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3. Executive Summary 

Despite the rapid growth of solar energy, we still lack a dynamic, high-fidelity 
database that tracks the spatiotemporal variations of solar PVs and their associated 
infrastructures across different places at a spatially resolved scale. The absence of such 
data presents a barrier to various applications such as solar PV growth projection, solar 
energy integration, solar incentive design, and climate risk assessment. In this project, 
we aim to bridge this gap by developing AI-based algorithms to extract granular 
information about solar PV installations and their associated infrastructures (i.e., 
distribution grids) from widely available unstructured data like remote sensing images 
and street views. As a result, we have built the Solar Energy Atlas, a fine-grained, large-
scale geospatial overlay of distributed solar PVs and distribution grids. On top of it, we 
have advanced the understanding of solar adoption and distribution grid vulnerability to 
climate-induced extremes. Our major contributions can be summarized as follow: 

• By developing new AI algorithms, we have built the most comprehensive solar PV 
spatiotemporal database covering the entire US. This is the first time we obtained 
the exact GPS locations, size, subtype, and installation year information for rooftop 
solar PVs across the US. This database can be used for solar PV growth projection, 
solar energy integration, solar energy policy analysis and design, and spatially-
resolved climate risk assessment.  

• Leveraging this database, we have uncovered the socioeconomic driving factors that 
are correlated with earlier onset of solar adoption and higher saturated adoption 
levels. We have identified the heterogeneity in the effects of different types of 
financial incentives on solar adoption and provided implications for tailoring incentive 
design based on local income levels to promote equitable solar adoption. 

• We have developed a distribution grid GIS mapping algorithm which can obtain 
granular geospatial and topology information about distribution grids using multi-
modal open data, reducing the dependency on hard-to-obtain smart meter data of 
conventional approaches. It shows effectiveness in both the U.S. and Sub-Saharan 
Africa. Using this algorithm, we have uncovered the non-uniform vulnerability of 
distribution grids to wildfires in California in the aspects of undergrounding protection 
and Distributed Energy Resources (DER) preparedness. This has provided 
important implications for improving the affordability and equity of grid adaptation 
approaches. 

• We have made our produced database publicly available and provided user-friendly 
interface to enable various stakeholders and the general public to interact with the 
data. We have also integrated the produced data into the Data Commons platform to 
enable the public to access the data and correlate it with other location-specific 
characteristics simply using natural language as queries. 

The impact of our project is three-fold: (1) New algorithms for mapping solar PVs 
and distribution grids across space and time, which are open source to facilitate 
researchers and industry; (2) New databases of solar PVs and distribution grids that 
have been made publicly available for engineering, social, and policy applications; (3) 
New understandings and actionable insights on the potential approaches to promoting 
solar adoption and reducing energy infrastructure vulnerabilities.  
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In this report, we start by discussing the project background and motivation (section 
5), followed by the overview of project objectives (section 6). Results and discussion for 
each task are presented in section 7. Significant accomplishments are summarized in 
section 8. This report will be concluded by discussing the paths forwards (section 9), 
products (section 10), and team roles (section 11). 
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5. Background 

Our energy systems are undergoing dramatic changes, including the rapid deployment 
of distributed energy resources (e.g., solar PVs) and increasing exposure to climate-
induced extreme events (e.g., wildfires). These changes have given rise to many critical 
challenges: (1) Despite the introduction of various regulatory policies and financial 
incentives across different states in the U.S., how effective they are in promoting the 
adoption of distributed energy resources (DER) is largely unknown. This impedes the 
evidence-informed design of future policies and incentives to accelerate DER adoption 
in an equitable way; (2) Electric grids need to be upgraded to host a growing amount of 
DERs, requiring the projection of future DER adoption at a spatially-resolved level—
which is challenging due to the absence of the granular spatiotemporal information of 
DER adoption; (3) DER-dominated electric grids can become more vulnerable to 
climate-induced weather extremes due to the intermittent nature of renewable DERs, 
but the spatial correlations among DERs, grids, and the risks of climate-induced 
extremes are unknown, hindering the precise investment for grid upgrades.  
 
A fundamental gap for addressing these critical challenges is the absence of the 
granular spatiotemporal information about DERs (e.g., solar PV panels) as well as 
their overlay with the grids and climate-induced risks. Due to the distributed and 
decentralized nature of DERs, their granular spatiotemporal information is largely 
unavailable or dispersed in numerous “data silos” owned by different developers, 
utilities, or municipalities. This gap ultimately impedes the evidence-informed decision 
making for grid upgrades, resource allocation, and incentive design, presenting 
significant barriers for clean energy transition and climate change adaptation. 
 
More specifically, despite the increasing share of solar PVs in newly added generation 
capacity in the U.S., we still lack an information system that maps and tracks solar 
adoption at a fine resolution yet large scale. This is primarily due to the decentralized 
nature of solar deployment. There are some previous attempts to build solar power 
plant databases (e.g., Global Energy Observatory [1], Global Power Plant Database 
[2]), but they only cover centralized solar power plants—without any information of 
distributed solar panels. “Tracking the Sun” database [3] used the crowdsourcing 
method to collect the data of distributed solar PVs in the U.S. and reported their zip-
code locations. Since they rely on voluntary data contribution, they can guarantee 
neither completeness nor the absence of duplication.  
 
Machine learning combined with satellite imagery offers an alternative venue for 
overcoming the shortcoming of the traditional solar PV data collection approaches. The 
availability of satellite imagery with spatial resolution less than 30 cm for the majority of 
the U.S., which is annually updated, offers a rich data source for solar panel detection 
based on machine learning. Previous pixel-wise machine learning methods [4,5] suffer 
from poor computational efficiency, and relatively low precision and recall (cannot reach 
85% simultaneously), while previous image-wise approaches cannot provide system 
size information [6]. Our previous work, DeepSolar [7], used a novel deep learning 
approach to detect solar panels in satellite images and estimate their sizes, enabling the 
construction of a nationwide solar installation database for the contiguous U.S. 
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However, in the DeepSolar database, there is no subtype (residential, commercial, 
utility-scale, etc.) or temporal information (installation date) about solar panels. 
Moreover, this database is outdated (up to mid-2017). 
 
In addition to the data gap for solar panels, the high-resolution information about 
distribution grids is also inadequate. Unlike transmission grids of which the connections 
and status are usually available to system operators and can be regularly measured, 
information about distribution grids is often incomplete, coarse-grained, or even 
unavailable [8]. Although utility companies may keep the information of their own 
distribution grids, such data are usually not publicly available or organized in a 
standardized format [9], OpenStreetMap maintains a spatial data collection of power 
lines by utilizing crowdsourcing methods, yet it is far from complete, and most of the 
data in this collection are for transmission lines [10].  
 
Graph-based approaches have been previously developed for estimating distribution 
grid topology by leveraging measurement data from grid nodes (i.e., buses), such as 
smart meter measurements [11-16]. However, the applicability of these approaches is 
limited by the availability of smart meters, which are still not widely deployed in many 
places [17]. Consequently, while these graph-based techniques can identify operational 
topologies of grids with known measurements, they struggle with mapping complete, 
real-world physical grids from scratch when no prior node measurement is available. In 
parallel, advances in machine learning and computer vision have enabled the 
development of models that utilize public imagery to detect and analyze grid 
components. Notable efforts include using night-time light imagery to connect electrified 
areas and form grid maps [9], as well as using machine learning to detect poles/lines in 
remote sensing or street view images [18-24]. Despite these advancements, the 
resolution limitations of remote sensing images and the inability to map underground 
lines remain significant hurdles. No existing approach can construct a full distribution 
grid map (aboveground and underground) relying solely on publicly available data. 
 
In this project, we aim to develop new machine-learning-based approaches to overcome 
the above limitations of existing methods and map solar PVs and distribution grids with 
ultra-high spatiotemporal granularity. This can eventually result in the construction of 
large-scale, high-resolution geospatial overlay of solar PVs, distribution grids, climate-
induced risks, and socioeconomic attributes to enable solar incentive effect estimation, 
solar adoption projection, and climate risk assessment.  
 
6. Project Objectives  

This project’s goal is to develop high-fidelity database of solar PVs and the 
infrastructure systems they rely on (i.e., distribution grids) with comprehensive and 
detailed information, such as temporal and subtype data. This can help bridge the 
critical information gap to accelerate solar adoption, to facilitate solar integration, and to 
mitigate climate risks of energy infrastructures, which can ultimately contribute to the 
national goals of clean energy transition and more sustainable and resilient economy. 
We achieve this by applying state-of-the-art machine learning (Convolutional Neural 
Networks, Siamese networks, etc.) to public and multi-modal data (e.g., satellite 
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imagery, street views, road networks) to obtain granular information about solar PV 
panels and, further, extract actionable insights. The main objectives for this project are: 
 

1. Develop and train machine learning algorithms to identify solar panel subtype 
and temporal data and use it to generate detailed location, capacity, subtype 
(residential/commercial/utility-scale) and installation date information layers of 
solar installations. 

2. Develop and train machine learning algorithms to identify overhead distribution 
infrastructure and use it to create a GIS map of the connectivity of overhead lines 
that excludes phase information and line parameters. 

3. Form advisory group of industry specialists to examine use cases—such as 
planning and solar adoption forecasting - and determine a data sharing 
framework and best visualization methods. 

4. Create web-based visualization and aggregate data sharing tool that helps 
navigating the produced dataset and correlating to relevant socioeconomics and 
policy incentives data. 

The culmination of this effort is a Solar Energy Atlas that consists of a multi-layered 
mapping data of solar panels and distribution grid infrastructure and relevant 
socioeconomic, policy and irradiance information. Compared to previous labor-intensive 
and inefficient data collection approaches, the scalable and accurate machine-learning-
based algorithms developed in this project automates and scales up the data gathering, 
information extraction, and knowledge discovery for solar panels, distribution grids, and 
their interactions with climate risks, policies, and human behaviors. This data can 
complement the currently used information to support utilities, vendors and analysts in 
applications such as substation planning and solar adoption forecasting. It also provides 
the granular information to support evidence-informed policy making, especially for 
designing incentive programs that can promote equitable solar adoption. The team 
works closely with an industry board of advisors to ensure the data produced can 
impact such applications. In addition, it can support utility, vendors, satellite data 
providers to establish the value of these new sources of data when limited by their 
resolution and availability.  
 
This project is spread across two Budget Periods (BP). In BP1 we collect the public and 
partner satellite and street view data relevant to the project, use it to develop and test 
the machine learning models for solar panel mapping and distribution grid GIS mapping 
and convene a board of advisors meeting to share our progress and discuss relevant 
use cases. In BP2, we apply machine learning models to generate the mapping layers 
for selected regions in the country and develop a visualization tool for the data as well 
as use it to develop methodologies for industry- and policy-relevant use cases. We have 
also added another task (“Additional task”) beyond the original plan of Statement of 
Project Objectives (SOPO), which is to update the DeepSolar database to cover the 
solar installations up to 2023. 
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The summary of tasks, subtasks, as well as their planned/actual completion date is 
shown in Table M.1. The summary of milestones is shown in Table M.2. 
 

Task name Planned 
completion 
date 

Actual 
completion 
date 

Task summary Actual 
accomplishment 

Task 1: Use 
satellite 
imagery to 
develop and 
train 
algorithms to 
determine 
granular 
solar 
installation 
date 

7/31/23 11/15/22 Develop machine 
learning (ML) 
models that can 
accurately infer the 
installation year of 
solar panels from 
historical satellite 
images. Deploy the 
models to California 
and, potentially, 
other states 

Developed ML 
models that can 
infer installation 
year with 85.9% 
accuracy. 
Deployed the 
models to all 
states in the U.S. 

Task 2: 
Solar panel 
subtype 
classification 

7/31/23 11/15/22 Develop a ML model 
to classify each 
solar panel into 
different subtypes 
(residential, 
commercial, etc.). 
Deploy the models 
to California and, 
potentially, other 
states 

Developed a ML 
model for subtype 
classification 
with >90% 
average precision 
and recall. 
Deployed the 
model to all states 
in the U.S. 

Task 3: 
Distribution 
grid GIS 
mapping 
using street 
view 
imagery 

7/31/23 1/15/24 Develop a ML-
based model for 
mapping distribution 
grids (overhead + 
underground). 
Test/deploy the 
model to regions in 
California and 
countries outside 
the U.S.   

Developed a ML-
based distribution 
grid mapping 
model which can 
achieve >80% 
precision and 
recall in 10 regions 
in California. The 
performance can 
maintain a similar 
level when the 
model is 
transferred to 
countries in Africa. 

