hand, requires different software
and hardware integration design. It requires WiFi connection
which mandates ecosystem access over wireless infrastructure.
ORNL organization policy does not allow dual-homed wired
and wireless networks on Windows workstations, and thus
ACL gateway computer can not be connected to Kuka robot
and ORNL network at the same time. We overcome this
limitation by plugging a WiFi media converter extension to
Ethernet back end of the gateway computer. Thus, Kuka
wireless connection is converted into a wired connection at
the gateway. For software integration, Kuka uses Java API
embedded in the platform to program its functionalities, such
as platform movements inside ACL for catalyst transfer. Our
proposed workflow, however, does not support the Java front
end interface since it orchestrates the workflow tasks across
multiple instrument and compute systems using Python-based
Jupyter Notebook. Hence, we developed a cross-platform
solution to control Kuka steps programmed in Java from the
gateway system using socket network programming libraries
for implementing server-client modules. The back end socket
module is implemented using Java and deployed on Kuka
robot that runs as a server and wraps multiple methods
associated with Kuka movements around ACL as objects to be
accessed across the ecosystem network. The front end socket
modules are implemented in Python and deployed on the
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Fig. 5: I-V measurements under normal, and reference, working, counter disconnected experimental conditions.

remote computing system for calling the Java server objects.
Integration of the electrochemistry testing workstation to

test catalyst solution in the vial provided by SwingXL, is
described in our previous work [1]. The testing workstation
consists of specialized chemistry instruments of syringe pump,
fraction collector, and mass-flow controller, all connected to
a vendor control system (single-board computer) from J-
Kem, which is accessed to control the setup via remote
API developed by ORNL2. Briefly, the control commands of
instruments of J-Kem setup and Bio-Logic potentiostat are
wrapped as Pyro objects [28] at the control agent and accessed
by their peers of Pyro clients from DGX system at K200.
The Jupyter Notebook at DGX autonomously orchestrates
the remote experiment at the workstation, and transfers and
analyzes reaction profiles in real time. The profiles are made
available across the ecosystem via data plane service using
Common Internet File System (CIFS) protocol for cross-
mounting file systems.

C. Electrochemistry Workflow
An electrochemistry workflow may be orchestrated from a

remote computing system located at different facility across
the ecosystem, for instance, DGX at K200 shown in Fig. 1.
It is executed in real-time in steps: synthesizing the cata-
lyst at the SwingXL, transferring it by Kuka mobile robot,
testing the catalyst at the electrochemistry workstation, and
collecting and transferring results for analysis at the remote
computing system, as explained in Fig. 4. Prior to starting
the workflow, human-in-the-loop is required to examine the
operational status of ACL platforms and their instruments, as
well as ensuring the chemical compounds are available in the
SwingXL as needed to prepare the catalyst.

The workflow is initialized over the control plane via server-
client communication between the control agents at ACL and
remote computing systems by activating server modules (Step
1). Different communication protocols are utilized based on
the platform setup and instrument APIs. Pyro library is utilized
to communicate with the control agent of the electrochemistry
testing workstation, while socket library is utilized to commu-
nicate with Kuka robot across the ecosystem network.

ACL workstations are configured with experiment meta-
data to be interactively maintained as part of the workflow

2https://github.com/aneesalnajjar/electrochemistry

orchestrated from the remote systems (Step 2). The metadata
messages are conveyed using Pyro modules to configure the
electrochemical workstation, and socket modules to configure
Kuka moves. Configuring SwingXL is done by using a text
file that includes synthesis steps and the instruments’ actions
to control the catalyst process. The configuration file is sent
from the remote computer into a directory specified by the
ChemSpeed control software on the control agent. Meanwhile,
configuring the electrochemistry testing workstation includes
specifying the potentiostat firmware and the electrochemistry
technique binary files, metadata for configuring the firmware
and experiment technique, serial connection parameters be-
tween control agents and the instruments, as well as data plane
configurations related to file system mounts.

Thereafter, the workflow tasks are activated and orchestrated
from remote computing systems (Step 3). The step comprises
executing synthesis tasks at the SwingXL, including making
the catalyst, making a slurry with the catalyst, and depositing
and drying it. When the catalyst is ready, it is placed in a
holder at the SwingXL pickup location, whereupon the Kuka
robot picks it up and moves it across the lab –following
the steps shown in Fig. 2– to the electrochemistry testing
workstation. Then, the sample is placed at the fraction col-
lector, and the syringe pump spouts the liquid sample into
the flow reactor. Once pumping the liquid to the cell is
completed, the redox testing process at the cell is triggered,
and the measurements are made available at the remote system
across the ecosystem through for real-time analytics (Step 4).
After the oxidation/reduction cycling process is completed and
the profiles are successfully collected, science modules can
access the measurements and perform various domain-related
computations (Step 5). An example of such applications is
validating these profiles’ normality before advanced domain
computations. Finally, when all the scientific campaign tasks
are completed, the workflow is shut down by disconnecting the
Pyro and socket communication between the control agents
and remote computing systems that orchestrate the workflow
across ORNL ecosystem (Step 6).

