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3. Executive Summary

Despite the rapid growth of solar energy, we still lack a dynamic, high-fidelity
database that tracks the spatiotemporal variations of solar PVs and their associated
infrastructures across different places at a spatially resolved scale. The absence of such
data presents a barrier to various applications such as solar PV growth projection, solar
energy integration, solar incentive design, and climate risk assessment. In this project,
we aim to bridge this gap by developing Al-based algorithms to extract granular
information about solar PV installations and their associated infrastructures (i.e.,
distribution grids) from widely available unstructured data like remote sensing images
and street views. As a result, we have built the Solar Energy Atlas, a fine-grained, large-
scale geospatial overlay of distributed solar PVs and distribution grids. On top of it, we
have advanced the understanding of solar adoption and distribution grid vulnerability to
climate-induced extremes. Our major contributions can be summarized as follow:

e By developing new Al algorithms, we have built the most comprehensive solar PV
spatiotemporal database covering the entire US. This is the first time we obtained
the exact GPS locations, size, subtype, and installation year information for rooftop
solar PVs across the US. This database can be used for solar PV growth projection,
solar energy integration, solar energy policy analysis and design, and spatially-
resolved climate risk assessment.

e Leveraging this database, we have uncovered the socioeconomic driving factors that
are correlated with earlier onset of solar adoption and higher saturated adoption
levels. We have identified the heterogeneity in the effects of different types of
financial incentives on solar adoption and provided implications for tailoring incentive
design based on local income levels to promote equitable solar adoption.

e We have developed a distribution grid GIS mapping algorithm which can obtain
granular geospatial and topology information about distribution grids using multi-
modal open data, reducing the dependency on hard-to-obtain smart meter data of
conventional approaches. It shows effectiveness in both the U.S. and Sub-Saharan
Africa. Using this algorithm, we have uncovered the non-uniform vulnerability of
distribution grids to wildfires in California in the aspects of undergrounding protection
and Distributed Energy Resources (DER) preparedness. This has provided
important implications for improving the affordability and equity of grid adaptation
approaches.

e We have made our produced database publicly available and provided user-friendly
interface to enable various stakeholders and the general public to interact with the
data. We have also integrated the produced data into the Data Commons platform to
enable the public to access the data and correlate it with other location-specific
characteristics simply using natural language as queries.

The impact of our project is three-fold: (1) New algorithms for mapping solar PVs
and distribution grids across space and time, which are open source to facilitate
researchers and industry; (2) New databases of solar PVs and distribution grids that
have been made publicly available for engineering, social, and policy applications; (3)
New understandings and actionable insights on the potential approaches to promoting
solar adoption and reducing energy infrastructure vulnerabilities.
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In this report, we start by discussing the project background and motivation (section
5), followed by the overview of project objectives (section 6). Results and discussion for
each task are presented in section 7. Significant accomplishments are summarized in
section 8. This report will be concluded by discussing the paths forwards (section 9),
products (section 10), and team roles (section 11).
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5. Background

Our energy systems are undergoing dramatic changes, including the rapid deployment
of distributed energy resources (e.g., solar PVs) and increasing exposure to climate-
induced extreme events (e.g., wildfires). These changes have given rise to many critical
challenges: (1) Despite the introduction of various regulatory policies and financial
incentives across different states in the U.S., how effective they are in promoting the
adoption of distributed energy resources (DER) is largely unknown. This impedes the
evidence-informed design of future policies and incentives to accelerate DER adoption
in an equitable way; (2) Electric grids need to be upgraded to host a growing amount of
DERSs, requiring the projection of future DER adoption at a spatially-resolved level—
which is challenging due to the absence of the granular spatiotemporal information of
DER adoption; (3) DER-dominated electric grids can become more vulnerable to
climate-induced weather extremes due to the intermittent nature of renewable DERS,
but the spatial correlations among DERs, grids, and the risks of climate-induced
extremes are unknown, hindering the precise investment for grid upgrades.

A fundamental gap for addressing these critical challenges is the absence of the
granular spatiotemporal information about DERs (e.g., solar PV panels) as well as
their overlay with the grids and climate-induced risks. Due to the distributed and
decentralized nature of DERSs, their granular spatiotemporal information is largely
unavailable or dispersed in numerous “data silos” owned by different developers,
utilities, or municipalities. This gap ultimately impedes the evidence-informed decision
making for grid upgrades, resource allocation, and incentive design, presenting
significant barriers for clean energy transition and climate change adaptation.

More specifically, despite the increasing share of solar PVs in newly added generation
capacity in the U.S., we still lack an information system that maps and tracks solar
adoption at a fine resolution yet large scale. This is primarily due to the decentralized
nature of solar deployment. There are some previous attempts to build solar power
plant databases (e.g., Global Energy Observatory [1], Global Power Plant Database
[2]), but they only cover centralized solar power plants—without any information of
distributed solar panels. “Tracking the Sun” database [3] used the crowdsourcing
method to collect the data of distributed solar PVs in the U.S. and reported their zip-
code locations. Since they rely on voluntary data contribution, they can guarantee
neither completeness nor the absence of duplication.

Machine learning combined with satellite imagery offers an alternative venue for
overcoming the shortcoming of the traditional solar PV data collection approaches. The
availability of satellite imagery with spatial resolution less than 30 cm for the majority of
the U.S., which is annually updated, offers a rich data source for solar panel detection
based on machine learning. Previous pixel-wise machine learning methods [4,5] suffer
from poor computational efficiency, and relatively low precision and recall (cannot reach
85% simultaneously), while previous image-wise approaches cannot provide system
size information [6]. Our previous work, DeepSolar [7], used a novel deep learning
approach to detect solar panels in satellite images and estimate their sizes, enabling the
construction of a nationwide solar installation database for the contiguous U.S.
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However, in the DeepSolar database, there is no subtype (residential, commercial,
utility-scale, etc.) or temporal information (installation date) about solar panels.
Moreover, this database is outdated (up to mid-2017).

In addition to the data gap for solar panels, the high-resolution information about
distribution grids is also inadequate. Unlike transmission grids of which the connections
and status are usually available to system operators and can be regularly measured,
information about distribution grids is often incomplete, coarse-grained, or even
unavailable [8]. Although utility companies may keep the information of their own
distribution grids, such data are usually not publicly available or organized in a
standardized format [9], OpenStreetMap maintains a spatial data collection of power
lines by utilizing crowdsourcing methods, yet it is far from complete, and most of the
data in this collection are for transmission lines [10].

Graph-based approaches have been previously developed for estimating distribution
grid topology by leveraging measurement data from grid nodes (i.e., buses), such as
smart meter measurements [11-16]. However, the applicability of these approaches is
limited by the availability of smart meters, which are still not widely deployed in many
places [17]. Consequently, while these graph-based techniques can identify operational
topologies of grids with known measurements, they struggle with mapping complete,
real-world physical grids from scratch when no prior node measurement is available. In
parallel, advances in machine learning and computer vision have enabled the
development of models that utilize public imagery to detect and analyze grid
components. Notable efforts include using night-time light imagery to connect electrified
areas and form grid maps [9], as well as using machine learning to detect poles/lines in
remote sensing or street view images [18-24]. Despite these advancements, the
resolution limitations of remote sensing images and the inability to map underground
lines remain significant hurdles. No existing approach can construct a full distribution
grid map (aboveground and underground) relying solely on publicly available data.

In this project, we aim to develop new machine-learning-based approaches to overcome
the above limitations of existing methods and map solar PVs and distribution grids with
ultra-high spatiotemporal granularity. This can eventually result in the construction of
large-scale, high-resolution geospatial overlay of solar PVs, distribution grids, climate-
induced risks, and socioeconomic attributes to enable solar incentive effect estimation,
solar adoption projection, and climate risk assessment.

6. Project Objectives

This project’s goal is to develop high-fidelity database of solar PVs and the
infrastructure systems they rely on (i.e., distribution grids) with comprehensive and
detailed information, such as temporal and subtype data. This can help bridge the
critical information gap to accelerate solar adoption, to facilitate solar integration, and to
mitigate climate risks of energy infrastructures, which can ultimately contribute to the
national goals of clean energy transition and more sustainable and resilient economy.
We achieve this by applying state-of-the-art machine learning (Convolutional Neural
Networks, Siamese networks, etc.) to public and multi-modal data (e.g., satellite
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imagery, street views, road networks) to obtain granular information about solar PV
panels and, further, extract actionable insights. The main objectives for this project are:

1. Develop and train machine learning algorithms to identify solar panel subtype
and temporal data and use it to generate detailed location, capacity, subtype
(residential/commercial/utility-scale) and installation date information layers of
solar installations.

2. Develop and train machine learning algorithms to identify overhead distribution
infrastructure and use it to create a GIS map of the connectivity of overhead lines
that excludes phase information and line parameters.

3. Form advisory group of industry specialists to examine use cases—such as
planning and solar adoption forecasting - and determine a data sharing
framework and best visualization methods.

4. Create web-based visualization and aggregate data sharing tool that helps
navigating the produced dataset and correlating to relevant socioeconomics and
policy incentives data.

The culmination of this effort is a Solar Energy Atlas that consists of a multi-layered
mapping data of solar panels and distribution grid infrastructure and relevant
socioeconomic, policy and irradiance information. Compared to previous labor-intensive
and inefficient data collection approaches, the scalable and accurate machine-learning-
based algorithms developed in this project automates and scales up the data gathering,
information extraction, and knowledge discovery for solar panels, distribution grids, and
their interactions with climate risks, policies, and human behaviors. This data can
complement the currently used information to support utilities, vendors and analysts in
applications such as substation planning and solar adoption forecasting. It also provides
the granular information to support evidence-informed policy making, especially for
designing incentive programs that can promote equitable solar adoption. The team
works closely with an industry board of advisors to ensure the data produced can
impact such applications. In addition, it can support utility, vendors, satellite data
providers to establish the value of these new sources of data when limited by their
resolution and availability.

This project is spread across two Budget Periods (BP). In BP1 we collect the public and
partner satellite and street view data relevant to the project, use it to develop and test
the machine learning models for solar panel mapping and distribution grid GIS mapping
and convene a board of advisors meeting to share our progress and discuss relevant
use cases. In BP2, we apply machine learning models to generate the mapping layers
for selected regions in the country and develop a visualization tool for the data as well
as use it to develop methodologies for industry- and policy-relevant use cases. We have
also added another task (“Additional task”) beyond the original plan of Statement of
Project Objectives (SOPO), which is to update the DeepSolar database to cover the
solar installations up to 2023.
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The summary of tasks, subtasks, as well as their planned/actual completion date is
shown in Table M.1. The summary of milestones is shown in Table M.2.

Task name | Planned Actual Task summary Actual
completion | completion accomplishment
date date

Task 1: Use | 7/31/23 11/15/22 Develop machine Developed ML

satellite learning (ML) models that can

imagery to models that can infer installation

develop and accurately infer the | year with 85.9%

train installation year of accuracy.

algorithms to solar panels from Deployed the
determine historical satellite models to all

granular images. Deploy the | states in the U.S.

solar models to California

installation and, potentially,

date other states

Task 2: 7/31/23 11/15/22 Develop a ML model | Developed a ML

Solar panel to classify each model for subtype

subtype solar panel into classification

classification different subtypes with >90%
(residential, average precision
commercial, etc.). and recall.
Deploy the models Deployed the
to California and, model to all states
potentially, other in the U.S.
states

Task 3: 7/31/23 1/15/24 Develop a ML- Developed a ML-

Distribution based model for based distribution

grid GIS mapping distribution | grid mapping

mapping grids (overhead + model which can
using street underground). achieve >80%
view Test/deploy the precision and
imagery model to regions in | recall in 10 regions
California and in California. The
countries outside performance can
the U.S. maintain a similar
level when the
model is
transferred to
countries in Africa.