Task 4: 
Visualization 
and 
applications 
development 

7/31/23 4/15/23 Develop 
visualization 
platforms (both 
browser-based and 
DataCommons) for 

Integrated the 
solar installation 
data into the 
DataCommons 
platform; 
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the generated 
dataset. Use the 
generated dataset 
for solar adoption 
analysis. 

developed a 
browser-based 
GIS platform for 
data visualization; 
Identified the non-
uniform effects of 
incentives on solar 
adoption 

Task 5: Data 
managemen
t and 
technical 
advisory 
board 

7/31/23 3/13/24 Convene technical 
advisory board 
meetings and 
webinars in year 1 
and year 2 

Convened all four 
meetings; 
Identified new use 
cases and future 
directions (e.g., 
API for quick data 
access); 
Established long-
term partnership 
with board 
members (e.g., 
Ava Community 
Energy) 

Additional 
task: 
Updating 
DeepSolar 
dataset 
using 
moderate-to-
high-
resolution 
satellite 
images 

7/31/23 11/15/23 Develop new ML 
models that can 
efficiently identify 
new solar 
installations and 
deploy the model to 
update the 
DeepSolar data to 
cover solar 
installations up to 
2023 

Updated the 
DeepSolar by 
incorporating solar 
panels installed 
until 2023, 
resulting in a 
dataset containing 
3 million solar 
panels, double the 
amount of the old 
dataset  

 
Table M.1. Tasks, subtasks and their planned/actual completion date 

 

Mile-
stone 

# 
Performance Metric 

Targeted 
performance 

Actual 
realized 

performance 

Actual 
completion 

date 

Task 1: Use satellite imagery to develop and train algorithms to determine 
granular solar installation date 

1.1.1 

Number of images to train the 
siamese network for identifying 
solar panel on low-resolution 
(LR) images 

≥10,000 

A dataset with 
56,429 

images for 
model training 

10/31/21 
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Mile-
stone 

# 
Performance Metric 

Targeted 
performance 

Actual 
realized 

performance 

Actual 
completion 

date 

1.2.1 
The precision and recall of solar 
panel detection in low-resolution 
(LR) images 

>90% 
Recall: 91.2%  

Specificity: 
95.6%  

10/31/21 

1.2.2 
The correctness rate of solar 
panel Installation year inference 

>80% 

The 
correctness 

rate is 
85.9±1.0% 

1/31/22 

1.3.1 
The state(s) with full coverage of 
temporal information (installation 
year) of solar panels 

California 

Have 
obtained the 

temporal 
information 

for all 50 
states and the 

D.C. in the 
U.S. 

10/31/22 

Task 2: Solar panel subtype classification 

2.1.1 
Number of images to train the 
solar subtype classifier 

≥10,000 

A dataset with 
12,948 

images for 
model training 

10/31/21 

2.2.1 
The micro- and macro-average of 
precision and recall of subtype 
classification 

>0.75 

Macro-
average: 
Precision: 

0.908  
Recall: 0.917   

 
 Micro-

average: 
Precision: 

0.917 
Recall: 0.917 

1/31/22 

2.3.1 
The state(s) with full coverage of 
subtype information of solar 
panels 

California 

Have 
obtained the 

temporal 
information 

for all 50 
states and the 

7/31/22 
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Mile-
stone 

# 
Performance Metric 

Targeted 
performance 

Actual 
realized 

performance 

Actual 
completion 

date 

D.C. in the 
U.S. 

Task 3: Distribution grid GIS mapping using street view imagery 

3.1.1 
Number of images to train the 
models for identifying power lines 
and poles 

≥ 8000  

A dataset with 
10,000 

images for 
model training 

10/31/21 

3.1.2 
Precision and recall for both line 
and pole detection 

>0.85 

Line 
detection: 
Precision: 

0.982  
Recall: 0.937  

 
Pole 

detection:  
Precision: 

0.982  
Recall: 0.851  

10/31/21 

3.2.1 
Pole localization accuracy (in 
ratio of actual poles that can be 
detected within 25m) 

>80% 

Pole 
localization 
precision: 

83.2%   
recall: 83.6% 

1/31/22 

3.2.2 
Precision and recall in link 
prediction 

>70% 

Link 
prediction 
precision: 

78.7%  
Recall:  
76.6%. 

1/31/22 

3.3.1 

Precision and recall for the 
similarity comparison between 
actual PG&E distribution grid 
map (above- plus underground) 

>80% 

Compared 
with PG&E 

grid, the 
model 

achieved 
recall: 83% 

4/30/22 
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Mile-
stone 

# 
Performance Metric 

Targeted 
performance 

Actual 
realized 

performance 

Actual 
completion 

date 

 Precision: 
89% 

3.3.2 

Number of missing lines in the 
utility-owned grid maps that can 
be identified and corrected with 
the grid mapping model. 

>0 

Identified 9 to 
132 missing 
lines (across 
different test 

areas). 

1/31/22 

3.4.1 
Number of regions in California to 
deploy the grid GIS mapping 
model. 

 
≥10 

 

The model 
has been 

deployed to 
10 regions in 

California 

1/31/23 

3.4.2 

The decrease in precision and 
recall of network link prediction 
when transferring the model to 
another region outside US. 

<15% 

The decrease 
in precision 
and recall is 
less than 7% 

when 
transferring 
the model to 
other regions 

7/31/22 

3.5.1 

The precision and recall of the 
distribution grid GIS mapping 
algorithm, compared with 
detailed GIS maps provided by 
utility partners 

>80% 

GIS mapping 
recall: 85% 
Precision: 

90% 

3/31/24 

Task 4: Visualization and applications development 

4.1.1 

Number of types of data to 
integrate and display at 
aggregate level on the browser-
based platform. 

≥ 5 

11 types of 
data layers 
have been 
integrated 

and displayed 
on the 

platform 

4/30/22 

4.2.1 
Obtain a roadmap for the 
development of the schema for 

 
Complete = 

TRUE 

 
Complete = 

TRUE 
4/30/22 
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Mile-
stone 

# 
Performance Metric 

Targeted 
performance 

Actual 
realized 

performance 

Actual 
completion 

date 

Energy Data Commons with a 
focus on Solar Energy Atlas 

4.3.1 
Regression R2 on out-of-sample 
test set for solar adoption 
prediction 

>0.5 

Achieved a 
R2 of 0.65 for 
solar adoption 

prediction  

4/30/23 

4.4.1 

The coverage of overhead line 
ratio and solar PV capacity for 
very-high-fire-risk regions in 
PG&E territory in California. 

100% 

Covered 
100% very-
high-fire-risk 

regions in 
PG&E 

territory with 
overhead line 

ratio and 
solar PV 
capacity 

information 

10/31/22 

4.5.1 

Number of mismatches within 
numeric tolerance between Solar 
Energy Atlas on DataCommons 
and its from original offline 
version. 

0 

0 mismatch 
between 

online and 
offline 

versions 

4/30/23 

4.6.1 
Upload Solar Energy Atlas data 
to Data Commons and test 
integration 

Complete = 
TRUE 

Complete = 
TRUE 

4/30/23 

Task 5: Data management and technical advisory board 

5.1.1 
Convene industry advisory board 
meeting in Year 1 

Complete = 
TRUE 

Complete = 
TRUE 

4/22/22 

5.2.1 
Convene a webinar in Year 1 on 
computer vision applications for 
grid 

Complete = 
TRUE 

Complete = 
TRUE 

8/15/22 

5.3.1 
Convene industry advisory board 
meeting in Year 2 

Complete = 
TRUE 

Complete = 
TRUE 

4/30/23 
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Mile-
stone 

# 
Performance Metric 

Targeted 
performance 

Actual 
realized 

performance 

Actual 
completion 

date 

5.4.1 
Convene a webinar in Year 2 on 
discuss applications using the 
Solar Energy Atlas 

Complete = 
TRUE 

Complete = 
TRUE 

3/13/24 

Go/No-Go decision point 

G/NG 
1A 

Percentage of milestones 
achieved in Year 1 

100% 

Achieved 
100% of the 
milestones in 

Year 1 

7/31/22 

G/NG 
1B 

Convene both industry advisory 
board meeting and webinar for 
Year 1 

Complete = 
TRUE 

Complete = 
TRUE 

7/31/22 

Table M.2. Milestones and Go/No-Go decision points 

 
 

7. Project Results and Discussion 

This section quantitatively presents the project results and discussion. It is organized by 
tasks (Task 1 to 5, as well as the Additional Task) and subtasks. For each task/subtask, 
we start by introducing its overall goal, followed by the technical discussion of every 
milestone (anticipated outcomes vs. realized outcomes) in each subtask. 
  

7.1. Task 1: Develop and train algorithm to determine granular solar installation 
date using historical satellite imagery 

The goal of this task is to develop the algorithms for determining the installation year for 
solar PVs using historical satellite images. This is used for constructing a nationwide 
solar PV installation database with granular spatial (GPS location) and temporal 
information. The major challenge here is the low image resolution of historical satellite 
images, which is tackled in Subtask 1.1 with the development of a pseudo-siamese 
neural network. This model is benchmarked against the manually-curated test set 
(Subtask 1.2). After the model development and extensive evaluation, the model is 
deployed to construct a nationwide spatiotemporal solar PV installation database 
(Subtask 1.3). 
 
7.1.1. Subtask 1.1: Solar panel identification in low-resolution historical satellite 
imagery 
Due to the low-resolution of some historical satellite images, directly applying the  
original DeepSolar model [7] that was trained using high-resolution images to the 
historical images can yield unsatisfactory results. Therefore, the goal of this subtask is 
to overcome the low-resolution challenge of historical satellite imagery by developing 
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novel machine learning models. To facilitate the model training and testing, a large-
scale dataset with manually-verified labels is needed. Below we introduce the dataset 
construction and machine learning model design. 
 
 

Positive Negative 

Training 11623 39175 

Validation 481 1562 

Test 806 2782 

Table T1.1:  Number of samples in training/validation/test sets for low-resolution (LR) 
solar system identification dataset. Positive: contain solar. Negative: no solar. 

 
Milestone 1.1.1: Collect ≥10,000 images to train a Siamese neural network for 
identifying solar panels in low-resolution images 
We have achieved this milestone Q1 of BP1. Specifically, we have constructed a 
dataset with 56,429 images in total (target number: 10,000 images) to train deep 
learning models for identifying solar panels in low-resolution historical satellite images. 
The dataset is partitioned into training, validation, and test sets. The images were 
retrieved using Google Earth and they are divided into two classes by manual checking: 
contain solar panel (positive) and no solar panel (negative). Table T1.1 shows more 
details about the different partitions of this dataset. 
 
To facilitate solar identification in low-resolution (LR) images, we developed a two-
branch pseudo-Siamese Convolutional Neural Network (CNN) that takes a target LR 
image and a “reference” positive high-resolution (HR) image as inputs, and outputs the 
score indicating whether the target LR image contains solar. Inspired by the visual 
tracking models in the computer vision field [24], we develop a two-branch CNN with 
each branch taking either the target LR image or its reference HR image as inputs. The 
two branches have identical architecture but different weights hence the model is called 
“pseudo-Siamese”. By comparing the feature maps generated by each of the two 
branches, the model is able to estimate the similarity between the LR target image and 
its HR reference image. To tackle the potential object displacement between target and 
reference image, a cross-correlation operator is utilized to compare the feature maps 
from each of the two branches. Based on the similarity, the model finally outputs the 
score indicating the probability of the target LR image containing solar. In this work, we 
use ResNet-34 network [25] as the backbone for each branch. The overall model 
architecture is shown in Figure 1.1. Feature maps after the 2nd, 3rd, and 4th stack of 
building blocks in the ResNet-34 are used for comparison. Depth-wise cross-correlation 
operator, which compares the features from different channels separately, is applied to 
each of the three pairs of feature maps and generates a similarity map for each. All 
three similarity maps are concatenated together and then fed into three convolutional 
layers in a series and finally output the logit score.  
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Figure 1.1: The pseudo-siamese network for solar identification in low-resolution (LR) 
images. Each branch is a ResNet-34 network which takes either target LR image or reference 
HR image as inputs. Feature maps after the 2nd, 3rd, and 4th stacks of building blocks are 
compared using cross-correlation modules and then concatenated. ReLU and batch 
normalization layers are not shown in this figure. 
 
7.1.2. Subtask 1.2: Benchmark the performance of the low-resolution solar 
identification methodology 
The goal of this subtask is to evaluate the performance of the machine learning model 
for low-resolution solar PV identification as well as the entire pipeline for determining the 
solar PV installation year. The evaluation is performed at the two levels: the image level 
(Milestone 1.2.1) and the system level (Milestone 1.2.2). Below we detail the evaluation 
method and metric values for each of them. 
 
Milestone 1.2.1: Achieve a low-resolution (LR) solar panel detection precision and 
recall ≥ 90% 
We have achieved this milestone in Q1 of BP1. We test the performance of solar panel 
detection on the test set partition (3,588 images) constructed in Milestone 1.1.1. The 
model achieves a sensitivity/recall (true positive rate) of 91.2% and a specificity of 
95.6% (true negative rate) on this test set. Both of them are higher than the target value 
90%. 
 
Explanation of variance: we use sensitivity (another name of recall) and specificity as 
the metrics instead of recall and precision (proposed in the original Milestone 1.2.1 in 
SOPO). This is because sensitivity and specificity are directly related to our final target 
metrics, the correctness rate of predicting year of PV installations.  
 

Specifically, if we ignore the rare cases that solar panel can be uninstalled later after 
installation, and use “0” to denote negative sample and “1” to denote positive sample, 
our image sequence is a sequence with all “0” in the first part and all “1” in the last part. 
There cannot be “1” between “0” such as “00100”. For a single image whose ground-
truth label is 0, its probability of being predicted correctly is: 
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P0 = TN/(TN+FP) = specificity 

 

And for a single image whose ground-truth label is 1, its probability of being predicted 
correctly is: 

P1 = TP/(TP+FN) = sensitivity 

 

If we have an image sequence with first n images as negative and last m images as 
positive, then the probability of predicting the whole sequence correctly is:  
 

Psequence = P0
nP1

m = (specificity)n (sensitivity)m  
 

Therefore, optimizing specificity and sensitivity at the image level can directly improve 
the correct rate of predicting installation year at the sequence level, hence we use 
sensitivity/recall and specificity as targeted metrics at the image level instead of recall 
and precision. 
 
