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Abstract 48 

Microbial carbon use efficiency (CUE) affects the fate and storage of carbon in terrestrial 49 

ecosystems, but its global importance remains uncertain. Accurately modeling and predicting 50 

CUE on a global scale is challenging due to inconsistencies in measurement techniques and the 51 

complex interactions of climatic, edaphic, and biological factors across scales. The link between 52 

microbial CUE and soil organic carbon relies on the stabilization of microbial necromass within 53 

soil aggregates or its association with minerals, necessitating an integration of microbial and 54 

stabilization processes in modeling approaches. In this perspective, we propose a 55 

comprehensive framework that integrates diverse data sources, ranging from genomic 56 

information to traditional soil carbon assessments, to refine carbon cycle models by 57 

incorporating variations in CUE, thereby enhancing our understanding of the microbial 58 

contribution to carbon cycling.  59 
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Introduction  60 

Earth System Models (ESMs) are indispensable tools for predicting the planetary 61 

response to climate change 1. The accuracy and reliability of ESMs are crucial for informing 62 

climate projections that guide policy decisions. Soils store more carbon (C) than plants, the 63 

surface ocean or the atmosphere, and thus are critical for the functioning of the Earth system 2. 64 

While ESMs are becoming increasingly complex, their predictions of soil organic C (SOC) 65 

stocks have improved only marginally in recent decades 3,4. 66 

 Microbial communities process most of the C entering the soil, thereby shaping its fate 67 
5,6. Microbes metabolize multiple C sources, including detritus, root exudates, and microbial 68 

metabolites 7. The energy needed to acquire C depends on whether the compounds can be 69 

taken up directly or require prior enzymatic degradation 8. Additionally, microbial community 70 

composition and functioning are influenced by prevailing climatic conditions 9–11. The general 71 

omission of microbial community structure and related processes in C cycle models has been 72 

suggested as one of the causes for their poor performance in predicting SOC stocks and their 73 

responses to climate change 12,13. 74 

Recognizing the impracticality of representing every conceivable microbial metabolic 75 

pathway, many models combine a spectrum of microbial processes into a single metric referred 76 

to as microbial C use efficiency (CUE) 14,15. CUE, as a model parameter or as a system property 77 

emerging from multiple co-occurring processes, represents the fraction of C uptake allocated to 78 

the production of new microbial biomass 16. Using this definition, CUE declines as more C is 79 

used for respiration to generate energy (for substrate uptake, cellular maintenance, enzyme 80 

production) or for exudation (extracellular enzymes, polysaccharides) 17,18. This pragmatic 81 

approach streamlines the modeling of soil C cycling by incorporating the diverse fates of 82 

microbial C, including biomass production, respiration, and exudation, thereby providing a more 83 

comprehensive understanding of microbially-mediated C-pathways. 84 

However, accurately integrating the spatial or temporal dynamics of microbial CUE into 85 

soil C models remains a significant challenge. Most of the current C cycle models either lack 86 

explicit representation of CUE or treat it as a constant value 4, despite our understanding that 87 

CUE varies under different environmental conditions. For example, observations indicate 88 

significant variability in CUE at the global scale 8, which may be partially attributed to 89 

inconsistencies among measurement techniques (Figure 1a). Moreover, comparisons across 90 
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ecosystems reveal that CUE is generally higher in grasslands than in croplands, with forests 91 

consistently showing the lowest CUE values, regardless of the measurement approaches used 92 
19,20 (Figure 1c). CUEs derived from data assimilation 21 are also lower than those from more 93 

direct measurement approaches (Figure 1d). 94 

Several attempts have been made to reflect or incorporate CUE variations into models of 95 

litter 22 or soil organic matter 9,13 decomposition with the aim of assessing the implications for 96 

soil C cycling. For example, incorporating an empirically-derived negative relationship between 97 

microbial CUE and temperature into a microbial-explicit SOC model improved the simulation of 98 

contemporary soil C stocks 23. Zhang et al. 24 introduced the effects of substrate quality and soil 99 

fertility on microbial respiration, highlighting the joint control of litter quality and quantity on the 100 

steady-state SOC stocks. Wieder et al. 25 enhanced the understanding of CUE variation by 101 

including two types of decomposers with differing substrate preferences and CUE (Figure 1b). 102 

These examples suggest that more realistic representations of microbial C transformations have 103 

the scope for improving model predictions of soil C 23,26. However, these predictions were poorly 104 

constrained by observational data, calling their reliability into question 21,27,28.  105 

In this Perspective, we synthesize our understanding of CUE regulatory factors and 106 

databases for constraining numerical models, with the aim of clarifying complexities, addressing 107 

controversies, and providing a holistic perspective on pathways to adequately reflect CUE 108 

variations in C cycle models and their consequences for simulated soil C stocks. 109 

 110 
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 111 

Figure 1: Variability of carbon use efficiency (CUE) at a global scale. a): Observation-based 112 

CUE estimates at the global scale from C (13C and 14C) and 18O isotopic labeling, stoichiometric 113 

modeling and other methods. Data were collected from 19,21,29–31. b): CUE constants used in the 114 

MIcrobial-MIneral Carbon Stabilization model (MIMICS) for two litter types (diamonds). 115 

Metabolic litter comprises plant litter that decomposes easily, whereas structural litter is more 116 

resistant to decomposition 32. c): Observation-based estimates for different ecosystems using 117 

isotopic labeling 29 or stoichiometric modeling 19. d): CUE values predicted using a microbial 118 
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model assimilating information on SOC profiles 21. Data assimilation integrates observed data 119 

into predictive models to refine model parameters and improve estimation accuracy.  120 

