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Abstract

Microbial carbon use efficiency (CUE) affects the fate and storage of carbon in terrestrial
ecosystems, but its global importance remains uncertain. Accurately modeling and predicting
CUE on a global scale is challenging due to inconsistencies in measurement techniques and the
complex interactions of climatic, edaphic, and biological factors across scales. The link between
microbial CUE and soil organic carbon relies on the stabilization of microbial necromass within
soil aggregates or its association with minerals, necessitating an integration of microbial and
stabilization processes in modeling approaches. In this perspective, we propose a
comprehensive framework that integrates diverse data sources, ranging from genomic
information to traditional soil carbon assessments, to refine carbon cycle models by
incorporating variations in CUE, thereby enhancing our understanding of the microbial
contribution to carbon cycling.
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Introduction

Earth System Models (ESMs) are indispensable tools for predicting the planetary
response to climate change '. The accuracy and reliability of ESMs are crucial for informing
climate projections that guide policy decisions. Soils store more carbon (C) than plants, the
surface ocean or the atmosphere, and thus are critical for the functioning of the Earth system 2.
While ESMs are becoming increasingly complex, their predictions of soil organic C (SOC)

stocks have improved only marginally in recent decades 3#.

Microbial communities process most of the C entering the soil, thereby shaping its fate
56 Microbes metabolize multiple C sources, including detritus, root exudates, and microbial
metabolites ”. The energy needed to acquire C depends on whether the compounds can be
taken up directly or require prior enzymatic degradation 8. Additionally, microbial community
composition and functioning are influenced by prevailing climatic conditions °-''. The general
omission of microbial community structure and related processes in C cycle models has been
suggested as one of the causes for their poor performance in predicting SOC stocks and their

responses to climate change >3,

Recognizing the impracticality of representing every conceivable microbial metabolic
pathway, many models combine a spectrum of microbial processes into a single metric referred
to as microbial C use efficiency (CUE) '*'°, CUE, as a model parameter or as a system property
emerging from multiple co-occurring processes, represents the fraction of C uptake allocated to
the production of new microbial biomass 6. Using this definition, CUE declines as more C is
used for respiration to generate energy (for substrate uptake, cellular maintenance, enzyme
production) or for exudation (extracellular enzymes, polysaccharides) '"'8. This pragmatic
approach streamlines the modeling of soil C cycling by incorporating the diverse fates of
microbial C, including biomass production, respiration, and exudation, thereby providing a more

comprehensive understanding of microbially-mediated C-pathways.

However, accurately integrating the spatial or temporal dynamics of microbial CUE into
soil C models remains a significant challenge. Most of the current C cycle models either lack
explicit representation of CUE or treat it as a constant value *, despite our understanding that
CUE varies under different environmental conditions. For example, observations indicate
significant variability in CUE at the global scale , which may be partially attributed to

inconsistencies among measurement techniques (Figure 1a). Moreover, comparisons across
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ecosystems reveal that CUE is generally higher in grasslands than in croplands, with forests
consistently showing the lowest CUE values, regardless of the measurement approaches used
1920 (Figure 1c). CUEs derived from data assimilation 2" are also lower than those from more

direct measurement approaches (Figure 1d).

Several attempts have been made to reflect or incorporate CUE variations into models of
litter 22 or soil organic matter *'3 decomposition with the aim of assessing the implications for
soil C cycling. For example, incorporating an empirically-derived negative relationship between
microbial CUE and temperature into a microbial-explicit SOC model improved the simulation of
contemporary soil C stocks 23. Zhang et al. ?* introduced the effects of substrate quality and soil
fertility on microbial respiration, highlighting the joint control of litter quality and quantity on the
steady-state SOC stocks. Wieder et al. 2° enhanced the understanding of CUE variation by
including two types of decomposers with differing substrate preferences and CUE (Figure 1b).
These examples suggest that more realistic representations of microbial C transformations have
the scope for improving model predictions of soil C 2326, However, these predictions were poorly

constrained by observational data, calling their reliability into question 2'-27:28,

In this Perspective, we synthesize our understanding of CUE regulatory factors and
databases for constraining numerical models, with the aim of clarifying complexities, addressing
controversies, and providing a holistic perspective on pathways to adequately reflect CUE

variations in C cycle models and their consequences for simulated soil C stocks.
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Figure 1: Variability of carbon use efficiency (CUE) at a global scale. a): Observation-based

CUE estimates at the global scale from C (*C and '*C) and 80 isotopic labeling, stoichiometric

modeling and other methods. Data were collected from 19212931 b). CUE constants used in the
Milcrobial-MIneral Carbon Stabilization model (MIMICS) for two litter types (diamonds).

Metabolic litter comprises plant litter that decomposes easily, whereas structural litter is more

resistant to decomposition 32. c): Observation-based estimates for different ecosystems using

isotopic labeling 2° or stoichiometric modeling '°. d): CUE values predicted using a microbial
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model assimilating information on SOC profiles ?'. Data assimilation integrates observed data

into predictive models to refine model parameters and improve estimation accuracy.