Task 4: 7/31/23 4/15/23 Develop Integrated the

Visualization visualization solar installation

and platforms (both data into the

applications browser-based and | DataCommons
development DataCommons) for | platform;
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the generated
dataset. Use the
generated dataset
for solar adoption
analysis.

developed a
browser-based
GIS platform for
data visualization;
Identified the non-
uniform effects of
incentives on solar

adoption
Task 5: Data | 7/31/23 3/13/24 Convene technical Convened all four
managemen advisory board meetings;
tand meetings and Identified new use
technical webinars in year 1 cases and future
advisory and year 2 directions (e.g.,
board API for quick data
access);
Established long-
term partnership
with board
members (e.g.,
Ava Community
Energy)
Additional 7/31/23 11/15/23 Develop new ML Updated the
task: models that can DeepSolar by
Updating efficiently identify incorporating solar
DeepSolar new solar panels installed
dataset installations and until 2023,
using deploy the model to | resulting in a
moderate-to- update the dataset containing
high- DeepSolar data to 3 million solar
resolution cover solar panels, double the
satellite installations up to amount of the old
images 2023 dataset

Table M.1. Tasks, subtasks and their planned/actual completion date

Mile-
stone
#

Performance Metric

Taraeted Actual Actual
erfo?mance realized completion
P performance date

Task 1: Use satellite imagery to develop and train algorithms to determine
granular solar installation date

111

Number of images to train the
siamese network for identifying
solar panel on low-resolution
(LR) images

210,000

A dataset with
56,429
images for
model training

10/31/21
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Mile- Targeted Actual Actual
stone Performance Metric g realized completion
performance
# performance date
The precision and recall of solar Recall: 91.2%
1.2.1 | panel detection in low-resolution >90% Specificity: 10/31/21
(LR) images 95.6%
The
1292 The correctness rate of solar ~80% correctness 1/31/22
panel Installation year inference rate is
85.9+1.0%
Have
obtained the
The state(s) with full coverage of intfoTrgg:fcl)ln
1.3.1 | temporal information (installation California for all 50 10/31/22
year) of solar panels states and the
D.C.in the
U.S.
Task 2: Solar panel subtype classification
A dataset with
211 Number of images to train the 10,000 _ 12,948 10/31/21
solar subtype classifier images for
model training
Macro-
average:
Precision:
0.908
The micro- and macro-average of Recall: 0.917
2.2.1 | precision and recall of subtype >0.75 1/31/22
classification Micro-
average:
Precision:
0.917
Recall: 0.917
Have
The state(s) with full coverage of ot;;ar:?e(;:lr;]e
2.3.1 | subtype information of solar California : bor: 7/31/22
anels information
P for all 50
states and the
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Mile- Targeted Actual Actual
stone Performance Metric 9 realized completion
performance
# performance date
D.C.in the
U.S.
Task 3: Distribution grid GIS mapping using street view imagery
Number of images to train the A di?%%townh
3.1.1 | models for identifying power lines > 8000 . 10/31/21
images for
and poles L
model training
Line
detection:
Precision:
0.982
- , Recall: 0.937
312 Precision and re_:call for both line >0.85 10/31/21
and pole detection
Pole
detection:
Precision:
0.982
Recall: 0.851
Pole
Pole localization accuracy (in localization
3.2.1 | ratio of actual poles that can be >80% precision: 1/31/22
detected within 25m) 83.2%
recall: 83.6%
Link
prediction
Precision and recall in link 0 precision:
3.2.2 prediction >70% 28 7% 1/31/22
Recall:
76.6%.
Compared
Precision and recall for the with PG&E
similarity comparison between 0 grid, the
33-1 1 actual PG&E distribution grid >80% model 4/30/22
map (above- plus underground) achieved
recall: 83%
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Mile- Targeted Actual Actual
stone Performance Metric erfo?mance realized completion
# P performance date
Precision:
89%
Number of missing lines in the Icllggt'ri?ssﬁ]to
utility-owned grid maps that can : 9
3.3.2 . o . >0 lines (across 1/31/22
be identified and corrected with different test
the grid mapping model.
areas).
The model
Number of regions in California to has been
3.4.1 | deploy the grid GIS mapping 210 deployed to 1/31/23
model. 10 regions in
California
The decrease
in precision
The decrease in precision and and recall is
recall of network link prediction 0 less than 7%
342 when transferring the model to <15% when 7131122
another region outside US. transferring
the model to
other regions
The precision and recall of the GIS maoin
distribution grid GIS mapping recall ggo/g
3.5.1 | algorithm, compared with >80% Preci.sion'o 3/31/24
detailed GIS maps provided by 90% '
utility partners 0
Task 4: Visualization and applications development
11 types of
Number of types of data to ?g\?el?éeer:
411 |Integrate and display at > 5 integrated | 4/30/22
aggregate level on the browser- and disolaved
based platform. piay
on the
platform
42.1 doeb\fg:g arrf(e)s?(r)r:‘?ﬁgosrcthh:ma for Complete = | Complete = 4/30/22
P TRUE TRUE
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Mile- Targeted Actual Actual
stone Performance Metric 9 realized completion
performance
# performance date
Energy Data Commons with a
focus on Solar Energy Atlas
Regression R? on out-of-sample R,Az\cor}%vgg f?)r
4.3.1 | test set for solar adoption >0.5 L 4/30/23
o solar adoption
prediction .
prediction
Covered
100% very-
high-fire-risk
The coverage of overhead line regggjzln
4.4.1 |ratio and solar PV capacity for 100% | teritory with | 10/31/22
very-high-fire-risk regions in .
. ) e . overhead line
PG&E territory in California. .
ratio and
solar PV
capacity
information
Number of mismatches within 0 mismatch
numeric tolerance between Solar between
4.5.1 | Energy Atlas on DataCommons 0 online and 4/30/23
and its from original offline offline
version. versions
Upload Solar Energy Atlas data
Complete = | Complete =
46.1 to Data _Commons and test TRUE TRUE 4/30/23
integration
Task 5: Data management and technical advisory board
Convene industry advisory board | Complete = | Complete =
511 | meeting in Year 1 TRUE TRUE al22l22
Convene a webinar in Year 1 on Complete = | Complete =
5.2.1 ;(r)irc?puter vision applications for TRUE TRUE 8/15/22
Convene industry advisory board | Complete = | Complete =
531 | meeting in Year 2 TRUE TRUE 4130123
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Mile- Targeted Actual Actual
stone Performance Metric 9 realized completion
performance
# performance date
Convene a webinar in Year 2 on Complete = | Complete =
5.4.1 | discuss applications using the piete = piete = 3/13/24
TRUE TRUE
Solar Energy Atlas
Go/No-Go decision point
Achieved
i o)
G/NG Perpentage of milestones 100% 190/0 of thg 2/31/22
1A | achievedin Year 1 milestones in
Year 1
Convene both industry advisory
G/NG : i Complete = | Complete =
1B gzzrrdlmeetlng and webinar for TRUE TRUE 7131/22

Table M.2. Milestones and Go/No-Go decision points

7. Project Results and Discussion

This section quantitatively presents the project results and discussion. It is organized by
tasks (Task 1 to 5, as well as the Additional Task) and subtasks. For each task/subtask,
we start by introducing its overall goal, followed by the technical discussion of every
milestone (anticipated outcomes vs. realized outcomes) in each subtask.

7.1. Task 1: Develop and train algorithm to determine granular solar installation
date using historical satellite imagery

The goal of this task is to develop the algorithms for determining the installation year for
solar PVs using historical satellite images. This is used for constructing a nationwide
solar PV installation database with granular spatial (GPS location) and temporal
information. The major challenge here is the low image resolution of historical satellite
images, which is tackled in Subtask 1.1 with the development of a pseudo-siamese
neural network. This model is benchmarked against the manually-curated test set
(Subtask 1.2). After the model development and extensive evaluation, the model is
deployed to construct a nationwide spatiotemporal solar PV installation database
(Subtask 1.3).

7.1.1. Subtask 1.1: Solar panel identification in low-resolution historical satellite
imagery

Due to the low-resolution of some historical satellite images, directly applying the
original DeepSolar model [7] that was trained using high-resolution images to the
historical images can yield unsatisfactory results. Therefore, the goal of this subtask is
to overcome the low-resolution challenge of historical satellite imagery by developing
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novel machine learning models. To facilitate the model training and testing, a large-
scale dataset with manually-verified labels is needed. Below we introduce the dataset
construction and machine learning model design.

Positive Negative
Training 11623 39175
Validation 481 1562
Test 806 2782

Table T1.1: Number of samples in training/validation/test sets for low-resolution (LR)
solar system identification dataset. Positive: contain solar. Negative: no solar.

Milestone 1.1.1: Collect 210,000 images to train a Siamese neural network for
identifying solar panels in low-resolution images

We have achieved this milestone Q1 of BP1. Specifically, we have constructed a
dataset with 56,429 images in total (target number: 10,000 images) to train deep
learning models for identifying solar panels in low-resolution historical satellite images.
The dataset is partitioned into training, validation, and test sets. The images were
retrieved using Google Earth and they are divided into two classes by manual checking:
contain solar panel (positive) and no solar panel (negative). Table T1.1 shows more
details about the different partitions of this dataset.

To facilitate solar identification in low-resolution (LR) images, we developed a two-
branch pseudo-Siamese Convolutional Neural Network (CNN) that takes a target LR
image and a “reference” positive high-resolution (HR) image as inputs, and outputs the
score indicating whether the target LR image contains solar. Inspired by the visual
tracking models in the computer vision field [24], we develop a two-branch CNN with
each branch taking either the target LR image or its reference HR image as inputs. The
two branches have identical architecture but different weights hence the model is called
“‘pseudo-Siamese”. By comparing the feature maps generated by each of the two
branches, the model is able to estimate the similarity between the LR target image and
its HR reference image. To tackle the potential object displacement between target and
reference image, a cross-correlation operator is utilized to compare the feature maps
from each of the two branches. Based on the similarity, the model finally outputs the
score indicating the probability of the target LR image containing solar. In this work, we
use ResNet-34 network [25] as the backbone for each branch. The overall model
architecture is shown in Figure 1.1. Feature maps after the 2nd, 3rd, and 4th stack of
building blocks in the ResNet-34 are used for comparison. Depth-wise cross-correlation
operator, which compares the features from different channels separately, is applied to
each of the three pairs of feature maps and generates a similarity map for each. All
three similarity maps are concatenated together and then fed into three convolutional
layers in a series and finally output the logit score.
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Figure 1.1: The pseudo-siamese network for solar identification in low-resolution (LR)
images. Each branch is a ResNet-34 network which takes either target LR image or reference
HR image as inputs. Feature maps after the 2nd, 3rd, and 4th stacks of building blocks are
compared using cross-correlation modules and then concatenated. ReLU and batch
normalization layers are not shown in this figure.

7.1.2. Subtask 1.2: Benchmark the performance of the low-resolution solar
identification methodology

The goal of this subtask is to evaluate the performance of the machine learning model
for low-resolution solar PV identification as well as the entire pipeline for determining the
solar PV installation year. The evaluation is performed at the two levels: the image level
(Milestone 1.2.1) and the system level (Milestone 1.2.2). Below we detail the evaluation
method and metric values for each of them.

Milestone 1.2.1: Achieve a low-resolution (LR) solar panel detection precision and
recall 2 90%

We have achieved this milestone in Q1 of BP1. We test the performance of solar panel
detection on the test set partition (3,588 images) constructed in Milestone 1.1.1. The
model achieves a sensitivity/recall (true positive rate) of 91.2% and a specificity of
95.6% (true negative rate) on this test set. Both of them are higher than the target value
90%.

Explanation of variance: we use sensitivity (another name of recall) and specificity as
the metrics instead of recall and precision (proposed in the original Milestone 1.2.1 in
SOPO). This is because sensitivity and specificity are directly related to our final target
metrics, the correctness rate of predicting year of PV installations.

Specifically, if we ignore the rare cases that solar panel can be uninstalled later after
installation, and use “0” to denote negative sample and “1” to denote positive sample,
our image sequence is a sequence with all “0” in the first part and all “1” in the last part.
There cannot be “1” between “0” such as “00100”. For a single image whose ground-
truth label is 0, its probability of being predicted correctly is:
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Po = TN/(TN+FP) = specificity

And for a single image whose ground-truth label is 1, its probability of being predicted
correctly is:
P1 = TP/(TP+FN) = sensitivity

If we have an image sequence with first n images as negative and last m images as
positive, then the probability of predicting the whole sequence correctly is:

Psequence = Po"P1™ = (specificity)" (sensitivity)™

Therefore, optimizing specificity and sensitivity at the image level can directly improve
the correct rate of predicting installation year at the sequence level, hence we use
sensitivity/recall and specificity as targeted metrics at the image level instead of recall
and precision.

HR LR Extremely blurred
Training 11844 17178 1585
Validation 2010 2043 182
Test 4340 3588 553

Table T1.2: Number of samples in training/validation/test sets for blur detection dataset.
HR: high resolution. LR: low resolution.

Positive Negative
Training 7148 4696
Validation 1189 821
Test 2392 1948

Table T1.3: Number of samples in training/validation/test sets for high-resolution (HR)
solar system identification dataset. Positive: contain solar. Negative: no solar.

Milestone 1.2.2: At the system level, achieve a correctness rate 2 80% for solar
installation year prediction

We have achieved this milestone in Q2 of BP1. We deploy the well-trained models on a
out-of-sample sequence test set containing 1,164 image sequences and compare the
predicted year of installation with actual year of installation. The correctness rate of
installation year prediction (ratio of sequences with predicted installation year equal to
the actual installation year) is 85.9+1.0% (target value: 80%). Below we elaborate on
(1) the datasets used for model development and testing (in addition to the LR dataset
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introduced in Milestone 1.1.1) and (2) the overall framework of installation year
prediction.