 121 

Data availability and challenges  122 

Terminology and definitions of microbial CUE 123 

The concept of microbial CUE, the fraction of C uptake that is used to produce microbial 124 

biomass 16–18, is intuitively straightforward, but CUE definitions vary depending on the ecological 125 

processes involved, measurement methods, and scales of biological organization (e.g., 126 

population, community and ecosystem) 14,17. Therefore, CUE can be regarded as an emergent 127 

parameter, encapsulating multiple processes within a single metric. It is useful in modeling as 128 

the number of processes that can be modeled is constrained by practical limitations (e.g. 129 

availability of data for calibration). Consequently, ecosystem models often simplify microbial 130 

process complexity, which in reality, escalates from the genomic to the ecosystem level (Figure 131 

2). 132 

CUE is quantitatively expressed as the ratio of microbial growth (μ) to C uptake (U) 16,33, 133 

that is, CUE = μ/U. This ratio encapsulates the efficiency with which microorganisms convert 134 

assimilated C into biomass. Microbial uptake involves C assimilation for growth (μ), respiration 135 

(R), and the secretion of extracellular enzymes and metabolites (EX). Geyer et al. (2016) 136 

introduced a nested conceptual framework for understanding CUE across different biological 137 

organization levels: population (CUEP), community (CUEC), and ecosystem (CUEE). This 138 

framework is useful for integrating C fluxes mediated by soil microbes into models at various 139 

ecological scales (Figure 2). 140 

CUEP reflects the species-specific functioning of microbial taxa (e.g., biosynthesis rate, 141 

exudate production) and thermodynamics of C substrate metabolism that limits the proportion of 142 

C uptake used for biosynthesis versus C lost from the cell (e.g., mineralized or exuded as 143 

metabolites). Typically measured in cultured populations, the CUEP formula adjusts for 144 

respiration (R) and exudation (EX) losses from the uptake, expressed as CUEP = ௎ିோ ି ா௑ 
௎

. CUEC  145 

incorporates additional environmental and community factors influencing microbial metabolism 146 

in natural communities consisting of multiple populations. It focuses on gross microbial 147 
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production prior to the recursive substrate recycling of necromass and exudates, capturing the 148 

metabolic response of microbial communities to substrates over short durations (hours), and is 149 

similarly expressed as CUEC = ௎ିோ ି ா௑ 
௎

. 150 

CUEE considers C retention as net microbial growth over longer time scales (days to 151 

months), taking into account the drivers of CUEP and CUEC as well as microbial biomass 152 

turnover. On these time scales, a significant proportion of microbial biomass is converted to 153 

necromass following microbial death (MD) 32 such that CUEE = ௎ିோ  ିா௑  ିெ஽ 
௎

, encompassing all 154 

aspects of microbial C processing, including death and recycling processes. 155 

 156 

Figure 2. Schematic representation of a cluster of models integrating observational 157 

constraints on CUE at population (CUEP), community (CUEC) and ecosystem (CUEE) 158 

scales. The genome-scale metabolic model predicts the movement of metabolites within a cell 159 

based on its genomic information. CUEP and CUEC can be validated by short-term incubation 160 

measurements, while CUEE requires long-term incubation measurements. Although the scales 161 
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and processes governing CUE expand from individual cells to entire ecosystems, there is a 162 

practical limit to the extent they can be resolved in C cycle models.  163 

 164 

Methods for measuring microbial CUE  165 

Multiple approaches can be used to quantify CUE, such as isotopically labeling 166 

substrates 35,36, stoichiometric modeling 22,37 and others 38. These methods rely on different 167 

assumptions and capture distinct microbial processes, which can explain the variability in CUE 168 

estimates across methods 8,39,40 (Figure 1a), including differences in the response of CUE to 169 

environmental changes 41, and the relationship between CUE and SOC (Figure 3a and b). 170 

The most common approach for measuring CUE is the tracking of isotopically labeled 171 

compounds (14C, 13C labeled substrate, or 18O water) introduced to the system. Carbon isotopes 172 

in microbial substrates enable the differentiation between C allocated to microbial biomass and 173 

that released through respiration. Although this labeling technique is widely used, its results can 174 

be influenced by the choice and combination of substrates 35, as well as the incubation period 175 
14,42. A significant limitation of this approach is that measured CUE reflects only the efficiency of 176 

those microbes that use the introduced substrates, not the entire microbial community. 177 

Furthermore, the variation in incubation times and temperatures across different studies (Figure 178 

3c and d) presents a substantial obstacle to standardizing CUE measurements. 179 

 180 
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 181 

Figure 3. The relationships between soil organic carbon (SOC) concentration and CUE 182 

from (a) isotopic labeling methods (14C, 13C labeled substrate, and 18O water) and (b) 183 

stoichiometric modeling. The figure also shows (c) the incubation duration and (d) 184 

temperature employed in studies using labeling and incubation methods. Data in the 185 

panels are from (a) 21, (b) 19, and (c and d) 20. 186 

 187 

The method using 18O-labeled water is based on the incorporation of the 18O-atom into 188 

microbial DNA as a measure of growth as compared to catabolic C losses as CO2 36,43. This 189 

method has higher accuracy than the C labeling method as it is not substrate specific, does not 190 

perturb microbial metabolism like methods involving substrate addition, and exhibits 191 

comparatively less variability over time 39. Nonetheless, this method faces limitations such as 192 

higher cost and demanding technical procedures. Concerns also arise regarding the method's 193 
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foundational assumptions, e.g., the presumption that water is the sole oxygen source for 194 

microbial DNA synthesis and the hypothesis that all microbial cells maintain a consistent DNA to 195 

biomass C ratio 44. Furthermore, its applicability in dry soils is challenging 45. 196 

