

First β -delayed neutron spectroscopy of ^{24}O

S. Neupane,^{1, 2,*} N. Kitamura,^{1, 3} Z. Y. Xu,¹ R. Grzywacz,^{1, 4} S. J. Novario,⁵ J. Okołowicz,^{6, 7} M. Płoszajczak,⁷ B. S. Hu,^{8, 4} J. M. Allmond,⁴ A. Chester,⁹ J. M. Christie,¹ I. Cox,¹ J. Farr,¹ I. Fletcher,¹ J. Heideman,¹ D. Hoskins,¹ T. T. King,¹ A. Laminack,⁴ S. N. Liddick,^{9, 10} M. Madurga,¹ A. L. Richard,⁹ P. Shuai,^{1, 4} K. Siegl,¹ P. Wagenknecht,⁴ and R. Yokoyama¹

¹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

²Lawrence Livermore National Laboratory, Livermore, California 94551, USA

³Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198, Japan

⁴Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

⁵Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

⁶Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, PL-31342 Kraków, Poland

⁷Grand Accélérateur National d'Ions Lourds (GANIL),

CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex, France

⁸National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

⁹Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA

¹⁰Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

(Dated: September 10, 2024)

The β decay of ^{24}O was investigated at NSCL/MSU using a combination of neutron and γ -ray spectroscopy. For the first time, the β -delayed neutron energy spectrum of ^{24}O was measured, revealing three intensely populated, isolated neutron-unbound states in ^{24}F . This allowed for the extraction of the decay strength in ^{24}F up to 6.2 MeV. A comprehensive comparison of the experimental results with various nuclear theories was conducted, ranging from the empirical shell model to the most advanced ab initio calculations. While most theoretical predictions align with the experimental data for low-lying states, discrepancies arise at higher excitation energies. In the transition from ^{24}O to ^{24}F , shell model calculations using the empirical USDB interaction predicted the structure of both nuclei without invoking the need for a stronger proton-neutron tensor force, which was postulated for the neighboring isotope ^{25}F .

Introduction— Large proton-neutron asymmetry plays a pivotal role in altering the nuclear structure of unstable nuclei compared with their stable counterparts. Therefore, one of the prime focuses of the next generation of radioactive ion beam facilities is to characterize the structure evolution of the short-lived isotopes moving away from stability. Recent experimental efforts have revealed new phenomena in those exotic nuclei, such as the disappearance of conventional magic numbers and the emergence of new magic numbers [1, 2]. Another example is the peculiar behavior of the limits of nuclear binding. The neutron drip line in carbon ($Z = 6$), nitrogen ($Z = 7$), and oxygen ($Z = 8$) is experimentally known to be at $N = 16$. However, it rapidly extends to $N = 22$ for fluorine ($Z = 9$), and this sudden jump is referred to as the oxygen drip-line anomaly [3]. Furthermore, recent work by Tang *et al.* [4] indicated that the core of ^{25}F , a nucleus that is one proton away from ^{24}O , is significantly differs from the ^{24}O ground state. As such, neutron-rich oxygen and fluorine isotopes are expected to provide a critical benchmark to study the effects of the spin-isospin dependent interaction, three-body forces, and the coupling to the continuum, which, in turn, determine the location of the neutron drip line [5, 6]. While ^{24}O is known to be the last bound isotope of the $Z = 8$ isotopic chain [3], a wealth of recent measurements indicated a

spherical $N = 16$ shell closure originating from the large spin-orbit splitting between the neutron $d_{3/2}$ and $d_{5/2}$ orbitals [7–10]. Consequently, ^{24}O is established as a doubly-magic drip-line nucleus. The recent observation of the ^{28}O resonance, which decays to ^{24}O via four neutron emission, also emphasized the doubly-magic nature of ^{24}O [11].

The β decay of neutron-rich oxygen isotopes probes the transition to the corresponding fluorine isotopes. In particular, the decay of ^{24}O is expected to be simple; to first order, the allowed Gamow-Teller (GT) transitions can be described by transforming either a $d_{5/2}$ neutron to a $d_{5/2}$ proton, or a $s_{1/2}$ neutron to a $s_{1/2}$ proton. As a result, 1^+ states in ^{24}F with relatively pure configurations are populated, owing to the selectivity of the GT transition. Hence, decay studies of ^{24}O are uniquely suited to test nuclear models that aim to describe the nuclear structure approaching the neutron drip line and beyond. Due to the large β -decay Q -value (Q_β) of $10.97(19)$ MeV [12], the β decay of ^{24}O populates both bound and unbound states in ^{24}F , the latter lying above its neutron separation energy of $3.81(10)$ MeV [12], thus allowing for the β -delayed neutron emission. Neutron spectroscopy provides unique access to the neutron unbound states in the daughter, which are otherwise difficult to study by other means.