While testing the synthesized catalyst at the electrochem-
istry testing workstation is orchestrated from the DGX system
at K200 (explained in [1]), other workflow tasks associated
with the synthesis and catalyst transfer using SwingXL and
Kuka robot platforms, respectively, are autonomously orches-
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Fig. 6: Electrochemistry testing workstation [1].

trated by a Jupyter notebook from the gateway system at ACL.

IV. ML FRAMEWORK FOR VOLATAMMETRY

The electrochemistry workflows are expected to be au-
tonomously executed for days to weeks, wherein I-V mea-
surements are repeatedly collected at the testing workstation
an shown in Fig. 6. Specifically, these I-V measurements are
collected by the potentiostat by sweeping the applied voltage
up and down while measuring the resultant current using
CV experiments. The data are then transferred and analyzed
remotely to identify the next composition of the catalyst to
be prepared in SwingXL, and thus drive the critical workflow
computations consisting of domain and AI codes. We now
describe a framework for ensuring the normality of these I-
V measurements by utilizing ML method that detects normal
conditions and abnormal conditions such as disconnected
electrodes.

A. Electrochemical Technique: Cyclic Voltammetry

The CV method used by the potentiostat results in a varying
number of individual data points during the I-V measurements
(typically in hundreds) but with a specific geometric shape;
while the shape can vary to some extent depending upon the
nature of the redox active ions being investigated, significant
deviations can occur that reflect abnormal conditions. Fig. 5
shows I-V profiles of a standard solution of the metal com-
plex ferrocene in acetonitrile, with the supporting electrolyte
salt tetrabutylammonium triflate at 0.1M concentration (more
details in [1]). The data are collected using a platinum working
and counter electrode, and a silver reference electrode. It
shows the normal I-V voltammogram profile (Fig. 5a), and
abnormal profiles due to disconnection of the electrodes,
namely, reference (Fig. 5b), working (Fig. 5c), or counter
(Fig. 5d). The profiles are analyzed in real-time at the remote
system once the reaction at the electrochemistry workstation
is completed.

B. Cyclic Voltammetry Dataset

The dataset is obtained by the CV technique using a
solution of the metal complex ferrocene in acetonitrile, with
the supporting electrolyte salt tetrabutylammonium triflate
at 0.1M concentration. The I-V measurements — including

Potential (V) and Current (I), as well as Timestamp (ms)— are
collected in multiple real-time experiments conducted by the
workflow explained in [1]. We collected 60 (I-V) profiles under
normal conditions and failures corresponding to disconnected
reference, working, and counter electrodes; they represent four
distinct CV experiment classes, as detailed in Table I. We
utilize these measurements to train different ML models and
assess their accuracy as described in next section.

TABLE I: CV Dataset Classes

Class ID Class Name Count
1 normal 14
2 reference 16
3 working 16
4 counter 14

C. Feature Analysis

The I-V measurements typically consist of a varying number
of points (typically in 100s) but with a clearly defined shape,
and we extract their 10-d signatures to be used as input to the
classifier. This 10-d feature vector is designed to capture the
I-V profile shape by fitting a continuous regression curve with
V and I (both normalized to range (0,1)) as independent and
dependent variables, respectively, and extracting 10 regression
points at chosen V-values. It is a 10-d vector with I-values
computed at fixed probe points in V-space by fitting a GPR
model to measurements. The GPR fits to I-V measurements
and corresponding feature vectors at probe voltages under
normal and abnormal conditions are shown in Fig. 7(a)-(d)
for four classes. The feature vectors extracted under four
conditions in Table I are used to train different classifiers,
as demonstrated in Sec. V for normality testing.

D. ML Framework Design

The ML framework to test the normality of I-V measure-
ments is illustrated in Fig. 8, which is an integral part of the
electrochemistry workflow services (described in Sec. III-C).
It consists of a pre-processing step for feature analysis, whose
results are utilized by the ML model that validates the nor-
mality of I-V measurements. Based on its output, the domain
computations are subsequently carried out using current I-
V measurements (if found normal), or an alert is generated
for the examination by a human operator (otherwise). This
ML framework expands the basic method in [10] that used
Ensemble of Trees (EOT) classifier trained with limited binary
normal and abnormal data sets; specifically, it incorporates
a fused-classifiers method that handles multiple classes (de-
scribed in Section V).