Data availability and challenges

Terminology and definitions of microbial CUE

The concept of microbial CUE, the fraction of C uptake that is used to produce microbial
biomass '%-'8, is intuitively straightforward, but CUE definitions vary depending on the ecological
processes involved, measurement methods, and scales of biological organization (e.g.,
population, community and ecosystem) 17, Therefore, CUE can be regarded as an emergent
parameter, encapsulating multiple processes within a single metric. It is useful in modeling as
the number of processes that can be modeled is constrained by practical limitations (e.g.
availability of data for calibration). Consequently, ecosystem models often simplify microbial
process complexity, which in reality, escalates from the genomic to the ecosystem level (Figure
2).

CUE is quantitatively expressed as the ratio of microbial growth (u) to C uptake (U) 1633,
that is, CUE = p/U. This ratio encapsulates the efficiency with which microorganisms convert
assimilated C into biomass. Microbial uptake involves C assimilation for growth (u), respiration
(R), and the secretion of extracellular enzymes and metabolites (EX). Geyer et al. (2016)
introduced a nested conceptual framework for understanding CUE across different biological
organization levels: population (CUEr), community (CUEc), and ecosystem (CUEE). This
framework is useful for integrating C fluxes mediated by soil microbes into models at various

ecological scales (Figure 2).

CUE- reflects the species-specific functioning of microbial taxa (e.g., biosynthesis rate,
exudate production) and thermodynamics of C substrate metabolism that limits the proportion of
C uptake used for biosynthesis versus C lost from the cell (e.g., mineralized or exuded as
metabolites). Typically measured in cultured populations, the CUEr formula adjusts for

U-R - EX

respiration (R) and exudation (EX) losses from the uptake, expressed as CUE = T CUEc

incorporates additional environmental and community factors influencing microbial metabolism

in natural communities consisting of multiple populations. It focuses on gross microbial
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production prior to the recursive substrate recycling of necromass and exudates, capturing the
metabolic response of microbial communities to substrates over short durations (hours), and is
similarly expressed as CUE = #

CUEE considers C retention as net microbial growth over longer time scales (days to
months), taking into account the drivers of CUEp and CUE( as well as microbial biomass
turnover. On these time scales, a significant proportion of microbial biomass is converted to

necromass following microbial death (MD) *2 such that CUEg = w, encompassing all

aspects of microbial C processing, including death and recycling processes.
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Figure 2. Schematic representation of a cluster of models integrating observational
constraints on CUE at population (CUEr), community (CUEc) and ecosystem (CUEEg)
scales. The genome-scale metabolic model predicts the movement of metabolites within a cell
based on its genomic information. CUEp and CUE can be validated by short-term incubation

measurements, while CUEE requires long-term incubation measurements. Although the scales
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and processes governing CUE expand from individual cells to entire ecosystems, there is a

practical limit to the extent they can be resolved in C cycle models.

Methods for measuring microbial CUE

Multiple approaches can be used to quantify CUE, such as isotopically labeling
substrates %536, stoichiometric modeling 22" and others 8. These methods rely on different
assumptions and capture distinct microbial processes, which can explain the variability in CUE
estimates across methods &3°4° (Figure 1a), including differences in the response of CUE to

environmental changes #', and the relationship between CUE and SOC (Figure 3a and b).

The most common approach for measuring CUE is the tracking of isotopically labeled
compounds ('*C, '3C labeled substrate, or 80 water) introduced to the system. Carbon isotopes
in microbial substrates enable the differentiation between C allocated to microbial biomass and
that released through respiration. Although this labeling technique is widely used, its results can
be influenced by the choice and combination of substrates °, as well as the incubation period
1442 A significant limitation of this approach is that measured CUE reflects only the efficiency of
those microbes that use the introduced substrates, not the entire microbial community.
Furthermore, the variation in incubation times and temperatures across different studies (Figure

3c and d) presents a substantial obstacle to standardizing CUE measurements.



181

182
183
184
185
186

187

188
189
190
191
192
193

10

a ° b °
° 801 ®
R?=0.11, p<0.01 o
» ®e % R?=0.21,p<0.01
<™ 100 o*® =0.21,p<0.
2 | coe :. .
2 oo
() °o 0
d 501 °t .
W o® o ©
® [ ] .’b' [ J
0- M ..‘d F XX L
0.2 04 06 038 0.2 0.3 04 05 0.6
CUE from labeling methods CUE from stoichiometric model
€ 300 d
2001
2001
= =
= 2
3 3
100+
1001
0 0
0 20 40 60 80 100 120 0 5 10 15 20 25
Incubation time (day) Incubation temperature (°C)

Figure 3. The relationships between soil organic carbon (SOC) concentration and CUE
from (a) isotopic labeling methods ('C, '*C labeled substrate, and '®0O water) and (b)
stoichiometric modeling. The figure also shows (c) the incubation duration and (d)
temperature employed in studies using labeling and incubation methods. Data in the

panels are from (a) 2*, (b) '°, and (c and d) %°.

The method using '®0-labeled water is based on the incorporation of the ®0-atom into
microbial DNA as a measure of growth as compared to catabolic C losses as CO; 3643, This
method has higher accuracy than the C labeling method as it is not substrate specific, does not
perturb microbial metabolism like methods involving substrate addition, and exhibits
comparatively less variability over time *°. Nonetheless, this method faces limitations such as

higher cost and demanding technical procedures. Concerns also arise regarding the method's
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foundational assumptions, e.g., the presumption that water is the sole oxygen source for
microbial DNA synthesis and the hypothesis that all microbial cells maintain a consistent DNA to

biomass C ratio 4. Furthermore, its applicability in dry soils is challenging .