The β decay of ^{24}O was first studied by Mueller *et al.* [13], and they reported a half-life of 61^{+31}_{-19} ms and a neutron branching ratio of $58(12)\%$. A similar measure-

* neupane1@llnl.gov

73 ment, performed by Reed *et al.* [14], reported a half-life
 74 of 65(5) ms, which agrees within the uncertainty given
 75 in the earlier measurement, but indicated a significantly
 76 lower neutron branching ratio of 18(6) %. Later, Pe-
 77 nionzhkevich *et al.* [15] reported a similar half-life of
 78 67(10) ms and a neutron branching ratio of 12(8) %.
 79 However, the most recent measurement performed by
 80 Cáceres *et al.* [16] presented a slightly longer half-life of
 81 80(5) ms and again a higher neutron branching ratio of
 82 43(4) %.

83 The bound excited states at 521.5(3) and
 84 1831.6(5) keV in ^{24}F were first identified by Reed
 85 *et al.* [14] and this result was confirmed by Cáceres
 86 *et al.* [16]. Furthermore, Cáceres *et al.* performed
 87 a complementary measurement using in-beam γ -ray
 88 spectroscopy, and new excited states in ^{24}F at 2384(64),
 89 2739(14), 3639(22), and 3562(42) keV were proposed.
 90 However, states above the neutron threshold (S_n) have
 91 not yet been explored. By employing both γ -ray and
 92 neutron spectroscopy, we extend our knowledge of ^{24}F
 93 above S_n , providing more complete nuclear structure
 94 information of this neutron-rich isotope next to ^{24}O .

95 *Experiment*— In this Letter, we report on the first β -
 96 delayed neutron spectroscopy of ^{24}O . The experiment
 97 was performed at the National Superconducting Cy-
 98 clotron Laboratory at Michigan State University. A pri-
 99 mary beam of ^{48}Ca was accelerated to a kinetic energy
 100 of 140 MeV/nucleon using the Couple Cyclotron Facility
 101 [17] and directed onto an 846-mg/cm² thick beryllium
 102 target, producing a secondary cocktail beam by projectile
 103 fragmentation. The isotopes of interest were separated
 104 from all other reaction products and guided to the ex-
 105 perimental area using the A1900 fragment separator [18].
 106 The isotopes were identified on an event-by-event basis
 107 by measuring the time-of-flight between a plastic scintil-
 108 lator in the A1900 focal plane and a silicon PIN detector
 109 upstream of the experimental setup, as well as the energy
 110 loss in the PIN detector. In this separator setting, nuclei
 111 spanning from boron to aluminum near the neutron drip
 112 line were produced. The implantation rate for ^{24}O was
 113 approximately 6 particles per second, with a beam purity
 114 of around 1.1%.

115 The experimental setup includes a scintillator array for
 116 neutrons and germanium clovers for γ rays. At the heart
 117 of the setup is an implantation detector for identifying ion
 118 implantation and their subsequent β -decay events, which
 119 comprised of a 12 mm thick Yttrium Orthosilicate (YSO)
 120 detector [19], with an active surface area of 48×48 mm²
 121 and 24×24 pixels, allowing for the recording of energy
 122 and timing information of ion implantation and β -decay
 123 events for the ion implantation and corresponding decay
 124 event correlation.

125 The Versatile Array of Neutron Detectors at Low En-
 126 ergy (VANDLE) [20, 21] was used for the time-of-flight
 127 (TOF) measurements of β -delayed neutrons. A full ar-
 128 ray consisting of 48 plastic scintillator bars, resulting in a
 129 total neutron detection efficiency of 11% at 1 MeV, was
 130 placed at a distance of 105 cm measured between the

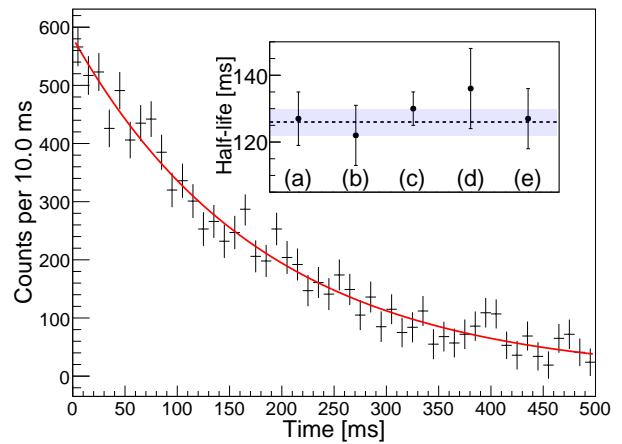


FIG. 1: Background-subtracted decay curve obtained by summing the gates on 521, 1309, 1830 keV γ -ray transitions in ^{24}F following the decay of ^{24}O . A half-life of 126(4) ms was obtained from the fit (red solid line). Inset shows the half-life extracted using different gating methods: (a) 521 keV γ ray, (b) 1309 keV γ ray, (c) 1830 keV γ ray, (d) neutrons, and (e) no gates. The half-life reported in this work is shown as the black dotted line with the light blue band.

131 center of the implantation detector and the front face of
 132 the bar. Three high-purity germanium clovers from the
 133 CLARION array [22] were installed on the other side of
 134 the setup for γ -ray detection. These detectors provided
 135 a total photopeak efficiency of 1.3% at 1 MeV.

