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Chapter 1

Introduction

These notes are meant to be a supplemental reference for the beginner Lie Group Analyst. It is
assumed that the reader has a basic concept of the fundamentals of Lie Group Theory (LGT), e.g.
has seen the derivation of the infinitesimal generator and understands the mathematical meaning
behind invariance. An excellent reference is Albright et al., “Symmetry Analysis of Differential
Equations: A Primer,” [1]. The reader is urged to read at least the first three chapters of that
document to be able to follow the outset of Chapter 2 of this document. The reader should also
have a general understanding of calculus, ordinary differential equations, and partial differential
equations.

The purpose of these lectures is to provide advancing application to more difficult problems,
starting with first-order ordinary differential equations (ODEs) in Chapter 2, then second-order
ODEs in Chapter 3, followed by partial differential equations (PDEs) in Chapter 4, and finally an
analysis of integro-differential equations in Chapter 5. Each example problem will demonstrate how
to use LGT to find solutions to the wide variety of equations presented. We hope that the reader
learns how to effectively move through the machinery of applying LGT to solving differential equa-
tions. Although all of the equations presented herein can be solved using more common “traditional”
methods taught in applied math classes, LGT is powerful in that it permits one to find solutions
to equations regardless of the type of equation. This is done by finding a Lie group, which allows
one to find a new coordinate system that simplifies the equation. In simplifying the equation, either
the number of dimensions is reduced or a solution can be found outright. If an exact closed-form
solution does not exist for an equation, then that means that a Lie group does not exist. Finally,
we note that these lectures are adapted from actual lectures given by the authors and therefore we
avoid using too much language because most of what is written below is also to be written on a
board. Thus, we let the math do the talking.
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Chapter 2

Symmetry Analysis of First-Order
ODEs

Consider the general first-order ODE:
dy

dx
= f(x, y). (2.1)

Written as a surface equation:

F

(
x, y,

dy

dx

)
= 0 =

dy

dx
− f(x, y). (2.2)

This defines a surface of three variables: x, y, and dy
dx . We call this surface a differential function

to signify that it is not an algebraic function. We treat the derivative as an independent variable.
In doing so, the derivative must remain invariant under a Lie group of transformations. Thus, the
infinitesimal generator must be prolonged to accommodate this requirement.

As a reminder, the infinitesimal generator (IG) for an algebraic equation, AE, of three variables
is:

VAE = η1(x, y, z)
∂

∂x
+ η2(x, y, z)

∂

∂y
+ η3(x, y, z)

∂

∂z
(2.3)

We need to derive a new form of the IG to account for invariance of the transformed derivatives.

2.1 Prolongation of the Infinitesimal Generator
The derivative is an independent variable, then

p =
dy

dx
. (2.4)

The surface equation is:
F (x, y, p) = 0. (2.5)

Our objective is to determine a set of infinitesimal transformations of the independent and (origi-
nally) dependent variables of the form:

x̃ = x+ ϵη(x, y) +O
(
ϵ2
)

(2.6a)
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ỹ = y + ϵϕ(x, y) +O
(
ϵ2
)

(2.6b)

p̃ = p+ ϵζ(x, y, p) +O
(
ϵ2
)

(2.6c)

where O is the big-O notation for “of the order”. We will use η to represent the coordinate functions
of the original independent variables, ϕ for the original dependent variables, and ζ for the derivatives.
Note that we have written the coordinate functions, η and ϕ, so that they are not functions of p.
However, in general they can be, but we are going to restrict our analysis to point symmetries,
i.e. symmetries that are not functions of derivatives. We will see that ζ is still a function of p for
point symmetries; for higher-order symmetries, it would also depend on derivatives of p. Symmetries
that depend on derivatives are called contact symmetries, and are typically much more complicated.
These transformations can be written as finite transformations (aka mappings):

x̃ = α(x, y; ϵ) (2.7a)