Stoichiometric modeling is a common method for indirectly estimating CUE, which is 197 

based on the assumption that microbes growing on plant detritus allocate C to produce 198 

enzymes and other necessary components to acquire nutrients in the appropriate elemental 199 

ratios at the whole-community scale 33,37. This approach offers the advantage of requiring only a 200 

limited number of parameters, such as the activities of enzymes targeting C versus nitrogen (N) 201 

or phosphorus (P) acquisition and the C:N:P composition of the substrate and microbial 202 

biomass, which can be constrained by existing observations. However, it relies on highly 203 

simplified assumptions regarding elemental ratios and C allocation 40. This approach inherently 204 

suggests lower CUE in soils with high SOC due to its focus on the metabolic costs of nutrient 205 

acquisition under conditions where nutrients are scarce relative to C. This outcome (Figure 3b) 206 

starkly contrasts with the positive correlation between CUE and SOC observed using isotopic 207 

labeling techniques (Figure 3a), which are commonly considered to provide a more realistic 208 

insight into the relationship between CUE and SOC. The isotope labeling method estimates 209 

microbial growth and CUE by tracking the incorporation of labeled atoms into biomass or DNA, 210 

reflecting intracellular biochemical transformations. In contrast, the stoichiometry model method 211 

estimates CUE by analyzing the activities of extracellular enzymes and the stoichiometric 212 

balance between organic matter and microbial biomass, focusing on extracellular metabolic 213 

processes 46. Therefore, caution is advised when comparing results obtained from these two 214 

methods, even though they use the same term (CUE). We do not yet know the extent to which 215 

the stoichiometric and isotope methods are comparable. Until we understand which patterns 216 

can be accurately captured by the simpler stoichiometric method, we should rely on the more 217 

robust 18O method for measuring actual CUE and the 13C method for CUE associated with 218 

specific substrates. 219 

In addition to the methods mentioned above, there are other less commonly used 220 

approaches, including the use of 18O in water vapor to minimize impact on soil moisture 45, 221 

metabolic flux analysis 17, and calorespirometry 47. Each method offers unique advantages and 222 

faces specific limitations, grounded in their underlying assumptions and theoretical bases 39–41. 223 

These limitations not only affect the accuracy of these methods but also introduce significant 224 

comparability issues. Consequently, there is an urgent need to improve current methodologies 225 

and integrate innovative techniques to more accurately assess soil microbial CUE. 226 
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 227 

Data gap  228 

Given the methodological challenges in measuring CUE in situ, field assessments of 229 

microbial CUE are rare. The vast majority of existing CUE observations have been obtained 230 

from lab incubations. Yet, these CUE observations remain scarce at the global scale, a situation 231 

which is exacerbated by the lack of harmonization of observations from different measurement 232 

approaches. For some ecosystems, observations are few or even nonexistent, including 233 

ecosystems that play a critical role in the global C cycle, such as tropical rainforests, wetlands, 234 

and peatlands 48,49.  235 

Existing CUE measurements mostly come from studies of the litter and surface mineral 236 

soil 16. Thus, our understanding of microbial CUE in subsurface soil remains limited, which is 237 

problematic as large amounts of C are stored in subsoils globally, and especially those of 238 

wetlands and peatlands. The few existing studies indicate that microbial CUE decreases with 239 

soil depth 50,51 and that subsurface CUE may be less sensitive to warming 35 but more sensitive 240 

to nutrient variations 52.  241 

Moreover, data on temporal variations in CUE are lacking. A commonly overlooked 242 

factor that may contribute significantly to CUE variability in soil ecosystems, regardless of 243 

methodology, is seasonality in CUE. Seasonal changes are associated with significant 244 

variations in substrate availability, temperature and moisture, all of which may have a 245 

substantial impact on the growth and respiration of soil microorganisms, thereby altering 246 

microbial CUE 43. For example, CUE estimated using the 18O incorporation method ranged from 247 

0.1 to 0.7 in soils from an agricultural field site and from 0.1 to 0.6 at a forest site within one year 248 
31. It has also been reported that soil microbial CUE exhibits significant fluctuations within a 249 

short period (daily) after rewetting 53,54. This temporal dynamic in CUE values could contribute to 250 

the significant variability observed in CUE measurements. 251 

 252 

Regulatory factors governing microbial CUE  253 

The incorporation of soil microbial CUE dynamics into process-based models 254 

necessitates a comprehensive understanding of a range of regulatory factors influencing CUE 255 
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(Figure 4). CUE at a specific biological level is influenced by features of both the microbial 256 

community itself (biological controls) and its external environment (abiotic controls). These 257 

factors frequently interact, particularly at the community and ecosystem levels: abiotic controls 258 

can modify CUEC or CUEE by regulating biological controls, while biological controls may induce 259 

adaptation to abiotic factors, thereby influencing the impact of abiotic controls.  260 

 261 

Figure 4. Framework of biological and abiotic determinants of CUE in a carbon cycle 262 

context. The darker-colored area in the figure indicates biological controls; the lighter-colored 263 

area indicates abiotic effects. The arrows depict implicit relationships and the width of the 264 

arrows corresponds to the levels of scientific certainty: confident assertions are represented by 265 

thick lines, while less confident assertions are indicated by thinner lines. These confidence 266 

levels are based on the expertise of the authors. 267 

 268 
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Biological controls:  269 

Microbial physiological state 270 

Microbial CUE reflects the physiological state of microorganisms. Under natural 271 

conditions, only a small proportion (values vary from 1% to >20% in different studies 55,56) of soil 272 

microbial cells are metabolically active, and soil respiration primarily originates from these 273 

metabolically active cells 56. Nonetheless, a high fraction of microbial cells in the soil are in a 274 

potentially active state (10 to 60% of the total microbial biomass), meaning that they are ready 275 

to start using available substrates within a few hours after easily available substrate is added. 276 