 

HR LR Extremely blurred 

Training 11844 17178 1585 

Validation 2010 2043 182 

Test 4340 3588 553 

 
Table T1.2: Number of samples in training/validation/test sets for blur detection dataset. 
HR: high resolution. LR: low resolution. 
 
 

Positive Negative 

Training 7148 4696 

Validation 1189 821 

Test 2392 1948 

 
Table T1.3:  Number of samples in training/validation/test sets for high-resolution (HR) 
solar system identification dataset. Positive: contain solar. Negative: no solar. 
 
Milestone 1.2.2: At the system level, achieve a correctness rate ≥ 80% for solar 
installation year prediction 
We have achieved this milestone in Q2 of BP1. We deploy the well-trained models on a 
out-of-sample sequence test set containing 1,164 image sequences and compare the 
predicted year of installation with actual year of installation. The correctness rate of 
installation year prediction (ratio of sequences with predicted installation year equal to 
the actual installation year) is 85.9±1.0% (target value: 80%). Below we elaborate on 
(1) the datasets used for model development and testing (in addition to the LR dataset 
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introduced in Milestone 1.1.1) and (2) the overall framework of installation year 
prediction. 
 
Datasets: For a solar system recorded in the DeepSolar database, we retrieve a 
sequence of images at its geolocation with each image captured in a year between 
2005 and 2017. In addition to the low-resolution (LR) image dataset introduced in 
Milestone 1.1.1, we construct two other image datasets with image-wise labels to 
develop different modules of the framework, as well as an image sequence test set for 
evaluating the overall accuracy of predicting year of installation. Specifically, to develop 
the blur detection model to determine the resolution of an image, we construct an image 
dataset containing 43,323 images with three classes––high resolution (HR), low 
resolution (LR), and extremely blurred (See their detailed statistics in Table T1.2); to 
develop the solar system identification model for HR images, we construct an image 
dataset containing 18,194 HR images with binary labels indicating whether a solar 
system exists in an image (See their detailed statistics in Table T1.3). Samples in these 
image datasets are randomly selected across 11 counties from 9 states. Moreover, the 
image sequence dataset contains 238 sequences for validation and 1,164 sequences 
for testing. Each sequence is manually labeled with the installation year of the PV 
system by visual inspection as its ground truth. Besides the 11 counties included in the 
image datasets, the image sequence test set covers additional 12 counties from 10 
states. Samples in training, validation, and test set are mutually exclusive. 
 

 
 
Figure 1.2: Overall framework that first classifies images according to their resolution 
into three classes: high-resolution (HR), low-resolution (LR), and extremely blurred. We 
use a normal single-branch Convolutional Neural Network (CNN) to process the HR images, 
and use the siamese network (two-branch CNN) we developed to process the LR images. For 
extremely blurred images, we mark them as uncertain so that it will not be used for predicting 
year of installation, since it is out of the distribution of the HR or LR image training set. 

 
Overall framework for determining installation year: The overall framework of image 
processing is shown in Figure 1.2. Before identifying solar systems in a satellite image, 
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we first leverage a Convolutional Neural Network (CNN) to classify the image into one 
of the three classes according to its resolution –– HR, LR, and extremely blurred. 
 
For an extremely blurred image, we mark it as uncertain so that it will not be used for 
predicting year of installation, since it is out of the distribution of the HR or LR image 
training set. For HR images, we directly apply an Inception-v3 network on HR images 
and it outputs a score indicating the probability of an input image containing PV. The 
model can achieve a sensitivity (true positive rate) of 97.6% and a specificity (true 
negative rate) of 98.5% on the test set. For LR images, we apply the two-branch 
pseudo-Siamese CNN which has been introduced in Milestone 1.2.1. 
 
In deployment, given a sequence of historical satellite images for a PV system, we run 
the HR model on all images and use all positively classified images as the reference 
images. Whether an HR image contains PV is determined by the classification result 
generated by the HR model. A LR image is predicted as containing PV if any pair of a 
reference image and itself gets a positive prediction by the LR model. The first year 
when positive images appear is predicted as the year of installation of the PV system.  
 
7.1.3. Subtask 1.3: Run the solar identification model on solar installation records 
in the DeepSolar database 
 
The goal of this subtask is to deploy the model we developed to determine the year of 
installation for every solar PV documented in the DeepSolar database. The eventual 
outcome is a nationwide solar PV installation database with temporal information. Below 
we introduce our accomplishment. 
 
Milestone 1.3.1: Use the newly-developed models to obtain the installation year 
information for solar PVs in California 
We have achieved this milestone in Q1 of BP2. We have downloaded image sequences 
for all residential and commercial solar PV installations not just in California, but across 
the U.S. (1,057,070 systems). We have applied the installation year prediction model 
developed in Subtask 1 and 2 to each of these image sequences and obtained their 
installation year information. Note that our initial target of the data coverage (as 
proposed in the original Milestone 1.3.1) is California, while our actual realized 
coverage is the U.S. The overall temporal variation of solar adoption rate, 
characterized by the number of solar installations per 1000 households, is shown in 
Figure 1.3.  
 
7.2. Task 2: Solar panel subtype classification 

The granular information about solar installation subtypes is absent in the existing solar 
installation database (i.e., DeepSolar). In this task, we aim to develop a machine 
learning model to identify the subtype for solar installations from satellite imagery and fill 
out the blank of such information in the database. 
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Figure 1.3: Temporal variation of residential solar adoption rate at the census block 
group level across the contiguous US. The residential solar adoption rate is characterized by 
the cumulative number of residential solar PVs per 1000 households in a census block group. 

 
7.2.1. Subtask 2.1: Solar panel subtype classification 
The goal of this subtask is to develop a machine learning model to automatically classify 
each solar panel into different subtypes, including residential, commercial, utility-scale, 
and solar water heating. Some non-solar-panel objects were wrongly identified by the 
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original DeepSolar model as solar panels, so they also need to be filtered out. We 
approach this goal by developing both the dataset for training and testing as well as the 
Convolutional Neural Network (CNN) model for ordinal classification.  
 
Milestone 2.1.1: Collect ≥ 10,000 images to train a solar subtype classifier 
We have achieved this milestone in Q1 of BP1. We have constructed a dataset of 
12,948 images (target number: 10,000 images) in total with solar subtype labels 
(utility-scale PV, commercial PV, residential PV, solar heating, and negative samples). 
Note that we included a “negative” subtype, as the original DeepSolar produced a small 
fraction of false positive samples (which are actually negative samples) which need to 
be filtered out. The dataset is partitioned into training/validation/test sets. These images 
are randomly sampled from the solar installation records in DeepSolar dataset. The 
details about the dataset are shown in Table T2.1. Below, we further introduce the solar 
subtype classifier. 

 
 

 
Training set Validation set Test set 

Utility-scale PV 404 72 73 

Commercial PV 1301 194 194 

Residential PV 4399 588 589 

Solar heating 1559 298 298 

Negative 2338 320 321 

 
Table 2.1: Number of samples in training/validation/test sets for solar panel subtype 
classification. Training, validation, and test set are mutually exclusive. 
 

 

 
Figure 2.1: visualization of samples in the dataset for solar panel subtype classification. 
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The characteristics of solar subtypes are ordinal. Specifically, utility-scale PVs usually 
have relatively large sizes; commercial PVs are usually smaller than utility-scale PVs, 
but usually larger than residential PVs; residential PVs and solar heating systems are 
installed on rooftops of residential buildings; utility-scale, commercial, and residential 
PVs are photovoltaic systems for generating electricity while solar heating is not. 
Therefore, we can order these five subtypes to facilitate the training of a CNN model 
(ResNet-50): utility-scale PV -> commercial PV -> residential PV -> solar heating -> 
negative. We can assign ordinal multi-class labels to enforce such ordinal relationships 
during training: 
  

● Utility-scale PV: [1, 1, 1, 1] 
● Commercial PV: [1, 1, 1, 0] 
● Residential PV: [1, 1, 0, 0] 
● Solar heating system: [1, 0, 0, 0] 
● Negative: [0, 0, 0, 0] 

  
In this way, the penalty of misclassifying a residential PV into utility-scale PV is higher 
than misclassifying it into commercial PV. Such an ordinal relationship can provide extra 
guidance for models to extract useful information from visual features for subtype 
classification. 
 
In practice, the subtype can be determined based on the prediction score of an image 
[x1, x2, x3, x4]: 
  

● If x1 < threshold1: “negative” (falsely detected by the original DeepSolar model) 
● Else if x2 < threshold2: “solar water heating system” 
● Else if x3 < threshold3: “residential PV” 
● Else if x4 < threshold4: “commercial PV” 
● Else: “utility-scale PV” 

 
The thresholds are determined by the performance on the validation set. 
 
Subtask 2.2: Benchmark the performance of the solar panel subtype classifier 
The goal of this subtask is to evaluate the performance of the CNN model for solar 
panel subtype classification on an out-of-sample test set with ≥1000 images. These 
images are not used for training. 
 
Milestone 2.2.1: Achieve micro- and macro-average of precision and recall of 
subtype classification ≥ 0.75 
We have achieved this milestone in Q2 of BP1. Specifically, we run the well-trained 
solar subtype classification model (developed in Subtask 2.1) on the out-of-sample test 
set with 1,475 images (constructed in Subtask 2.1) and compare the model outputs with 
the ground-truth labels. The confusion matrix of the model performance is shown in 
Figure 2.2. We further calculate the macro- and micro-average of the precision and 
recall for evaluating the overall performance of the multi-class classification. The 
definition of macro-average and micro-average precision and recall are: 
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𝑀𝑎𝑐𝑟𝑜 𝑎𝑣𝑔. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝑁
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑁

𝑖=1

 

𝑀𝑖𝑐𝑟𝑜 𝑎𝑣𝑔. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

∑ 𝑇𝑃𝑖
𝑁
𝑖=1 + ∑ 𝐹𝑃𝑖

𝑁
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𝑀𝑎𝑐𝑟𝑜 𝑎𝑣𝑔. 𝑟𝑒𝑐𝑎𝑙𝑙 =  
1

𝑁
∑ 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑁

𝑖=1

 

𝑀𝑖𝑐𝑟𝑜 𝑎𝑣𝑔. 𝑟𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑇𝑃𝑖

𝑁
𝑖=1

∑ 𝑇𝑃𝑖
𝑁
𝑖=1 + ∑ 𝐹𝑁𝑖

𝑁
𝑖=1

 

 
Here, 𝑁 is the number of subtypes (5 in our case). 𝑇𝑃𝑖, 𝐹𝑃𝑖, and 𝐹𝑁𝑖 are the numbers of 

true positive, false positive, and false negative samples of subtype 𝑖, respectively. 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  𝑇𝑃𝑖 / (𝑇𝑃𝑖 +  𝐹𝑃𝑖). 𝑟𝑒𝑐𝑎𝑙𝑙𝑖 =  𝑇𝑃𝑖 / (𝑇𝑃𝑖 +  𝐹𝑁𝑖). 
 
Based on the confusion matrix, we can calculate the macro-average of precision and 
recall, which are 0.908 and 0.917, respectively. We also calculate the micro-average of 
precision and recall, which are 0.917 and 0.917, respectively. They are all above the 
target value 0.75. 
 

 
 
Figure 2.2: Confusion matrix of the solar panel subtype classification on the test set. The 
number in each cell is the number of samples in each prediction category. For example, the 
number at the 2nd row and 1st column is 15, which means 15 of the actual solar water heating 
systems are predicted to be negative. 
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7.2.3. Subtask 2.3: Run the solar panel subtype classifier model on all solar 
installations in the DeepSolar database 
The goal of this subtask is to deploy the solar panel subtype classification model we 
developed for every solar PV documented in the DeepSolar database. The eventual 
outcome is a nationwide solar PV installation database with solar panel subtype 
information. Below we introduce our accomplishment for milestone 2.3.1. 
 
 

 
Figure 2.3: the fraction of each subtype of solar installations recorded in DeepSolar 
dataset, obtained by the solar subtype classifier. Negative samples are those falsely 
identified as positive by the original DeepSolar model but corrected by the solar subtype 
classifier. 
 

Milestone 2.3.1: Obtain subtype information for 100% of solar installation records 
in California in DeepSolar database 
We have achieved this milestone in Q4 of BP1. Specifically, we apply the solar panel 
subtype classification model to all solar installations recorded in the DeepSolar 
database. The model is applied on the latest remote sensing high-resolution (<10cm) 
captured at the geolocation of each recorded solar installation. We finally obtain the 
subtype information for each of these solar installations. Among all 1,470,189 records in 
the original DeepSolar dataset, there are 983,970 residential PVs, 80,088 commercial 
PVs, 21,183 utility-scale PVs, and 144,147 solar water heating systems. The remaining 
240,801 systems are negative samples which are falsely identified as positive by the 
original DeepSolar model. Figure 2.3 shows the fraction of each subtype (including the 
negative samples) determined by the solar subtype classifier. Note that our initial 
target of the data coverage (as proposed in the original Milestone 2.3.1) is 
California, while our actual realized coverage is the U.S. 
 
7.3. Task 3: Distribution grid GIS mapping using street view imagery 

In this task, we aim to develop a distribution network GIS mapping tool with machine 
learning. The goal is to develop machine learning models that can detect both utility 
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poles and power lines in street view images, and combine them with publicly-available 
road network and building data to estimate the distribution grid GIS map. 
 