ỹ = β(x, y; ϵ) (2.7b)

p̃ = γ(x, y, p; ϵ) (2.7c)

which must form a Lie group of transformations called its extension or prolongation.
Because the coordinate function ζ leaves p = dy

dx invariant, we must find the form of ζ that allows
this. This is done by noting:

p̃ =
dỹ

dx̃
=

dỹ/dx

dx̃/dx
(2.8)

The numerator of Eq. 2.8 can be found by taking the x-derivative of Eq. 2.6b:

dỹ

dx
=

dy

dx
+ ϵ

(
∂ϕ

∂x
+
∂ϕ

∂y

dy

dx

)
+O

(
ϵ2
)

= p+ ϵ

(
∂ϕ

∂x
+
∂ϕ

∂y
p

)
+O

(
ϵ2
)
.

(2.9)

Similarly, the denominator is expanded by taking the x-derivative of Eq. 2.6a to find:

dx̃

dx
= 1 + ϵ

(
∂η

∂x
+
∂η

∂y
p

)
+O

(
ϵ2
)
. (2.10)

Equation 2.8 becomes:

p̃ =
p+ ϵ

(
∂ϕ
∂x + ∂ϕ

∂y p
)
+O

(
ϵ2
)

1 + ϵ
(
∂η
∂x + ∂η

∂yp
)
+O (ϵ2)

(2.11)

Recall our goal is to find ζ. Multiply Eq. 3.3c by the numerator and suppress O(ϵ2) terms to find:

p̃+ p̃ϵ

(
∂η

∂x
+
∂η

∂y
p

)
= p+ ϵ

(
∂ϕ

∂x
+
∂ϕ

∂y
p

)
. (2.12)

Now substitute Eq. 2.6c into the second occurrence of p̃ and suppress higher-order terms:

p̃+ (p+ ϵζ)ϵ

(
∂η

∂x
+
∂η

∂y
p

)
= p+ ϵ

(
∂ϕ

∂x
+
∂ϕ

∂y
p

)
. (2.13)

Solve for p̃ (and suppress O(ϵ2) terms):

p̃ = p+ ϵ

(
∂ϕ

∂x
+

[
∂ϕ

∂y
− ∂η

∂x

]
p− ∂η

∂y
p2
)
. (2.14)
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Comparing Eq. 2.6c with Eq. 2.14, we may infer the functional form of ζ as:

ζ(x, y, p) =
∂ϕ

∂x
+

[
∂ϕ

∂y
− ∂η

∂x

]
p− ∂η

∂y
p2 (2.15)

As we can see, ζ is not necessarily a wholly new coordinate function, but rather an equation that
defines the transformation p̃ that leaves dy/dx invariant under a Lie group of transformations. It
is therefore implicitly a function of the other transformations η and ϕ.

The prolonged infinitesimal generator for a first-order ODE is then:

prV = η(x, y)
∂

∂x
+ ϕ(x, y)

∂

∂y
+ ζ(x, y, p)

∂

∂p
. (2.16)

Note that the prolonged IG is a sum of the algebraic IG, V = η ∂
∂x+ϕ

∂
∂y , with the added prolongation

to account for transformations of the derivative that leave the original surface equation F invariant.
Equations 2.15 and 2.16 are used to derive the symmetry determining equations (SDEs) of any
first-order ODE. The solutions to the SDEs define the coordinate functions (η, ϕ) that form a Lie
group of transformations.

2.2 The Symmetry Criterion
The symmetry criterion defines the symmetry determining equations (SDEs). A solution to the
SDEs is a Lie group of infinitesimal transformations. The symmetry criterion is a statement that
the surface equation remains invariant under a Lie group of transformations:

F (x, y, p) = F (x̃, ỹ, p̃) = 0. (2.17)

This can be stated in the infinitesimal sense as follows:

prV F (x, y, p)
∣∣∣
F=0

= 0. (2.18)

This is saying that, by applying the prolonged IG onto F and requiring F = 0, the entire operation
must also be equivalently zero. Equation 2.18 is the general definition of the SDEs for a first-order
ODE. In an expanded form, we have:

prV F (x, y, p)
∣∣∣
F=0

= 0 =

[
η(x, y)

∂F

∂x
+ ϕ(x, y)

∂F

∂y
+ ζ(x, y, p)

∂F

∂p

] ∣∣∣∣∣
F=0

. (2.19)

A few comments:

• The SDEs, Eq. 2.18, form a system of first-order quasi-linear PDEs whose solutions are the
coordinate functions η and ϕ.