The shifts in physiological states of these microbial cells, resulting from changes in temperature, 277 

moisture, or substrate availability, significantly impact CUE 57. Consequently, CUEP or CUEC 278 

measurement methods relying on substrate addition may overestimate CUE 14, and shifts in 279 

physiological state can lead to seasonal variations in CUE 31. 280 

Microbial community diversity and composition 281 

Increased microbial diversity enriches the spectrum of metabolic functions within a 282 

community, potentially leading to greater microbial growth 58 and CUEC by facilitating more 283 

efficient use of varied C sources 10,59. The composition of microbial communities, notably the 284 

ratio of fungal to bacterial biomass (F:B), plays a critical role in determining CUEC 60. 285 

Communities dominated by fungi can show higher CUEC, attributed to their higher biomass C to 286 

N) ratios (C:N) and their proficiency in decomposing complex organic materials 61, or lower CUE 287 

due to the high costs associated with resource acquisition by decomposer fungi 60. Therefore, 288 

this contrasting evidence from plant litter studies indicates that the relationship between F:B 289 

ratio and CUE is context-dependent 60,62. Alternatively, an approach categorizing 290 

microorganisms into copiotrophs (r-strategists with low CUE) versus oligotrophs (K-strategists 291 

with high CUE) has been promising for estimating CUE 63. For example, shifts from r-strategists 292 

to K-strategists explain increased CUEC along a successional gradient in the southeastern 293 

Tibetan Plateau 64.  294 

Changes in community composition may also enable microbial communities to alter their 295 

CUE in response to environmental changes or fluctuations 65,66. For instance, long-term 296 

warming experiments indicate a decline in the temperature sensitivity of CUEC, suggesting that 297 

shifts in microbial composition can maintain CUEC despite changes in temperature and 298 
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substrate quality 35. Similarly, modeling studies suggest that changing microbial community 299 

composition can reduce the sensitivity of CUEC to substrate quality 67 and soil moisture 300 

fluctuations 68. 301 

Biotic interactions 302 

In the soil food web, biotic interactions such as mutualism, facilitation, competition, and 303 

predation can shape CUEC 59. Interspecific microbial competition drives accelerated growth 304 

rates, accompanied by the release of secondary metabolites that can negatively affect CUEC 69. 305 

Antagonistic interactions may trigger stress responses, further diminishing CUEC 70. Conversely, 306 

facilitation enhances CUEC by broadening species-realized niches, alleviating environmental 307 

stress, and reducing extracellular enzyme production costs 67. Biotic interactions at higher 308 

trophic levels, such as predation, can variably affect CUEC by altering microbial density and 309 

influencing the outcomes of interspecific competition 71,72. 310 

 311 

Abiotic controls: 312 

Temperature 313 

Temperature significantly affects soil microbial CUE, with respiration often increasing 314 

more than growth in short-term incubations, resulting in a decrease in CUEP 9,38,73. The impact 315 

on CUEC and CUEE is less clear 66, likely due to varied responses among microbial taxa 74,75 and 316 

interactive effects with other environmental factors 42,43,50,76. Temperature shifts can lead to 317 

changes in community traits or select for taxa with distinct life strategies, known as trait 318 

modification and trait filtering, respectively 77,78. However, limited research on how CUEP varies 319 

among different taxa in response to temperature impairs our ability to accurately predict 320 

changes in CUEC 
79–81.  321 

The interplay between direct and indirect temperature effects on soil microbial CUEC and 322 

CUEE complicates our understanding of the impact of warming on CUE. Warming can intensify 323 

C-nutrient imbalances, potentially diminishing microbial CUE 82, but it can also improve the 324 

efficiency of substrate utilization, thereby enhancing CUE 36,75. Expected reductions in soil 325 

moisture due to increased evapotranspiration under warming conditions 83 add another layer of 326 

complexity, with the combined impacts of temperature and moisture on microbial CUE 327 
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remaining inadequately explored 10,84. Some soil C models, including Millennial 85 and MIMICS 25 328 

have begun to account for the temperature dependency of CUEC, indicating a growing 329 

recognition of the importance of including the dynamic response of microbial CUE to fluctuations 330 

in temperature. 331 

Soil water availability 332 

Increased soil moisture promotes microbial growth and CUE by improving substrate 333 

diffusivity and accessibility, and lowering investment in osmolyte synthesis, as long as 334 

conditions remain oxic 8,10,86. Prolonged water stress reduces soil substrate accessibility and 335 

increases the need to synthesize osmolytes to survive during dry periods, leading to lower 336 

CUEC 
86, even though the taxa that remain active in dry conditions can maintain relatively high 337 

growth rates 87. Furthermore, drought reduces plant C inputs to the soil 86, thus potentially 338 

leaving microbes with fewer lower resources, resulting in lower CUE. The intricate interplay of 339 

drought-induced changes in microbial respiration and growth may leave CUE unchanged if the 340 

affected processes balance each other 81. High levels of soil moisture may also reduce microbial 341 

CUE. As soil pores fill with water, air spaces and oxygen diffusivity decline, potentially leading to 342 

anaerobic conditions if saturation occurs. Under O2 limitation, soil microbes shift from aerobic to 343 

anaerobic respiration or fermentation, significantly reducing energy yield and leading to 344 

decreased microbial growth and CUE while having little impact on CO2 production rate due to 345 

upregulated biochemical rates 86.  346 

Microbial responses to rewetting of a dry soil also cause rapid changes in CUE, as 347 

shown in modeling studies 53 and confirmed by empirical evidence 54. Upon rewetting, 348 

respiration increases while growth lags behind, especially when the soil has been dry for a long 349 

period 54. As a result, just after rewetting, CUE is low and then increases as growth recovers 350 

during the first days after rewetting. However, after this initial pulse of microbial activity, CUE 351 

peaks and decreases again as substrates released during rewetting are consumed 54.  352 