7.3.1. Subtask 3.1: Power line detection and utility pole detection 
The goal of this subtask is to develop machine learning models to detect power lines 
and utility poles from street view images. This includes street view image dataset 
construction (Milestone 3.1.1), the development of power line detector and utility pole 
locator, and model performance evaluation (Milestone 3.1.2). 
 
Milestone 3.1.1: Collect ≥ 8,000 images to train the models for identifying power 
lines and poles 
We have achieved this milestone in Q1 of BP1. We have constructed a street view 
image dataset to train the line detector and pole detector. The dataset contains 10,000 
upward satellite images (target number: 8,000 images) which are randomly sampled 
from the San Francisco Bay Area.  Each image is annotated with two labels indicating 
whether it contains lines and whether it contains poles respectively. There are 3,204 
images containing line(s) and 1,786 images containing pole(s). The dataset is split into 
training, validation, and test sets following the 85%-7.5%-7.5% ratio. 
 
Milestone 3.1.2: Achieve precision and recall for both line and pole detection > 
0.85 
We have achieved this milestone in Q1 of BP1. For line detection, the model achieves a 
precision of 0.982 and a recall of 0.937 on the test set. For pole detection, the model 
achieves a precision of 0.982 and a recall of 0.851 on the test set. They are all above 
the target value 0.85. Below we elaborate on the power line detection and utility pole 
detection models. 
Each upward street view image is processed by two CNNs—a power line detector and a 
utility pole detector. The line detector classifies an image into positive (contain lines) or 
negative category (no line found), and then extracts the line directions for positive 
images (Figure 3.1A). Similarly, the pole detector classifies the image first and then 
estimates the pole orientations (Figure 3.1B). Both models adopt an Inception-v3 model 
architecture (Figure 3.2). 
  
To estimate the directions of power lines in an image, we apply Hough transform on 
Class Activation Maps (CAMs) generated by the line detector. Hough transform can 
detect a line and estimate its direction in a CAM. In order to tackle multiple lines in an 
image, once a line is detected, we hide it by adding a mask to the CAM and re-apply 
Hough transform to it, until all lines in the image have been detected. Similarly, for 
estimating pole orientations, we also apply Hough transform on the CAM generated by 
the pole detector and calculate the angle between the pole and horizontal axis of the 
image. 
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                                     (A)                                                                 (B) 
 
Figure 3.1: Power line detector and utility pole locator. (A) Power line detector. It first 
decides whether there is any line in the image (positive) or not (negative), and then extracts 
lines in positive images and estimates their directions using Hough Transform. (B) Utility pole 
detector. It first decides whether there is any pole in the image (positive) or not (negative), 
estimates the pole orientations, and then intersects rays of pole orientations to obtain the pole 
location. 

  

 
 
Figure 3.2: The model architecture for both line detector and pole detector. A 
segmentation branch is added at an intermediate layer of the Inception-v3 network to generate 
Class Activation Map (CAM). 

 
To estimate the exact geo-coordinates of poles, we assume utility poles are 
approximately vertical, hence any poles in an upward street view must point to the 
image center. Under this assumption, by drawing rays of pole orientations starting from 
street view points and intersecting them, the exact locations of poles can be derived 
(Figure 3.1(B)). Intersecting two rays can obtain a single intersection point, while 
intersecting three or more rays can potentially obtain multiple intersections and we use 
spatial clustering to merge intersections that are close to each other. 
 
7.3.2. Subtask 3.2: GIS mapping using link prediction 
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The goal of this subtask is to combine the detected power lines and utility poles 
(achieved by the machine learning models developed in Subtask 3.1) with the road 
network information to build a GIS mapping pipeline for distribution grids. The essential 
part of this subtask is the development and evaluation of a machine-learning-based link 
prediction model, which is detailed as follows. Milestone 3.2.1 and Milestone 3.2.2 are 
designed for evaluating the pole localization and link prediction performance, 
respectively. 
 
Link prediction method: By incorporating road information, we aim to further improve 
the prediction of whether there is a line connection between two detected poles. 
Specifically, each road instance can be represented as a series of line segments. If a 
detected pole or a street view point has a distance ≤ Dattach to a road, it will be attached 
to that road. All attached street view points and detected poles are sorted in order along 
the road. In this way, features for a pair of poles, such as whether the two poles are 
next to each other along the road, whether they are attached to the same road, whether 
there are street view points with power lines detected between them, etc, can be 
extracted from the road model.  
 
Moreover, to reduce the number of poles missed by the pole detector, we insert pole(s) 
between a pair of poles if the distance between them is greater than a threshold Dinsert.  
 
Road maps, which can be represented as geospatial graphs with nodes and edges, are 
obtained from OpenStreetMap [10]. 
 
We develop a machine-learning-based link prediction model that takes feature variables 
for a pair of poles as inputs and outputs whether there is a line connection between 
them. Any pair of poles with distance less than a threshold Dcand are considered as 
candidates. We consider various types of classification models including logistic 
regression, decision tree, random forest, support vector machine, and gradient 
boosting. Feature candidates include: 
 

● Distance between the two poles. 
● Whether the two poles are on the same road. 
● Whether the two poles are next to each other along the road. 
● Ratio of street view points with power line detected between the two poles. 
● Minimum/average difference between the line directions estimated from street 

view images and the direction of the line connecting the two poles. Small 
difference gives evidence that there are power lines between the two poles. 

● Whether either of the poles is detected by the pole detector or inserted. 
● Whether either of the poles is at a road intersection. 
● Whether the two poles are at the same road intersection. 
● The binary prediction of a modified Dijkstra’s algorithm [9]. This algorithm finds 

the most efficient paths to connect poles. On the meshed spatial map, each cell 
is assigned with a weight. By setting the weights of roads to be lower than others, 
connecting poles along the road is preferrable. 
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We use cross-validation on the development set to select the best model as well as the 
best feature sets. The output of the link prediction module is a geospatial graph with 
estimated geotagged poles as nodes and predicted line connections as edges. 
 
Dataset: To develop the link prediction model and evaluate the overall grid mapping 
performance, we collect and clean distribution grid maps in 6 different regions and treat 
them as ground truth maps. The 6 regions are from cities in Northern California 
including San Carlos, Newark, Santa Cruz, Yuba City, Pacific Grove, and Salinas. For 
these 6 regions, we obtain the geospatial maps of distribution grids from the Integration 
Capacity Analysis (ICA) map [26] of Pacific Gas and Electric Company (PG&E), and 
then manually distinguish between overhead and underground grids. For the geospatial 
graph of overhead grids, we only keep nodes that are corresponding to utility poles and 
edges that are corresponding to power lines by checking other data sources such as 
satellite images and street view images. Grid map in Santa Carlos is used as a 
development set for training and validating the link prediction model while the grid maps 
in other 5 regions in Northern California are used as test sets.  
 
Evaluation metrics: We evaluate the performance of pole localization and link 
prediction. To compare a set of ground truth geolocations of poles P = {p1, p2, … pM} 
and a set of estimated geolocations of poles Q = {q1, q2, … qN}, we match all pairs of 
poles from two sets {(pi, qj}}1 ≤ i ≤ M, 1 ≤ j ≤ N and sort them in ascending order according to 
the distance between the pair of poles. Given a distance threshold Dmatching, we pick 
pairs out of the sorted list starting from the first element and add them to the list of 
matched pairs until the pairwise distance becomes greater than Dmatching. If either 
estimated or ground truth pole in a pair have already been picked before, this pair will 
be dropped and not picked again to avoid repetition. Then we use the precision and 
recall for measuring the pole localization performance, defined as:  
 

 
 

 
 
To evaluate the link prediction performance of overhead grids, we compare the ground 
truth edge set E and the edge set generated by the link prediction model F. Specifically, 
we define the precision and recall for link prediction as: 
 

 
 

 
 

Here || denotes the number of edges in a set.  denotes the intersection of two sets. 
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Note that edges between false negative poles (poles that are not detected) are counted 
as false negative edges, and edges between false positive poles (wrongly-detected 
poles) are counted as false positive edges. Moreover, false negative or false positive 
poles between two true positive poles along the same power lines do not affect the 
overall topology. For example, qm–qn in the predicted edge set F can be viewed as a 
correct prediction for pi–pj–pk in the true edge set E if pi matches qm and pk matches qn. 
ql–qm–qn in F can also be viewed as a correct link prediction for pi–pj in E if pi matches ql 
and pj matches qn. To give tolerance to such errors, we measure the precision and 
recall after matching the equivalent segments from E and F. 
 
The parameter values used in our experiment are Dattach = 20m, Dinsert = 70m, and Dcand 
= 100m. We select the best feature set and parameters for link prediction models based 
on the 9-fold cross-validation on the San Carlos development set which are divided into 
9 subsets according to the boundary division of 9 census tracts. The model with the 
best configuration is then trained on the full development set and applied on all test 
areas.  
 
Milestone 3.2.1: Achieve pole localization accuracy (in ratio of actual poles that 
can be detected within 25m) > 80% 
We have achieved this milestone in Q2 of BP1. The pole localization method is 
introduced at the end of subsection 7.3.1. The evaluation metrics are detailed in 
subsection 7.3.2. Table T3.1 (column 1 and column 2) shows the pole localization 
performance with Dmatching = 25m. Compared with the ground truth pole locations 
derived from the PG&E ICA map, for most of the test areas, over 80% of the actual 
poles can be detected within 25m (recall) while over 80% of the detected poles have a 
nearby actual pole within 25m (precision). The average precision and recall over all 5 
test areas (excluding the development set of Santa Carlos) are 0.832 and 0.836, 
respectively. They are both higher than the target value 0.8 (80%).  
 
Milestone 3.2.2: Achieve precision and recall pf link prediction > 70% 
We have achieved this milestone in Q2 of BP1. The link prediction method and the 
evaluation metrics are introduced in subsection 7.3.2. We compare the performances of 
two different link prediction models—decision tree and gradient boosting—on the test 
areas in Northern California (introduced in subsection 7.3.2), and the result shows that 
gradient boosting performs slightly better than decision tree in terms of F1 score (see 
Figure 3.3). For the gradient boosting model (see Table T3.2), the precision after 
matching equivalent segments ranges from 0.71 to 0.83 in the 5 test areas, while the 
recall ranges from 0.67 to 0.89 (Table T3). The average precision and recall over all 5 
test areas (excluding the development set of Santa Carlos) are 0.787 and 0.766, 
respectively. They are both higher than the target value 0.7 (70%).  
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Figure 3.3: Comparison between two link prediction models: decision tree and gradient 
boosting. The F1 score is the harmonic mean of precision and recall of link prediction (after 
matching equivalent segments) on the test areas in California. 

 

 
 
Table T3.1: Pole localization performance on the test areas in California and Sub-Saharan 
Africa (SSA), with distance threshold Dmatching = 25m. F1 score is the harmonic mean of 
precision and recall. 
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Table T3.2: Link prediction performance (gradient boosting model) on the test areas in 
California and SSA. F1 score is the harmonic mean of precision and recall (after matching 
equivalent segments). 
 

7.3.3. Subtask 3.3: Preliminary benchmark the performance of distribution grid 
GIS mapping algorithm 
The goal of this subtask is to evaluate the overall performance of distribution grid GIS 
mapping model we developed by benchmarking its prediction against the ground truth 
distribution grid map (PG&E ICA map). It includes the evaluation for both overhead 
distribution lines and underground distribution lines. In this subsection, we first introduce 
the new method we developed for mapping underground lines, followed by the model 
evaluation metrics and results. Finally, we summarize the accomplishments for 
Milestone 3.3.1 and 3.3.2. 
 
Undergrounding line mapping method: Street view images are only able to capture 
the information of overhead distribution grids. To estimate the grid map for areas where 
power lines are underground or street view images are not available, we develop a 
heuristic approach that integrates the information of the estimated overhead grid map, 
the road network, and the map of buildings for inferring underground grid map. A 
premise for this approach is that all buildings should be connected to grids, which 
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means that all buildings that are not connected by overhead grids should be connected 
by underground grids. Therefore, this approach is only applicable to regions with nearly 
100% electrification rate. Under this premise, we estimate the underground grid map by 
first identifying buildings which have not been covered by the estimated overhead grid, 
and then running a modified Dijkstra’s algorithm to generate paths to greedily connect 
all of them. The paths that are generated in this algorithm are used as the estimates of 
the underground grid. 
 
To pick out unconnected buildings, we dilate the line connections of the estimated 
overhead grid with a radius Rdilate and overlay it with the building map. Buildings that are 
not covered by the dilated paths are treated as unconnected buildings. In the modified 
Dijkstra’s algorithm, unconnected buildings are the targets that should be connected, 
and new paths are greedily generated on top of the estimated overhead grid until all 
targets are connected. The algorithm is run on the meshed spatial map where the 
overhead grid, roads, and buildings are discretized. Paths can be generated from one 
cell to any of its 8 neighbor cells (including diagonal neighbors). Weights of road cells 
are set to be lower than that of other cells. In this way, as the objective of the algorithm 
is to find the paths with minimum weights, connections following roads are more 
preferable. Such weight assignments are based on the grid construction practice that 
underground power lines are usually buried along roads to facilitate maintenance. The 
final output of underground grid inference is a 2D mask with binary values indicating 
whether each cell belongs to the underground grid or not. 
 