Stoichiometric modeling is a common method for indirectly estimating CUE, which is
based on the assumption that microbes growing on plant detritus allocate C to produce
enzymes and other necessary components to acquire nutrients in the appropriate elemental
ratios at the whole-community scale 3337, This approach offers the advantage of requiring only a
limited number of parameters, such as the activities of enzymes targeting C versus nitrogen (N)
or phosphorus (P) acquisition and the C:N:P composition of the substrate and microbial
biomass, which can be constrained by existing observations. However, it relies on highly
simplified assumptions regarding elemental ratios and C allocation “°. This approach inherently
suggests lower CUE in soils with high SOC due to its focus on the metabolic costs of nutrient
acquisition under conditions where nutrients are scarce relative to C. This outcome (Figure 3b)
starkly contrasts with the positive correlation between CUE and SOC observed using isotopic
labeling techniques (Figure 3a), which are commonly considered to provide a more realistic
insight into the relationship between CUE and SOC. The isotope labeling method estimates
microbial growth and CUE by tracking the incorporation of labeled atoms into biomass or DNA,
reflecting intracellular biochemical transformations. In contrast, the stoichiometry model method
estimates CUE by analyzing the activities of extracellular enzymes and the stoichiometric
balance between organic matter and microbial biomass, focusing on extracellular metabolic
processes “6. Therefore, caution is advised when comparing results obtained from these two
methods, even though they use the same term (CUE). We do not yet know the extent to which
the stoichiometric and isotope methods are comparable. Until we understand which patterns
can be accurately captured by the simpler stoichiometric method, we should rely on the more
robust 0 method for measuring actual CUE and the '*C method for CUE associated with

specific substrates.

In addition to the methods mentioned above, there are other less commonly used
approaches, including the use of "0 in water vapor to minimize impact on soil moisture *°,
metabolic flux analysis "7, and calorespirometry ’. Each method offers unique advantages and
faces specific limitations, grounded in their underlying assumptions and theoretical bases 34",
These limitations not only affect the accuracy of these methods but also introduce significant
comparability issues. Consequently, there is an urgent need to improve current methodologies

and integrate innovative techniques to more accurately assess soil microbial CUE.
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Data gap

Given the methodological challenges in measuring CUE in situ, field assessments of
microbial CUE are rare. The vast majority of existing CUE observations have been obtained
from lab incubations. Yet, these CUE observations remain scarce at the global scale, a situation
which is exacerbated by the lack of harmonization of observations from different measurement
approaches. For some ecosystems, observations are few or even nonexistent, including
ecosystems that play a critical role in the global C cycle, such as tropical rainforests, wetlands,

and peatlands “84°.

Existing CUE measurements mostly come from studies of the litter and surface mineral
soil '®. Thus, our understanding of microbial CUE in subsurface soil remains limited, which is
problematic as large amounts of C are stored in subsoils globally, and especially those of
wetlands and peatlands. The few existing studies indicate that microbial CUE decreases with
soil depth °°5" and that subsurface CUE may be less sensitive to warming 3° but more sensitive

to nutrient variations %2.

Moreover, data on temporal variations in CUE are lacking. A commonly overlooked
factor that may contribute significantly to CUE variability in soil ecosystems, regardless of
methodology, is seasonality in CUE. Seasonal changes are associated with significant
variations in substrate availability, temperature and moisture, all of which may have a
substantial impact on the growth and respiration of soil microorganisms, thereby altering
microbial CUE *3. For example, CUE estimated using the 'O incorporation method ranged from
0.1 to 0.7 in soils from an agricultural field site and from 0.1 to 0.6 at a forest site within one year
31, It has also been reported that soil microbial CUE exhibits significant fluctuations within a
short period (daily) after rewetting 53°*. This temporal dynamic in CUE values could contribute to

the significant variability observed in CUE measurements.

Regulatory factors governing microbial CUE

The incorporation of soil microbial CUE dynamics into process-based models

necessitates a comprehensive understanding of a range of regulatory factors influencing CUE
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(Figure 4). CUE at a specific biological level is influenced by features of both the microbial
community itself (biological controls) and its external environment (abiotic controls). These
factors frequently interact, particularly at the community and ecosystem levels: abiotic controls
can modify CUEc or CUEE by regulating biological controls, while biological controls may induce

adaptation to abiotic factors, thereby influencing the impact of abiotic controls.