We utilize this ML framework to study different classifiers
and their accuracy to design an effective fused-classifiers
model integrated into the electrochemistry workflow.

V. ML CLASSIFIER DESIGN AND ANALYSIS

There is a wide variety of ML classification methods that
can be applied to I-V features described in the previous
section. Indeed, the abundance of various ML methods makes
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their selection particularly hard since the classifier theory indi-
cates that there is no single best method for finite samples [11].
Hence, we carry out a systematic study of a variety of them
as well as their fusers that combine the advantages of multiple
classifiers, and design a fused-classifiers solution based on the
performance on CV dataset and the generalization equations
that analytically characterize the performance beyond training.
Scikit-learn Python package is used for investigating various
ML classifiers using multiple performance metrics.

A. Multiple Classifiers

We study multiple classifiers: Extra Trees (ET), EOT, Gaus-
sian Naive Base (Gaussian NB), Decision Tree (DT), Logistic
Regression (LR), Support Vector Machine (SVM), and K-
Nearest Neighbors (KNN). They are chosen to represent the
diversity of ML classifier designs, namely, non-smooth (ET,
EOT and DT), smooth (SVM), statistical (NB and LR) and
structural (KNN).

We assess their performance by estimating the confusion
matrix, and the Receiver Operating Characteristic (ROC) curve
which is a plot of the detection rate as a function of false alarm
rate obtained by varying the classifier parameters. Estimates of
these two quantities are shown in Figs. 9 and 10, respectively,
under 5-fold cross-validation of CV dataset, which show
significant variations among the classifiers. These metrics are
succinctly summarized by the average accuracy and Area
Under ROC Curve (AUC), which are estimated in Table II.

The ET and EOT have the highest accuracy and others are
less than 85% accurate with the lowest 68% by KNN.

TABLE II: Classifiers performance to classify CV conditions

No. Model Accuracy(Avg.) AUC
1 ET 0.933 0.986
2 EOT 0.85 0.973
3 Gaussian NB 0.833 0.949
4 Decision Tree 0.783 0.836
5 Logistic Regression 0.717 0.86
6 SVM 0.717 0.817
7 KNN 0.683 0.898

B. Fusers of Multiple Classifiers

We consider a fused-classifiers method, referred to simply
as fuser, whose input is the outputs of its constituent classifiers
and output is the classification, as shown in Fig. 11. The fuser,
which itself is a classifier, is trained with an input matrix of
vectors of predicted classes of top five models and output of
class labels. The performance of top five fusers is shown in
Table III. Compared to single ML models, fusers generally
have higher accuracy, with 95% for EOT fuser. The confusion
matrix and ROC plots for EOT fuser in Fig. 12 shows only
three missed classes (Fig 12a), and has 0.97 AUC (Fig 12b).
The performance metrics of other four fused-classifiers with
5-fold cross-validation of the top five classifiers are shown in
Table III, which correspond to the confusion matrices (CM)
and ROC curves shown in Figs. 13 and 14, respectively.
The performance metrics still show improvements of fusers
compared with single classifiers shown in Figs. 9 and 10.

In addition to performance metrics, the fusers incorporate
advantages of different designs of their component classifiers,
and mitigate the over-fitting often found in single classifier
designs. Among the classifiers, ET has the highest accuracy
but has lowest when used as a fuser. On the other hand, EOT
has lower accuracy as a classifier but has the highest accuracy
as a fuser using others its classifiers. Based on these results,
we integrated the EOT fuser with the top five classifiers in
Table II into ML framework in Fig. 8.

C. ML Generalization Equations

The proposed ML method, consisting of regression-based
feature estimation and fused-classifiers detection, is analyti-
cally validated here. We derive the generalization equations

7
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(a) CM: Extra Tree
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(b) CM: EOT
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(c) CM: Gaussian NB
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(d) CM: Decision Tree
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(e) CM: Logistic Regression

normal reference working counter
Predictions

normal

reference

working

counter
Ac

tu
al

s

14 0 0 0

3 13 0 0

1 0 9 6

3 0 4 7

0

2

4

6

8

10

12

14

(f) CM: SVM
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(g) CM: KNN

Fig. 9: Confusion matrices of multiple classifiers for CV datasets.