136 *Analysis and Results*— Ion- β correlation was per-
 137 formed using the ^{24}O implantation and β -decay events
 138 measured in the YSO detector based on their spatial and
 139 timing information. In the present analysis, a radius of
 140 0.35 cm was used. The optimal correlation radius was de-
 141 termined to retain a high signal-to-background ratio [19].
 142 A background-subtracted γ -ray gated decay curve with
 143 a correlation time window of ± 500 ms is shown in Fig. 1.
 144 This decay curve was obtained by summing the individ-
 145 ual contributions from observed γ -ray transitions in ^{24}F
 146 following the decay of ^{24}O as shown in Fig. 2. The events
 147 contained within the negative correlation time were used
 148 to model the background originating from random β sig-
 149 nals associated with each implant. The negative corre-
 150 lation part of the decay curve is flipped around the time
 151 zero and then subtracted on a bin-by-bin basis to obtain
 152 a background-subtracted decay curve. A single exponen-
 153 tial fit yielded a half-life of 126(4) ms for the ^{24}O decay,
 154 which is significantly longer than the literature value of
 155 72(5) ms [23]. We also extracted half-lives using different
 156 gating methods: gating on individual γ -ray transitions,
 157 neutrons, and without any gates applied. The half-lives
 158 agree with each other within uncertainties, as shown in
 159 the inset of Fig. 1.

160 The β -delayed γ -ray spectrum of ^{24}O , with add-back
 161 enabled, is shown in Fig. 2. An ion- β correlation win-
 162 dow of ± 500 ms was chosen for optimized spectral qual-
 163 ity. The background spectrum was obtained by gating on
 164 events in the negative time window (before ion implan-
 165 tation) of the decay curve. The correlated spectrum was

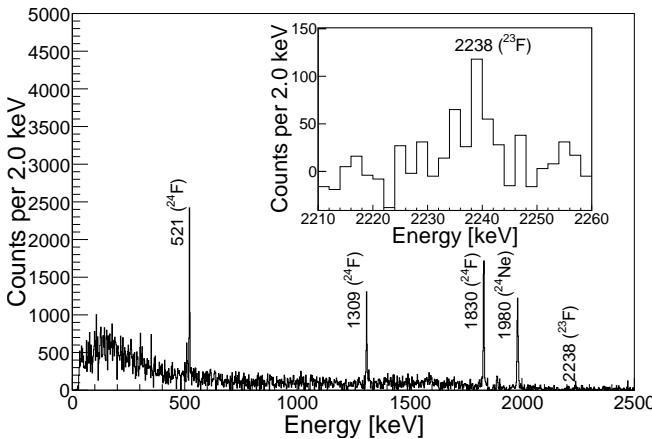


FIG. 2: Background-subtracted add-back γ -ray spectrum following the decay of ^{24}O occurring within 500 ms after implantation. The inset shows the spectrum zoomed around the 2238(4) keV γ ray.

166 then obtained by subtracting the background spectrum
 167 from the spectrum gated on the positive time window
 168 (after ion implantation) of the decay curve on a bin-by-
 169 bin basis. The same approach was used for the neutron
 170 TOF analysis. The γ -ray peaks at 521(1), 1309(1), and
 171 1830(2) keV, as reported in the previous β - γ measure-
 172 ments [14, 16], were clearly identified in the present spec-
 173 trum. These are attributed to two bound excited states in
 174 ^{24}F . From the γ - γ coincidence analysis, it was confirmed
 175 that the state at 1830 keV is predominantly populated
 176 in the β decay, and it deexcites by emitting a 1830 keV
 177 γ ray or via a cascade of 1309 and 521 keV γ rays. An
 178 intensity balance consideration placed the 1309 keV trans-
 179 sition on top of the 521 keV γ ray. The present measure-
 180 ment also confirms the very weak direct population of the
 181 521 keV state, and this is in line with the 2^+ assignment
 182 discussed in the previous works, as well as the ground-
 183 state spin-parity of 3^+ , made based on comparisons with
 184 shell-model calculations (see Refs. [14, 16] for details).

185 Figure 3 presents the background-subtracted β -delayed
 186 neutron TOF spectrum obtained for the ^{24}O decay
 187 within a correlation time window of ± 500 ms. Three
 188 well-separated neutron peaks, with energies ranging
 189 from 1.2 to 2.4 MeV, were observed in this spectrum.
 190 Since two-neutron emission is energetically prohibited
 191 ($S_{2n} = 11.39(10)$ MeV in ^{24}F is greater than $Q_\beta =$
 192 10.97(19) MeV of ^{24}O [12]), one-neutron emission from
 193 ^{24}F is the sole contributor to the spectrum. To deter-
 194 mine the energies of the neutron peaks and their number
 195 of counts, the neutron TOF spectrum was fitted with
 196 a combination of template detector response functions
 197 and an exponential background. The response functions
 198 were generated by Geant4 [24, 25] simulations that use
 199 the exact geometry of the detector system and validated
 200 by the three well-established, prominent neutron lines of
 201 β -delayed neutron emission from ^{17}N [26]. The fitting
 202 procedure is described in detail in Ref. [27]. The best