6| & i

pH Moisture Temperature Nutrients Substrate Texture

| Abiotic effects

g —

Microbial Microbial Soil organic
composition physiology carbon

|

CUE

Soil fauna l Enzyme Necromass

O

(AL P\ Microbial
& '/ biomass

| Biological controls

Figure 4. Framework of biological and abiotic determinants of CUE in a carbon cycle
context. The darker-colored area in the figure indicates biological controls; the lighter-colored
area indicates abiotic effects. The arrows depict implicit relationships and the width of the
arrows corresponds to the levels of scientific certainty: confident assertions are represented by
thick lines, while less confident assertions are indicated by thinner lines. These confidence

levels are based on the expertise of the authors.
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Biological controls:

Microbial physiological state

Microbial CUE reflects the physiological state of microorganisms. Under natural
conditions, only a small proportion (values vary from 1% to >20% in different studies %) of soil
microbial cells are metabolically active, and soil respiration primarily originates from these
metabolically active cells %. Nonetheless, a high fraction of microbial cells in the soil are in a
potentially active state (10 to 60% of the total microbial biomass), meaning that they are ready
to start using available substrates within a few hours after easily available substrate is added.
The shifts in physiological states of these microbial cells, resulting from changes in temperature,
moisture, or substrate availability, significantly impact CUE °’. Consequently, CUEp or CUEc
measurement methods relying on substrate addition may overestimate CUE 4, and shifts in
physiological state can lead to seasonal variations in CUE *'.

Microbial community diversity and composition

Increased microbial diversity enriches the spectrum of metabolic functions within a
community, potentially leading to greater microbial growth %8 and CUEc by facilitating more
efficient use of varied C sources '9%°. The composition of microbial communities, notably the
ratio of fungal to bacterial biomass (F:B), plays a critical role in determining CUE ¢ ©°.
Communities dominated by fungi can show higher CUE(, attributed to their higher biomass C to
N) ratios (C:N) and their proficiency in decomposing complex organic materials 8', or lower CUE
due to the high costs associated with resource acquisition by decomposer fungi °. Therefore,
this contrasting evidence from plant litter studies indicates that the relationship between F:B
ratio and CUE is context-dependent %62, Alternatively, an approach categorizing
microorganisms into copiotrophs (r-strategists with low CUE) versus oligotrophs (K-strategists
with high CUE) has been promising for estimating CUE ©3. For example, shifts from r-strategists
to K-strategists explain increased CUEc along a successional gradient in the southeastern

Tibetan Plateau %4.

Changes in community composition may also enable microbial communities to alter their
CUE in response to environmental changes or fluctuations 5%, For instance, long-term
warming experiments indicate a decline in the temperature sensitivity of CUE ¢, suggesting that

shifts in microbial composition can maintain CUE ¢ despite changes in temperature and
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substrate quality 3°. Similarly, modeling studies suggest that changing microbial community
composition can reduce the sensitivity of CUEc to substrate quality % and soil moisture

fluctuations ©8.
Biotic interactions

In the soil food web, biotic interactions such as mutualism, facilitation, competition, and
predation can shape CUE¢ ®°. Interspecific microbial competition drives accelerated growth
rates, accompanied by the release of secondary metabolites that can negatively affect CUEC ©°.
Antagonistic interactions may trigger stress responses, further diminishing CUE¢ 7°. Conversely,
facilitation enhances CUEc by broadening species-realized niches, alleviating environmental
stress, and reducing extracellular enzyme production costs ¢’. Biotic interactions at higher
trophic levels, such as predation, can variably affect CUE¢ by altering microbial density and

influencing the outcomes of interspecific competition 772,

Abiotic controls:

Temperature

Temperature significantly affects soil microbial CUE, with respiration often increasing
more than growth in short-term incubations, resulting in a decrease in CUEp %873, The impact
on CUEc and CUEk is less clear %, likely due to varied responses among microbial taxa "+ and
interactive effects with other environmental factors 42435076 Temperature shifts can lead to
changes in community traits or select for taxa with distinct life strategies, known as trait
modification and trait filtering, respectively 778, However, limited research on how CUEe varies
among different taxa in response to temperature impairs our ability to accurately predict

changes in CUE¢ 781,

The interplay between direct and indirect temperature effects on soil microbial CUE ¢ and
CUEEg complicates our understanding of the impact of warming on CUE. Warming can intensify
C-nutrient imbalances, potentially diminishing microbial CUE 82, but it can also improve the
efficiency of substrate utilization, thereby enhancing CUE 3675, Expected reductions in soil
moisture due to increased evapotranspiration under warming conditions 8 add another layer of

complexity, with the combined impacts of temperature and moisture on microbial CUE
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remaining inadequately explored '#. Some soil C models, including Millennial 8 and MIMICS 25
have begun to account for the temperature dependency of CUEc, indicating a growing
recognition of the importance of including the dynamic response of microbial CUE to fluctuations

in temperature.
Soil water availability

Increased soil moisture promotes microbial growth and CUE by improving substrate
diffusivity and accessibility, and lowering investment in osmolyte synthesis, as long as
conditions remain oxic 8'%%. Prolonged water stress reduces soil substrate accessibility and
increases the need to synthesize osmolytes to survive during dry periods, leading to lower
CUEC( %, even though the taxa that remain active in dry conditions can maintain relatively high
growth rates &. Furthermore, drought reduces plant C inputs to the soil 8, thus potentially
leaving microbes with fewer lower resources, resulting in lower CUE. The intricate interplay of
drought-induced changes in microbial respiration and growth may leave CUE unchanged if the
affected processes balance each other 8'. High levels of soil moisture may also reduce microbial
CUE. As soil pores fill with water, air spaces and oxygen diffusivity decline, potentially leading to
anaerobic conditions if saturation occurs. Under Oz limitation, soil microbes shift from aerobic to
anaerobic respiration or fermentation, significantly reducing energy yield and leading to
decreased microbial growth and CUE while having little impact on CO» production rate due to

upregulated biochemical rates 6.