• This may seem like a step in the wrong direction as we have arrived at a PDE from an ODE.
The advantage to following this path is that the system of PDEs of this type can always be
solved using the Method of Characteristics.

We will see how this is done in practice in the next section.

6



2.3 Example: A First-Order Nonlinear ODE
Consider the first-order nonlinear ODE:

dy

dx
− e−x y2 − y − ex = 0, (2.20)

or, as a surface equation
F (x, y, p) = 0 = p− e−x y2 − y − ex . (2.21)

We wish to find a solution to this ODE using LGT. First, we will find prV F , then prV F |F=0 to find
the SDEs. Then,

prV F = η
∂F

∂x
+ ϕ

∂F

∂y
+ ζ

∂F

∂p

= η
(
e−x y2 − ex

)
− ϕ

(
2y e−x+1

)
+ ζ × 1

= η
(
e−x y2 − ex

)
− ϕ

(
2y e−x+1

)
+
∂ϕ

∂x
+

[
∂ϕ

∂y
− ∂η

∂x

]
p− ∂η

∂y
p2.

(2.22)

Now we evaluate Eq. 2.22 at F = 0. This can be most easily enforced by selecting a form of p that
makes F = 0. Thus, we choose p to be:

F = 0 when p = e−x y2 + y + ex . (2.23)

Inserting Eq. 2.23 into Eq. 2.22 gives us the SDEs. Thus, we find

prV F
∣∣∣
F=0

= 0 = η
(
e−x y2 − ex

)
− ϕ

(
2y e−x+1

)
+
∂ϕ

∂x
+

[
∂ϕ

∂y
− ∂η

∂x

] (
e−x y2 + y + ex

)
− ∂η

∂y

(
e−x y2 + y + ex

)2
.

(2.24)

Equation 2.24 is the symmetry determining equation for Eq. 2.21. Without knowledge of boundary
conditions, Eq. 2.24 has an infinite number of solutions. This is actually true for all first-order
ODEs. For second-order ODEs, there are at most eight symmetries [2].

In light of this fact, we only need one Lie group to find a solution to this ODE. Therefore, we
concede to make assumptions on the functional form of both η and ϕ. For example, let us chose η
to be a constant and ϕ to be only a function of y, i.e.,

η(x, y) → constant = η (2.25a)

ϕ(x, y) → ϕ(y). (2.25b)

Then, ∂η∂x = ∂η
∂y = 0 and ∂ϕ

∂x = 0 and Eq. 2.24 drastically simplifies to:

prV F
∣∣∣
F=0

= 0 = η
(
e−x y2 − ex

)
− ϕ

(
2y e−x+1

)
+
∂ϕ

∂y

(
e−x y2 + y + ex

)
. (2.26)

We can now multiply Eq. 2.26 by ex and collect powers of ex to find:

0 =

(
dϕ

dy
− η

)
e2x+

(
y
dϕ

dy
− ϕ

)
ex+y2

dϕ

dy
+ y2η − 2yϕ. (2.27)
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Equation 2.27 is a polynomial is ex whose coefficients are not functions of x. Therefore, if Eq. 2.27
is to be satisfied, then each of the coefficients must simultaneously equal zero for all values of x.
Then, we may define three new SDEs with this information to find:

0 =
dϕ

dy
− η (2.28a)

0 = y
dϕ

dy
− ϕ (2.28b)

0 = y2
dϕ

dy
+ y2η − 2yϕ. (2.28c)

Substituting Eq. 2.28a (dϕ/ dy = η) into Eq. 2.28b gives:

ϕ(y) = ηy, (2.29)

which also satisfies Eq. 2.28c. We can choose any value for η, then we have found a Lie group for
Eq. 2.21:

η = 1 (2.30a)

ϕ = y. (2.30b)

Plugging these into Eq. 2.27 confirms these are indeed a solution to the SDE under the assumptions
given by Eq. 2.25.