Nutrient availability 353 

The availability of nutrients such as N and P significantly affects microbial growth and 354 

respiration according to the concept of stoichiometric homeostasis which assumes constrained 355 

biomass C:N:P ratios of microbial cells 33,67. Consequently, CUE decreases with increasing 356 

substrate C-to-nutrient ratios and increases with nutrient amendment when organic substrates 357 
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are nutrient-poor 22,33. Several C cycle models, such as the one proposed by Manzoni et al. 88 358 

and its later implementation 24, have integrated CUE dynamics as a function of stoichiometry. In 359 

contrast to the homeostasis concept, recent findings highlight the capability of microbes to store 360 

and use nutrients dynamically, contributing to a stable CUE across different environments by 361 

separating growth and respiration processes from immediate nutrient availability 89. This 362 

resilience to nutrient stress suggests that future C modeling should incorporate microbial 363 

nutrient storage dynamics for enhanced predictive accuracy. 364 

Soil pH 365 

Soil pH influences microbial CUEC and CUEE by affecting the bacterial community 366 

composition and acting as a potential stressor 90. It also impacts CUE by altering microbial 367 

community composition 91, nutrient solubility 86, and metal toxicity (e.g., aluminum 90). Habitats 368 

with neutral pH generally have higher bacterial diversity and biomass compared to acidic or 369 

alkaline soils 7. The response of community composition to a shift in soil pH from acidic to 370 

neutral corresponded with a significant increase in CUEC 90,92. However, recent research 371 

indicates a complex interplay between soil pH, microbial community composition, and CUE 372 

dynamics, evidenced by both negative correlations 93 and a U-shaped response curve, 373 

pinpointing a critical threshold at pH 6.4 93, although the calculations to document this are 374 

complex and may necessitate refinement.  375 

Soil texture and structure 376 

Microbial growth is intricately linked to substrate accessibility, which is influenced by soil 377 

environmental conditions like texture and soil structure. Approximately 40–70% of soil bacteria 378 

are associated with microaggregates and clay particles 95. The structural complexity of the soil 379 

environment also plays a crucial role in shaping the community structure and function of soil 380 

microorganisms at the ecosystem level 96.  Heterogeneity of soil structure and composition 381 

creates diverse microhabitats that influence microbial interactions, diversity, distributions, and 382 

activity, as well as ecosystem processes like nutrient cycling and organic matter decomposition 383 
97. Still, limited information exists on the relationship between soil texture or structure and 384 

microbial CUE. A recent meta-analysis found a significant positive link between microbial CUEC 385 

or CUEE for glucose and soil clay content 30, which was attributed to increased clay content 386 

enhancing substrate adsorption 98, thereby limiting substrate availability to microbes 99, and 387 

resulting in higher microbial CUEC or CUEE. 388 
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Substrate quality 389 

Substrate quality, defined by the chemical characteristics of organic matter that influence 390 

its decomposability, such as the C:N ratio and molecular composition, significantly impacts soil 391 

microbial CUE 100. A "high-quality" substrate typically has a lower C:N ratio, indicating a 392 

balanced N content relative to C, and a lower content of recalcitrant compounds, which 393 

generally leads to faster decomposition and higher CUE by providing C and nutrients that 394 

microbes require for growth and metabolism 8. Compounds requiring multiple enzymatic steps 395 

for degradation can lead to reduced efficiency in building biomass. Polymeric substrates like 396 

lignin and cellulose need depolymerization before cellular uptake, whereas smaller substrates 397 

readily diffuse across membranes 65. Takriti et al. (2018) found a positive association between 398 

soil CUEC and ratios of cellulase to phenol oxidase enzyme activity potential, which was 399 

considered to be indicative of soil organic matter (SOM) substrate quality 50. Different substrates 400 

necessitate distinct metabolic pathways, resulting in different respiration rates per unit C 401 

assimilated 8,101. Frey et al. (2013) observed lower microbial CUEC when soils were amended 402 

with oxalic acid or phenolic compounds compared to glucose, despite similar molecular sizes 35. 403 

Microbial CUE increases with the chemical energy per mole of C in the substrate, 404 

highlighting the importance of substrate chemistry for microbial CUE variability in soil 8. This 405 

relationship is akin to the concept of energetic imbalance 102, which parallels the idea of 406 

stoichiometric imbalance. The energy content of soil microbial biomass and substrate can be 407 

quantified by the degree of reduction (γ), which refers to the average number of electrons 408 

available per C atom for biochemical reactions, indicating the energy density of the substrate or 409 

biomass 8. The degree of reduction of soil microbial biomass (γB)  is typically around 4.2, while 410 

that of substrate (γS) usually varies between 1 (e.g., for oxalate) and 8 (methane) 8. Most of the 411 

substrates used by soil microorganisms have a γS of 3 (e.g., various organic acids), 4 (e.g., 412 

glucose and other carbohydrates), and rarely 5 or higher (e.g., leucine, polyhydroxyalkanoates 413 

or lipids) 8. When γS is lower than γB, the substrate's energy content is insufficient to meet 414 

microbial demand, necessitating the oxidation of more substrate per unit of C assimilated, 415 

thereby reducing CUE 103. These insights form the basis of the stoichiometric modeling for 416 

indirect CUE estimates. 417 

 418 
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SOC-CUE relationship  419 