Datasets: For a solar system recorded in the DeepSolar database, we retrieve a
sequence of images at its geolocation with each image captured in a year between
2005 and 2017. In addition to the low-resolution (LR) image dataset introduced in
Milestone 1.1.1, we construct two other image datasets with image-wise labels to
develop different modules of the framework, as well as an image sequence test set for
evaluating the overall accuracy of predicting year of installation. Specifically, to develop
the blur detection model to determine the resolution of an image, we construct an image
dataset containing 43,323 images with three classes—high resolution (HR), low
resolution (LR), and extremely blurred (See their detailed statistics in Table T1.2); to
develop the solar system identification model for HR images, we construct an image
dataset containing 18,194 HR images with binary labels indicating whether a solar
system exists in an image (See their detailed statistics in Table T1.3). Samples in these
image datasets are randomly selected across 11 counties from 9 states. Moreover, the
image sequence dataset contains 238 sequences for validation and 1,164 sequences
for testing. Each sequence is manually labeled with the installation year of the PV
system by visual inspection as its ground truth. Besides the 11 counties included in the
image datasets, the image sequence test set covers additional 12 counties from 10
states. Samples in training, validation, and test set are mutually exclusive.

Retrieved Images - o

>

High-resolution (HR) Low-resolution Extremely blurred
images (LR) images

Siamese network: compare it Mark it as “unsure”
with HR reference

Directly apply CNN

Figure 1.2: Overall framework that first classifies images according to their resolution
into three classes: high-resolution (HR), low-resolution (LR), and extremely blurred. We
use a normal single-branch Convolutional Neural Network (CNN) to process the HR images,
and use the siamese network (two-branch CNN) we developed to process the LR images. For
extremely blurred images, we mark them as uncertain so that it will not be used for predicting
year of installation, since it is out of the distribution of the HR or LR image training set.

Overall framework for determining installation year: The overall framework of image
processing is shown in Figure 1.2. Before identifying solar systems in a satellite image,
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we first leverage a Convolutional Neural Network (CNN) to classify the image into one
of the three classes according to its resolution — HR, LR, and extremely blurred.

For an extremely blurred image, we mark it as uncertain so that it will not be used for
predicting year of installation, since it is out of the distribution of the HR or LR image
training set. For HR images, we directly apply an Inception-v3 network on HR images
and it outputs a score indicating the probability of an input image containing PV. The
model can achieve a sensitivity (true positive rate) of 97.6% and a specificity (true
negative rate) of 98.5% on the test set. For LR images, we apply the two-branch
pseudo-Siamese CNN which has been introduced in Milestone 1.2.1.

In deployment, given a sequence of historical satellite images for a PV system, we run
the HR model on all images and use all positively classified images as the reference
images. Whether an HR image contains PV is determined by the classification result
generated by the HR model. A LR image is predicted as containing PV if any pair of a
reference image and itself gets a positive prediction by the LR model. The first year
when positive images appear is predicted as the year of installation of the PV system.

7.1.3. Subtask 1.3: Run the solar identification model on solar installation records
in the DeepSolar database

The goal of this subtask is to deploy the model we developed to determine the year of
installation for every solar PV documented in the DeepSolar database. The eventual
outcome is a nationwide solar PV installation database with temporal information. Below
we introduce our accomplishment.

Milestone 1.3.1: Use the newly-developed models to obtain the installation year
information for solar PVs in California

We have achieved this milestone in Q1 of BP2. We have downloaded image sequences
for all residential and commercial solar PV installations not just in California, but across
the U.S. (1,057,070 systems). We have applied the installation year prediction model
developed in Subtask 1 and 2 to each of these image sequences and obtained their
installation year information. Note that our initial target of the data coverage (as
proposed in the original Milestone 1.3.1) is California, while our actual realized
coverage is the U.S. The overall temporal variation of solar adoption rate,
characterized by the number of solar installations per 1000 households, is shown in
Figure 1.3.

7.2. Task 2: Solar panel subtype classification

The granular information about solar installation subtypes is absent in the existing solar
installation database (i.e., DeepSolar). In this task, we aim to develop a machine
learning model to identify the subtype for solar installations from satellite imagery and fill
out the blank of such information in the database.
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Figure 1.3: Temporal variation of residential solar adoption rate at the census block
group level across the contiguous US. The residential solar adoption rate is characterized by
the cumulative number of residential solar PVs per 1000 households in a census block group.

7.2.1. Subtask 2.1: Solar panel subtype classification

The goal of this subtask is to develop a machine learning model to automatically classify
each solar panel into different subtypes, including residential, commercial, utility-scale,
and solar water heating. Some non-solar-panel objects were wrongly identified by the
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original DeepSolar model as solar panels, so they also need to be filtered out. We
approach this goal by developing both the dataset for training and testing as well as the
Convolutional Neural Network (CNN) model for ordinal classification.

Milestone 2.1.1: Collect 2 10,000 images to train a solar subtype classifier

We have achieved this milestone in Q1 of BP1. We have constructed a dataset of
12,948 images (target number: 10,000 images) in total with solar subtype labels
(utility-scale PV, commercial PV, residential PV, solar heating, and negative samples).
Note that we included a “negative” subtype, as the original DeepSolar produced a small
fraction of false positive samples (which are actually negative samples) which need to
be filtered out. The dataset is partitioned into training/validation/test sets. These images
are randomly sampled from the solar installation records in DeepSolar dataset. The
details about the dataset are shown in Table T2.1. Below, we further introduce the solar
subtype classifier.

Training set Validation set Test set
Utility-scale PV 404 72 73
Commercial PV 1301 194 194
Residential PV 4399 588 589
Solar heating 1559 298 298
Negative 2338 320 321

Table 2.1: Number of samples in training/validation/test sets for solar panel subtype
classification. Training, validation, and test set are mutually exclusive.

VOV [T
211111

Utility-scale PV Commercial PV Residential PV
Figure 2.1: visualization of samples in the dataset for solar panel subtype classification.
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The characteristics of solar subtypes are ordinal. Specifically, utility-scale PVs usually
have relatively large sizes; commercial PVs are usually smaller than utility-scale PVs,
but usually larger than residential PVs; residential PVs and solar heating systems are
installed on rooftops of residential buildings; utility-scale, commercial, and residential
PVs are photovoltaic systems for generating electricity while solar heating is not.
Therefore, we can order these five subtypes to facilitate the training of a CNN model
(ResNet-50): utility-scale PV -> commercial PV -> residential PV -> solar heating ->
negative. We can assign ordinal multi-class labels to enforce such ordinal relationships
during training:

Utility-scale PV: [1, 1, 1, 1]
Commercial PV: [1, 1, 1, 0]
Residential PV: [1, 1, O, 0]

Solar heating system: [1, 0, 0, O]
Negative: [0, O, 0, O]

In this way, the penalty of misclassifying a residential PV into utility-scale PV is higher
than misclassifying it into commercial PV. Such an ordinal relationship can provide extra
guidance for models to extract useful information from visual features for subtype
classification.

In practice, the subtype can be determined based on the prediction score of an image
[X1, X2, X3, Xa4]:

If x1 < thresholdi: “negative” (falsely detected by the original DeepSolar model)
Else if x2 < threshold2: “solar water heating system”

Else if x3 < thresholds: “residential PV”

Else if x4 < thresholds: “commercial PV”

Else: “utility-scale PV”

The thresholds are determined by the performance on the validation set.

Subtask 2.2: Benchmark the performance of the solar panel subtype classifier
The goal of this subtask is to evaluate the performance of the CNN model for solar
panel subtype classification on an out-of-sample test set with 21000 images. These
images are not used for training.

Milestone 2.2.1: Achieve micro- and macro-average of precision and recall of
subtype classification 2 0.75

We have achieved this milestone in Q2 of BP1. Specifically, we run the well-trained
solar subtype classification model (developed in Subtask 2.1) on the out-of-sample test
set with 1,475 images (constructed in Subtask 2.1) and compare the model outputs with
the ground-truth labels. The confusion matrix of the model performance is shown in
Figure 2.2. We further calculate the macro- and micro-average of the precision and
recall for evaluating the overall performance of the multi-class classification. The
definition of macro-average and micro-average precision and recall are:
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N

1
Macro avg.precision = Nz precision;
=1
i=1 T'P;

N TP+ YN, FP

Micro avg.precision =

N
1
Macro avg.recall = NE recall;

=1

NLATP;
{V=1 TP; + Zliv=1 FN;

Micro avg.recall =

Here, N is the number of subtypes (5 in our case). TP;, FP;, and FN; are the numbers of
true positive, false positive, and false negative samples of subtype i, respectively.
precision; = TP; / (TP; + FP;). recall; = TP; /| (TP; + FN;).

Based on the confusion matrix, we can calculate the macro-average of precision and
recall, which are 0.908 and 0.917, respectively. We also calculate the micro-average of
precision and recall, which are 0.917 and 0.917, respectively. They are all above the
target value 0.75.
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Figure 2.2: Confusion matrix of the solar panel subtype classification on the test set. The
number in each cell is the number of samples in each prediction category. For example, the
number at the 2nd row and 1st column is 15, which means 15 of the actual solar water heating
systems are predicted to be negative.
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7.2.3. Subtask 2.3: Run the solar panel subtype classifier model on all solar
installations in the DeepSolar database

The goal of this subtask is to deploy the solar panel subtype classification model we
developed for every solar PV documented in the DeepSolar database. The eventual
outcome is a nationwide solar PV installation database with solar panel subtype
information. Below we introduce our accomplishment for milestone 2.3.1.

Negative sample

Solar heating

Utility-scale PV

Commercial PV

Residential PV

Figure 2.3: the fraction of each subtype of solar installations recorded in DeepSolar
dataset, obtained by the solar subtype classifier. Negative samples are those falsely
identified as positive by the original DeepSolar model but corrected by the solar subtype
classifier.

Milestone 2.3.1: Obtain subtype information for 100% of solar installation records
in California in DeepSolar database

We have achieved this milestone in Q4 of BP1. Specifically, we apply the solar panel
subtype classification model to all solar installations recorded in the DeepSolar
database. The model is applied on the latest remote sensing high-resolution (<10cm)
captured at the geolocation of each recorded solar installation. We finally obtain the
subtype information for each of these solar installations. Among all 1,470,189 records in
the original DeepSolar dataset, there are 983,970 residential PVs, 80,088 commercial
PVs, 21,183 utility-scale PVs, and 144,147 solar water heating systems. The remaining
240,801 systems are negative samples which are falsely identified as positive by the
original DeepSolar model. Figure 2.3 shows the fraction of each subtype (including the
negative samples) determined by the solar subtype classifier. Note that our initial
target of the data coverage (as proposed in the original Milestone 2.3.1) is
California, while our actual realized coverage is the U.S.

7.3. Task 3: Distribution grid GIS mapping using street view imagery

In this task, we aim to develop a distribution network GIS mapping tool with machine
learning. The goal is to develop machine learning models that can detect both utility
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poles and power lines in street view images, and combine them with publicly-available
road network and building data to estimate the distribution grid GIS map.

7.3.1. Subtask 3.1: Power line detection and utility pole detection

The goal of this subtask is to develop machine learning models to detect power lines
and utility poles from street view images. This includes street view image dataset
construction (Milestone 3.1.1), the development of power line detector and utility pole
locator, and model performance evaluation (Milestone 3.1.2).

Milestone 3.1.1: Collect 2 8,000 images to train the models for identifying power
lines and poles

We have achieved this milestone in Q1 of BP1. We have constructed a street view
image dataset to train the line detector and pole detector. The dataset contains 10,000
upward satellite images (target number: 8,000 images) which are randomly sampled
from the San Francisco Bay Area. Each image is annotated with two labels indicating
whether it contains lines and whether it contains poles respectively. There are 3,204
images containing line(s) and 1,786 images containing pole(s). The dataset is split into
training, validation, and test sets following the 85%-7.5%-7.5% ratio.

Milestone 3.1.2: Achieve precision and recall for both line and pole detection >
0.85

We have achieved this milestone in Q1 of BP1. For line detection, the model achieves a
precision of 0.982 and a recall of 0.937 on the test set. For pole detection, the model
achieves a precision of 0.982 and a recall of 0.851 on the test set. They are all above
the target value 0.85. Below we elaborate on the power line detection and utility pole
detection models.

Each upward street view image is processed by two CNNs—a power line detector and a
utility pole detector. The line detector classifies an image into positive (contain lines) or
negative category (no line found), and then extracts the line directions for positive
images (Figure 3.1A). Similarly, the pole detector classifies the image first and then
estimates the pole orientations (Figure 3.1B). Both models adopt an Inception-v3 model
architecture (Figure 3.2).

To estimate the directions of power lines in an image, we apply Hough transform on
Class Activation Maps (CAMSs) generated by the line detector. Hough transform can
detect a line and estimate its direction in a CAM. In order to tackle multiple lines in an
image, once a line is detected, we hide it by adding a mask to the CAM and re-apply
Hough transform to it, until all lines in the image have been detected. Similarly, for
estimating pole orientations, we also apply Hough transform on the CAM generated by
the pole detector and calculate the angle between the pole and horizontal axis of the
image.
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Figure 3.1: Power line detector and utility pole locator. (A) Power line detector. It first
decides whether there is any line in the image (positive) or not (negative), and then extracts
lines in positive images and estimates their directions using Hough Transform. (B) Utility pole
detector. It first decides whether there is any pole in the image (positive) or not (negative),

estimates the pole orientations, and then intersects rays of pole orientations to obtain the pole
location.
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Figure 3.2: The model architecture for both line detector and pole detector. A

segmentation branch is added at an intermediate layer of the Inception-v3 network to generate
Class Activation Map (CAM).