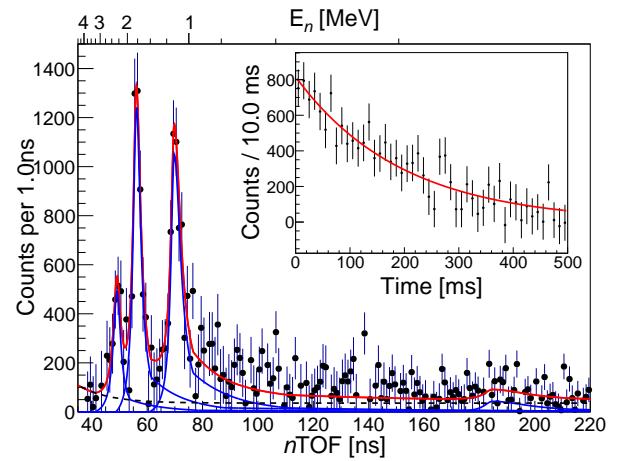


FIG. 3: Neutron singles TOF spectrum (black points) along with the analytical fitting function (red). The contribution from individual peaks is shown in blue, and the black dashed line represents the continuous background. The inset shows the neutron-gated decay curve.

TABLE I: β -feeding intensities (I_β) and $\log ft$ values for the GT states, and intensities of observed γ -ray transitions (I_γ) in ^{24}F . The states are labeled by their excitation energies (E_x) measured from the ground state.

E_x (keV)	I_β (%)	E_γ (keV)	I_γ (%)	$\log ft$
521(1)	-	521(1)	20(2)	-
1830(2)	62(11)	1830(2)	41(4)	4.3(1)
		1309(1)	19(2)	
5031(22)	11(2)	-	-	4.2(1)
5684(37)	11(2)	-	-	3.9(1)
6223(51)	8(2)	-	-	3.8(1)

203 fit is displayed in Fig. 3, and as tabulated in Table I,
 204 the level energies of neutron unbound states in ^{24}F were
 205 reconstructed by summing the energy carried by neu-
 206 tron emission after correcting for recoil effects and the
 207 neutron separation energy. The number of counts under
 208 each neutron peak was obtained from the fit and cor-
 209 rected using the energy-dependent efficiency curve to get
 210 the total number of neutrons feeding to the excited and
 211 ground states of ^{23}F . By normalizing the total number of
 212 neutrons feeding the excited and ground states of ^{23}F to
 213 the total number of β decays (N_β), a β -delayed neutron
 214 branching ratio of 30(5)% was obtained.

215 The three major neutron lines likely correspond to
 216 transitions that feed the ^{23}F ground state, considering
 217 their intensities. We note that, in the γ -ray analysis, the
 218 first excited state in ^{23}F was found to be populated with
 219 a weak feeding (see the inset of Fig. 2). We observed the
 220 same state populated in ^{23}F from the decay of ^{23}O in
 221 the present measurement. A neutron- γ ray cascade orig-
 222 inating from the 6223 keV state in ^{24}F would produce
 223 a neutron with a kinetic energy of around 170 keV, as
 224 depicted schematically in Fig. 4. The neutron spectrum
 225 hints at a small peak at ~ 185 ns; however, identifying
 226 such a neutron branch is challenging because of the lim-

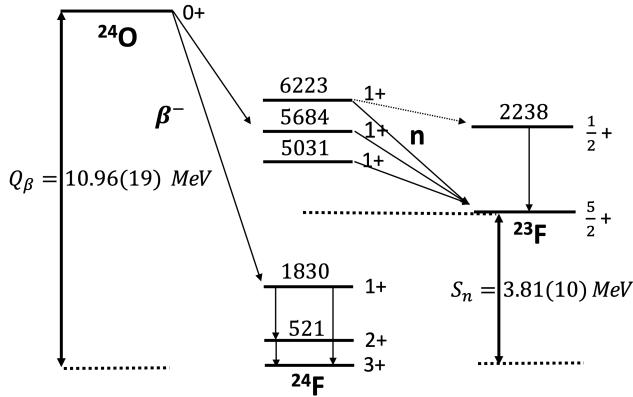


FIG. 4: Schematic illustration of the decay scheme of ^{24}O observed in the present experiment. Note that the vertical axis is not to scale, and level energies are in keV. The spin and parities of the bound states are adopted from Ref. [23, 28].

228 ited statistics and the detection threshold in the present
229 experiment, and it awaits future experimental verifica-
230 tion. Table I also summarizes β -feeding intensities (I_β)
231 for each state and intensities of observed γ rays (I_γ) in
232 ^{24}F obtained by normalizing the individual intensities to
233 N_β . It is noted that the contribution from feeding to
234 the 2238 keV state in ^{23}F was taken into account while
235 calculating I_β for the 6223 keV state in ^{24}F . Log ft val-
236 ues were calculated using the half-life, excitation ener-
237 gies, and branching ratios from the present work, along
238 with Q_β from Ref. [12]. The log ft values for the bound
239 1830 keV state and three neutron unbound states were
240 found to span from 3.8 to 4.3. This favors GT transi-
241 tions, leading to spin-parity assignments of 1^+ to these
242 states.