Evaluation metrics: We evaluate the overall grid mapping performance on the meshed 
spatial map since the underground part of the grid cannot be explicitly represented as 
nodes and edges. To this end, both the ground truth map and the entire predicted grid 
map — including overhead and underground portions — are meshed into 2D binary 
arrays with the cell size 2m x 2m, denoted as G and H, respectively. Cells that belong to 
grids have value 1 and otherwise 0. To estimate the correct rate of the estimated grid 
map (“precision”), we dilate 1-value cells in G with a radius Reval to generate Gdilate, then 
overlay Gdilate with H, and finally calculate the ratio of 1-value cells in H that can be 
covered by Gdilate. Similarly, to estimate the ratio of the ground truth grid map that can 
be detected within a distance (“recall”), we dilate 1-value cells in H with the same radius 
Reval to generate Hdilate, then overlay Hdilate with G, and calculate the ratio of 1-value cells 
in G that can be covered by Hdilate. Hence the precision and recall for grid mapping are 
defined as: 

 
Here  means the intersection between two 2D binary masks, and | | means the 
number of 1-value cells in a binary mask. 
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Table T3.3: Overall grid mapping performance (using gradient boosting model for link 
prediction) on the test areas in California and Sub-Saharan Africa (SSA). The performance 
is evaluated on the meshed spatial map using path dilation with dilation radius Reval = 30m. 
Supplemented poles and line connections are considered. 

 
Milestone 3.3.1: Achieve both precision and recall for the similarity comparison 
between actual PG&E distribution grid map (above + underground) > 80% 
We have achieved this milestone in Q3 of BP1. The evaluation metrics are detailed in 
subsection 7.3.3. We use Reval = 30m as specified in the SOPO. The overall grid 
mapping performances including both overhead and underground grids are evaluated 
on the meshed spatial map of PG&E grid and the results are shown in Table T3.3. The 
gradient boosting is used as the link prediction model. As is shown, for the 5 test areas 
in Northern California, 83% - 97% of the actual distribution grid can be detected within 
30m (“recall”). For 89% - 98% of the estimated distribution grid, actual distribution grids 
can be found within 30m. They are all higher than the target value 80%. 
 
Milestone 3.3.2: Demonstrate that the grid mapping method can identify and 
correct missing lines in the utility-owned grid maps 
We have achieved this milestone in Q3 of BP1. Specifically, our framework can localize 
the poles that are not recorded in the PG&E ICA maps, and these newly detected poles 
can serve as supplements for the utility-owned data. We validate the presence of these 
supplemented poles by manually checking the Google street view images at their 
geolocations. The number of supplemented poles in 5 test areas ranges from 9 to 123 
(Table T3.1, column 3). After considering the supplemented poles, the average recall of 
pole localization over 5 test areas is 0.886 (Table T3.1, column 4) and the average 
precision is 0.840 (Table T3.1, column 5). By identifying the missing poles, our model 
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can identify line connections that are not recorded in the ground truth dataset as 
supplements. The number of unrecorded connections in 5 test areas ranges from 9 to 
132 (Table T3.2, column 3).  After considering these unrecorded connections, the 
average recall of pole localization over 5 test areas is 0.844 (Table T3, column 4) and 
the average precision is 0.771 (Table T3.2, column 5). These results show that our 
proposed grid mapping method can identify ≥9 (target: >0) poles/lines not documented 
in the utility-owned grid maps for each test area.  
 

Region Precision Recall F1 score  

San Carlos 0.862 0.850 0.856 

Newark 0.891 0.861 0.876 

Santa Cruz 0.801 0.823 0.812 

Yuba City 0.916 0.830 0.871 

Pacific Grove 0.874 0.911 0.892 

Salinas 0.940 0.947 0.944 

Watsonville 0.850 0.856 0.853 

Richmond 0.876 0.914 0.895 

Livermore 0.851 0.888 0.869 

Eureka 0.872 0.855 0.863 

 
Table T3.4: Overall grid mapping performance benchmarked against PG&E data. The 
performance is evaluated on a raster map using path dilation with a dilation radius Reval = 30m. 
Here we define precision as the fraction of predicted distribution grid located within a distance 
Reval of ground truth grid, and define recall as the fraction of ground truth distribution grid that 
can be detected within a distance Reval. 

 
7.3.4. Subtask 3.4: Run the distribution grid GIS mapping algorithm on data from 
multiple regions to produce a database of predicted GIS maps 
The goal of this subtask is to deploy the distribution gird GIS mapping tool we 
developed to different regions in California and evaluate its generalizability to other 
parts of the world, especially countries in Sub-Saharan Africa where the electricity 
access is limited and the information about the electricity infrastructure is scarce. 
 
Milestone 3.4.1: Deploy the grid GIS mapping model to no less than 10 areas 
We have achieved this milestone in Q2 of BP2. In addition to the 8 regions included in 
the test set, we have deployed the distribution GIS mapping model to another two cities 
in California: Livermore and Eureka. The total number of regions we have deployed our 
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model on is 10 (target number: 10). Their performance benchmarked against PG&E 
data is listed in Table T3.4 (the evaluation metrics are detailed in subsection 7.3.3). 
 
Specifically, to evaluate the generalizability of the distribution grid mapping framework, 
especially in developing countries where the energy infrastructure data are scarce, we 
transfer the framework developed using the data in California to 5 manually-curated test 
areas in Sub-Saharan Africa (SSA) and evaluate the model performance with the same 
metrics as defined in subsection 7.3.2 and 7.3.3 (i.e., precision and recall for pole 
localization, link prediction, and overall grid mapping, respectively). The 5 test areas are 
from three cities in SSA, including two areas in Kampala, Uganda, two areas in Nairobi, 
Kenya, and one area in Lagos, Nigeria. The World Bank maintains a geospatial dataset 
of transmission and distribution grids in Africa [27], but it only covers a few cities and 
most of the data in this dataset are for transmission lines. We correct errors in this 
dataset and identify additional overhead distribution lines by manually checking street 
view images and remote sensing images, and eventually construct the distribution grid 
maps for the 5 test areas in SSA that serve as the ground truth for model evaluation.  
 
The line detector, the pole detector, and the link prediction model—detailed in 
subsection 7.3.1, 7.3.2 and 7.3.3—all remain the same without re-training or finetuning. 
All hyperparameters are also the same as those used in the California dataset except 
that the decision threshold to classify an image as positive is changed from 0.5 to 0.2 
for the pole detector. Such a change is based on the observation that the utility poles in 
SSA are generally shorter than those in the U.S. which can make them more difficult to 
identify in upward street view images. Note that we do not predict the underground grid 
map for the SSA test areas since the assumption for underground grid mapping—all 
buildings are connected to the grid—does not necessarily hold in SSA, and the 
reference underground grid maps in SSA are not available for model evaluation. 
 
Table T3.1 compares the pole localization performance between the California test 
areas and SSA test areas. While precisions of pole localization across the SSA test 
areas are generally higher than 0.8, the recall drops from an average of 0.84 in the 
California test areas to an average of 0.66 in SSA, which can be attributed to the 
difference in the appearance of utility poles between the US and SSA. Moreover, some 
utility poles in SSA are comparatively short, making them out of sight in upward street 
view images if they are not close enough to the locations where street view images 
were captured. Table T3.2 compares the link prediction performance between the 
California test areas (Table T3.2a) and SSA test areas (Table T3.2b). It shows that the 
link prediction recall drops from an average of 0.73 in the California test areas to an 
average of 0.63 in SSA (Table T3.2b). A potential mitigation approach is to augment the 
field of view (FoV) of upward images by leveraging the panoramic street views which 
are commonly captured in street view photography.  
 
Table T3.3 compares the overall grid mapping performance between the California test 
areas (Table T3.3a) and SSA test areas (Table T3.3b). The framework achieves a 
precision from 0.92 to 0.99 and a recall from 0.66 to 0.80 in overall grid mapping 
(TTable T3.3b). The average precision increases from 0.85 on the California test areas 
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to 0.97 on the SSA test areas (+12%). The average recall drops from 0.83 on the 
California test areas to 0.76 on the SSA test areas (-7%). In Milestone 3.4.2, the target 
value of drop in precision and recall of grid mapping when transferring the model to 
regions outside the U.S. is set to be <15% (i.e., the target value is -15%). Therefore, we 
have achieved Milestone 3.4.2. This indicates that our framework, trained with the data 
in the U.S., can maintain a high correct rate and a reasonable detection rate of mapping 
when transferred to SSA even without re-training or fine-tuning.  
 
7.3.5. Subtask 3.5: Extensive benchmark of the performance of distribution grid 
GIS mapping algorithm 
The goal of this subtask is to evaluate the performance of our proposed grid mapping 
method on an alternative benchmark dataset to demonstrate the robustness of the 
model performance.  
 
Milestone 3.5.1: Benchmark performance of distribution grid GIS mapping 
algorithm with detailed GIS maps provided by utility partners based on IAB 
advice 
We have achieved this milestone in Q2 of the no-cost extension period. We have 
benchmarked the performance of the distribution grid mapping algorithm with PG&E’s 
Electric Distribution GIS (EDGIS) dataset as suggested by PG&E and used the same 
overall grid mapping evaluation metrics as used in subtask 3.3 (detailed in subsection 
7.3.3) to evaluate the model performance. The average recall and precision across the 
5 test areas (the same as used in Subtask 3.2 and 3.3) are 85% and 90%, respectively. 
Both of them are at the same level as the ones in subtask 3.3 (detailed in subsection 
7.3.3), indicating the robustness of the model performance. 
 
7.4. Task 4: Visualization and applications development 

In this task, the aim is to develop three applications around the Solar Energy Atlas 
database to demonstrate the value of the dataset produced by the project: (i) a browser-
based tool that will allow visualizing the data produced and correlate it, at a minimum for 
the whole state of California, (ii) predictive and explanatory analysis on solar adoption 
that can potentially be used in planning and policy making, and (iii) a GIS application to 
correlate solar adoption with distribution grid characteristics, with a particular focus on 
wildfire resilience of distribution grids. 
 
7.4.1. Subtask 4.1: Data browsing, correlation and visualization application 
The goal of this subtask is to develop a browser-based platform to enable users to 
browse and visualize census-tract level aggregated data derived from the Solar Energy 
Atlas dataset.  
 
Milestone 4.1: Integrate ≥ 5 data layers at aggregate level on the browser-based 
platform 
We have achieved this milestone in Q3 of BP3. Specifically, we have developed the 
browser-based Energy Atlas platform at 
web.stanford.edu/group/energyatlas/home.html. The Energy Atlas platform provides an 

http://web.stanford.edu/group/energyatlas/home.html
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“interactive map” module (web.stanford.edu/group/energyatlas/map.html) which multiple 
data layers: 
  

1) Solar deployment rate (characterized by number of solar installations per 1000 
households). 

2) Solar radiation. 
3) Demographic features, include: 

a. Average household income 
b. Average number of years of education 
c. Gini Index 
d. Population density 
e. Ratio of households that use coal/coke/wood as heating fuels 
f. Ratio of vacant housing units 
g. Ratio of owner-occupied housing units 
h. Ratio of family-occupied households 
i. Median housing unit value 

 
at different aggregation levels (state, county, and census tract level). We also 
developed a “comparison” module (web.stanford.edu/group/energyatlas/dual-map.html) 
which enables users to correlate two different variables at the same level. The total 
number of layers that have been integrated is 11, which is above the target number 5. 
 
7.4.2. Subtask 4.2: Identify the requirements for developing Energy Data 
Commons  
The goal of this subtask is to identify the data types and classification for the Solar 
Energy Atlas and review the existing schema development process for Data Commons.  
 
Milestone 4.2.1: Obtain a roadmap for the development of the schema for Energy 
Data Commons with a focus on Solar Energy Atlas 
We have achieved this milestone in Q3 of BP3. Specifically, we have worked with the 
group leader (Dr. Ramanathan V. Guha, Google Fellow) and engineers in the Google 
Data Commons team to figure out the procedures for integrating our generated data into 
the Data Commons platform. The data import procedures follow the pipeline:  
 

1. obtaining the source data 
2. cleaning the data and representing it in the CSV format 
3. Converting the data into one of Meta Content Framework (MCF), JSON-LD, or 

RDF format.  
 
7.4.3. Subtask 4.3: Spatiotemporal pattern and underlying dynamics of solar 
adoption application  
The goal of this subtask is to leverage Solar Energy Atlas to advance the understanding 
of the spatiotemporal pattern and underlying dynamics of solar adoption at a nationwide 
scale. This includes a correlational (explanatory) analysis to uncover and understand 
the socioeconomic factors that shape the spatiotemporal pattern of solar adoption; a 
causal analysis to identify the heterogenous effects of different types of solar energy 

http://web.stanford.edu/group/energyatlas/map.html
http://web.stanford.edu/group/energyatlas/dual-map.html
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incentives; a predictive analysis to forecast solar installation growth at a spatially-
resolved scale. 
 
Correlational analysis: We conducted a correlation analysis of solar adoption by 
utilizing a technology diffusion model, called Bass model [28], to characterize the 
adoption trajectories from onset to saturation. Based on the Bass model, the solar 
adoption trajectory in each census block group can be segmented into four phases: pre-
diffusion, ramp-up, ramp-down, and saturation (Figure 4.1A). Our results indicate that, 
by 2016, 55% block groups had not experienced any adoption at all while 15% had 
reached saturation (Figure 4.1B). The share of block groups that had already started 
adoption is consistently greater for higher income levels across time. For example, in 
2016, 61% of high-income block groups had started adoption (Figure 4.1F) while only 
30% of low-income block groups had (Figure 4.1C). However, among block groups that 
had started adoption already (Figure 4.2), 42% of the low-income block groups had 
entered the saturation phase in 2016, with a median saturation level of 2.8% (as a share 
of residential buildings). By contrast, only 30% of adopting high-income groups have 
saturated, at a median saturation level of 5.8%. This suggests that the PV adoption 
process in low-income communities is more likely to plateau yet at a lower adoption 
level given policy regime unchanged. 
 