Note that our IG is:
V =

∂

∂x
+ y

∂

∂y
. (2.31)

We can use Eqs. 2.30 and 2.31 to form the Lagrange-Charpit equations, i.e. the characteristic
system:

dx

1
=

dy

y
= dϵ. (2.32)

We use Eqs. 2.31 and 2.32 to find a new coordinate system that we can transform our original
variables into that will make it easier to solve the original equation. To do this, we need to digress
to discuss canonical coordinates, shown in the next section, from which we will pick up this problem
afterwards.

2.4 Digression: Reduction of Order via Canonical Coordinates
A one-parameter group x̃ = α(x, y; ϵ) and ỹ = β(x, y; ϵ) with the infinitesimal generator

V (x, y) = η(x, y)
∂

∂x
+ ϕ(x, y)

∂

∂y
(2.33)

can be reduced by a change of variables

r = r(x, y) (2.34a)

s = s(x, y) (2.34b)

to the translation group

r̃ = r (2.35a)
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s̃ = s+ ϵ (2.35b)

using the infinitesimal generator:

V (r, s) =
∂

∂s
. (2.36)

This change of variables Eq. 2.34, when inserted into Eq. 2.33, gives:

V (r, s) =

(
η
∂r

∂x
+ ϕ

∂r

∂y

)
∂

∂r
+

(
η
∂s

∂x
+ ϕ

∂s

∂y

)
∂

∂s

= (V r)
∂

∂r
+ (V s)

∂

∂s
.

(2.37)

Compare Eqs. 2.37 and 2.36 to find two equations that our canonical coordinates must satisfy:

V r = 0 = η
∂r

∂x
+ ϕ

∂r

∂y
(2.38a)

V s = 1 = η
∂s

∂x
+ ϕ

∂s

∂y
. (2.38b)

We can form the derivative ds/dr, which reduces s(x, y) → s(r), a function of a single variable r.
The derivative is:

ds

dr
=

∂s
∂x + p ∂s∂y
∂r
∂x + p ∂r∂y

(2.39)

where all we have done is treat the numerator and denominator independently and applied the total
derivative to each variable. Upon transforming from (x, y)-space to (r, s)-space, the derivative Eq.
2.39 will be separable. It will be separable because we required (r, s) to satisfy the translation
group with IG given by Eq. 2.36. Clearly, any translation group will therefore be separable in the
respective transformed variables. Solving Eq. 2.39 via integration gives s(r) and we have therefore
reduced the number of variables from (x, y) to (r, s(r)). The process is as follows:

1. Find r(x, y) by solving Eq. 2.38a. Alternatively, and what is typically done, is to solve the
characteristic system, i.e., dx

η = dy
ϕ which may need to be rearranged to isolate x and y on the

appropriate side. Solving dy
dx = ϕ

η , we can determine r to be the constant of integration.

2. Solve Eq. 2.38b for s(x, y).

3. Solve Eq. 2.39 for s(r).

4. Revert back to (x, y)-space to obtain a reduced equation, a similarity variable, or an outright
solution to the original equation.

Back to our example problem!

2.5 Solution of the Example ODE
As a reminder, we have the characteristic system and IG:

dx

1
=

dy

y
= dϵ (2.40a)

V = η
∂

∂x
+ y

∂

∂y
. (2.40b)

Following the steps outlined at the end of Sec. 2.4, we find:
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1. Find r(x, y): Solve dy
dx = ϕ

η = y.∫
dy

y
=

∫
dx = ln(y) = x+ c

Thus we have

y = r ex (2.41a)

r = y e−x (2.41b)

It is easy to show the above r satisfies V r = 0.

2. Find s(x, y) by solving V s = 1:

It can be shown that the general solution to

V s = 1 =
∂s

∂x
+ y

∂s

∂y

is:
s(x, y) = x+ c1y e

−x (2.42)

where c1 is a constant. The new coordinate system is represented as:

(r, s) =
(
y e−x, x+ c1y e

−x)
which is an interesting form, to say the least.