243 *Comparision with nuclear model calculations*— Based
244 on the experimental log ft values, the GT transition
245 strengths, $B(\text{GT})$, extending to neutron unbound states
246 in ^{24}F , were deduced for the first time. The experimental
247 level energies and strength distribution were then com-
248 pared with predictions made by various nuclear models.
249 To begin with, we performed shell-model calculations
250 with the USDB effective interaction [29]. This empir-
251 ical shell-model interaction, constructed within the sd -
252 shell model space, has been shown to give reliable pre-
253 dictions of nuclear properties in this mass region. To
254 benchmark ab initio nuclear models, calculations were
255 performed using two different approaches, the valence
256 space in-medium similarity renormalization group (VS-
257 IMSRG) [30, 31] and the coupled-cluster (CCSDT-3) [32]
258 method. In the VS-IMSRG calculations, the Hamilto-
259 nian was derived using the 1.8/2.0 (EM) interaction [33]
260 and diagonalized in the sd -shell model space. In the
261 CCSDT-3 calculations, the same 1.8/2.0 (EM) interac-
262 tion was used, but the diagonalization was performed
263 using the equation-of-motion method [34]. Effects aris-
264 ing from two-body currents [35] were taken into ac-
265 count when calculating $B(\text{GT})$ in both VS-IMSRG and

266 CCSDT-3. To study the roles played by the coupling
267 to the continuum, level energies and $B(\text{GT})$ were cal-
268 culated using the shell model embedded in the contin-
269 uum (SMEC) approach [36] with the monopole adjusted
270 WBP– interaction [37], supplemented by the Wigner-
271 Bartlett continuum-coupling interaction [38]. The results
272 of these theoretical predictions are displayed in Fig. 5, to-
273 gether with the experimental values.

274 All calculations consistently reproduce the bound-state
275 structure of ^{24}F . Guided by these results, the spin-parity
276 of the ground (first-excited) state is highly likely 3^+ (2^+).
277 The location of the first 1^+ state and its GT strength are
278 in good agreement with the predictions by these models.
279 However, discrepancies become more pronounced above
280 the neutron threshold. As such, the unbound 1^+ states
281 provide a critical testing ground for different theoreti-
282 cal models. The USDB calculations predict the location
283 of the unbound states remarkably well, although the GT
284 strengths to these states tend to be underestimated. The
285 ab initio calculations, VS-IMSRG and CCSDT-3, show
286 more concentrated strength distributions, which differ
287 from the experimental observation. One should note that
288 USDB and VS-IMSRG predicted a 1^+ state near the neu-
289 tron separation energy with a small GT strength. The
290 non-observation of this state in the experiment can be
291 attributed to the small β feeding. A low detection effi-
292 ciency for high-energy γ rays or the lack of sensitivity to
293 low-energy neutrons would provide an additional expla-
294 nation.

295 *Discussion*— The USDB shell-model interaction is
296 constructed relying on fit to experimental data, thus
297 making it an empirical model. During the fitting process,
298 evolving shell structures originating from spin-isospin-
299 dependent terms of NN interactions, as well as three-
300 body effects, are implicitly taken into account. It is
301 generally considered that this interaction is capable of
302 predicting properties of sd -shell nuclei, including unsta-
303 ble ones, apart from those near the $N = 20$ island of
304 inversion, where the fp -shell degree of freedom plays a
305 significant role.

306 Recently, this was questioned by Tang *et al.* [4]. Ac-
307 cording to this experimental work, a significant modifica-
308 tion to the USDB interaction, specifically, 3–4 MeV re-
309 duction in the $\nu d_{3/2}$ single particle energy (SPE), was re-
310 quired to reproduce the experimental data on one-proton
311 removal from ^{25}F that produces ^{24}O final states. This im-
312 plies that a much stronger proton-neutron tensor force
313 than that implemented in the original USDB is needed,
314 and it was proposed that such a constituent may be re-
315 sponsible for the oxygen dripline anomaly. However, our
316 finding indicates that such a change is not compatible
317 with the present experimental result, as evident in Fig. 6.
318 Reducing the $\nu d_{3/2}$ SPE in ^{24}F by 3 MeV resulted in a
319 more pronounced disagreement of the predicted excita-
320 tion energies and strength distribution with the exper-
321 iment. The quenched shell gap notably fails to predict
322 the position of the first 1^+ state in ^{24}F , signifying that
323 the strong proton-neutron tensor force is not necessary