By correlating the Bass model parameters with socioeconomic variables (Figure 4.3), 
we find that block groups with higher income, higher education levels, higher PV benefit 
with rebate/grant, and lower percentage of renter-occupied housing units are more likely 
to have experienced an earlier onset of adoption. Compared to other communities, 
wealthier and more educated communities started adoption at lower levels of PV benefit 
with rebate/grant, implying that the PV benefit with rebate/grant is less relevant in high-
income communities. However, we find that block groups with higher income levels 
actually have enjoyed higher PV benefit after the subsidization of rebate or grant (Figure 
4.3C). This suggests that beyond low-income communities having comparatively lower 
adoption rates, for which there are many well-known contributing factors such as lower 
consumption capacity and higher fraction of renters, we find evidence that this lower 
adoption rate could be also related to the lower PV benefit with rebate/grant they 
experienced under a given incentive scheme. Given the inelasticity of high-income 
groups with respect to the PV benefit with rebate/grant we described earlier, our results 
suggest a potential for re-distribution of existing upfront subsidies to lower income 
communities to make PV adoption more equitable in its distribution. 
 
We also find that the saturated adoption level is positively correlated with median 
household income, racial diversity, and average PV benefit with rebate/grant throughout 
2006-2016 (Figure 4.3D), yet negatively correlated with the percentage of renter-
occupied housing units. Interestingly, despite the correlation with earlier adoption onset, 
the level of education does not show a positive correlation (statistically significant) with 
saturated adoption level. This observation suggests a positive association of education 
levels in starting new adoption processes but not necessarily in increasing the 
eventually realized capacity. 
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Figure 4.1: Four-phase segmentation of PV adoption trajectories. (A) Illustration of the four 
phases of PV adoption according to the Bass model: pre-diffusion, ramp-up, ramp-down, and 
saturated. (B) Fractions of block groups in each of the four phases over time. Data from 2017 to 
2020, marked with dashed edges, are projected by Bass models. No block groups are projected 
to exit the pre-diffusion phase and enter the ramp-up phase from 2017 onwards as we do not 
model the time when the adoption onset occurred. (C)-(F) Fractions of block groups in each of 
the four phases over time by income quartiles. Income quartiles are determined separately for 
each state. 
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Figure 4.2: Fractions of block groups in “ramp-up”, “ramp-down”, and “saturated” 
phases (“pre-diffusion” phase is excluded from the base). Values from 2017 to 2020, 
marked with dashed edges, are projected by Bass models. Among block groups that have 
already started the adoption process (i.e. not in “pre-diffusion” phase), lower-income block 
groups are more likely to be in “saturation”. 

 
Causal analysis: we further conducted a causal analysis on the effects of solar 
incentives by identifying natural experiments of various incentives. Compared to 
randomized controlled trials (RCTs), a natural experiment study analyzes an event that 
is not under the control of researchers but naturally divides a population into exposed 
and unexposed groups to an intervention. Such a naturally occurring variation in 
exposure can be used to identify the effect of the intervention. To identify all natural 
experiments of incentive programs that were once present in the contiguous U.S., we 
build a spatiotemporal map of incentives based on the Database of State Incentives for 
Renewables & Efficiency (DSIRE). Each incentive program has a start date and 
potentially an end date. In the contiguous U.S., there are 994 incentive programs that 
are eligible for residential PVs. They can be divided into two major categories (financial 
incentives and regulatory policies) and further into 31 types (e.g., net metering, rebate, 
performance-based incentives). There are at most 31 incentive programs related to 
residential PV in a block group in a year. 
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Figure 4.3: Standardized coefficients of regressions with demographic factors and PV 
benefit with rebate/grant. Points represent coefficient estimates, bars 95% confidence 
intervals (CI), and statistical significance levels are denoted as *p<0.05, **p<0.01, and 
***p<0.001. In each regression, state dummies are included to control for state-level variations 
but their coefficients are not shown here. Independent variables are normalized while 
dependent variables are not. PV benefit with rebate/grant, varying by location and time, is 
determined by residential electricity rate minus the Levelized Cost of Energy (LCOE) of 
residential PV after the subsidization of rebate or grant. We take the residual values of years of 
education and % renter-occupied housing units with respect to median household income to 
mitigate their mutual correlations. Racial diversity reflects the diversity of race and ethnicity in a 
block group. Other demographic variables, such as housing unit occupancy rate (percentage of 
housing units that are occupied), housing unit density (number of housing units per square 
mile), and percentage of renter-occupied housing units (percentage of housing units occupied 
by renters), are obtained from the American Community Survey (ACS) data.  
(A) Whether there has been PV adopted by 2016 vs. demographics and PV benefit with 
rebate/grant. Logit regression model is applied.  
(B) The time of PV adoption onset d vs. demographics and PV benefit with rebate/grant. 
(C) PV benefit with rebate/grant in 2016, characterized by USD cents/kWh, vs. demographics. 
(D) Saturated PV adoption level vs. demographic characteristics and PV benefit with 
rebate/grant. 
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Figure 4.5: Treatment effect of performance-based incentive (PBI) programs vs. median 
household income, estimated by causal forest. Each subfigure is corresponding to a single 
control-treatment group pair where the effect of the target incentive program is to be estimated. 
Each point is corresponding to a block group. “Estimates” show average treatment effects and 
their standard errors estimated by different models. Treatment effect is quantified in terms of 
number of installations per thousand households. 

 
Utilizing the spatiotemporal map of incentives, we can extract a “control-treatment group 
pair” for a specific incentive program, where both the control and treatment groups had 
the same set of incentives before year T except that a new incentive started in 
treatment group since year T while the incentives in control group still remained the 
same. This new incentive is called “target incentive” of which the effect can be 
estimated by existing causal inference models. We extract 170 control-treatment group 
pairs in total for residential PV incentives across the contiguous U.S.  
 
For each pair, we apply a variety of causal inference models to identify the average 
treatment effect (ATE) of the target incentive on solar adoption rate, defined as number 
of solar installations per thousand households in a block group in a year. The models 
we apply include propensity score matching, propensity score weighting [29], and fixed 
effect regression. Moreover, causal forest [30] is a state-of-the-art causal inference 
model to estimate both ATE and heterogeneous treatment effect (HTE) by extending 
the random forest algorithm. We apply causal forest to each control- treatment group 
pair by using the difference of solar adoption rates between the year before the 
implementation of the target incentive and the first year after it. By using the fitted 
causal forest model to estimate the treatment effect for each block group, we can further 
obtain the correlation between the treatment effect and the median household income of 
each block group. 
 
Figure 4.5 and Figure 4.6 show the results of control-treatment group pairs where we 
are able to observe the treatment effect at different income levels for performance-
based incentives (PBI) and rebate programs, respectively. For each control-treatment 
group pair in these two figures, we show the ATE estimated by different models as well 
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as the correlation between treatment effects estimated by causal forest and median 
household income. 
 

 
Figure 4.6: Treatment effect of rebate programs vs. median household income, estimated 
by causal forest. Each subfigure is corresponding to a single control-treatment group pair 
where the effect of the target incentive program is to be estimated. Each point is corresponding 
to a block group. “Estimates” show average treatment effects (and their standard errors 
estimated by different models. Treatment effect is quantified in terms of number of installations 
per thousand households. 
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For PBI, incentives are paid based on the actual energy production of the PV system. 
Typically, they are paid on the per kWh basis ($/kWh) over a period of time. Figure 4.5A 
and 4.5B show the effect of an PBI program, Green Power Providers offered by 
Tennessee Valley Authority (TVA), in two different states, Georgia (GA) and Tennessee 
(TN), respectively. We find that such a PBI incentive exhibits heterogeneous effects at 
different income levels. For block groups with median household income higher than 
$100K, the effect is close to 0 in Georgia and less than 2 installations per thousand 
households in Tennessee. By contrast, for block groups with income levels lower than 
$50K, a significant number of block groups experienced an effect of higher than 1 
installation per thousand households in Georgia and 3 installations per thousand 
households in Tennessee. This suggests that this PBI program can activate solar 
adoption in low-income communities but is inactive in high-income ones.  
 
For rebate programs, incentives are paid based on the installed capacity of the PV 
system to reduce its upfront cost. Typically, they are paid on the per kW basis ($/kW) 
(contrary to $/kWh in PBI). Figure 4.6 shows the effects of different rebate programs 
and their variations with income levels. We find that, for the two rebate programs 
displayed in Figures 4.6A and 4.6B (Solar PV pilot program offered by El Paso Electric 
Company, and Solar Incentive Program offered by Rocky Mountain Power), the effects 
are stronger in many low-income communities and show a slightly negative correlation 
with income levels. By contrast, for the two rebate programs displayed in Figures 4.6C 
to 4.6E (OCHEEP! offered by Orange County in Florida, and Smart Watts Rebate 
Program offered by the city of Fort Lauderdale), the effects show a positive correlation 
with income levels. We notice that one difference in incentive magnitude is that: for the 
former two programs, the maximum incentive amount, i.e., the upper bound of rebate 
that can be obtained by a customer, is $7,500 for the El Paso solar PV pilot program 
(Figure 4.6A) and $4,600 for the Rocky Mountain Power solar incentive program (4.6B). 
By contrast, the last two rebate programs both have a maximum incentive amount of 
only $1,000 (OCHEEP! in Figure 4.6C and 4.6D, and Smart Watts Rebate program in 
Figure 4.6E). Low maximum incentive amounts, therefore, may be a potential reason 
explaining why the effects of rebate programs in 4.6C to 4.6D are lower in lower-income 
communities, as a rebate program might need to have a high upper bound of cost 
deduction to be appealing to low-income communities. 
 
To summarize, our results suggest that PBI can activate solar adoption in low-income 
communities while rebate programs have such effects only if the incentive amount is 
significant.  
 
Milestone 4.3.1: Use regression model and solar installation data to predict solar 
adoption patterns considering spatial heterogeneity and achieved an out-of-
sample regression R2 > 0.5 
We have achieved this milestone in Q3 of BP2. Specifically, we developed a predictive 
model based on random forest to forecast future solar installations in a local 
neighborhood given installations in previous years along with demographic features and 
incentives. The out-of-sample R2 in predicting solar installations in the next year can 
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achieve 0.65 (target value: 0.5). This model can be used for forecasting future solar 
installation growth at a granular geographic level to facilitate grid planning. 
 

 
Figure 4.7: Geospatial distributions of wildfire probability, demographic characteristics, and 
distribution grid characteristics at the census block group level. (A) Average annual wildfire 
probability over 2026-2050. (B) Median annual household income. (C) Housing unit density. (D) 
Undergrounding rate for distribution lines with annual wildfire probability > 0.25%. Undergrounding 
rate is defined as the fraction of distribution power lines buried underground in terms of length in a 
block group. (E) The fraction of overhead power lines that are overlapped with tree cover with tree 
height > 10m, which is used to characterize the proximity of power lines to trees. The tree cover map 
is at a spatial resolution of 10m. (F) Maximum undergrounding cost per household in each block group, 
under the scenario that overhead lines with wildfire probability > 0.25% are to be undergrounded and 
the cost is only shared locally within each block group. 

 
 
7.4.4. Subtask 4.4: Correlating solar power locations and overhead lines in 
distribution grids 
The goal of this subtask is to combine the distribution grid GIS mapping with the 
produced solar installation data to uncover the distribution grid vulnerability to wildfires. 
This subtask can provide new insights into how grid adaptation approaches (e.g., 
undergrounding) and solar PV preparedness differ across different communities, and 
how to reduce the inequity in the wildfire resilience of distribution grids.  
 
Milestone 4.4.1: Obtain overhead line ratio and solar PV capacity for 100% of 
very-high-fire-risk regions in PG&E territory 
We have achieved this milestone in Q1 of BP2. We utilize the geospatial data of 
distribution grids of California’s two major utilities—PG&E and Southern California 
Edison (SCE), and overlay them with the maps of tree cover [31] and predictive wildfire 
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probability over 2026-2050 [32, 33]. We further use the power line detection model 
developed in Task 3 (section 7.3) to estimate the fraction of distribution power lines in 
each block group that are buried underground in terms of line length, denoted as 
“undergrounding rate” (i.e., 1 – overhead line ratio). As a result, we have obtained the 
undergrounding rate and overhead line ratio for 100% very-high-fire-risk regions 
(annual wildfire risk probability > 0.5%) and 100% high-fire-risk regions (annual 
wildfire risk probability > 0.25%) for both PG&E and SCE territories. This has satisfied 
and gone beyond the targeted coverage 100% (for only very-high-fire-risk regions in 
PG&E territory). 
 
Utilizing such data, we further analyze the status quo of distribution grid vulnerability to 
wildfires in California at the census block group level—a highly granular geographic 
aggregation defined by the US Census Bureau. Figure 4.7 shows the geospatial 
distributions of wildfire probability, demographic characteristics, and various distribution 
grid characteristics in California.  
 
We plotted the correlations between median annual household income and various 
distribution grid characteristics conditioning on wildfire threat—characterized by average 
annual wildfire probability over 2026-2050—for PG&E, SCE, and both territories (see 
Figure 4.8). We find that, conditioning on wildfire threat, undergrounding rates are 
positively correlated with median household income in both PG&E and SCE territories 
For high-fire-threat block groups (annual wildfire probability of distribution lines > 
0.74%), the undergrounding rate is expected to be 65% at the income level of $200K 
but only 34% at $50K. Undergrounding rates in SCE territory are generally higher than 
PG&E territory, especially in high-fire-threat and low-income areas, which might result 
from the differences in undergrounding cost, ages of neighborhoods, constructability of 
underground lines, etc. 
 