The relationship between CUE and SOC concentration at the ecosystem level can be 420 

positive, negative, or non-existent, depending on the interactions among multiple processes 421 
21,95,98,104–106. Higher CUE can lead to increased SOC through biosynthesis and accumulation of 422 

microbial by-products — facilitating SOC formation via the entombing effect 16,104,107 — or 423 

conversely, trigger SOC decline through the priming effect by ramping up microbial biomass and 424 

enzyme activity 9. While some studies suggest a negative correlation between CUE and SOC 425 
105,106,108, the majority of research supports a positive relationship 21,77,109,110, indicating that 426 

higher CUE is often linked to increased SOC levels. In a recent study, Tao et al. 21 employed 427 

observational data and data assimilation algorithms and found that, on a global scale, CUE is 428 

positively correlated with SOC concentration, arguing for CUE as the major determinant for 429 

SOC formation. However, subsequent arguments have raised methodological concerns which 430 

might have obscured the importance of microbial community dynamics 27 and SOC stabilization 431 

processes 111. 432 

Indeed, the link between microbial CUE and SOC is contingent upon the stabilization of 433 

microbial necromass within soil aggregates or its association with minerals 98,104,107. This 434 

stabilization process, pivotal for enhancing SOC, is significantly influenced by physico-chemical 435 

soil properties, which vary greatly and determine the potential for necromass protection 112,113. 436 

Positive SOC-CUE relationships could be anticipated in soils with high physicochemical C 437 

stabilization potential and microbial communities that convert simple chemical substrates into 438 

necromass 113. Conversely, when soil microbes face environmental stress, the relationship 439 

between CUE and SOC becomes less predictable. Particularly under conditions where nutrients 440 

are limited relative to carbon, the increased microbial respiration required to maintain 441 

stoichiometric balance leads to a decreased CUE 33,37. Further reductions in CUE may be driven 442 

by environmental challenges such as low oxygen or pH 91,108, as well as the physiological costs 443 

of microbial competition 69. However, these stressors on microbial activity may differently affect 444 

SOC, potentially leading to either a negative or negligible correlation between CUE and SOC 445 
108. It’s worth noting that in organic-rich soils, such as peat, C stabilization relies more on the 446 

accumulation of undecomposed plant material than on necromass formation 114, making the link 447 

between CUE and SOC less direct. Therefore, the CUE-SOC relationship in organic soils is 448 

expected to differ from mineral soils where C is mainly stabilized by mineral associations.  449 
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Additionally, it is important to recognize the distinct sensitivities of microbial CUE and 450 

SOC to environmental changes, as their responses are not synchronized. Microbial CUE can 451 

adjust rapidly, from days to months, in contrast to SOC, which may take years or even decades 452 

to respond to a measurable extent 31,115. Data from two meta-analyses highlight this disparity, 453 

showing that although fertilization positively affects both CUEC and SOC 29,41, the response 454 

ratios of CUEC were not significantly correlated with the response ratios of SOC, or even 455 

microbial biomass C content (Figure 5a and c). Here, the "response ratio" is calculated as the 456 

ratio of the measured value in the treatment to the value in the control. Furthermore, the 457 

response ratios of microbial CUEC were not significantly related to treatment duration (within ten 458 

years of treatment) (Figure 5b), whereas the response ratios of SOC increased significantly with 459 

experiment duration (Figure 5d). Therefore, SOC gradually approaches a new equilibrium over 460 

several decades, whereas CUE achieves equilibrium almost immediately. This discrepancy 461 

underscores the importance of considering the state (SOC and microbial biomass) dynamics of 462 

an ecosystem when evaluating the interplay between microbial CUE and SOC dynamics.  463 

 464 

 465 
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Figure 5. Contrasting responses of SOC and CUE to fertilization. Correlations between ln-466 

transformed response ratios of microbial CUE and ln-transformed response ratios of (a) SOC 467 

and (c) microbial biomass C (MBC); and the correlation between experiment duration and ln-468 

transformed response ratios of (b) CUE and (d) SOC. The response ratio is calculated as the 469 

ratio of the measured value in treatment to the value in the control. Data are from meta-470 

analyses 27, 41 29. Both datasets include observations from all three methods of CUE 471 

measurement, i.e., C labeling, O labeling, and stoichiometry modeling as indicated by symbol 472 

colors in panels a, b and c.  473 

 474 

Using models and data across scales to clarify the 475 

microbial role in C cycling  476 

Integrating genomic data with CUE and C models 477 

With the rise of high throughput sequencing technology, the use of genomic datasets to 478 

help calibrate or validate C models has become both feasible and affordable. This capacity is 479 

especially valuable when predicting CUE 116. As genomic data related to microbial traits 480 

becomes more readily available at both the population 117 and community levels through 481 

metagenomics 118, there is a growing need to effectively integrate this data into C cycle models. 482 

This integration requires models that can handle complex microbial interactions, from individual 483 

populations to entire communities (Figure 2). 484 

One way to integrate genomic data is by converting the genetic sequences of microbes 485 

into information on metabolic pathways (e.g. cellulose degradation, lignin degradation, nitrogen 486 

reduction, and fermentation) using genome-scale metabolic models (GEMs) 119. GEMs take into 487 

account the microbe's environment, such as substrate availability, and predict the 488 

transformation of metabolites within a cell based on its genomic information. This process 489 

allows for the calculation of CUE at the population level by analyzing substrate use and CO2 490 

production 119. For community-level CUE, GEMs can be combined into microbial community 491 

models that simulate interactions between different microbial taxa: The ‘computation of 492 

microbial ecosystems in time and space metabolic modeling platform’ (COMETS) extends 493 

GEMs to include dynamics of microbial growth and interactions, providing a tool for predicting 494 