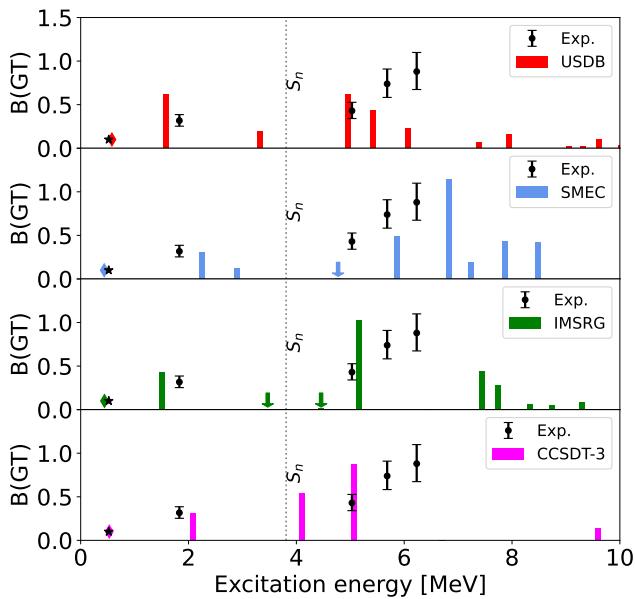


FIG. 5: GT transition strengths, $B(GT)$, associated with the observed 1^+ states in ^{24}F (black points), in comparison with various nuclear model calculations. Shell-model results using the empirical USDB interaction (first panel), predictions from the shell model embedded in the continuum (SMEC, second panel), and ab initio calculations using the valence space in-medium similarity renormalization group (VS-IMSRG, third panel) and the coupled-cluster method (CCSDT-3, fourth panel). The diamonds (star) represent the location of the theoretical (experimental) 2^+ states, and the down arrows point to the location of other 1^+ states around S_n with very small $B(GT)$.

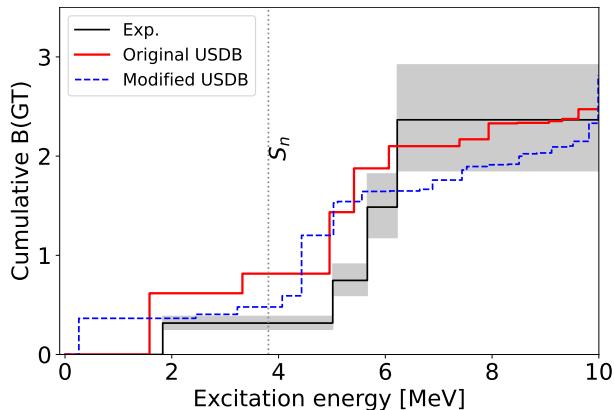


FIG. 6: Cumulative $B(GT)$ predictions using the USDB interaction with the $\nu d_{3/2}$ single particle energy in ^{24}F reduced by 3 MeV (blue dashed) compared to the original value of 2.11 MeV (red solid) and the experiment (black solid).

324 to describe these nuclei. The ^{24}O results obtained in the
325 present work are in stark contrast with the conclusions
326 in Ref. [4] for the $N = 16$ nucleus ^{25}F .

327 Furthermore, to address discrepancies between effec-
328 tive and ab initio calculations, we analyzed the wave

329 functions from both USDB and VS-IMSRG. For the first
330 1^+ state of ^{24}F , the two approaches yield similar occupa-
331 tion numbers for proton and neutron orbitals. However,
332 in the neutron-unbound 1^+ states with large $B(GT)$ val-
333 ues, VS-IMSRG predicts that the proton predominantly
334 occupies the $d_{5/2}$ orbital, while USDB shows a more frag-
335 mented distribution among the proton $d_{5/2}$, $s_{1/2}$, and
336 $d_{3/2}$ orbitals. The agreement with experimental data
337 suggests that, despite being phenomenological and data-
338 fitted, USDB includes the necessary interactions to in-
339 duce correlations in the proton wave functions in these
340 highly excited states. On the other hand, incorporat-
341 ing these strong collective correlations and/or continuum
342 coupling effects into ab initio calculations at high exci-
343 tation energies remains a significant challenge for future
344 development.

345 *Conclusion*— We have reported the first β -delayed
346 neutron spectroscopy of ^{24}O . Combining γ -ray and neu-
347 tron TOF measurements, we extracted β -decay strengths
348 extending to the neutron unbound states in ^{24}F . The new
349 experimental data allowed for comparisons with various
350 theoretical calculations. Shell-model calculations using
351 the standard USDB interaction produced a fairly good
352 overall agreement with the measurement, suggesting that
353 the transition from ^{24}O to ^{24}F can be described without
354 invoking dramatic changes to the shell structure, such as
355 the implementation of a much stronger proton-neutron
356 tensor force. The present data has provided important
357 tests of ab initio calculations using the VS-IMSRG and
358 coupled-cluster approaches. These calculations repro-
359 duce well the structure of ^{24}F around its ground state.
360 However, disagreements are more pronounced for the
361 neutron unbound states. This implies that predicting the
362 decay properties of the neutron-rich nucleus is not triv-
363 ial, and optimizations are still required. A more complete
364 description of the experimental finding and a better un-
365 derstanding of the underlying effects of nuclear structure
366 await further theoretical developments.