Apart from undergrounding rates, we further investigate the vulnerability of the overhead 
part of the grids across different communities. By overlaying the tree canopy map with 
that of distribution grids, for each block group we estimate the fraction of overhead 
power lines that are overlapped with tree canopy cover to represent the potential 
exposure of overhead lines to nearby vegetation (see its geospatial distribution in Figure 
4.7E). Trees shorter than a threshold of 10m are filtered out as they are not likely to 
impact grids, according to the typical heights of poles and lines. We find that (Figure 
4.8), in mid- and high-fire-threat areas of PG&E territory, lower-income block groups 
tend to have higher fractions of overhead lines overlapped with tree cover, indicating 
higher exposure of their grids to vegetation. However, such fractions are significantly 
lower in SCE territory. This may be explained by the sparser tree cover and lower tree 
heights in SCE territory (Southern California) than that PG&E territory (Northern 
California).  
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Figure 4.8. Correlations between distribution grid characteristics and median household 
income conditioning on wildfire threats in PG&E territory (left column), SCE territory 
(middle column), and both (right column). Curves are fitted using locally weighted scatterplot 
smoothing (LOWESS). Lighter areas represent 90% confidence intervals (CIs) obtained by 1,000 
bootstraps of curve fitting. Wildfire threat stratification is based on the tertiles of maximum wildfire 
probability of distribution lines in a block group. Dependent variables include: (A)-(C) 
undergrounding rate, (D)-(F) the fraction of overhead power lines that are overlapped with tree 
cover (tree height > 10m), (G)-(I) number of residential PV installations per 1,000 households, (J)-
(L) maximum undergrounding cost per household under the scenario that overhead lines with 
wildfire probability > 0.25% are to be undergrounded and the cost is only shared locally within 
each block group, and (M) the fraction of wooden utility poles (data only available for PG&E). (N) 
Household count in each bin of median household income, conditioning on wildfire threats. 
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Wooden poles are more vulnerable to fires and to vegetation strike than poles made of 
other materials such as concrete or steel. Utilizing PG&E’s grid asset data, we find that 
lower-income block groups in PG&E territory tend to have higher fractions of wooden 
poles conditioning on wildfire threat (Figure 4.8). This suggests that besides lower 
undergrounding rates, low-income communities are also less likely to install more fire-
resistant poles (e.g., steel, concrete) which may be attributed to their higher cost than 
wooden ones.  
 
If the grid itself is vulnerable, preemptive de-energization is likely to be taken as the last 
resort option to prevent wildfires. Standalone power systems or grid sectionalization 
relying on locally-sited DERs, such as solar photovoltaics (PV) and batteries, are also 
considered as an alternative approach to provide electricity for high-fire-threat areas to 
prevent wildfires. We find that, however, solar PV adoption rates, characterized by the 
number of PV installations per thousand households, are lower in low-income 
communities at different wildfire threat levels (Figure 4.8). This suggests that, apart from 
less undergrounding protection and higher vulnerability of the overhead part of the 
grids, electricity, especially the one provided by renewable DERs, is also less 
accessible to low-income communities when they have to be disconnected from major 
grids as the last resort option facing wildfire threats. Note that grid-tied PVs need to be 
accompanied by batteries to provide power during outage, but battery adoption is not 
analyzed here. 
 
Overall, low-income communities not only have less undergrounding protection of 
distribution lines, but also have higher vulnerability of the overhead part of grid 
infrastructure to wildfires and less DER preparedness for last-resort wildfire prevention 
approaches. 
 
7.4.5. Subtask 4.5: Develop the Data Commons schema for Solar Energy Atlas   
The goal of this subtask is to develop and implement schema.org schema for Solar 
Energy Atlas following the Data Commons development process and validate the 
schema with Data Commons. 
 
Milestone 4.5.1: Validate deployment of Solar Energy Atlas on Data Commons to 
ensure 0 mismatch compared with results obtained from original offline data 
within numeric tolerance  
We have achieved this milestone in Q3 of BP2. Specifically, we have implemented the 
schema for the census-block-group-level time-series solar installation data produced in 
Task 1. The Schema is implemented with the Meta Content Framework (MCF) format. 
Specifically, for the above solar installation data frame, each row contains the data from 
each census block group indexed by its FIPS code “blockgroup_FIPS”. There is a 
column named “cumulative_num_of_residential_PVs_by_[X]” for each year X, where [X] 
is a placeholder for each year from 2005 to 2017. The MCF file looks like follows: 
 
Node: E:data->E0 

typeOf: dcs:StatVarObservation 
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observationAbout: C:data->blockgroup_FIPS 

observationDate: 2005 

variableMeasured: Number_of_residential_PVs 

value: C:data->cumulative_num_of_residential_PVs_by_2005 

 

Node: E:data->E1 

typeOf: dcs:StatVarObservation 

observationAbout: C:data->blockgroup_FIPS 

observationDate: 2006 

variableMeasured: Number_of_residential_PVs 

value: C:data->cumulative_num_of_residential_PVs_by_2006 

 

Node: E:data->E2 

typeOf: dcs:StatVarObservation 

observationAbout: C:data->blockgroup_FIPS 

observationDate: 2007 

variableMeasured: Number_of_residential_PVs 

value: C:data->cumulative_num_of_residential_PVs_by_2007 

 
Here we only show the schema for year 2005-2007, while the remaining years (2007-
2017) follow the same way. Using the same approach, we have also implemented the 
schema for census-block-group data on California’s distribution grid undergrounding 
status (characterized by the fraction of power lines buried underground) produced by 
the grid mapping framework. Comparing the correlational analysis results (see details in 
subsection 7.4.3 and 7.4.4) using online data vs. using offline data, we verify that they 
have zero mismatch (target: zero mismatch). 
 
7.4.6. Subtask 4.6: Upload the Solar Atlas data to Data Commons and test 
integration  
 
Milestone 4.6.1: Upload Solar Energy Atlas data to Data Commons  
We have achieved this milestone in Q3 of BP2. Specifically, we have uploaded the 
census-block-group-level time-series solar installation data as well as the distribution 
grid data introduced above together with their Schema (.tmcf file) to the Data Commons 
platform to make them publicly available. Our tests show that there is no mismatch 
between the correlations derived with online data and the ones obtained from original 
offline data (see Milestone 4.5.1). Figure 4.9 shows an example of the residential solar 
PV installation curve for a block group in Miami-Dade County, Florida. 
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Figure 4.9: A visualization of the residential solar PV installation curve of block group 
#120860001202 in Miami-Dade County, Florida on the Data Commons platform. This data 
is imported from the DeepSolar++ dataset produced in Task 1. 

 
7.5. Task 5: Data Management and technical advisory board 

In this task, we aim to convene meetings with industry advisory board to collect their 
interested use cases and the data that can be shared in each budget period. We also 
aim convene a webinar in each budget period with experts from industry and academia 
to discuss applications and technical challenges in applying machine learning for 
renewable energy and grid research. 
 
7.5.1. Subtask 5.1: Convene industry advisory board meeting for Year 1  
 
Milestone 5.1.1: Convene TAC meeting in Year 1 to identify potential use cases 
and seek high-quality non-public input data 
We have achieved this milestone in Q3 of BP1. We have formed a Technical Advisory 
Committee (TAC) (formerly called Industry Advisory Board). There are 7 industry 
members and most of them have current or prior experience working in a utility 
company. A TAC meeting was held (via zoom video conference) on 2022/04/22. The 
names of the people attending this meeting are listed below. All TAC members attended 
except one, who is very interested in the project and data and will attend future 
meetings. Below we summarize some of the key discussion. 
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TAC members: (1) Jonathan Bradshaw, Pacific Gas & Electric, (2) Andy Eiden, 
Portland General Electric, (3) Luke Forster, NYSERDA, (4) Amir Kavousian, Altitude 
Networks, (5) Lena Perkins, City of Palo Alto Utilities, (6) Diego Ponce, East Bay 
Community Energy, (7) Liuxi (Calvin) Zhang, Eaton 
 
Stanford DeepSolar Team members: Ram Rajagopal, June Flora, Tiffany Branum, 
Chin-Woo Tan, Chad Zanocco, Zhecheng Wang, Rajanie Prabha 
 

Welcome & Overview Ram Rajagopal 

Introduction of Members Chin-Woo Tan             

Previous DeepSolar Research 

Current Research Plans & Work to 
Date 

Zhecheng Wang 

 

Questions & Discussion  ALL 

Updating the 2017 DeepSolar 
Database 

Rajanie Prabha 

Projected applications of the 
DeepSolar Database 

Chad Zanocco 

Questions & Discussion ALL 

Table 5.1: DeepSolar TAC meeting agenda, 2022-04-22 

 
Overview of TAC meeting: Members were very engaged in the presentation and Q&A 
with discussion taking up the remaining time after the presentation by PhD student Z. 
Wang. In order to give members a complete understanding of the DeepSolar project, we 
video recorded the last two presentations, and placed videos and accompanying slides 
in a shared drive and sent those materials all members.  

 
Topics of Discussion: An initial categorization of the topics of discussion are (1) grid 
resiliency, (2) meeting the electricity service needs of underserved populations, (3) 
discovering the potential for behind the meter (BTM) resources - future solar, battery 
installation, EV purchase and identifying micro-grid, commercial, and community solar 
sites. Finally, there was a wide-ranging discussion regarding the use of Diffusion of 
Innovation Theory and its application to predicting current growth curves of solar and 
perhaps other BTM resources.  
 
7.5.2. Subtask 5.2: Convene a webinar on computer vision applications for grid 
 
Milestone 5.2.1: Convene a webinar in Year 1 on computer vision applications for 
grid 
We have achieved this milestone in Q4 of BP1. The webinar on computer vision 
applications in power grid management was held on August 15, 2022. We have invited 
the founder and CTO of Buzz Solutions, Vikhyat Chaudhry, as a guest speaker, and 
grid experts from different companies as an advisory committee. The webinar started 
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with three presentations followed by an open discussion session on the potential use 
cases of computer vision in a variety of power system applications, from resource 
mapping to power system fault detection. 
 
7.5.3. Subtask 5.3: Convene industry advisory board meeting for Year 2 
 
Milestone 5.3.1: Convene IAB meeting in Year 2 to demonstrate initial datasets for 
Solar Energy Atlas 
We have achieved this milestone in Q3 of BP2. We invited members of our Technical 
Advisory Committee (TAC) (formerly called Industry Advisory Board) to this meeting on 
2023/04/06. There are 7 industry members and most of them have current or prior 
experience working in a utility company. The names of the people invited to this meeting 
are listed below. All TAC members attended except one, who is very interested in the 
project and data and will attend future meetings. Below we summarize some of the key 
discussion. 
  
TAC members: (1) Jonathan Bradshaw, Pacific Gas & Electric, (2) Andy Eiden, 
Portland General Electric, (3) Luke Forster, NYSERDA, (4) Amir Kavousian, Altitude 
Networks, (5) Lena Perkins, City of Palo Alto Utilities, (6) Diego Ponce, East Bay 
Community Energy, (7) Liuxi (Calvin) Zhang, Eaton 
  
Stanford DeepSolar Team members: Ram Rajagopal, June Flora, Chad Zanocco, 
Zhecheng Wang, Rajanie Prabha, Chin-Woo Tan, Tiffany Branum. 
  
Discussion: Stanford post-doc Chad Zanocco started with a quick update and overview 
of the DeepSolar Energy Atlas project and their applications. The presentation was 
followed by discussion on various related topics, including incentives to install solar 
especially for disadvantaged communities and low-income households, fire code for 
solar installation, grid resiliency to wildfires, and the value of crowdsourced power 
inspection.   
 
7.5.4. Subtask 5.4: Convene webinar in Year 2 to discuss application using Solar 
Energy Atlas and data sharing 
 
Milestone 5.4.1: Convene IAB meeting in Year 2 to demonstrate initial datasets for 
Solar Energy Atlas 
We have achieved this milestone in Q2 of the no-cost extension period. In this subtask, 
the goal is to convene a webinar on the potential use cases of Solar Energy Atlas. We 
invited four members from our Technical Advisory Committee (TAC) to this webinar on 
3/13/2024. They have current or prior experience working in a utility company. The 
names of the people invited to this meeting are listed below. Below we summarize some 
of the key discussion. 
  

• TAC members: (1) Jonathan Bradshaw, Pacific Gas & Electric, (2) Andy Eiden, 
Portland General Electric, (3) Diego Ponce, East Bay Community Energy, (4) 
Jorge Meraz, Pacific Gas & Electric 
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• Stanford DeepSolar Team members: June Flora, Chad Zanocco, Zhecheng 
Wang, Rajanie Prabha, Chin-Woo Tan 

  
Discussion: Stanford post-doctoral researcher Zhecheng Wang started the 
presentation with an overview of the DeepSolar Energy Atlas project and its practical 
applications. Another segment of the webinar, covered by PhD student Rajanie Prabha, 
featured updates regarding the new DeepSolar database. Notably, the database now 
encompasses all solar installations up to the year 2022. The pipeline is updated with 
more robust vision transformer models to continually update data in the subsequent 
years. The final part of the presentation, covered by post-doctoral researcher Chad 
Zanocco, talked about the application of the DeepSolar database in identifying the non-
residential equity gap, soon to appear in Nature Energy. 
 