CUEC under various environmental conditions 116. 495 
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An alternative modeling approach at the community level is based on traits (e.g., 496 

quantity of cellulase produced, maximum rate of reaction (Vmax) of cellulose decay by cellulase, 497 

Vmax of cellulose-monomer uptake, and turnover rate), such as the DEMENT model, which uses 498 

data on microbial traits to simulate substrate use and CO2 production 120. This model can predict 499 

both CUEP and CUEC under different environmental conditions and over time. However, 500 

translating genomic data into traits remains challenging 121. Genomic datasets typically indicate 501 

the presence or absence of certain genes or pathways, but additional information, such as that 502 

from GEMs or experimental data, is necessary to accurately map these genes to functional 503 

traits in the models. 504 

Validating genomic and trait-based models is crucial and can be achieved using 505 

community-level genomic datasets, which offer insights into microbial strategies that affect CUE, 506 

such as nutrient recycling and stress tolerance 118,122. Combining these models with traditional 507 

CUE measurements and omics data allows for the creation of detailed maps of community-level 508 

CUE, offering new insights into C cycling dynamics and providing input information for C cycle 509 

models. 510 

A major challenge in this field is the high computational demand of integrating omic data 511 

into complex models. One solution is the development of computational emulators that can 512 

simulate the dynamics of microbial models more efficiently, bridging the gap between detailed, 513 

small-scale models and broader applications in C cycle studies 123. This approach promises to 514 

improve our understanding of microbial contributions to C cycling, leveraging the power of 515 

genomic data to inform and validate complex ESMs. 516 

Harmonization of CUE measurements and aligning measured and 517 

modeled CUE 518 

Harmonizing soil microbial CUE measurements across different methods, i.e., aligning 519 

results from different methodologies, poses a challenge due to the differences across 520 

measurement techniques. While adopting a universal protocol for CUE measurement—a single, 521 

standardized measurement method— would be ideal, it may not be feasible given the 522 

complexities of CUE. Therefore, a more practical approach involves providing a clear and 523 

comprehensive description of the methodologies used in different studies. This detailed 524 

reporting should include information on the physiological processes considered, such as 525 

maintenance, enzyme production, biomass generation, and mortality rates. This level of detail 526 
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helps in understanding and comparing results across studies, as well as in selecting appropriate 527 

data for model calibration 17.  528 

In contemporary soil C models that explicitly incorporate microbial processes 25,85, the 529 

CUE is close to empirically measured CUEC. To achieve a uniform approach to CUE 530 

measurement, microbial models that resolve key processes influencing CUE, such as uptake, 531 

respiration, exudation, and microbial death could be used 17. Such models can generate CUE 532 

metrics that align with different measurement methodologies by incorporating a complete or 533 

partial set of these processes into their calculations. Furthermore, these models can be adapted 534 

to conduct numerical experiments with specific substrates or to incorporate isotopic tracers 535 

(e.g., 13C, 14C, 18O) to simulate outcomes from labeling experiments. This adaptability allows for 536 

the exploration of hypotheses regarding discrepancies in measurements under diverse 537 

conditions by modifying model boundary conditions. Additionally, microbial models serve as 538 

foundational tools for integrating microbial metabolism into broader global C models, potentially 539 

enhanced by machine learning emulators for improved scalability and applicability.  540 

Constraining CUE using model-data fusion 541 

Data assimilation encompasses a collection of techniques, including Bayesian inference, 542 

that refine biogeochemical models by integrating observational data. This process not only 543 

updates model parameters to reflect the most likely values based on available data but also 544 

quantifies their uncertainties, thus bridging the gap between empirical observations and 545 

theoretical models 109. This approach is particularly valuable for parameters like microbial CUE, 546 

which are challenging to measure directly in the field due to technical limitations. An innovative 547 

application of data assimilation is demonstrated by Tao et al. 21, who developed the PROcess-548 

guided deep learning and DAta-driven (PRODA) approach 124. This method integrates global-549 

scale SOC data with a microbially explicit model to produce a global map of microbial CUE. 550 

PRODA employs traditional Bayesian data assimilation to estimate parameters at specific sites 551 

and then uses deep learning to extrapolate these site-specific parameter estimates to a global 552 

scale. The result is a set of parameters that optimally align with observed data, offering a 553 

detailed view of microbial CUE and SOC storage patterns worldwide, along with other soil C 554 

cycle dynamics such as decomposition rates, environmental impacts on soil respiration, and 555 

vertical C transport 21. 556 
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Despite the potential of approaches like PRODA to harness large datasets for enhancing 557 

our understanding of the soil C cycle, their computational intensity—stemming from the 558 

extensive data sampling required by Bayesian inference—may limit their application in models 559 

with complex structures. The next wave of data assimilation techniques will likely integrate 560 

process-based models with deep learning algorithms more seamlessly 122. Such advancements 561 

could offer quicker parameter optimization and facilitate comparisons across different models, 562 

paving the way for more accurate and comprehensive assessments of microbial CUE and C 563 

cycle dynamics on a global scale. 564 

Long-term SOC records and ecosystem manipulation experiments 565 

Ecosystem manipulation experiments and observations of natural gradients offer 566 

invaluable insights into how microbial communities and CUE adapt to global change factors. 567 

Especially insightful are field experiments (or studies leveraging natural gradients) that alter 568 

environmental factors such as soil temperature, precipitation patterns, or nutrient levels 79,126 569 

over long durations. These experiments provide critical data on the enduring effects of global 570 

change drivers on CUE, while simultaneously highlighting the limitations of current models and 571 

enhancing our comprehension of ecological processes. Integrating the results from these 572 

experiments with model simulations, supported by proven site modeling protocols and extra 573 

observational data, is crucial for steadily enhancing the accuracy and complexity of models 127. 574 