ACKNOWLEDGMENTS

367 This research was partly sponsored by the National
368 Nuclear Security Administration under the Stewardship
369 Science Academic Alliances program through DOE Co-
370 operative Agreements No. DE-NA0003899 and DE-
371 NA0004068. This material is based upon work supported
372 in part by the U.S. Department of Energy, Office of Sci-
373 ence, Office of Nuclear Physics under Contract No. DE-
374 FG02-96ER40983 (UTK), DE-SC0020451 (MSU), and
375 DE-AC05-00OR22725 (ORNL). This research was spon-
376 sored in part by the National Science Foundation un-
377 der the contract NSF-MRI-1919735. This work was also
378 supported by the National Nuclear Security Administra-
379 tion through the Nuclear Science and Security Consor-
380 tium under Award No. DE-NA0003180 and the Steward-
381 ship Science Academic Alliances program through DOE
382 Award No. DOE-DE-NA0003906.

[1] T. Otsuka, A. Gade, O. Sorlin, T. Suzuki, and Y. Utsuno, *Reviews of Modern Physics* **92**, 015002 (2020).

[2] O. Sorlin and M.-G. Porquet, *Progress in Particle and Nuclear Physics* **61**, 602 (2008).

[3] Y. Kondo, T. Nakamura, R. Tanaka, R. Minakata, S. Ogoshi, N. Orr, N. Achouri, T. Aumann, H. Baba, F. Delaunay, *et al.*, *Physical Review Letters* **116**, 102503 (2016).

[4] T. L. Tang, T. Uesaka, S. Kawase, D. Beaumel, M. Dozono, T. Fujii, N. Fukuda, T. Fukunaga, A. Galindo-Uribarri, S. H. Hwang, N. Inabe, D. Kameda, T. Kawahara, W. Kim, K. Kisamori, M. Kobayashi, T. Kubo, Y. Kubota, K. Kusaka, C. S. Lee, Y. Maeda, H. Matsubara, S. Michimasa, H. Miya, T. Noro, A. Obertelli, K. Ogata, S. Ota, E. Padilla-Rodal, S. Sakaguchi, H. Sakai, M. Sasano, S. Shimoura, S. S. Stepanyan, H. Suzuki, M. Takaki, H. Takeda, H. Tokieda, T. Wakasa, T. Wakui, K. Yako, Y. Yanagisawa, J. Yasuda, R. Yokoyama, K. Yoshida, K. Yoshida, and J. Zenihiro, *Physical Review Letters* **124**, 212502 (2020).

[5] T. Otsuka, T. Suzuki, J. D. Holt, A. Schwenk, and Y. Akaishi, *Physical Review Letters* **105**, 032501 (2010).

[6] G. Hagen, M. Hjorth-Jensen, G. Jansen, R. Machleidt, and T. Papenbrock, *Physical Review Letters* **108**, 242501 (2012).

[7] A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and I. Tanihata, *Physical Review Letters* **84**, 5493 (2000).

[8] R. Kanungo, C. Nociforo, A. Prochazka, T. Aumann, D. Boutin, D. Cortina-Gil, B. Davids, M. Diakaki, F. Farinon, H. Geissel, *et al.*, *Physical Review Letters* **102**, 152501 (2009).

[9] C. Hoffman, T. Baumann, D. Bazin, J. Brown, G. Christian, D. Denby, P. DeYoung, J. Finck, N. Frank, J. Hinenfeld, S. Mosby, W. Peters, W. Rogers, A. Schiller, A. Spyrou, M. Scott, S. Tabor, M. Thoennessen, and P. Voss, *Physics Letters B* **672**, 17 (2009).

[10] K. Tshoo, Y. Satou, H. Bhang, S. Choi, T. Nakamura, Y. Kondo, S. Deguchi, Y. Kawada, N. Kobayashi, Y. Nakayama, *et al.*, *Physical Review Letters* **109**, 022501 (2012).

[11] Y. Kondo, N. Achouri, H. A. Falou, L. Atar, T. Aumann, H. Baba, K. Boretzky, C. Caesar, D. Calvet, H. Chae, *et al.*, *Nature* **620**, 965 (2023).

[12] M. Wang, W. Huang, F. Kondev, G. Audi, and S. Naimi, *Chinese Physics C* **45**, 030003 (2021).

[13] A. Mueller, D. Guillemaud-Mueller, J. Jacmart, E. Kashy, F. Pougeon, A. Richard, A. Staudt, H. Klapdor-Kleingrothaus, M. Lewitowicz, R. Anne, *et al.*, *Nuclear Physics A* **513**, 1 (1990).

[14] A. T. Reed, O. Tarasov, R. D. Page, D. Guillemaud-Mueller, Y. E. Penionzhkevich, R. G. Allatt, J. C. Angélique, R. Anne, C. Borcea, V. Burjan, W. N. Catford, Z. Dlouhý, C. Donzaud, S. Grévy, M. Lewitowicz, S. M. Lukyanov, F. M. Marqués, G. Martinez, A. C. Mueller, P. J. Nolan, J. Novák, N. A. Orr, F. Pougeon, P. H. Regan, M. G. Saint-Laurent, T. Siiskonen, E. Sokol, O. Sorlin, J. Suhonen, W. Trinder, and S. M. Vincent, *Physical Review C* **60**, 024311 (1999).