TABLE III: Fuser classification performance for CV dataset

No. Fuzer Accuracy(Avg.) AUC
1 EOT 0.95 0.97
2 Decision Tree 0.95 0.96
3 Gaussian NB 0.933 0.929
4 Logistic Regression 0.867 0.95
5 ET 0.8 0.933

for the underlying regressions, classifiers and fusers, which
have the same underlying analytical formulation [29], [30]. In
each case, the size of data set used for estimation is l; for
GPR regression it corresponds to the number of individual
I-V measurements used for feature vector estimation, and
for classifiers and fusers it corresponds to total number of
normal and other I-V profiles used for training. Let X and
Y correspond to input and output of an estimator f whose
generalization error is

I(f) =

∫
L(Y, f(X))dPX,Y ,

where L(Y, f(X)) is the error of estimate of f(X) in
predicting Y . Here, X and Y are distributed according to
complex, (mostly) unknown distribution PX,Y that depends
on data, measurement and other errors. For feature estimation,
estimator fGPR correspond to regression function with X and
Y corresponding to V and I measurements respectively. For
classifier fC , X corresponds to 10-d feature vector and Y
is CV dataset class, and for fuser fF , X corresponds to the
vector of outputs of its classifiers for a 10-d vector and Y
corresponds to CV dataset class. The empirical error Î(f) is
a sample-based approximation of I(f) which is minimized by
estimator f̂ within ϵ̂. The generalization equation for f̂ is

Pl
X,Y

[
I(f̂)− I(f∗) > ϵ

]
< δ (ϵ, ϵ̂, l) ,

where f̂ is the GPR estimate or classifier/fuser, and f∗ is best
possible estimator that minimizes the expected error I(.). This
equation guarantees that the expected error of estimator f̂ is
within ϵ of optimal with confidence probability 1 − δ(.) that
depends on l and the training error ϵ̂ of f̂ . This performance
guarantee holds irrespective of and without requiring the
knowledge of PX,Y .

The generalization equations have been very useful in
establishing the solvability and assessing the performance of
ML methods [12], [31], and in our case establish that both
feature estimation and classification problems are solvable by
respective ML methods. For GPR, the confidence function

is δGPR = 8
(

32max(A,C)
ϵ

)2NK

e−ϵ2l/512, where NK is the
number of component Gaussian functions and A and C are
constraints that bound the estimators [32]. The confidence
function of classifier or fuser (such as EOT and ET) is
δC = 8g

(
1 + 256BNL

ϵ

)
e−ϵ2l/2048, where B is a bound and

NL is the number of leaves of estimator [32]; similar results
are derived for other classifiers and fusers using the bounded
total variation (details in [29]). Thus, these generalization
equations analytically justify the proposed ML method, since
their existence shows that the underlying problems are ML-
solvable [30].

VI. CONCLUSION AND FUTURE WORK

We presented an electrochemistry computing platform with
networking and software eSolutions for incorporating a chemi-
cal synthesis workstation and a delivery mobile robot into ICE
to support automated workflows. We described a workflow that
generates I-V measurements of an electrochemical solution in
the reactor cell connected to a potentiostat via electrodes. We
developed and deployed an ML framework as a part of this
workflow for ensuring that I-V measurements are consistent
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(b) ROC Curve: EOT
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(c) ROC Curve: Gaussian NB
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(e) ROC Curve: Logistic Regression

0.0 0.2 0.8 1.00.4 0.6 
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
u
e 

Po
si

ti
ve

 r
at

e

normal vs Others (AUC=0.82)
reference vs Others (AUC=0.96)
working vs Others (AUC=0.85)
counter vs Others (AUC=0.64)
micro-average ROC curve (AUC = 0.87)
macro-average ROC curve (AUC = 0.83)

(f) ROC Curve: SVM
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Fig. 10: ROC curves of multiple classifiers for CV datasets.
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(a) CM: EOT
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(b) ROC Curve: EOT

Fig. 12: EOT fuser performance analysis

with the data expected for a standard electrochemical cell
operating under normal conditions, and detect abnormal con-
ditions, such as disconnected electrodes. The ML framework
employs GPR-based feature estimation method, and a fused-

classifiers method that combines the benefits of a variety
of classifier methods. This method is justified by studying
a variety of ML classifiers using experimental datasets, and
deriving the generalization equations of feature estimation
and classification methods that ensure performance beyond
training.

There are several future research areas that can be pursued.
This work is primarily focused on ICE infrastructure develop-
ment, and it would be of interest to study the performance
and productivity in term of electrochemistry and scientific
productivity gains. The expansion of ML method to include
additional failures, including ones based on measurements
collected during the production and delivery of compounds,
will be of future interest. It would also be of interest to
derive more customized versions of the generalization equa-
tions by incorporating the detailed parameters derived from
electrochemistry considerations. Exploring the resilience and
fault tolerance of cross-facility electrochemistry workflows
and autonomous orchestration of electrochemistry worksta-
tions dispersed across different science facilities, are of future
interest.
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