To estimate the exact geo-coordinates of poles, we assume utility poles are
approximately vertical, hence any poles in an upward street view must point to the
image center. Under this assumption, by drawing rays of pole orientations starting from
street view points and intersecting them, the exact locations of poles can be derived
(Figure 3.1(B)). Intersecting two rays can obtain a single intersection point, while
intersecting three or more rays can potentially obtain multiple intersections and we use
spatial clustering to merge intersections that are close to each other.

7.3.2. Subtask 3.2: GIS mapping using link prediction
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The goal of this subtask is to combine the detected power lines and utility poles
(achieved by the machine learning models developed in Subtask 3.1) with the road
network information to build a GIS mapping pipeline for distribution grids. The essential
part of this subtask is the development and evaluation of a machine-learning-based link
prediction model, which is detailed as follows. Milestone 3.2.1 and Milestone 3.2.2 are
designed for evaluating the pole localization and link prediction performance,
respectively.

Link prediction method: By incorporating road information, we aim to further improve
the prediction of whether there is a line connection between two detected poles.
Specifically, each road instance can be represented as a series of line segments. If a
detected pole or a street view point has a distance < Dattach t0 a road, it will be attached
to that road. All attached street view points and detected poles are sorted in order along
the road. In this way, features for a pair of poles, such as whether the two poles are
next to each other along the road, whether they are attached to the same road, whether
there are street view points with power lines detected between them, etc, can be
extracted from the road model.

Moreover, to reduce the number of poles missed by the pole detector, we insert pole(s)
between a pair of poles if the distance between them is greater than a threshold Dinsert.

Road maps, which can be represented as geospatial graphs with nodes and edges, are
obtained from OpenStreetMap [10].

We develop a machine-learning-based link prediction model that takes feature variables
for a pair of poles as inputs and outputs whether there is a line connection between
them. Any pair of poles with distance less than a threshold Dcand are considered as
candidates. We consider various types of classification models including logistic
regression, decision tree, random forest, support vector machine, and gradient
boosting. Feature candidates include:

Distance between the two poles.

Whether the two poles are on the same road.

Whether the two poles are next to each other along the road.

Ratio of street view points with power line detected between the two poles.
Minimum/average difference between the line directions estimated from street
view images and the direction of the line connecting the two poles. Small
difference gives evidence that there are power lines between the two poles.
Whether either of the poles is detected by the pole detector or inserted.
Whether either of the poles is at a road intersection.

Whether the two poles are at the same road intersection.

The binary prediction of a modified Dijkstra’s algorithm [9]. This algorithm finds
the most efficient paths to connect poles. On the meshed spatial map, each cell
is assigned with a weight. By setting the weights of roads to be lower than others,
connecting poles along the road is preferrable.
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We use cross-validation on the development set to select the best model as well as the
best feature sets. The output of the link prediction module is a geospatial graph with
estimated geotagged poles as nodes and predicted line connections as edges.

Dataset: To develop the link prediction model and evaluate the overall grid mapping
performance, we collect and clean distribution grid maps in 6 different regions and treat
them as ground truth maps. The 6 regions are from cities in Northern California
including San Carlos, Newark, Santa Cruz, Yuba City, Pacific Grove, and Salinas. For
these 6 regions, we obtain the geospatial maps of distribution grids from the Integration
Capacity Analysis (ICA) map [26] of Pacific Gas and Electric Company (PG&E), and
then manually distinguish between overhead and underground grids. For the geospatial
graph of overhead grids, we only keep nodes that are corresponding to utility poles and
edges that are corresponding to power lines by checking other data sources such as
satellite images and street view images. Grid map in Santa Carlos is used as a
development set for training and validating the link prediction model while the grid maps
in other 5 regions in Northern California are used as test sets.

Evaluation metrics: We evaluate the performance of pole localization and link
prediction. To compare a set of ground truth geolocations of poles P = {p1, p2, ... pm}
and a set of estimated geolocations of poles Q ={q1, gz, ... gn}, we match all pairs of
poles from two sets {(pi, Qi}}1 <i<m, 1<j<N and sort them in ascending order according to
the distance between the pair of poles. Given a distance threshold Dmatching, We pick
pairs out of the sorted list starting from the first element and add them to the list of
matched pairs until the pairwise distance becomes greater than Dmatching. If either
estimated or ground truth pole in a pair have already been picked before, this pair will
be dropped and not picked again to avoid repetition. Then we use the precision and
recall for measuring the pole localization performance, defined as:

# matched pairs
N

precision of pole localization =

# matched pairs
M

recall of pole localization =

To evaluate the link prediction performance of overhead grids, we compare the ground
truth edge set E and the edge set generated by the link prediction model F. Specifically,
we define the precision and recall for link prediction as:

|[E N F
precision of link prediction = IF|
|E n F|
recall of link prediction = IE|

Here || denotes the number of edges in a set. M denotes the intersection of two sets.
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Note that edges between false negative poles (poles that are not detected) are counted
as false negative edges, and edges between false positive poles (wrongly-detected
poles) are counted as false positive edges. Moreover, false negative or false positive
poles between two true positive poles along the same power lines do not affect the
overall topology. For example, gm—Qn in the predicted edge set F can be viewed as a
correct prediction for pi—pj—pk in the true edge set E if pi matches gqm and px matches gn.
g—Qgm—Qn in F can also be viewed as a correct link prediction for pi—p;j in E if pi matches q
and pj matches gn. To give tolerance to such errors, we measure the precision and
recall after matching the equivalent segments from E and F.

The parameter values used in our experiment are Dattach = 20m, Dinsert = 70m, and Dcand
= 100m. We select the best feature set and parameters for link prediction models based
on the 9-fold cross-validation on the San Carlos development set which are divided into
9 subsets according to the boundary division of 9 census tracts. The model with the
best configuration is then trained on the full development set and applied on all test
areas.

Milestone 3.2.1: Achieve pole localization accuracy (in ratio of actual poles that
can be detected within 25m) > 80%

We have achieved this milestone in Q2 of BP1. The pole localization method is
introduced at the end of subsection 7.3.1. The evaluation metrics are detailed in
subsection 7.3.2. Table T3.1 (column 1 and column 2) shows the pole localization
performance with Dmatching = 25m. Compared with the ground truth pole locations
derived from the PG&E ICA map, for most of the test areas, over 80% of the actual
poles can be detected within 25m (recall) while over 80% of the detected poles have a
nearby actual pole within 25m (precision). The average precision and recall over all 5
test areas (excluding the development set of Santa Carlos) are 0.832 and 0.836,
respectively. They are both higher than the target value 0.8 (80%).

Milestone 3.2.2: Achieve precision and recall pf link prediction > 70%

We have achieved this milestone in Q2 of BP1. The link prediction method and the
evaluation metrics are introduced in subsection 7.3.2. We compare the performances of
two different link prediction models—decision tree and gradient boosting—on the test
areas in Northern California (introduced in subsection 7.3.2), and the result shows that
gradient boosting performs slightly better than decision tree in terms of F1 score (see
Figure 3.3). For the gradient boosting model (see Table T3.2), the precision after
matching equivalent segments ranges from 0.71 to 0.83 in the 5 test areas, while the
recall ranges from 0.67 to 0.89 (Table T3). The average precision and recall over all 5
test areas (excluding the development set of Santa Carlos) are 0.787 and 0.766,
respectively. They are both higher than the target value 0.7 (70%).
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Figure 3.3: Comparison between two link prediction models: decision tree and gradient
boosting. The F1 score is the harmonic mean of precision and recall of link prediction (after
matching equivalent segments) on the test areas in California.

F1 score

o F1 # Precision Recall (after F1 score
Test area Precision  Recall supplemented (after (after
score supplement)
poles supplement) supplement)

a. Test areas in California

San Carlos, CA,
US.A. (development  0.836  0.800 0.818 146 0.895 0.807 0.849
Newark, Sétf)\, US.A. 0845 0811 0828 95 0.916 0.820 0.865
Sam;(.:sr‘“: e 0850 0818 0834 47 0.890 0.824 0.856
Yuba City, CA, US.A. 0880  0.776 0.825 9 0.887 0.778 0.829
Pacjﬁ%f}srjf’ . 0773  0.832 0.801 123 0.848 0.839 0.844
Salinas, CA, U.S.A. 0816 0943 0.875 73 0.888 0.939 0913
Average (exceptSan o033 836 0.833 69.4 0.886 0.840 0.861

Carlos)

b. Test areas in Sub-Saharan Africa

Ntinda, Kampala, 0799  0.707 0.750 i : - .

Uganda
Tuo Rampas 0853 0717 0.779 : - . i

Uganda
Highridge, Nairobi, 0.895 0.647 0751 i i . i

Kenya

Ngara, Nairobi, Kenya 0.887 0.584 0.704 - : - :
Ikeja, Lagos, Nigeria 0.953 0.636 0.763 - - : -
Average 0.877 0.658 0.749 - - - -

Table T3.1: Pole localization performance on the test areas in California and Sub-Saharan
Africa (SSA), with distance threshold Dmatching = 25m. F1 score is the harmonic mean of
precision and recall.
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F1 # Precision Recall (aft F1 score
Test area Precision Recall supplemented  (after ecall (alter (after
score supplement)
edges supplement) supplement)

a. Test areas in California

San Carlos, CA,
US.A. (development 0787 0713  0.748 161 0.853 0.726 0.784
Newark,scet/)x, USA. 0816 0760 0.787 113 0.899 0.773 0.832
Sam‘;g_‘f A, 0809 0723 0.763 48 0.851 0.730 0.786
Yuba City, CA, US.A. 0828  0.671 0.741 9 0.836 0.673 0.746
PaCiﬁCU(.}Sr_‘Xc’ CA, 0709 0783 0.744 132 0.780 0.793 0.786
Salinas, CA, U.S.A. 0774  0.891 0.828 85 0.856 0.889 0.872
Average (exceptSan .90 730 0757 926 0.844 0.739 0.787

Carlos)

b. Test areas in Sub-Saharan Africa

Hiinda; Kampala; 0801  0.664 0.726 ; ; ; ;

Uganda

Kololo, Kampala, g ¢56 0,639 0.721 - - - -
Uganda

Highodge, Narobl: o899 0701 10780 . . : :
Kenya

Ngara, Nairobi, Kenya 0.793 0.510 0.621 - - - -
Ikeja, Lagos, Nigeria 0.908 0.637 0.749 - - - -
Average 0.841 0.630 0.719 - - - -

Table T3.2: Link prediction performance (gradient boosting model) on the test areas in
California and SSA. F1 score is the harmonic mean of precision and recall (after matching
equivalent segments).

7.3.3. Subtask 3.3: Preliminary benchmark the performance of distribution grid
GIS mapping algorithm

The goal of this subtask is to evaluate the overall performance of distribution grid GIS
mapping model we developed by benchmarking its prediction against the ground truth
distribution grid map (PG&E ICA map). It includes the evaluation for both overhead
distribution lines and underground distribution lines. In this subsection, we first introduce
the new method we developed for mapping underground lines, followed by the model
evaluation metrics and results. Finally, we summarize the accomplishments for
Milestone 3.3.1 and 3.3.2.

Undergrounding line mapping method: Street view images are only able to capture
the information of overhead distribution grids. To estimate the grid map for areas where
power lines are underground or street view images are not available, we develop a
heuristic approach that integrates the information of the estimated overhead grid map,
the road network, and the map of buildings for inferring underground grid map. A
premise for this approach is that all buildings should be connected to grids, which
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means that all buildings that are not connected by overhead grids should be connected
by underground grids. Therefore, this approach is only applicable to regions with nearly
100% electrification rate. Under this premise, we estimate the underground grid map by
first identifying buildings which have not been covered by the estimated overhead grid,
and then running a modified Dijkstra’s algorithm to generate paths to greedily connect
all of them. The paths that are generated in this algorithm are used as the estimates of
the underground grid.

To pick out unconnected buildings, we dilate the line connections of the estimated
overhead grid with a radius Rdiate and overlay it with the building map. Buildings that are
not covered by the dilated paths are treated as unconnected buildings. In the modified
Dijkstra’s algorithm, unconnected buildings are the targets that should be connected,
and new paths are greedily generated on top of the estimated overhead grid until all
targets are connected. The algorithm is run on the meshed spatial map where the
overhead grid, roads, and buildings are discretized. Paths can be generated from one
cell to any of its 8 neighbor cells (including diagonal neighbors). Weights of road cells
are set to be lower than that of other cells. In this way, as the objective of the algorithm
is to find the paths with minimum weights, connections following roads are more
preferable. Such weight assignments are based on the grid construction practice that
underground power lines are usually buried along roads to facilitate maintenance. The
final output of underground grid inference is a 2D mask with binary values indicating
whether each cell belongs to the underground grid or not.