Microbial responses to rewetting of a dry soil also cause rapid changes in CUE, as
shown in modeling studies %3 and confirmed by empirical evidence **. Upon rewetting,
respiration increases while growth lags behind, especially when the soil has been dry for a long
period %4. As a result, just after rewetting, CUE is low and then increases as growth recovers
during the first days after rewetting. However, after this initial pulse of microbial activity, CUE

peaks and decreases again as substrates released during rewetting are consumed 4.
Nutrient availability

The availability of nutrients such as N and P significantly affects microbial growth and
respiration according to the concept of stoichiometric homeostasis which assumes constrained
biomass C:N:P ratios of microbial cells **7. Consequently, CUE decreases with increasing

substrate C-to-nutrient ratios and increases with nutrient amendment when organic substrates
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are nutrient-poor 2233, Several C cycle models, such as the one proposed by Manzoni et al. 88
and its later implementation 24, have integrated CUE dynamics as a function of stoichiometry. In
contrast to the homeostasis concept, recent findings highlight the capability of microbes to store
and use nutrients dynamically, contributing to a stable CUE across different environments by
separating growth and respiration processes from immediate nutrient availability &. This
resilience to nutrient stress suggests that future C modeling should incorporate microbial

nutrient storage dynamics for enhanced predictive accuracy.
Soil pH

Soil pH influences microbial CUEc and CUEE by affecting the bacterial community
composition and acting as a potential stressor %°. It also impacts CUE by altering microbial
community composition °!, nutrient solubility , and metal toxicity (e.g., aluminum °°). Habitats
with neutral pH generally have higher bacterial diversity and biomass compared to acidic or
alkaline soils 7. The response of community composition to a shift in soil pH from acidic to
neutral corresponded with a significant increase in CUE¢ °°°2. However, recent research
indicates a complex interplay between soil pH, microbial community composition, and CUE
dynamics, evidenced by both negative correlations °® and a U-shaped response curve,
pinpointing a critical threshold at pH 6.4 , although the calculations to document this are

complex and may necessitate refinement.
Soil texture and structure

Microbial growth is intricately linked to substrate accessibility, which is influenced by soil
environmental conditions like texture and soil structure. Approximately 40—70% of soil bacteria
are associated with microaggregates and clay particles . The structural complexity of the soil
environment also plays a crucial role in shaping the community structure and function of soil
microorganisms at the ecosystem level %. Heterogeneity of soil structure and composition
creates diverse microhabitats that influence microbial interactions, diversity, distributions, and
activity, as well as ecosystem processes like nutrient cycling and organic matter decomposition
97_Still, limited information exists on the relationship between soil texture or structure and
microbial CUE. A recent meta-analysis found a significant positive link between microbial CUE¢
or CUEE for glucose and soil clay content *°, which was attributed to increased clay content
enhancing substrate adsorption %8, thereby limiting substrate availability to microbes °°, and

resulting in higher microbial CUEc or CUEE.
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Substrate quality

Substrate quality, defined by the chemical characteristics of organic matter that influence
its decomposability, such as the C:N ratio and molecular composition, significantly impacts soil
microbial CUE . A "high-quality" substrate typically has a lower C:N ratio, indicating a
balanced N content relative to C, and a lower content of recalcitrant compounds, which
generally leads to faster decomposition and higher CUE by providing C and nutrients that
microbes require for growth and metabolism 8. Compounds requiring multiple enzymatic steps
for degradation can lead to reduced efficiency in building biomass. Polymeric substrates like
lignin and cellulose need depolymerization before cellular uptake, whereas smaller substrates
readily diffuse across membranes . Takriti et al. (2018) found a positive association between
soil CUE¢ and ratios of cellulase to phenol oxidase enzyme activity potential, which was
considered to be indicative of soil organic matter (SOM) substrate quality °°. Different substrates
necessitate distinct metabolic pathways, resulting in different respiration rates per unit C
assimilated %', Frey et al. (2013) observed lower microbial CUEc when soils were amended

with oxalic acid or phenolic compounds compared to glucose, despite similar molecular sizes *.

Microbial CUE increases with the chemical energy per mole of C in the substrate,
highlighting the importance of substrate chemistry for microbial CUE variability in soil 8. This
relationship is akin to the concept of energetic imbalance '°2, which parallels the idea of
stoichiometric imbalance. The energy content of soil microbial biomass and substrate can be
quantified by the degree of reduction (y), which refers to the average number of electrons
available per C atom for biochemical reactions, indicating the energy density of the substrate or
biomass 8. The degree of reduction of soil microbial biomass (ys) is typically around 4.2, while
that of substrate (ys) usually varies between 1 (e.g., for oxalate) and 8 (methane) 8. Most of the
substrates used by soil microorganisms have a ysof 3 (e.g., various organic acids), 4 (e.g.,
glucose and other carbohydrates), and rarely 5 or higher (e.g., leucine, polyhydroxyalkanoates
or lipids) 8. When ys is lower than ys, the substrate's energy content is insufficient to meet
microbial demand, necessitating the oxidation of more substrate per unit of C assimilated,
thereby reducing CUE '%. These insights form the basis of the stoichiometric modeling for

indirect CUE estimates.
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SOC-CUE relationship