[15] Y. E. Penionzhkevich, *Physics of Atomic Nuclei* **64**, 1121 (2001).

[16] L. Cáceres, A. Lepailleur, O. Sorlin, M. Stanoiu, D. Sohler, Z. Dombradi, S. Bogner, B. Brown, H. Hergert, J. Holt, *et al.*, *Physical Review C* **92**, 014327 (2015).

[17] A. Stolz, T. Baumann, T. Ginter, D. Morrissey, M. Portillo, B. Sherrill, M. Steiner, and J. Stetson, *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **241**, 858 (2005).

[18] D. Morrissey, B. Sherrill, M. Steiner, A. Stolz, and I. Wiedenhoefer, *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **204**, 90 (2003), 14th International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications.

[19] R. Yokoyama, M. Singh, R. Grzywacz, A. Keeler, T. King, J. Agramunt, N. Brewer, S. Go, J. Heideman, J. Liu, S. Nishimura, P. Parkhurst, V. Phong, M. Rajabali, B. Rasco, K. Rykaczewski, D. Stracener, J. Tain, A. Tolosa-Delgado, K. Vaigneur, and M. Wolińska-Cichocka, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* **937**, 93 (2019).

[20] W. Peters, S. Ilyushkin, M. Madurga, C. Matei, S. Paulauskas, R. Grzywacz, D. Bardayan, C. Brune, J. Allen, J. Allen, *et al.*, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* **836**, 122 (2016).

[21] S. Paulauskas, M. Madurga, R. Grzywacz, D. Miller, S. Padgett, and H. Tan, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* **737**, 22 (2014).

[22] C. J. Gross, T. Ginter, D. Shapira, W. Milner, J. McConnell, A. James, J. Johnson, J. Mas, P. Mantica, R. Auble, *et al.*, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* **450**, 12 (2000).

[23] M. S. Basunia and A. Chakraborty, *Nuclear Data Sheets* **186**, 2 (2022).

[24] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, and S. C. et al., *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* **506**, 250 (2003).

[25] J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B. Beck, A. Bogdanov, D. Brandt, J. Brown, H. Burkhardt, P. Canal, D. Cano-Ott, and S. C. et al., *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* **835**, 186 (2016).

[26] H. Ohm, W. Rudolph, and K.-L. Kratz, *Nuclear Physics A* **274**, 45 (1976).

[27] Z. Y. Xu, M. Madurga, R. Grzywacz, T. T. King, A. Algora, A. N. Andreyev, J. Benito, T. Berry, M. J. G. Borge, C. Costache, H. De Witte, A. Fijalkowska, L. M. Fraile, H. O. U. Fynbo, A. Gottardo, C. Halverson, L. J. Harkness-Brennan, J. Heideman, M. Huyse, A. Il-

505 lana, L. Janiak, D. S. Judson, A. Korgul, T. Kurtukian- 521 [32] J. Noga, R. J. Bartlett, and M. Urban, Chemical Physics
 506 Nieto, I. Lazarus, R. Lică, R. Lozeva, N. Marginean, 522 Letters **134**, 126 (1987).
 507 R. Marginean, C. Mazzocchi, C. Mihai, R. E. Mihai, A. I. 523 [33] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga,
 508 Morales, R. D. Page, J. Pakarinen, M. Piersa-Siłkowska, 524 and A. Schwenk, Physical Review Letters C **83**, 031301
 509 Z. Podolyák, P. Sarriguren, M. Singh, C. Sotty, M. Stepa- 525 (2011).
 510 niuk, O. Tengblad, A. Turturica, P. Van Duppen, V. Ve- 526 [34] J. D. Watts and R. J. Bartlett, Chemical Physics Letters
 511 dia, S. Viñals, N. Warr, R. Yokoyama, and C. X. Yuan, 527 **258**, 581 (1996).
 512 Physical Review C **108**, 014314 (2023).
 513 [28] M. S. Basunia and A. Chakraborty, Nuclear Data Sheets 528 [35] P. Gysbers, G. Hagen, J. D. Holt, G. R. Jansen,
 514 **171**, 1 (2021). 529 T. D. Morris, P. Navrátil, T. Papenbrock, S. Quaglioni,
 515 [29] B. A. Brown and W. A. Richter, Physical Review C **74**, 530 A. Schwenk, S. R. Stroberg, and K. A. Wendt, Nature
 516 034315 (2006). 531 Physics **15**, 428 (2019).
 517 [30] K. Tsukiyama, S. Bogner, and A. Schwenk, Physical Re- 532 [36] J. Okołowicz, M. Płoszajczak, and I. Rotter, Physics Reports **374**, 271 (2003).
 518 view Letters **106**, 222502 (2011). 533 [37] C.-X. Yuan, Chinese Physics C **41**, 104102 (2017).
 519 [31] H. Hergert, S. Bogner, T. Morris, A. Schwenk, and 534 [38] J. Okołowicz, M. Płoszajczak, R. Charity, and
 520 K. Tsukiyama, Physics Reports **621**, 165 (2016). 535 L. Sobotka, Physical Review C **97**, 044303 (2018).
 521