Evaluation metrics: We evaluate the overall grid mapping performance on the meshed
spatial map since the underground part of the grid cannot be explicitly represented as
nodes and edges. To this end, both the ground truth map and the entire predicted grid
map — including overhead and underground portions — are meshed into 2D binary
arrays with the cell size 2m x 2m, denoted as G and H, respectively. Cells that belong to
grids have value 1 and otherwise 0. To estimate the correct rate of the estimated grid
map (“precision”), we dilate 1-value cells in G with a radius Reval to generate Gdilate, then
overlay Guilate With H, and finally calculate the ratio of 1-value cells in H that can be
covered by Guilate. Similarly, to estimate the ratio of the ground truth grid map that can
be detected within a distance (“recall”), we dilate 1-value cells in H with the same radius
Reval to generate Hudiate, then overlay Hdilate With G, and calculate the ratio of 1-value cells
in G that can be covered by Hdilate. Hence the precision and recall for grid mapping are
defined as:

precision of grid mapping =

recall of grid mapping =

Here M means the intersection between two 2D binary masks, and | | means the
number of 1-value cells in a binary mask.
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Test area Precision Recall F1 score

a. Test areas in California

San Carlos, CA, U.S.A.

0.857 0.797 0.826
(development set)

Newark, CA, U.S.A. 0.850 0.805 0.827
Santa Cruz, CA, U.S.A. 0.751 0.766 0.758
Yuba City, CA, U.S.A. 0.875 0.762 0.815

Pacific Grove, CA, U.S.A. 0.840 0.871 0.856
Salinas, CA, U.S.A. 0.924 0.926 0.925
Average (except San Carlos) 0.848 0.826 0.836
b. Test areas in Sub-Saharan Africa
Ntinda, Kampala, Uganda 0.920 0.782 0.846
Kololo, Kampala, Uganda 0.962 0.782 0.863
Highridge, Nairobi, Kenya 0.971 0.802 0.878
Ngara, Nairobi, Kenya 0.982 0.655 0.786
Ikeja, Lagos, Nigeria 0.988 0.756 0.857
Average 0.965 0.755 0.846

Table T3.3: Overall grid mapping performance (using gradient boosting model for link
prediction) on the test areas in California and Sub-Saharan Africa (SSA). The performance
is evaluated on the meshed spatial map using path dilation with dilation radius Reva = 30m.
Supplemented poles and line connections are considered.

Milestone 3.3.1: Achieve both precision and recall for the similarity comparison
between actual PG&E distribution grid map (above + underground) > 80%

We have achieved this milestone in Q3 of BP1. The evaluation metrics are detailed in
subsection 7.3.3. We use Reval = 30m as specified in the SOPO. The overall grid
mapping performances including both overhead and underground grids are evaluated
on the meshed spatial map of PG&E grid and the results are shown in Table T3.3. The
gradient boosting is used as the link prediction model. As is shown, for the 5 test areas
in Northern California, 83% - 97% of the actual distribution grid can be detected within
30m (“recall”). For 89% - 98% of the estimated distribution grid, actual distribution grids
can be found within 30m. They are all higher than the target value 80%.

Milestone 3.3.2: Demonstrate that the grid mapping method can identify and
correct missing lines in the utility-owned grid maps

We have achieved this milestone in Q3 of BP1. Specifically, our framework can localize
the poles that are not recorded in the PG&E ICA maps, and these newly detected poles
can serve as supplements for the utility-owned data. We validate the presence of these
supplemented poles by manually checking the Google street view images at their
geolocations. The number of supplemented poles in 5 test areas ranges from 9 to 123
(Table T3.1, column 3). After considering the supplemented poles, the average recall of
pole localization over 5 test areas is 0.886 (Table T3.1, column 4) and the average
precision is 0.840 (Table T3.1, column 5). By identifying the missing poles, our model
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can identify line connections that are not recorded in the ground truth dataset as
supplements. The number of unrecorded connections in 5 test areas ranges from 9 to
132 (Table T3.2, column 3). After considering these unrecorded connections, the
average recall of pole localization over 5 test areas is 0.844 (Table T3, column 4) and
the average precision is 0.771 (Table T3.2, column 5). These results show that our
proposed grid mapping method can identify 29 (target: >0) poles/lines not documented
in the utility-owned grid maps for each test area.

Region Precision Recall F1 score
San Carlos 0.862 0.850 0.856
Newark 0.891 0.861 0.876
Santa Cruz 0.801 0.823 0.812
Yuba City 0.916 0.830 0.871
Pacific Grove 0.874 0.911 0.892
Salinas 0.940 0.947 0.944
Watsonville 0.850 0.856 0.853
Richmond 0.876 0.914 0.895
Livermore 0.851 0.888 0.869
Eureka 0.872 0.855 0.863

Table T3.4: Overall grid mapping performance benchmarked against PG&E data. The
performance is evaluated on a raster map using path dilation with a dilation radius Reva = 30m.
Here we define precision as the fraction of predicted distribution grid located within a distance
Reval of ground truth grid, and define recall as the fraction of ground truth distribution grid that
can be detected within a distance Reva.

7.3.4. Subtask 3.4: Run the distribution grid GIS mapping algorithm on data from
multiple regions to produce a database of predicted GIS maps

The goal of this subtask is to deploy the distribution gird GIS mapping tool we
developed to different regions in California and evaluate its generalizability to other
parts of the world, especially countries in Sub-Saharan Africa where the electricity
access is limited and the information about the electricity infrastructure is scarce.

Milestone 3.4.1: Deploy the grid GIS mapping model to no less than 10 areas

We have achieved this milestone in Q2 of BP2. In addition to the 8 regions included in
the test set, we have deployed the distribution GIS mapping model to another two cities
in California: Livermore and Eureka. The total number of regions we have deployed our
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model on is 10 (target number: 10). Their performance benchmarked against PG&E
data is listed in Table T3.4 (the evaluation metrics are detailed in subsection 7.3.3).

Specifically, to evaluate the generalizability of the distribution grid mapping framework,
especially in developing countries where the energy infrastructure data are scarce, we
transfer the framework developed using the data in California to 5 manually-curated test
areas in Sub-Saharan Africa (SSA) and evaluate the model performance with the same
metrics as defined in subsection 7.3.2 and 7.3.3 (i.e., precision and recall for pole
localization, link prediction, and overall grid mapping, respectively). The 5 test areas are
from three cities in SSA, including two areas in Kampala, Uganda, two areas in Nairobi,
Kenya, and one area in Lagos, Nigeria. The World Bank maintains a geospatial dataset
of transmission and distribution grids in Africa [27], but it only covers a few cities and
most of the data in this dataset are for transmission lines. We correct errors in this
dataset and identify additional overhead distribution lines by manually checking street
view images and remote sensing images, and eventually construct the distribution grid
maps for the 5 test areas in SSA that serve as the ground truth for model evaluation.

The line detector, the pole detector, and the link prediction model—detailed in
subsection 7.3.1, 7.3.2 and 7.3.3—all remain the same without re-training or finetuning.
All hyperparameters are also the same as those used in the California dataset except
that the decision threshold to classify an image as positive is changed from 0.5 to 0.2
for the pole detector. Such a change is based on the observation that the utility poles in
SSA are generally shorter than those in the U.S. which can make them more difficult to
identify in upward street view images. Note that we do not predict the underground grid
map for the SSA test areas since the assumption for underground grid mapping—all
buildings are connected to the grid—does not necessarily hold in SSA, and the
reference underground grid maps in SSA are not available for model evaluation.

Table T3.1 compares the pole localization performance between the California test
areas and SSA test areas. While precisions of pole localization across the SSA test
areas are generally higher than 0.8, the recall drops from an average of 0.84 in the
California test areas to an average of 0.66 in SSA, which can be attributed to the
difference in the appearance of utility poles between the US and SSA. Moreover, some
utility poles in SSA are comparatively short, making them out of sight in upward street
view images if they are not close enough to the locations where street view images
were captured. Table T3.2 compares the link prediction performance between the
California test areas (Table T3.2a) and SSA test areas (Table T3.2b). It shows that the
link prediction recall drops from an average of 0.73 in the California test areas to an
average of 0.63 in SSA (Table T3.2b). A potential mitigation approach is to augment the
field of view (FoV) of upward images by leveraging the panoramic street views which
are commonly captured in street view photography.

Table T3.3 compares the overall grid mapping performance between the California test
areas (Table T3.3a) and SSA test areas (Table T3.3b). The framework achieves a
precision from 0.92 to 0.99 and a recall from 0.66 to 0.80 in overall grid mapping
(TTable T3.3b). The average precision increases from 0.85 on the California test areas



DE-EE0009359
Stanford University

to 0.97 on the SSA test areas (+12%). The average recall drops from 0.83 on the
California test areas to 0.76 on the SSA test areas (-7%). In Milestone 3.4.2, the target
value of drop in precision and recall of grid mapping when transferring the model to
regions outside the U.S. is set to be <15% (i.e., the target value is -15%). Therefore, we
have achieved Milestone 3.4.2. This indicates that our framework, trained with the data
in the U.S., can maintain a high correct rate and a reasonable detection rate of mapping
when transferred to SSA even without re-training or fine-tuning.

7.3.5. Subtask 3.5: Extensive benchmark of the performance of distribution grid
GIS mapping algorithm

The goal of this subtask is to evaluate the performance of our proposed grid mapping
method on an alternative benchmark dataset to demonstrate the robustness of the
model performance.

Milestone 3.5.1: Benchmark performance of distribution grid GIS mapping
algorithm with detailed GIS maps provided by utility partners based on I1AB
advice

We have achieved this milestone in Q2 of the no-cost extension period. We have
benchmarked the performance of the distribution grid mapping algorithm with PG&E’s
Electric Distribution GIS (EDGIS) dataset as suggested by PG&E and used the same
overall grid mapping evaluation metrics as used in subtask 3.3 (detailed in subsection
7.3.3) to evaluate the model performance. The average recall and precision across the
5 test areas (the same as used in Subtask 3.2 and 3.3) are 85% and 90%, respectively.
Both of them are at the same level as the ones in subtask 3.3 (detailed in subsection
7.3.3), indicating the robustness of the model performance.

7.4. Task 4: Visualization and applications development

In this task, the aim is to develop three applications around the Solar Energy Atlas
database to demonstrate the value of the dataset produced by the project: (i) a browser-
based tool that will allow visualizing the data produced and correlate it, at a minimum for
the whole state of California, (ii) predictive and explanatory analysis on solar adoption
that can potentially be used in planning and policy making, and (iii) a GIS application to
correlate solar adoption with distribution grid characteristics, with a particular focus on
wildfire resilience of distribution grids.

7.4.1. Subtask 4.1: Data browsing, correlation and visualization application

The goal of this subtask is to develop a browser-based platform to enable users to
browse and visualize census-tract level aggregated data derived from the Solar Energy
Atlas dataset.

Milestone 4.1: Integrate 2 5 data layers at aggreqgate level on the browser-based
platform

We have achieved this milestone in Q3 of BP3. Specifically, we have developed the
browser-based Energy Atlas platform at
web.stanford.edu/group/energyatlas/home.html. The Energy Atlas platform provides an
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“‘interactive map” module (web.stanford.edu/group/energyatlas/map.html) which multiple
data layers:

1) Solar deployment rate (characterized by number of solar installations per 1000
households).

2) Solar radiation.

3) Demographic features, include:

Average household income

Average number of years of education

Gini Index

Population density

Ratio of households that use coal/coke/wood as heating fuels

Ratio of vacant housing units

Ratio of owner-occupied housing units

Ratio of family-occupied households

Median housing unit value

S@roo0oTy

at different aggregation levels (state, county, and census tract level). We also
developed a “comparison” module (web.stanford.edu/group/energyatlas/dual-map.html)
which enables users to correlate two different variables at the same level. The total
number of layers that have been integrated is 11, which is above the target number 5.

7.4.2. Subtask 4.2: Identify the requirements for developing Energy Data
Commons

The goal of this subtask is to identify the data types and classification for the Solar
Energy Atlas and review the existing schema development process for Data Commons.

Milestone 4.2.1: Obtain a roadmap for the development of the schema for Energy
Data Commons with a focus on Solar Energy Atlas

We have achieved this milestone in Q3 of BP3. Specifically, we have worked with the
group leader (Dr. Ramanathan V. Guha, Google Fellow) and engineers in the Google
Data Commons team to figure out the procedures for integrating our generated data into
the Data Commons platform. The data import procedures follow the pipeline:

1. obtaining the source data

2. cleaning the data and representing it in the CSV format

3. Converting the data into one of Meta Content Framework (MCF), JSON-LD, or
RDF format.

7.4.3. Subtask 4.3: Spatiotemporal pattern and underlying dynamics of solar
adoption application

The goal of this subtask is to leverage Solar Energy Atlas to advance the understanding
of the spatiotemporal pattern and underlying dynamics of solar adoption at a nationwide
scale. This includes a correlational (explanatory) analysis to uncover and understand
the socioeconomic factors that shape the spatiotemporal pattern of solar adoption; a
causal analysis to identify the heterogenous effects of different types of solar energy
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incentives; a predictive analysis to forecast solar installation growth at a spatially-
resolved scale.