The relationship between CUE and SOC concentration at the ecosystem level can be
positive, negative, or non-existent, depending on the interactions among multiple processes
21.95.98,104-108 Higher CUE can lead to increased SOC through biosynthesis and accumulation of
microbial by-products — facilitating SOC formation via the entombing effect 614107 _ or
conversely, trigger SOC decline through the priming effect by ramping up microbial biomass and
enzyme activity °. While some studies suggest a negative correlation between CUE and SOC
105,106,108 ' the majority of research supports a positive relationship 2'77:109.11° indicating that
higher CUE is often linked to increased SOC levels. In a recent study, Tao et al. 2! employed
observational data and data assimilation algorithms and found that, on a global scale, CUE is
positively correlated with SOC concentration, arguing for CUE as the major determinant for
SOC formation. However, subsequent arguments have raised methodological concerns which
might have obscured the importance of microbial community dynamics 27 and SOC stabilization

processes '

Indeed, the link between microbial CUE and SOC is contingent upon the stabilization of
microbial necromass within soil aggregates or its association with minerals °194197 This
stabilization process, pivotal for enhancing SOC, is significantly influenced by physico-chemical
soil properties, which vary greatly and determine the potential for necromass protection 12113,
Positive SOC-CUE relationships could be anticipated in soils with high physicochemical C
stabilization potential and microbial communities that convert simple chemical substrates into
necromass 3. Conversely, when soil microbes face environmental stress, the relationship
between CUE and SOC becomes less predictable. Particularly under conditions where nutrients
are limited relative to carbon, the increased microbial respiration required to maintain
stoichiometric balance leads to a decreased CUE 33%". Further reductions in CUE may be driven
by environmental challenges such as low oxygen or pH °"1%_as well as the physiological costs
of microbial competition 6°. However, these stressors on microbial activity may differently affect
SOC, potentially leading to either a negative or negligible correlation between CUE and SOC
108 1t's worth noting that in organic-rich soils, such as peat, C stabilization relies more on the

accumulation of undecomposed plant material than on necromass formation "4

, making the link
between CUE and SOC less direct. Therefore, the CUE-SOC relationship in organic soils is

expected to differ from mineral soils where C is mainly stabilized by mineral associations.
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Additionally, it is important to recognize the distinct sensitivities of microbial CUE and
SOC to environmental changes, as their responses are not synchronized. Microbial CUE can
adjust rapidly, from days to months, in contrast to SOC, which may take years or even decades
to respond to a measurable extent 3':1'°, Data from two meta-analyses highlight this disparity,
showing that although fertilization positively affects both CUEc and SOC 2°#', the response
ratios of CUE¢ were not significantly correlated with the response ratios of SOC, or even
microbial biomass C content (Figure 5a and c). Here, the "response ratio" is calculated as the
ratio of the measured value in the treatment to the value in the control. Furthermore, the
response ratios of microbial CUE¢ were not significantly related to treatment duration (within ten
years of treatment) (Figure 5b), whereas the response ratios of SOC increased significantly with
experiment duration (Figure 5d). Therefore, SOC gradually approaches a new equilibrium over
several decades, whereas CUE achieves equilibrium almost immediately. This discrepancy
underscores the importance of considering the state (SOC and microbial biomass) dynamics of

an ecosystem when evaluating the interplay between microbial CUE and SOC dynamics.
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Figure 5. Contrasting responses of SOC and CUE to fertilization. Correlations between In-
transformed response ratios of microbial CUE and In-transformed response ratios of (a) SOC
and (c) microbial biomass C (MBC); and the correlation between experiment duration and In-
transformed response ratios of (b) CUE and (d) SOC. The response ratio is calculated as the
ratio of the measured value in treatment to the value in the control. Data are from meta-
analyses 2”41 29 Both datasets include observations from all three methods of CUE
measurement, i.e., C labeling, O labeling, and stoichiometry modeling as indicated by symbol

colors in panels a, b and c.

Using models and data across scales to clarify the

microbial role in C cycling

Integrating genomic data with CUE and C models

With the rise of high throughput sequencing technology, the use of genomic datasets to
help calibrate or validate C models has become both feasible and affordable. This capacity is
especially valuable when predicting CUE ''6. As genomic data related to microbial traits
becomes more readily available at both the population "7 and community levels through
metagenomics '8, there is a growing need to effectively integrate this data into C cycle models.
This integration requires models that can handle complex microbial interactions, from individual

populations to entire communities (Figure 2).