Jorge, from PG&E, raised a discussion around understanding this even distribution of 
PV installations across block groups at different geographical levels such as state, 
county, and city. Jon, another PG&E attendee, expressed interest in obtaining more 
details about obtaining specific values for the Bass model parameters, used by the 
DeepSolar timelapse to characterize the adoption trajectories from onset to saturation. 
Various attendees suggested the need for an API that can be queried for specific 
information, instead of downloading the full dataset. Furthermore, there is an added 
interest for solar adoption forecasting models predicting, where spatially, new PV 
installations might appear in the future. The webinar ended with the emphasis on the 
potential policy implications of utilizing DeepSolar data for targeted "repurposed energy" 
deployments, such as community-scale solar projects on underused industrial lands, 
alongside the importance of addressing knowledge gaps in non-residential solar 
modeling. 
 

7.6. Additional task: Updating the DeepSolar database 

The original DeepSolar database only documented solar installations as of 2017. Thus, 
it cannot provide updated information about solar adoption in recent years. In this 
additional task, we aim to fill this gap by developing more cost-effective and efficient 
data collection and machine learning methods to update the DeepSolar database using 
satellite images in recent years. 

 
As a result of this subtask, we have generated the latest DeepSolar database as of 
2023 with 2.95 million solar systems all across the country. To do so, we revamped the 
data acquisition pipeline for the DeepSolar dataset in three phases summarized as 
follows (Phase I, Phase II and Phase III). 
 
Phase I: We used Microsoft Maps dataset to get country-wide open building footprints 
of the United States. Using these coordinates, we downloaded around 230 million 
image tiles across the US via Google Maps khms API. The downloading process took 
around six months. A few samples of the data are shown in Figure 6.1. 
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Figure 6.1: A few samples of image tiles collected (above). Data collected distribution 
across the US (below). 
 

Phase II: In this phase, we identified positive image tiles within the acquired dataset. To 
achieve this, a variant of the Vision Transformer, ViTMAE (Masked Autoencoders), 
model was employed, which was fine-tuned on a limited dataset consisting of only 
45,000 training and 5,000 validation labels. Various fine-tuning methods were explored 
with LoRA (Low-Rank Adaptation) outperforming all other strategies (Figure 6.2). It is 
noteworthy that this dataset constitutes less than 15% of the data labels used for 
training the Inception net model in the context of the 2017 DeepSolar project. The 
training is conducted within the framework of a supervised learning binary classification 
task, where the objective is to discriminate between the presence and absence of 
photovoltaic (PV) installations in the image tile. Subsequently, the model’s performance 
is subsequently assessed using the gold standard evaluation dataset, which 
encompasses 92,000 image labels spread across the US. The model’s test set 
Precision is 0.94 and recall is 0.91. The model is deployed on all the image tiles 
collected to get positive detections all across the US. It is important to note that one PV 
installation can be spread across many tiles, so the number of image tiles is not equal to 
the number of PV installations. 
 
Once we have all the positive samples (PV-detected tiles), we use another model, 
Segformer, to get the solar PV segmentation boundary from the image tile. The 
Segformer model is trained with 5,607 supervised training labels, validated with 300 
labels, and tested on 600 labels with a mean IOU of 0.92 and PV segmentation class 
IOU of 0.86 on the test set. After deploying this model on all the positively detected 
images, we get the segmentation mask for each image tile. Some of the prediction 
results are shown in Figure 6.3. 
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       (b) 
 
Figure 6.2: VitMAE model fine-tuning for binary classification task. (a) VitMAE fine tuning. 
The image tile is presented to the model as a sequence of fixed-size patches and the 
parameters θ are fine tuned. (b) Fine-tuning strategies: LoRA (Best), Fine Tuning only the first 
two transformer blocks, finetuning only the last two transformer blocks, fine tuning all linear 
layers (left to right). 

 
 

 
 

Figure 6.3: Segformer prediction results. Columns show original images, ground truth 
annotation, and predicted mask of solar panel. 
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Phase III: The final phase involves merging the image tiles so that a Solar PV split across 
multiple image tiles can be combined as one solar system. We identified around 2.95 
million PV installations across the US as of 2023. Simultaneously, we also classify the 
PV systems into various categories: residential, commercial, utility, and solar heat for 
better insights into the deployment of residential and non-residential PVs. We use the 
ResNet 50 model, also trained in a supervised fashion to predict the category. Figure 6.4 
shows the additional PV systems adopted across the US. 
 

 
Figure 6.4: New Solar PVs (count) adopted across the country, state-wise. Colors 
represent the amount of newly installed PV installations (2017-2022) in each state. 

 

 

Regarding the end-of-project goals: (1) we have constructed a set of GIS maps (called 
Solar Energy Atlas) containing information of both solar installations over time as well 
as distribution grids with high spatiotemporal granularity, together with the 
demonstration of incorporating different layers of maps for analyzing and modeling solar 
adoption and grid resilience; (2) we have analyzed the spatiotemporal pattern and 
underlying dynamics of solar adoption, with the effects of various solar incentives 
estimated at different income levels; (3) we have deployed the Solar Energy Atlas data 
to the Data Commons platform; (4) we have convened our first webinar on computer 
vision for power grids, and our second webinar on the application of the Solar Energy 
Atlas data. 
 

8. Significant Accomplishments and Conclusions  

Our significant accomplishments can be summarized as below: 
 

• By developing new machine-learning-based solar panel identification algorithms, 
we have constructed the first and, so far, the most comprehensive solar PV 
spatiotemporal database covering the entire US. This is the first time that we 
obtained the exact GPS locations, size, subtype, and installation year information 



DE-EE0009359  

Stanford University 

 

 

 

for rooftop solar PVs across the U.S. By making this database publicly available, 
it is expected to serve as a valuable resource for solar PV growth forecasting, 
solar energy integration, and climate risk assessment of distributed energy 
systems at a spatially resolved scale. 

 

• Utilizing the DeepSolar database, we have identified the non-linearity and 
heterogeneity in the dynamics of residential solar PV adoption. This has 
corrected the previous findings on solar adoption trends based on linear models 
and provided actionable insights for promoting solar adoption in an equitable 
way. Specifically, we find that, low-income communities not only started adoption 
later, but also more likely to get saturated at a lower adoption level. Performance-
based incentives are effective in low-income communities while rebate programs 
are effective in high-income ones. This finding has provided important 
implications for tailoring solar energy incentives based on local income levels. 
 

• We have developed a distribution grid GIS mapping algorithm using publicly 
available unstructured data as inputs, of which the effectiveness is verified both 
in the U.S. and Sub-Saharan Africa. This new algorithm can serve as a tool not 
only for guiding electricity access expansion in areas with limited electricity 
access (e.g., cities in Sub-Saharan Africa), but also for assessing the climate risk 
of grid infrastructures at a spatially resolved scale. 
 

• Utilizing the distribution grid GIS mapping algorithm we have uncovered the non-
uniform vulnerability of distribution grids to wildfires in California. In particular, we 
find that, at the same level of wildfire threats, low-income communities not only 
have less undergrounding protection of distribution lines, but also have higher 
vulnerability of the overhead part of grid infrastructure to wildfires and less 
distributed solar PV preparedness as the last-resort wildfire prevention approach. 
This has provided important policy implications for integrating socioeconomic 
status and climate-induced risks to make grid infrastructure adaptation 
approaches equitably affordable. 
 

• We have incorporated the large-scale granular data on solar PVs and distribution 
grids produced by our algorithms into the Data Commons platform 
(https://datacommons.org) , enabling them to be accessible and user-friendly 
such that they can be easily correlated with other variables for engineering and 
socioeconomic applications.  

 
Our impact is three-fold: (1) Models. Compared with conventional survey, 
crowdsourcing, or data reporting methods, our machine-learning-based data producing 
workflow to obtain granular data on solar energy and their associated infrastructure is 
automated, non-intrusive, and extensible to different countries. Our method relies on 
frequently-updated imagery and other open data hence the data produced in this project 
is easy to update. (2) Datasets. The large-scale, fine-grained datasets on solar 
installations and distribution grids are open, enabling our researchers, industry, and 
policymaking to develop various engineering or socioeconomic models and gain 

https://datacommons.org/
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insights. (3) Insights. The analyses we have conducted based on the produced data 
enabled the identification of effective solar incentives in low-income communities as well 
as equitable cost allocation schemes for improving power grid resilience. 
 
9. Path Forward 

We suggest future research in the following directions, based on the models, data, and 
insights gained from this project: 
 
Future direction 1: A unified and automated framework for mapping and tracking 
DERs 
In this project, we have developed algorithms that can be used for extracting granular 
spatiotemporal information about solar PVs from satellite images. Other types of DERs, 
such as EV chargers and battery storage could have different spatiotemporal adoption 
patterns, driving factors, or sensitivity to policies and incentives, but their information 
cannot be extracted from the same data source (i.e., satellite images). Instead, other 
types of unstructured yet widely available data such as building permits contain rich 
information about these DERs, but require different information extraction and mapping 
approaches. How to efficiently map and track different DERs from multiple types of data 
sources (images, text, and tabular data, etc.) to maintain a granular, up-to-date DER 
installation database could be of great interest to developers, utilities, and policy 
makers. The integration of advanced computer vision and natural language processing 
techniques can play an important role in developing such a unified and automated 
framework for mapping and tracking DERs. 
 
Future direction 2: The patterns, driving factors, and policy effects for co-
adoption of solar PVs and other DERs 
The co-adoption of solar PVs and other types of DERs is becoming increasingly 
common, and has critical implications on grid operation and planning, financial incentive 
design, and energy justice. However, the co-adoption trends of these DERs have not 
yet been uncovered and studied at a large scale. Future direction 1 can help bridge the 
data gap. On top of this, an important research question that can be answered is: what 
are the underlying factors that shape the heterogeneity in the co-adoption rates of solar 
PVs and EV chargers (as well as solar PVs and battery storage) across places and 
time. This can further provide guidance for grid hosting capacity expansion, policy and 
incentive design, and other applications. The close collaboration of power system 
researchers, data scientists, and social scientists is essential to achieve this research 
goal.  
 
Future direction 3: Investigating the effects of solar PVs and other DERs on 
climate resilience 
The increasing adoption of solar PVs and other DERs can greatly reshape the power 
system resilience to climate-induced extremes (e.g., wildfires, hurricanes). Their effects 
can depend on a variety of factors (e.g., whether there is co-adoption of two or more 
types of DERs, electric demand) and can vary across different geographic locations and 
disaster types. Uncovering the effects of these DERs on climate resilience can be of 
great importance to ensuring reliable and equitable energy supply facing the increasing 
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threat of climate extremes yet requires highly granular geospatial and temporal 
information about DERs to perform correlational and even causal analyses. Therefore, 
we propose the development of a data-driven pipeline to extract such insights from 
large-scale data and provide user-friendly interfaces (e.g., API) for stakeholders (e.g., 
utilities) to get access to the needed information as well as actionable insights for 
policymakers to make informed decisions for reducing the vulnerability of communities 
to climate-induced extremes in an equitable way. 
 
We also plan to keep engaging our industry advisory board members to identify new 
use cases of the technology we developed and potential needs for technology 
advancement. 
 
10.  Products 

Publications: 
1. Wang, Z., Arlt, M. L., Zanocco, C., Majumdar, A., & Rajagopal, R. (2022). 

Deepsolar++: understanding residential solar adoption trajectories with computer 
vision and technology diffusion models. Joule, 6(11), 2611-2625. 

2. Wang, Z., Wara, M., Majumdar, A., & Rajagopal, R. (2023). Local and utility-wide 
cost allocations for a more equitable wildfire-resilient distribution grid. Nature 
Energy, 8(10), 1097-1108. 

3. Wang, Z., Majumdar, A., & Rajagopal, R. (2023). Geospatial mapping of distribution 
grid with machine learning and publicly-accessible multi-modal data. Nature 
Communications, 14(1), 5006. 

4. Wussow, M., Zanocco, C., Wang, Z., Prabha, R., Flora, J., Neumann, D., Majumdar, 
A., & Rajagopal, R. (2024). Exploring the potential of non-residential solar to tackle 
energy injustice. Nature Energy, 1-10. 

 
Website: 
1. DeepSolar: https://web.stanford.edu/group/deepsolar/home.html 
2. Energy Atlas: https://web.stanford.edu/group/energyatlas/home.html  
 
11.  Project Team and Roles 

PI:  
Ram Rajagopal: overall management; student advising; idealization; manuscript 
revising; networking 
 
Co-PI:  
Arun Majumdar: student advising; idealization; manuscript revising; networking 
 
Key Personnel: 
Andrew Ng: student advising 
Chin-Woo Tan: funding management; project management; regular reporting 
June Flora: funding management; project management; regular reporting 
 
Postdocs and Students: 

https://web.stanford.edu/group/deepsolar/home.html
https://web.stanford.edu/group/energyatlas/home.html
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Zhecheng Wang: idealization; project implementation; manuscript writing and revising; 
student mentoring; regular reporting 
Chad Zanocco: project implementation; manuscript writing and revising; student 
mentoring; regular reporting 
Rajanie Prabha: project implementation; manuscript writing and revising; regular 
reporting 
Moritz Wussow: project implementation; manuscript writing and revising; regular 
reporting 
 
Collaborators: 
Ramanathan V. Guha: Provided support for Data Commons integration 
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