Correlational analysis: We conducted a correlation analysis of solar adoption by
utilizing a technology diffusion model, called Bass model [28], to characterize the
adoption trajectories from onset to saturation. Based on the Bass model, the solar
adoption trajectory in each census block group can be segmented into four phases: pre-
diffusion, ramp-up, ramp-down, and saturation (Figure 4.1A). Our results indicate that,
by 2016, 55% block groups had not experienced any adoption at all while 15% had
reached saturation (Figure 4.1B). The share of block groups that had already started
adoption is consistently greater for higher income levels across time. For example, in
2016, 61% of high-income block groups had started adoption (Figure 4.1F) while only
30% of low-income block groups had (Figure 4.1C). However, among block groups that
had started adoption already (Figure 4.2), 42% of the low-income block groups had
entered the saturation phase in 2016, with a median saturation level of 2.8% (as a share
of residential buildings). By contrast, only 30% of adopting high-income groups have
saturated, at a median saturation level of 5.8%. This suggests that the PV adoption
process in low-income communities is more likely to plateau yet at a lower adoption
level given policy regime unchanged.

By correlating the Bass model parameters with socioeconomic variables (Figure 4.3),
we find that block groups with higher income, higher education levels, higher PV benefit
with rebate/grant, and lower percentage of renter-occupied housing units are more likely
to have experienced an earlier onset of adoption. Compared to other communities,
wealthier and more educated communities started adoption at lower levels of PV benefit
with rebate/grant, implying that the PV benefit with rebate/grant is less relevant in high-
income communities. However, we find that block groups with higher income levels
actually have enjoyed higher PV benefit after the subsidization of rebate or grant (Figure
4.3C). This suggests that beyond low-income communities having comparatively lower
adoption rates, for which there are many well-known contributing factors such as lower
consumption capacity and higher fraction of renters, we find evidence that this lower
adoption rate could be also related to the lower PV benefit with rebate/grant they
experienced under a given incentive scheme. Given the inelasticity of high-income
groups with respect to the PV benefit with rebate/grant we described earlier, our results
suggest a potential for re-distribution of existing upfront subsidies to lower income
communities to make PV adoption more equitable in its distribution.

We also find that the saturated adoption level is positively correlated with median
household income, racial diversity, and average PV benefit with rebate/grant throughout
2006-2016 (Figure 4.3D), yet negatively correlated with the percentage of renter-
occupied housing units. Interestingly, despite the correlation with earlier adoption onset,
the level of education does not show a positive correlation (statistically significant) with
saturated adoption level. This observation suggests a positive association of education
levels in starting new adoption processes but not necessarily in increasing the
eventually realized capacity.
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Figure 4.1: Four-phase segmentation of PV adoption trajectories. (A) lllustration of the four
phases of PV adoption according to the Bass model: pre-diffusion, ramp-up, ramp-down, and
saturated. (B) Fractions of block groups in each of the four phases over time. Data from 2017 to
2020, marked with dashed edges, are projected by Bass models. No block groups are projected
to exit the pre-diffusion phase and enter the ramp-up phase from 2017 onwards as we do not
model the time when the adoption onset occurred. (C)-(F) Fractions of block groups in each of
the four phases over time by income quartiles. Income quartiles are determined separately for

each state.
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Figure 4.2: Fractions of block groups in “ramp-up”, “ramp-down”, and “saturated”
phases (“pre-diffusion” phase is excluded from the base). VValues from 2017 to 2020,
marked with dashed edges, are projected by Bass models. Among block groups that have
already started the adoption process (i.e. not in “pre-diffusion” phase), lower-income block
groups are more likely to be in “saturation”.

Causal analysis: we further conducted a causal analysis on the effects of solar
incentives by identifying natural experiments of various incentives. Compared to
randomized controlled trials (RCTs), a natural experiment study analyzes an event that
is not under the control of researchers but naturally divides a population into exposed
and unexposed groups to an intervention. Such a naturally occurring variation in
exposure can be used to identify the effect of the intervention. To identify all natural
experiments of incentive programs that were once present in the contiguous U.S., we
build a spatiotemporal map of incentives based on the Database of State Incentives for
Renewables & Efficiency (DSIRE). Each incentive program has a start date and
potentially an end date. In the contiguous U.S., there are 994 incentive programs that
are eligible for residential PVs. They can be divided into two major categories (financial
incentives and regulatory policies) and further into 31 types (e.g., net metering, rebate,
performance-based incentives). There are at most 31 incentive programs related to
residential PV in a block group in a year.
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Figure 4.3: Standardized coefficients of regressions with demographic factors and PV
benefit with rebate/grant. Points represent coefficient estimates, bars 95% confidence
intervals (Cl), and statistical significance levels are denoted as *p<0.05, **p<0.01, and
***n<0.001. In each regression, state dummies are included to control for state-level variations
but their coefficients are not shown here. Independent variables are normalized while
dependent variables are not. PV benefit with rebate/grant, varying by location and time, is
determined by residential electricity rate minus the Levelized Cost of Energy (LCOE) of
residential PV after the subsidization of rebate or grant. We take the residual values of years of
education and % renter-occupied housing units with respect to median household income to
mitigate their mutual correlations. Racial diversity reflects the diversity of race and ethnicity in a
block group. Other demographic variables, such as housing unit occupancy rate (percentage of
housing units that are occupied), housing unit density (number of housing units per square
mile), and percentage of renter-occupied housing units (percentage of housing units occupied
by renters), are obtained from the American Community Survey (ACS) data.

(A) Whether there has been PV adopted by 2016 vs. demographics and PV benefit with
rebate/grant. Logit regression model is applied.

(B) The time of PV adoption onset d vs. demographics and PV benefit with rebate/grant.

(C) PV benefit with rebate/grant in 2016, characterized by USD cents/kWh, vs. demographics.
(D) Saturated PV adoption level vs. demographic characteristics and PV benefit with
rebate/grant.
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Figure 4.5: Treatment effect of performance-based incentive (PBI) programs vs. median
household income, estimated by causal forest. Each subfigure is corresponding to a single
control-treatment group pair where the effect of the target incentive program is to be estimated.
Each point is corresponding to a block group. “Estimates” show average treatment effects and
their standard errors estimated by different models. Treatment effect is quantified in terms of
number of installations per thousand households.

Utilizing the spatiotemporal map of incentives, we can extract a “control-treatment group
pair” for a specific incentive program, where both the control and treatment groups had
the same set of incentives before year T except that a new incentive started in
treatment group since year T while the incentives in control group still remained the
same. This new incentive is called “target incentive” of which the effect can be
estimated by existing causal inference models. We extract 170 control-treatment group
pairs in total for residential PV incentives across the contiguous U.S.

For each pair, we apply a variety of causal inference models to identify the average
treatment effect (ATE) of the target incentive on solar adoption rate, defined as number
of solar installations per thousand households in a block group in a year. The models
we apply include propensity score matching, propensity score weighting [29], and fixed
effect regression. Moreover, causal forest [30] is a state-of-the-art causal inference
model to estimate both ATE and heterogeneous treatment effect (HTE) by extending
the random forest algorithm. We apply causal forest to each control- treatment group
pair by using the difference of solar adoption rates between the year before the
implementation of the target incentive and the first year after it. By using the fitted
causal forest model to estimate the treatment effect for each block group, we can further
obtain the correlation between the treatment effect and the median household income of
each block group.

Figure 4.5 and Figure 4.6 show the results of control-treatment group pairs where we
are able to observe the treatment effect at different income levels for performance-
based incentives (PBI) and rebate programs, respectively. For each control-treatment
group pair in these two figures, we show the ATE estimated by different models as well
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as the correlation between treatment effects estimated by causal forest and median
household income.
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Figure 4.6: Treatment effect of rebate programs vs. median household income, estimated
by causal forest. Each subfigure is corresponding to a single control-treatment group pair
where the effect of the target incentive program is to be estimated. Each point is corresponding
to a block group. “Estimates” show average treatment effects (and their standard errors
estimated by different models. Treatment effect is quantified in terms of number of installations
per thousand households.
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For PBI, incentives are paid based on the actual energy production of the PV system.
Typically, they are paid on the per kWh basis ($/kWh) over a period of time. Figure 4.5A
and 4.5B show the effect of an PBI program, Green Power Providers offered by
Tennessee Valley Authority (TVA), in two different states, Georgia (GA) and Tennessee
(TN), respectively. We find that such a PBI incentive exhibits heterogeneous effects at
different income levels. For block groups with median household income higher than
$100K, the effect is close to 0 in Georgia and less than 2 installations per thousand
households in Tennessee. By contrast, for block groups with income levels lower than
$50K, a significant number of block groups experienced an effect of higher than 1
installation per thousand households in Georgia and 3 installations per thousand
households in Tennessee. This suggests that this PBI program can activate solar
adoption in low-income communities but is inactive in high-income ones.

For rebate programs, incentives are paid based on the installed capacity of the PV
system to reduce its upfront cost. Typically, they are paid on the per kW basis ($/kW)
(contrary to $/kWh in PBI). Figure 4.6 shows the effects of different rebate programs
and their variations with income levels. We find that, for the two rebate programs
displayed in Figures 4.6A and 4.6B (Solar PV pilot program offered by El Paso Electric
Company, and Solar Incentive Program offered by Rocky Mountain Power), the effects
are stronger in many low-income communities and show a slightly negative correlation
with income levels. By contrast, for the two rebate programs displayed in Figures 4.6C
to 4.6E (OCHEEP! offered by Orange County in Florida, and Smart Watts Rebate
Program offered by the city of Fort Lauderdale), the effects show a positive correlation
with income levels. We notice that one difference in incentive magnitude is that: for the
former two programs, the maximum incentive amount, i.e., the upper bound of rebate
that can be obtained by a customer, is $7,500 for the El Paso solar PV pilot program
(Figure 4.6A) and $4,600 for the Rocky Mountain Power solar incentive program (4.6B).
By contrast, the last two rebate programs both have a maximum incentive amount of
only $1,000 (OCHEEP! in Figure 4.6C and 4.6D, and Smart Watts Rebate program in
Figure 4.6E). Low maximum incentive amounts, therefore, may be a potential reason
explaining why the effects of rebate programs in 4.6C to 4.6D are lower in lower-income
communities, as a rebate program might need to have a high upper bound of cost
deduction to be appealing to low-income communities.

To summarize, our results suggest that PBI can activate solar adoption in low-income
communities while rebate programs have such effects only if the incentive amount is
significant.

Milestone 4.3.1: Use regression model and solar installation data to predict solar
adoption patterns considering spatial heterogeneity and achieved an out-of-
sample regression R?> 0.5

We have achieved this milestone in Q3 of BP2. Specifically, we developed a predictive
model based on random forest to forecast future solar installations in a local
neighborhood given installations in previous years along with demographic features and
incentives. The out-of-sample R? in predicting solar installations in the next year can
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achieve 0.65 (target value: 0.5). This model can be used for forecasting future solar
installation growth at a granular geographic level to facilitate grid planning.
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Figure 4.7: Geospatial distributions of wildfire probability, demographic characteristics, and
distribution grid characteristics at the census block group level. (A) Average annual wildfire
probability over 2026-2050. (B) Median annual household income. (C) Housing unit density. (D)
Undergrounding rate for distribution lines with annual wildfire probability > 0.25%. Undergrounding
rate is defined as the fraction of distribution power lines buried underground in terms of length in a
block group. (E) The fraction of overhead power lines that are overlapped with tree cover with tree
height > 10m, which is used to characterize the proximity of power lines to trees. The tree cover map
is at a spatial resolution of 10m. (F) Maximum undergrounding cost per household in each block group,
under the scenario that overhead lines with wildfire probability > 0.25% are to be undergrounded and
the cost is only shared locally within each block group.

7.4.4. Subtask 4.4: Correlating solar power locations and overhead lines in
distribution grids

The goal of this subtask is to combine the distribution grid GIS mapping with the
produced solar installation data to uncover the distribution grid vulnerability to wildfires.
This subtask can provide new insights into how grid adaptation approaches (e.g.,
undergrounding) and solar PV preparedness differ across different communities, and
how to reduce the inequity in the wildfire resilience of distribution grids.

Milestone 4.4.1: Obtain overhead line ratio and solar PV capacity for 100% of
very-high-fire-risk regions in PG&E territory

We have achieved this milestone in Q1 of BP2. We utilize the geospatial data of
distribution grids of California’s two major utilities—PG&E and Southern California
Edison (SCE), and overlay them with the maps of tree cover [31] and predictive wildfire
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probability over 2026-2050 [32, 33]. We further use the power line detection model
developed in Task 3 (section 7.3) to estimate the fraction of distribution power lines in
each block group that are buried underground in terms of line length, denoted as
“‘undergrounding rate” (i.e., 1 — overhead line ratio). As a result, we have obtained the
undergrounding rate and overhead line ratio for 100% very-high-fire-risk regions
(annual wildfire risk probability > 0.5%) and 100% high-fire-risk regions (annual
wildfire risk probability > 0.25%) for both PG&E and SCE territories. This has satisfied
and gone beyond the targeted coverage 100% (for only very-high-fire-risk regions in
PG&E territory).