One way to integrate genomic data is by converting the genetic sequences of microbes
into information on metabolic pathways (e.g. cellulose degradation, lignin degradation, nitrogen
reduction, and fermentation) using genome-scale metabolic models (GEMs) ''°. GEMs take into
account the microbe's environment, such as substrate availability, and predict the
transformation of metabolites within a cell based on its genomic information. This process
allows for the calculation of CUE at the population level by analyzing substrate use and CO»
production '°, For community-level CUE, GEMs can be combined into microbial community
models that simulate interactions between different microbial taxa: The ‘computation of
microbial ecosystems in time and space metabolic modeling platform’ (COMETS) extends
GEMs to include dynamics of microbial growth and interactions, providing a tool for predicting

CUEc under various environmental conditions 6.
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An alternative modeling approach at the community level is based on traits (e.g.,
quantity of cellulase produced, maximum rate of reaction (Vmax) of cellulose decay by cellulase,
Vmax Of cellulose-monomer uptake, and turnover rate), such as the DEMENT model, which uses
data on microbial traits to simulate substrate use and CO2 production '2°. This model can predict
both CUEr and CUEc under different environmental conditions and over time. However,
translating genomic data into traits remains challenging '?'. Genomic datasets typically indicate
the presence or absence of certain genes or pathways, but additional information, such as that
from GEMs or experimental data, is necessary to accurately map these genes to functional

traits in the models.

Validating genomic and trait-based models is crucial and can be achieved using
community-level genomic datasets, which offer insights into microbial strategies that affect CUE,
such as nutrient recycling and stress tolerance ''®'22. Combining these models with traditional
CUE measurements and omics data allows for the creation of detailed maps of community-level
CUE, offering new insights into C cycling dynamics and providing input information for C cycle

models.

A maijor challenge in this field is the high computational demand of integrating omic data
into complex models. One solution is the development of computational emulators that can
simulate the dynamics of microbial models more efficiently, bridging the gap between detailed,
small-scale models and broader applications in C cycle studies '?%. This approach promises to
improve our understanding of microbial contributions to C cycling, leveraging the power of

genomic data to inform and validate complex ESMs.

Harmonization of CUE measurements and aligning measured and
modeled CUE

Harmonizing soil microbial CUE measurements across different methods, i.e., aligning
results from different methodologies, poses a challenge due to the differences across
measurement techniques. While adopting a universal protocol for CUE measurement—a single,
standardized measurement method— would be ideal, it may not be feasible given the
complexities of CUE. Therefore, a more practical approach involves providing a clear and
comprehensive description of the methodologies used in different studies. This detailed
reporting should include information on the physiological processes considered, such as

maintenance, enzyme production, biomass generation, and mortality rates. This level of detail
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helps in understanding and comparing results across studies, as well as in selecting appropriate

data for model calibration 7.

In contemporary soil C models that explicitly incorporate microbial processes 2525, the
CUE is close to empirically measured CUE¢. To achieve a uniform approach to CUE
measurement, microbial models that resolve key processes influencing CUE, such as uptake,
respiration, exudation, and microbial death could be used '". Such models can generate CUE
metrics that align with different measurement methodologies by incorporating a complete or
partial set of these processes into their calculations. Furthermore, these models can be adapted
to conduct numerical experiments with specific substrates or to incorporate isotopic tracers
(e.g., *C, ™C, ®0) to simulate outcomes from labeling experiments. This adaptability allows for
the exploration of hypotheses regarding discrepancies in measurements under diverse
conditions by modifying model boundary conditions. Additionally, microbial models serve as
foundational tools for integrating microbial metabolism into broader global C models, potentially

enhanced by machine learning emulators for improved scalability and applicability.
Constraining CUE using model-data fusion

Data assimilation encompasses a collection of techniques, including Bayesian inference,
that refine biogeochemical models by integrating observational data. This process not only
updates model parameters to reflect the most likely values based on available data but also
quantifies their uncertainties, thus bridging the gap between empirical observations and
theoretical models '%°. This approach is particularly valuable for parameters like microbial CUE,
which are challenging to measure directly in the field due to technical limitations. An innovative
application of data assimilation is demonstrated by Tao et al. 2!, who developed the PROcess-
guided deep learning and DAta-driven (PRODA) approach 24, This method integrates global-
scale SOC data with a microbially explicit model to produce a global map of microbial CUE.
PRODA employs traditional Bayesian data assimilation to estimate parameters at specific sites
and then uses deep learning to extrapolate these site-specific parameter estimates to a global
scale. The result is a set of parameters that optimally align with observed data, offering a
detailed view of microbial CUE and SOC storage patterns worldwide, along with other soil C
cycle dynamics such as decomposition rates, environmental impacts on soil respiration, and

vertical C transport 2.
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Despite the potential of approaches like PRODA to harness large datasets for enhancing
our understanding of the soil C cycle, their computational intensity—stemming from the
extensive data sampling required by Bayesian inference—may limit their application in models
with complex structures. The next wave of data assimilation techniques will likely integrate
process-based models with deep learning algorithms more seamlessly '?2. Such advancements
could offer quicker parameter optimization and facilitate comparisons across different models,
paving the way for more accurate and comprehensive assessments of microbial CUE and C

cycle dynamics on a global scale.

Long-term SOC records and ecosystem manipulation experiments

Ecosystem manipulation experiments and observations of natural gradients offer
invaluable insights into how microbial communities and CUE adapt to global change factors.
Especially insightful are field experiments (or studies leveraging natural gradients) that alter
environmental factors such as soil temperature, precipitation patterns, or nutrient levels 7°126
over long durations. These experiments provide critical data on the enduring effects of global
change drivers on CUE, while simultaneously highlighting the limitations of current models and
enhancing our comprehension of ecological processes. Integrating the results from these
experiments with model simulations, supported by proven site modeling protocols and extra

observational data, is crucial for steadily enhancing the accuracy and complexity of models '%’.

