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Microgrid power demand from NREL
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» SOEC is expensive!

» SOEC's fragile electrode/electrolyte materials cannot withstand big thermal shock.
» Excursion of local temperature gradients may lead to crack and delamination.
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» SOEC can utilize thermal energy to partially compensate for

electric power consumption.

» SOEC can be operated in endothermic, exothermic, or

Typical performance ranges of competing
electrolysis technologies for H,O splitfing.

(Source: A. Hauch et al. Science, 2020)

thermonevuiral modes.

, U.S. DEPARTMENT OF




- i ’d s 1- ==INATIONAL
SOEC-Gas Turbine Hybrid Energy System N =|NATION
TL TECHNOLOGY
Exhaust LABORATORY
‘ Standalone SOEC 4bar GT-SOEC Hybrid
Steam
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» Can produce hydrogen or power or both.

> Possible load turndown (SOEC) -100% - 0% - 100% (GT).

> SOEC is kept hot all the time.

> Rapid mode switching.

> Have great potential to meet U.S. DOE's Hydrogen Shot cost target of $1 per kg.
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Cyber-Physical Simulation (CPS)

A Paradigm Change in Energy Technology Development

and Geometry
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CPS approach enables:

v Emulating expensive/pre-mature
components

v Emulating the actual system at high fidelity
and low cost

v Identifying system integration and
dynamic operability issues

v' Developing control strategies
v' De-risking pilot testing

Numeric
Models

' ENERGY




Hybrid Performance Project (HyPer) at NETL
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Hybrid Performance Project (HyPer) at NETL N

(Real-time models )
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v Derisk the adoption of SOC systems for
hydrogen production by demonstrating
concepts using a cyber-physical approach.

v Show the feasibility of highly-coupled SOC
systems to load follow and respond to a rapidly

changing grid.
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Development of Real-Time SOEC Models for Cyber-

Physical Simulation
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v" Multiphysics 0D and 1D real-time SOEC models

were developed.

v" [0D model] Established a guidance to have >45

cells in a stack to safely apply the single repeating

unit (SRU) assumption.
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(Source: Biao Zhang et al. Energy Conversion and Management, 2023)
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local temperature gradient was obtained. S‘“‘“» 1 L |
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v Great flexibility — one can trade spatial resolution for |||||||||||||||||||l||||||||||||||i|il|i|}._“e

better temporal resolution by tightening time step
constrains, and vice versa.

v Versatile applications — from ultrafine multiphysics
distribution at micrometers intervals to ultrafast fransients
at microseconds.
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Development of Real-Time SOEC Models for Cyber-
Physical Simulation
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Node #

Effect of excess air ratio (AR) on local solid temperature gradient.

Upon a current density step change from 0.15 to 0.55 A/cm?2:

+ |dentified direction change of local temperature gradient on SOEC solid materials during transients.

» This could induce alternating stresses on SOEC solid materials to (possibly) accelerate degradation.

« Higher air flow is beneficial for SOEC thermal management, thus highlighting the opportunity for

system integration.
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Gas Turbine
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Process lines:

—p | ow temperature air stream (hardware)
———» Medium temperature air stream (hardware)
=———p High temperature gas stream (hardware)
= High pressure fuel stream (hardware)
------- » Middleware communication signals
— Virtual process stream (software)

» Cyber-physical SOEC was established
and coupled with NETL’s Hyper facility.

» A pre-combustor model was integrated
for higher operational flexibility.

» SOEC'’s net thermal effluent (i.e.,
sensible heat difference) was used to
control a fuel value, which regulates the
amount of fuel to be burned in the
physical system.
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Upon a Step Change from 0.15 (Endothermic Mode) to 0.55 A/cm? (Exothermic Mode)
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Q_netis the difference between electric Q _dot is the sensible heat difference
power and electrolysis reaction energy. across the model closure.
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Upon a Step Change from 0.15 (Endothermic Mode) to 0.55 A/cm? (Exothermic Mode)
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Air temperature on the first few nodes Cathode stream temperature was more stable

were affected by inlet air flow variation. as the inlet steam process flow was constant.
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Upon a Step Change from 0.15 (Endothermic Mode) to 0.55 A/cm? (Exothermic Mode)
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Solid temperature on the first few nodes The first few nodes showed the highest solid

were affected by inlet air flow variation. temperature gradient during transients.
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1. A cyber-physical SOEC-GT hybrid energy system has been developed.
2. Seamless coupling of hardware and real-time SOEC model has been demonstrated.

3. At high air excess ratio (i.e., high air flow rate), a rapid load transition on SOEC has been
demonstrated without violating the constraint on SOEC local temperature gradient.

Next steps:

1. Cycle analyses to identify the system integration issue at design/off-design conditions.

2. Develop conftrols to improve the dynamic operability of this hybrid system.
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