Utilizing such data, we further analyze the status quo of distribution grid vulnerability to
wildfires in California at the census block group level—a highly granular geographic
aggregation defined by the US Census Bureau. Figure 4.7 shows the geospatial
distributions of wildfire probability, demographic characteristics, and various distribution
grid characteristics in California.

We plotted the correlations between median annual household income and various
distribution grid characteristics conditioning on wildfire threat—characterized by average
annual wildfire probability over 2026-2050—for PG&E, SCE, and both territories (see
Figure 4.8). We find that, conditioning on wildfire threat, undergrounding rates are
positively correlated with median household income in both PG&E and SCE territories
For high-fire-threat block groups (annual wildfire probability of distribution lines >
0.74%), the undergrounding rate is expected to be 65% at the income level of $200K
but only 34% at $50K. Undergrounding rates in SCE territory are generally higher than
PG&E territory, especially in high-fire-threat and low-income areas, which might result
from the differences in undergrounding cost, ages of neighborhoods, constructability of
underground lines, etc.

Apart from undergrounding rates, we further investigate the vulnerability of the overhead
part of the grids across different communities. By overlaying the tree canopy map with
that of distribution grids, for each block group we estimate the fraction of overhead
power lines that are overlapped with tree canopy cover to represent the potential
exposure of overhead lines to nearby vegetation (see its geospatial distribution in Figure
4.7E). Trees shorter than a threshold of 10m are filtered out as they are not likely to
impact grids, according to the typical heights of poles and lines. We find that (Figure
4.8), in mid- and high-fire-threat areas of PG&E territory, lower-income block groups
tend to have higher fractions of overhead lines overlapped with tree cover, indicating
higher exposure of their grids to vegetation. However, such fractions are significantly
lower in SCE territory. This may be explained by the sparser tree cover and lower tree
heights in SCE territory (Southern California) than that PG&E territory (Northern
California).
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Figure 4.8. Correlations between distribution grid characteristics and median household
income conditioning on wildfire threats in PG&E territory (left column), SCE territory
(middle column), and both (right column). Curves are fitted using locally weighted scatterplot
smoothing (LOWESS). Lighter areas represent 90% confidence intervals (Cls) obtained by 1,000
bootstraps of curve fitting. Wildfire threat stratification is based on the tertiles of maximum wildfire
probability of distribution lines in a block group. Dependent variables include: (A)-(C)
undergrounding rate, (D)-(F) the fraction of overhead power lines that are overlapped with tree
cover (tree height > 10m), (G)-(I) number of residential PV installations per 1,000 households, (J)-
(L) maximum undergrounding cost per household under the scenario that overhead lines with
wildfire probability > 0.25% are to be undergrounded and the cost is only shared locally within
each block group, and (M) the fraction of wooden utility poles (data only available for PG&E). (N)
Household count in each bin of median household income, conditioning on wildfire threats.
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Wooden poles are more vulnerable to fires and to vegetation strike than poles made of
other materials such as concrete or steel. Utilizing PG&E’s grid asset data, we find that
lower-income block groups in PG&E territory tend to have higher fractions of wooden
poles conditioning on wildfire threat (Figure 4.8). This suggests that besides lower
undergrounding rates, low-income communities are also less likely to install more fire-
resistant poles (e.g., steel, concrete) which may be attributed to their higher cost than
wooden ones.

If the grid itself is vulnerable, preemptive de-energization is likely to be taken as the last
resort option to prevent wildfires. Standalone power systems or grid sectionalization
relying on locally-sited DERSs, such as solar photovoltaics (PV) and batteries, are also
considered as an alternative approach to provide electricity for high-fire-threat areas to
prevent wildfires. We find that, however, solar PV adoption rates, characterized by the
number of PV installations per thousand households, are lower in low-income
communities at different wildfire threat levels (Figure 4.8). This suggests that, apart from
less undergrounding protection and higher vulnerability of the overhead part of the
grids, electricity, especially the one provided by renewable DERsS, is also less
accessible to low-income communities when they have to be disconnected from major
grids as the last resort option facing wildfire threats. Note that grid-tied PVs need to be
accompanied by batteries to provide power during outage, but battery adoption is not
analyzed here.

Overall, low-income communities not only have less undergrounding protection of
distribution lines, but also have higher vulnerability of the overhead part of grid
infrastructure to wildfires and less DER preparedness for last-resort wildfire prevention
approaches.

7.4.5. Subtask 4.5: Develop the Data Commons schema for Solar Energy Atlas
The goal of this subtask is to develop and implement schema.org schema for Solar
Energy Atlas following the Data Commons development process and validate the
schema with Data Commons.

Milestone 4.5.1: Validate deployment of Solar Energy Atlas on Data Commons to
ensure 0 mismatch compared with results obtained from original offline data
within numeric tolerance

We have achieved this milestone in Q3 of BP2. Specifically, we have implemented the
schema for the census-block-group-level time-series solar installation data produced in
Task 1. The Schema is implemented with the Meta Content Framework (MCF) format.
Specifically, for the above solar installation data frame, each row contains the data from
each census block group indexed by its FIPS code “blockgroup_FIPS”. There is a
column named “cumulative_num_of residential_PVs_by [X]’ for each year X, where [X]
is a placeholder for each year from 2005 to 2017. The MCF file looks like follows:

Node: E:data->EO
typeOf: dcs:StatVarObservation
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observationAbout: C:data->blockgroup FIPS
observationDate: 2005

variableMeasured: Number of residential PVs

value: C:data->cumulative num of residential PVs by 2005

Node: E:data->El

typeOf: dcs:StatVarObservation

observationAbout: C:data->blockgroup FIPS
observationDate: 2006

variableMeasured: Number of residential PVs

value: C:data->cumulative num of residential PVs by 2006

Node: E:data->E2

typeOf: dcs:StatVarObservation

observationAbout: C:data->blockgroup FIPS
observationDate: 2007

variableMeasured: Number of residential PVs

value: C:data->cumulative num of residential PVs by 2007

Here we only show the schema for year 2005-2007, while the remaining years (2007-
2017) follow the same way. Using the same approach, we have also implemented the
schema for census-block-group data on California’s distribution grid undergrounding
status (characterized by the fraction of power lines buried underground) produced by
the grid mapping framework. Comparing the correlational analysis results (see details in
subsection 7.4.3 and 7.4.4) using online data vs. using offline data, we verify that they
have zero mismatch (target: zero mismatch).

7.4.6. Subtask 4.6: Upload the Solar Atlas data to Data Commons and test
integration

Milestone 4.6.1: Upload Solar Energy Atlas data to Data Commons

We have achieved this milestone in Q3 of BP2. Specifically, we have uploaded the
census-block-group-level time-series solar installation data as well as the distribution
grid data introduced above together with their Schema (.tmcf file) to the Data Commons
platform to make them publicly available. Our tests show that there is no mismatch
between the correlations derived with online data and the ones obtained from original
offline data (see Milestone 4.5.1). Figure 4.9 shows an example of the residential solar
PV installation curve for a block group in Miami-Dade County, Florida.




DE-EE0009359
Stanford University
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About: Block Group 2, Census Tract 1.20, Miami-Dade County, Florida
dcid: geold/120860001202

typeOf: CensusBlockGroup
Properties

Property Value Provenance
deid geoldf120860001202
typeOf CensusBlockGroup WWW.CENsus.gov
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Figure 4.9: A visualization of the residential solar PV installation curve of block group
#120860001202 in Miami-Dade County, Florida on the Data Commons platform. This data
is imported from the DeepSolar++ dataset produced in Task 1.

7.5. Task 5: Data Management and technical advisory board

In this task, we aim to convene meetings with industry advisory board to collect their
interested use cases and the data that can be shared in each budget period. We also
aim convene a webinar in each budget period with experts from industry and academia
to discuss applications and technical challenges in applying machine learning for
renewable energy and grid research.

7.5.1. Subtask 5.1: Convene industry advisory board meeting for Year 1

Milestone 5.1.1: Convene TAC meeting in Year 1 to identify potential use cases
and seek high-quality non-public input data

We have achieved this milestone in Q3 of BP1. We have formed a Technical Advisory
Committee (TAC) (formerly called Industry Advisory Board). There are 7 industry
members and most of them have current or prior experience working in a utility
company. A TAC meeting was held (via zoom video conference) on 2022/04/22. The
names of the people attending this meeting are listed below. All TAC members attended
except one, who is very interested in the project and data and will attend future
meetings. Below we summarize some of the key discussion.
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TAC members: (1) Jonathan Bradshaw, Pacific Gas & Electric, (2) Andy Eiden,
Portland General Electric, (3) Luke Forster, NYSERDA, (4) Amir Kavousian, Altitude
Networks, (5) Lena Perkins, City of Palo Alto Utilities, (6) Diego Ponce, East Bay
Community Energy, (7) Liuxi (Calvin) Zhang, Eaton

Stanford DeepSolar Team members: Ram Rajagopal, June Flora, Tiffany Branum,
Chin-Woo Tan, Chad Zanocco, Zhecheng Wang, Rajanie Prabha

Welcome & Overview Ram Rajagopal
Introduction of Members Chin-Woo Tan
Previous DeepSolar Research Zhecheng Wang
Current Research Plans & Work to

Date

Questions & Discussion ALL

Updating the 2017 DeepSolar Rajanie Prabha
Database

Projected applications of the Chad Zanocco

DeepSolar Database

Questions & Discussion ALL

Table 5.1: DeepSolar TAC meeting agenda, 2022-04-22

Overview of TAC meeting: Members were very engaged in the presentation and Q&A
with discussion taking up the remaining time after the presentation by PhD student Z.
Wang. In order to give members a complete understanding of the DeepSolar project, we
video recorded the last two presentations, and placed videos and accompanying slides
in a shared drive and sent those materials all members.

Topics of Discussion: An initial categorization of the topics of discussion are (1) grid
resiliency, (2) meeting the electricity service needs of underserved populations, (3)
discovering the potential for behind the meter (BTM) resources - future solar, battery
installation, EV purchase and identifying micro-grid, commercial, and community solar
sites. Finally, there was a wide-ranging discussion regarding the use of Diffusion of
Innovation Theory and its application to predicting current growth curves of solar and
perhaps other BTM resources.

7.5.2. Subtask 5.2: Convene a webinar on computer vision applications for grid

Milestone 5.2.1: Convene a webinar in Year 1 on computer vision applications for
arid

We have achieved this milestone in Q4 of BP1. The webinar on computer vision
applications in power grid management was held on August 15, 2022. We have invited
the founder and CTO of Buzz Solutions, Vikhyat Chaudhry, as a guest speaker, and
grid experts from different companies as an advisory committee. The webinar started
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with three presentations followed by an open discussion session on the potential use
cases of computer vision in a variety of power system applications, from resource
mapping to power system fault detection.

7.5.3. Subtask 5.3: Convene industry advisory board meeting for Year 2

Milestone 5.3.1: Convene IAB meeting in Year 2 to demonstrate initial datasets for
Solar Energy Atlas

We have achieved this milestone in Q3 of BP2. We invited members of our Technical
Advisory Committee (TAC) (formerly called Industry Advisory Board) to this meeting on
2023/04/06. There are 7 industry members and most of them have current or prior
experience working in a utility company. The names of the people invited to this meeting
are listed below. All TAC members attended except one, who is very interested in the
project and data and will attend future meetings. Below we summarize some of the key
discussion.

TAC members: (1) Jonathan Bradshaw, Pacific Gas & Electric, (2) Andy Eiden,
Portland General Electric, (3) Luke Forster, NYSERDA, (4) Amir Kavousian, Altitude
Networks, (5) Lena Perkins, City of Palo Alto Utilities, (6) Diego Ponce, East Bay
Community Energy, (7) Liuxi (Calvin) Zhang, Eaton

Stanford DeepSolar Team members: Ram Rajagopal, June Flora, Chad Zanocco,
Zhecheng Wang, Rajanie Prabha, Chin-Woo Tan, Tiffany Branum.

Discussion: Stanford post-doc Chad Zanocco started with a quick update and overview
of the DeepSolar Energy Atlas project and their applications. The presentation was
followed by discussion on various related topics, including incentives to install solar
especially for disadvantaged communities and low-income households, fire code for
solar installation, grid resiliency to wildfires, and the value of crowdsourced power
inspection.