Incorporating radiocarbon ('#C) data and long-term SOC records into models is also vital
for refining CUE forecasts across longer (decadal to centennial) time scales. This temporal
information is essential for capturing the dynamics of CUE over time, thereby improving the

precision of models in depicting spatial and temporal fluctuations 2.

Diagnosing CUE from existing models or simulation archives

In global C modeling, approaches to quantify the environmental impact on organic
matter decomposition and stabilization differ significantly. An effective method for estimating
microbial CUE at the ecosystem level as emerging from model simulations involves the
calculation of the ratio between soil heterotrophic respiration (R) and gross decomposition (D)
within these models. Gross decomposition refers to the sum of all C fluxes transferred between
the modeled soil C pools that are mediated by microbial processes, excluding physically

mediated transfers (e.g., sorption, aggregation, or leaching). This includes all C removed from
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organic matter pools, whether it is lost as CO: or transferred to another pool (SI-Text 1). This
ratio effectively quantifies microbial-mediated C losses from SOC pools, integrating both growth
(anabolic processes) and respiration (catabolic processes). Under steady-state conditions, it is
assumed that heterotrophic respiration aligns with microbial C uptake, resulting in the formula:
CUE =1 - R/D. The steady-state assumption implies that microbial communities and SOC stock
are stable in time (i.e., in equilibrium with boundary conditions). This is an approximation of real
systems where SOC varies due to anthropogenic and natural changes (e.g., Holocene climatic
variations). This diagnosed CUE, emerging as a property inherent to the model, is not
susceptible to the equifinality issues that can affect the underlying intrinsic model parameters
(like CUEc), and it does not necessitate the incorporation of explicitly microbial models, offering
a simplified yet insightful metric. These model-based CUE estimates, derived from long-term
flux averages (e.g., 20 years), represent stable C stocks. In contrast, measurement-based
estimates, taken over shorter periods, are more susceptible to significant CUE variations due to
asynchronous fluctuations in components such as respiration and degradation, potentially
introducing estimation inaccuracies. This timescale discrepancy likely accounts for the greater
variability observed in measurement-based CUE compared to model-based CUE. We propose
this "model-diagnosed CUE" as a novel metric, designed to estimate microbial CUE from model

outputs without direct measurements of microbial uptake.

Analyzing diagnosed CUE and its relationship with SOC across various models, such as
those evaluated in the Trends in the land carbon cycle (TRENDY) model intercomparison
project 2, facilitates the identification of differences attributable to unique model structures and
assumptions. For example, warming-induced CO, emissions should be higher in models with
low diagnosed CUE compared to high CUE as the warming-induced stimulation of microbial
activity will result in relatively more C being respired than cycled within the soil systems. This
approach further allows the benchmarking and subsequent refinement of diagnosed CUE

estimates using observed CUEE data.

For instance, we derived CUE estimates from simulations conducted with two different
versions of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land
surface model '2°, which differ in the SOC model deployed. The CENTURY SOC model (Fig.
S1a), which is widely used but does not resolve microbial processes, uses first-order decay,
while the MIMICS model (Fig. S1b) resolves microbial physiology, providing a more mechanistic
understanding of microbial processes. The resulting global CUE maps (the average of

simulation results over 20 consecutive years) revealed significant spatial variability (Fig. 6a & b).
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While the two maps showed a good correlation (Fig. 6¢), the CUE values diagnosed from the
MIMICS model were higher than those from the CENTURY model (Fig. 6d). These findings
underscore the importance of incorporating observational data into model calibration efforts to

enhance the accuracy and reliability of SOC predictions by realistically resolving CUE.
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Figure 6. Diagnosed CUE from two existing soil C models. CUE diagnosed from a nutrient-
enabled version of the the Organising Carbon and Hydrology In Dynamic Ecosystems land
surface model (ORCHIDEE-CNP) deploying a soil module based on (a) the CENTURY model
129 or (b) the MIMICS model with constant intrinsic CUE¢ '%°. (c) Correlation between diagnosed
CUE values from the CENTURY-based model and the MIMICS-based model. (d) Distribution

frequency of CUE for the two scenarios.

In conclusion, the inherent structure of a model significantly shapes its outcomes,
making the integration of empirical data with data-constrained models a fundamental step
toward realistic predictions 3132, Precisely delineating the spatial and temporal dynamics of
CUE in models that specifically address microbial activities is crucial for the reliability of their

predictions of SOC status and dynamics. Moreover, future soil C models must navigate the
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intricate balance between the complex regulatory mechanisms of CUE, other processes
governing SOC formation and stabilization, and the practicality of model use to promote more
precise projections of CUE responses under diverse environmental scenarios. This Perspective
underscores the importance of combining different data sources with sophisticated modeling
techniques to refine global CUE predictions. By incorporating genomic data, standardizing
measurement protocols, applying data assimilation practices and critically evaluating CUE
within existing frameworks, our comprehension of the global dynamics of microbial CUE can be
markedly improved. This Perspective provides a roadmap for establishing an effective modeling
approach to accurately represent global soil microbial CUE and its interactions with other

biological and abiotic processes that regulate SOC dynamics.
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