Incorporating radiocarbon (14C) data and long-term SOC records into models is also vital 575 

for refining CUE forecasts across longer (decadal to centennial) time scales. This temporal 576 

information is essential for capturing the dynamics of CUE over time, thereby improving the 577 

precision of models in depicting spatial and temporal fluctuations 128. 578 

Diagnosing CUE from existing models or simulation archives 579 

In global C modeling, approaches to quantify the environmental impact on organic 580 

matter decomposition and stabilization differ significantly. An effective method for estimating 581 

microbial CUE at the ecosystem level as emerging from model simulations involves the 582 

calculation of the ratio between soil heterotrophic respiration (R) and gross decomposition (D) 583 

within these models. Gross decomposition refers to the sum of all C fluxes transferred between 584 

the modeled soil C pools that are mediated by microbial processes, excluding physically 585 

mediated transfers (e.g., sorption, aggregation, or leaching). This includes all C removed from 586 
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organic matter pools, whether it is lost as CO2 or transferred to another pool (SI-Text 1). This 587 

ratio effectively quantifies microbial-mediated C losses from SOC pools, integrating both growth 588 

(anabolic processes) and respiration (catabolic processes). Under steady-state conditions, it is 589 

assumed that heterotrophic respiration aligns with microbial C uptake, resulting in the formula: 590 

CUE = 1 - R/D. The steady-state assumption implies that microbial communities and SOC stock 591 

are stable in time (i.e., in equilibrium with boundary conditions). This is an approximation of real 592 

systems where SOC varies due to anthropogenic and natural changes (e.g., Holocene climatic 593 

variations). This diagnosed CUE, emerging as a property inherent to the model, is not 594 

susceptible to the equifinality issues that can affect the underlying intrinsic model parameters 595 

(like CUEC), and it does not necessitate the incorporation of explicitly microbial models, offering 596 

a simplified yet insightful metric. These model-based CUE estimates, derived from long-term 597 

flux averages (e.g., 20 years), represent stable C stocks. In contrast, measurement-based 598 

estimates, taken over shorter periods, are more susceptible to significant CUE variations due to 599 

asynchronous fluctuations in components such as respiration and degradation, potentially 600 

introducing estimation inaccuracies. This timescale discrepancy likely accounts for the greater 601 

variability observed in measurement-based CUE compared to model-based CUE. We propose 602 

this "model-diagnosed CUE" as a novel metric, designed to estimate microbial CUE from model 603 

outputs without direct measurements of microbial uptake.  604 

Analyzing diagnosed CUE and its relationship with SOC across various models, such as 605 

those evaluated in the Trends in the land carbon cycle (TRENDY) model intercomparison 606 

project 2, facilitates the identification of differences attributable to unique model structures and 607 

assumptions. For example, warming-induced CO2 emissions should be higher in models with 608 

low diagnosed CUE compared to high CUE as the warming-induced stimulation of microbial 609 

activity will result in relatively more C being respired than cycled within the soil systems. This 610 

approach further allows the benchmarking and subsequent refinement of diagnosed CUE 611 

estimates using observed CUEE data.  612 

For instance, we derived CUE estimates from simulations conducted with two different 613 

versions of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land 614 

surface model 129, which differ in the SOC model deployed. The CENTURY SOC model (Fig. 615 

S1a), which is widely used but does not resolve microbial processes, uses first-order decay, 616 

while the MIMICS model (Fig. S1b) resolves microbial physiology, providing a more mechanistic 617 

understanding of microbial processes. The resulting global CUE maps (the average of 618 

simulation results over 20 consecutive years) revealed significant spatial variability (Fig. 6a & b). 619 
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While the two maps showed a good correlation (Fig. 6c), the CUE values diagnosed from the 620 

MIMICS model were higher than those from the CENTURY model (Fig. 6d). These findings 621 

underscore the importance of incorporating observational data into model calibration efforts to 622 

enhance the accuracy and reliability of SOC predictions by realistically resolving CUE. 623 

 624 

Figure 6. Diagnosed CUE from two existing soil C models. CUE diagnosed from a nutrient-625 

enabled version of the the Organising Carbon and Hydrology In Dynamic Ecosystems land 626 

surface model (ORCHIDEE-CNP) deploying a soil module based on (a) the CENTURY model 627 
129, or (b) the MIMICS model with constant intrinsic CUEC 130. (c) Correlation between diagnosed 628 

CUE values from the CENTURY-based model and the MIMICS-based model. (d) Distribution 629 

frequency of CUE for the two scenarios.  630 

 631 

In conclusion, the inherent structure of a model significantly shapes its outcomes, 632 

making the integration of empirical data with data-constrained models a fundamental step 633 

toward realistic predictions 131,132. Precisely delineating the spatial and temporal dynamics of 634 

CUE in models that specifically address microbial activities is crucial for the reliability of their 635 

predictions of SOC status and dynamics. Moreover, future soil C models must navigate the 636 
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intricate balance between the complex regulatory mechanisms of CUE, other processes 637 

governing SOC formation and stabilization, and the practicality of model use to promote more 638 

precise projections of CUE responses under diverse environmental scenarios. This Perspective 639 

underscores the importance of combining different data sources with sophisticated modeling 640 

techniques to refine global CUE predictions. By incorporating genomic data, standardizing 641 

measurement protocols, applying data assimilation practices and critically evaluating CUE 642 

within existing frameworks, our comprehension of the global dynamics of microbial CUE can be 643 

markedly improved. This Perspective provides a roadmap for establishing an effective modeling 644 

approach to accurately represent global soil microbial CUE and its interactions with other 645 

biological and abiotic processes that regulate SOC dynamics. 646 

 647 
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