7.5.4. Subtask 5.4: Convene webinar in Year 2 to discuss application using Solar
Energy Atlas and data sharing

Milestone 5.4.1: Convene IAB meeting in Year 2 to demonstrate initial datasets for
Solar Energy Atlas

We have achieved this milestone in Q2 of the no-cost extension period. In this subtask,
the goal is to convene a webinar on the potential use cases of Solar Energy Atlas. We
invited four members from our Technical Advisory Committee (TAC) to this webinar on
3/13/2024. They have current or prior experience working in a utility company. The
names of the people invited to this meeting are listed below. Below we summarize some
of the key discussion.

e TAC members: (1) Jonathan Bradshaw, Pacific Gas & Electric, (2) Andy Eiden,
Portland General Electric, (3) Diego Ponce, East Bay Community Energy, (4)
Jorge Meraz, Pacific Gas & Electric
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e Stanford DeepSolar Team members: June Flora, Chad Zanocco, Zhecheng
Wang, Rajanie Prabha, Chin-Woo Tan

Discussion: Stanford post-doctoral researcher Zhecheng Wang started the
presentation with an overview of the DeepSolar Energy Atlas project and its practical
applications. Another segment of the webinar, covered by PhD student Rajanie Prabha,
featured updates regarding the new DeepSolar database. Notably, the database now
encompasses all solar installations up to the year 2022. The pipeline is updated with
more robust vision transformer models to continually update data in the subsequent
years. The final part of the presentation, covered by post-doctoral researcher Chad
Zanocco, talked about the application of the DeepSolar database in identifying the non-
residential equity gap, soon to appear in Nature Energy.

Jorge, from PG&E, raised a discussion around understanding this even distribution of
PV installations across block groups at different geographical levels such as state,
county, and city. Jon, another PG&E attendee, expressed interest in obtaining more
details about obtaining specific values for the Bass model parameters, used by the
DeepSolar timelapse to characterize the adoption trajectories from onset to saturation.
Various attendees suggested the need for an API that can be queried for specific
information, instead of downloading the full dataset. Furthermore, there is an added
interest for solar adoption forecasting models predicting, where spatially, new PV
installations might appear in the future. The webinar ended with the emphasis on the
potential policy implications of utilizing DeepSolar data for targeted "repurposed energy"
deployments, such as community-scale solar projects on underused industrial lands,
alongside the importance of addressing knowledge gaps in non-residential solar
modeling.

7.6. Additional task: Updating the DeepSolar database

The original DeepSolar database only documented solar installations as of 2017. Thus,
it cannot provide updated information about solar adoption in recent years. In this
additional task, we aim to fill this gap by developing more cost-effective and efficient
data collection and machine learning methods to update the DeepSolar database using
satellite images in recent years.

As a result of this subtask, we have generated the latest DeepSolar database as of
2023 with 2.95 million solar systems all across the country. To do so, we revamped the
data acquisition pipeline for the DeepSolar dataset in three phases summarized as
follows (Phase |, Phase Il and Phase llI).

Phase I: We used Microsoft Maps dataset to get country-wide open building footprints
of the United States. Using these coordinates, we downloaded around 230 million
image tiles across the US via Google Maps khms API. The downloading process took
around six months. A few samples of the data are shown in Figure 6.1.
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Figure 6.1: A few samples of image tiles collected (above). Data collected distribution
across the US (below).

Phase II: In this phase, we identified positive image tiles within the acquired dataset. To
achieve this, a variant of the Vision Transformer, VITMAE (Masked Autoencoders),
model was employed, which was fine-tuned on a limited dataset consisting of only
45,000 training and 5,000 validation labels. Various fine-tuning methods were explored
with LoRA (Low-Rank Adaptation) outperforming all other strategies (Figure 6.2). It is
noteworthy that this dataset constitutes less than 15% of the data labels used for
training the Inception net model in the context of the 2017 DeepSolar project. The
training is conducted within the framework of a supervised learning binary classification
task, where the objective is to discriminate between the presence and absence of
photovoltaic (PV) installations in the image tile. Subsequently, the model’s performance
is subsequently assessed using the gold standard evaluation dataset, which
encompasses 92,000 image labels spread across the US. The model’s test set
Precision is 0.94 and recall is 0.91. The model is deployed on all the image tiles
collected to get positive detections all across the US. It is important to note that one PV
installation can be spread across many tiles, so the number of image tiles is not equal to
the number of PV installations.

Once we have all the positive samples (PV-detected tiles), we use another model,
Segformer, to get the solar PV segmentation boundary from the image tile. The
Segformer model is trained with 5,607 supervised training labels, validated with 300
labels, and tested on 600 labels with a mean IOU of 0.92 and PV segmentation class
IOU of 0.86 on the test set. After deploying this model on all the positively detected
images, we get the segmentation mask for each image tile. Some of the prediction
results are shown in Figure 6.3.
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Figure 6.2: VitMAE model fine-tuning for binary classification task. (a) VitMAE fine tuning.
The image tile is presented to the model as a sequence of fixed-size patches and the
parameters 0 are fine tuned. (b) Fine-tuning strategies: LORA (Best), Fine Tuning only the first
two transformer blocks, finetuning only the last two transformer blocks, fine tuning all linear

layers (left to right).
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Figure 6.3: Segformer prediction results. Columns show original images, ground truth
annotation, and predicted mask of solar panel.
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Phase IlI: The final phase involves merging the image tiles so that a Solar PV split across
multiple image tiles can be combined as one solar system. We identified around 2.95
million PV installations across the US as of 2023. Simultaneously, we also classify the
PV systems into various categories: residential, commercial, utility, and solar heat for
better insights into the deployment of residential and non-residential PVs. We use the
ResNet 50 model, also trained in a supervised fashion to predict the category. Figure 6.4
shows the additional PV systems adopted across the US.
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Figure 6.4: New Solar PVs (count) adopted across the country, state-wise. Colors
represent the amount of newly installed PV installations (2017-2022) in each state.

Regarding the end-of-project goals: (1) we have constructed a set of GIS maps (called
Solar Energy Atlas) containing information of both solar installations over time as well
as distribution grids with high spatiotemporal granularity, together with the
demonstration of incorporating different layers of maps for analyzing and modeling solar
adoption and grid resilience; (2) we have analyzed the spatiotemporal pattern and
underlying dynamics of solar adoption, with the effects of various solar incentives
estimated at different income levels; (3) we have deployed the Solar Energy Atlas data
to the Data Commons platform; (4) we have convened our first webinar on computer
vision for power grids, and our second webinar on the application of the Solar Energy
Atlas data.

8. Significant Accomplishments and Conclusions
Our significant accomplishments can be summarized as below:

e By developing new machine-learning-based solar panel identification algorithms,
we have constructed the first and, so far, the most comprehensive solar PV
spatiotemporal database covering the entire US. This is the first time that we
obtained the exact GPS locations, size, subtype, and installation year information
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for rooftop solar PVs across the U.S. By making this database publicly available,
it is expected to serve as a valuable resource for solar PV growth forecasting,
solar energy integration, and climate risk assessment of distributed energy
systems at a spatially resolved scale.

e Utilizing the DeepSolar database, we have identified the non-linearity and
heterogeneity in the dynamics of residential solar PV adoption. This has
corrected the previous findings on solar adoption trends based on linear models
and provided actionable insights for promoting solar adoption in an equitable
way. Specifically, we find that, low-income communities not only started adoption
later, but also more likely to get saturated at a lower adoption level. Performance-
based incentives are effective in low-income communities while rebate programs
are effective in high-income ones. This finding has provided important
implications for tailoring solar energy incentives based on local income levels.

e We have developed a distribution grid GIS mapping algorithm using publicly
available unstructured data as inputs, of which the effectiveness is verified both
in the U.S. and Sub-Saharan Africa. This new algorithm can serve as a tool not
only for guiding electricity access expansion in areas with limited electricity
access (e.g., cities in Sub-Saharan Africa), but also for assessing the climate risk
of grid infrastructures at a spatially resolved scale.

e Utilizing the distribution grid GIS mapping algorithm we have uncovered the non-
uniform vulnerability of distribution grids to wildfires in California. In particular, we
find that, at the same level of wildfire threats, low-income communities not only
have less undergrounding protection of distribution lines, but also have higher
vulnerability of the overhead part of grid infrastructure to wildfires and less
distributed solar PV preparedness as the last-resort wildfire prevention approach.
This has provided important policy implications for integrating socioeconomic
status and climate-induced risks to make grid infrastructure adaptation
approaches equitably affordable.

e We have incorporated the large-scale granular data on solar PVs and distribution
grids produced by our algorithms into the Data Commons platform
(https://datacommons.orq) , enabling them to be accessible and user-friendly
such that they can be easily correlated with other variables for engineering and
socioeconomic applications.

Our impact is three-fold: (1) Models. Compared with conventional survey,
crowdsourcing, or data reporting methods, our machine-learning-based data producing
workflow to obtain granular data on solar energy and their associated infrastructure is
automated, non-intrusive, and extensible to different countries. Our method relies on
frequently-updated imagery and other open data hence the data produced in this project
is easy to update. (2) Datasets. The large-scale, fine-grained datasets on solar
installations and distribution grids are open, enabling our researchers, industry, and
policymaking to develop various engineering or socioeconomic models and gain
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insights. (3) Insights. The analyses we have conducted based on the produced data
enabled the identification of effective solar incentives in low-income communities as well
as equitable cost allocation schemes for improving power grid resilience.

9. Path Forward

We suggest future research in the following directions, based on the models, data, and
insights gained from this project:

Future direction 1: A unified and automated framework for mapping and tracking
DERs

In this project, we have developed algorithms that can be used for extracting granular
spatiotemporal information about solar PVs from satellite images. Other types of DERS,
such as EV chargers and battery storage could have different spatiotemporal adoption
patterns, driving factors, or sensitivity to policies and incentives, but their information
cannot be extracted from the same data source (i.e., satellite images). Instead, other
types of unstructured yet widely available data such as building permits contain rich
information about these DERSs, but require different information extraction and mapping
approaches. How to efficiently map and track different DERs from multiple types of data
sources (images, text, and tabular data, etc.) to maintain a granular, up-to-date DER
installation database could be of great interest to developers, utilities, and policy
makers. The integration of advanced computer vision and natural language processing
techniques can play an important role in developing such a unified and automated
framework for mapping and tracking DERS.

Future direction 2: The patterns, driving factors, and policy effects for co-
adoption of solar PVs and other DERs

The co-adoption of solar PVs and other types of DERs is becoming increasingly
common, and has critical implications on grid operation and planning, financial incentive
design, and energy justice. However, the co-adoption trends of these DERs have not
yet been uncovered and studied at a large scale. Future direction 1 can help bridge the
data gap. On top of this, an important research question that can be answered is: what
are the underlying factors that shape the heterogeneity in the co-adoption rates of solar
PVs and EV chargers (as well as solar PVs and battery storage) across places and
time. This can further provide guidance for grid hosting capacity expansion, policy and
incentive design, and other applications. The close collaboration of power system
researchers, data scientists, and social scientists is essential to achieve this research
goal.

Future direction 3: Investigating the effects of solar PVs and other DERs on
climate resilience

The increasing adoption of solar PVs and other DERs can greatly reshape the power
system resilience to climate-induced extremes (e.g., wildfires, hurricanes). Their effects
can depend on a variety of factors (e.g., whether there is co-adoption of two or more
types of DERs, electric demand) and can vary across different geographic locations and
disaster types. Uncovering the effects of these DERs on climate resilience can be of
great importance to ensuring reliable and equitable energy supply facing the increasing
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threat of climate extremes yet requires highly granular geospatial and temporal
information about DERSs to perform correlational and even causal analyses. Therefore,
we propose the development of a data-driven pipeline to extract such insights from
large-scale data and provide user-friendly interfaces (e.g., API) for stakeholders (e.g.,
utilities) to get access to the needed information as well as actionable insights for
policymakers to make informed decisions for reducing the vulnerability of communities
to climate-induced extremes in an equitable way.

We also plan to keep engaging our industry advisory board members to identify new
use cases of the technology we developed and potential needs for technology
advancement.

10. Products

Publications:

1. Wang, Z., Arlt, M. L., Zanocco, C., Majumdar, A., & Rajagopal, R. (2022).
Deepsolar++: understanding residential solar adoption trajectories with computer
vision and technology diffusion models. Joule, 6(11), 2611-2625.

2. Wang, Z., Wara, M., Majumdar, A., & Rajagopal, R. (2023). Local and utility-wide
cost allocations for a more equitable wildfire-resilient distribution grid. Nature
Energy, 8(10), 1097-1108.

3. Wang, Z., Majumdar, A., & Rajagopal, R. (2023). Geospatial mapping of distribution
grid with machine learning and publicly-accessible multi-modal data. Nature
Communications, 14(1), 5006.

4. Wussow, M., Zanocco, C., Wang, Z., Prabha, R., Flora, J., Neumann, D., Majumdar,
A., & Rajagopal, R. (2024). Exploring the potential of non-residential solar to tackle
energy injustice. Nature Energy, 1-10.

Website:
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2. Energy Atlas: https://web.stanford.edu/group/energyatlas/home.html

11. Project Team and Roles
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Ram Rajagopal: overall management; student advising; idealization; manuscript
revising; networking
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student mentoring; regular reporting
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reporting
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reporting
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