3. Form the derivative ds/dr:

The necessary partials to evaluate Eq. 2.39 are:

∂r

∂x
= −y e−x, ∂r

∂y
= e−x

∂s

∂x
= 1− c1y e

−x,
∂s

∂y
= c1 e

−x
(2.43)

Then we find:
ds

dr
=

1− c1y e
−x+pc1 e

−x

−y e−x+p e−x
(2.44)

Next, we recall p = e−x y2 + y + ex, which can be written in terms of r as:

p = (r2 + r + 1) ex, (2.45)

Plugging this expression and the expression for r = y e−x, we find:

ds

dr
=
c1r

2 + 1 + c1
r2 + 1

. (2.46)

This ODE is separable, again by design due to the canonical coordinates we found, thus, we
find: ∫

ds =

∫
dr
c1r

2 + 1 + c1
r2 + 1

= s(r) = c1r + tan−1(r) + c2. (2.47)
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4. Revert back to original coordinate system:

Using Eqs. 2.41b and 2.42, we can convert the obtained solution, Eq. 2.47, back to the original
coordinate system to find:

s(r) = c1r + tan−1(r) + c2

x+ c1y e
−x = c1y e

−x+tan−1
(
y e−x

)
+ c2.

Upon cancelling and isolating y, we find our desired solution to Eq. 2.20:

y(x) = ex tan (x+ c2) (2.48)

This solution is admitted by the Lie group (η, ϕ) = (1, y). There could be other solutions admitted
by other Lie groups (recall we made an assumption on the functional form of η and ϕ). Note that,
although the canonical coordinates permit separability, there is no guarantee that the integral is
invertible, i.e. we might not be able to solve for y(x) every time. Another point to make is that we
did not make any assumptions on the functional form of the canonical coordinates; thus, we found
the general solution pertaining to this Lie group.

2.6 Global Transformations and Invariance Verification
Aside from finding solutions to ODEs, we can also more easily see what the Lie group physically
means by mapping from the infinitesimal transformation (η, ϕ) to the global transformation (x̃, ỹ).
We can map from one to the other via the system of equations:

∂x̃

∂ϵ
= η(x̃, ỹ), x̃(x, y; ϵ = 0) = x (2.49a)

∂ỹ

∂ϵ
= ϕ(x̃, ỹ), ỹ(x, y; ϵ = 0) = y. (2.49b)

The terminal conditions are an expression of the identity transformation, one requirement for a
continuous transformation group to be classified as a Lie group. Equations 2.49a and 2.49b are
readily solvable1. Starting with x̃:

∂x̃

∂ϵ
= η = 1 →

∫
dx̃ =

∫
dϵ = x̃ = ϵ+ c (2.50)

Using the terminal condition, x̃(x; ϵ = 0) = x, we find c = x and thus x̃(x; ϵ) = x+ ϵ. Similarly,

∂ỹ

∂ϵ
= ϕ(ỹ) = ỹ →

∫
dỹ

ỹ
=

∫
dϵ = ln(ỹ) = ϵ+ c → ỹ = c eϵ (2.51)

1Note that this is not always true! The ensuing integrals are not always invertible and therefore the global
transformations might need to be left in an integral form. Such global transformations should still leave the original
surface equation invariant.
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Using the terminal condition, ỹ(y; ϵ = 0) = y, we find c = y and thus ỹ = y eϵ 2. Thus, our Lie
group of global transformations pertaining the the infinitesimal Lie group (η, ϕ) = (1, y) is:

x̃(x; ϵ) = x+ ϵ

ỹ(y; ϵ) = y eϵ
(2.52a)
(2.52b)

We can, and should, use this form of the Lie group to confirm that the symmetry criterion, Eq.
2.17, is satisfied. Sometimes it is actually better to do this before looking for a solution via the
canonical coordinates. This is because one might mis-derive the symmetry determining equations
(e.g., missing a negative sign) and thus a solution to the SDEs are not necessarily an actual Lie
group of the original equation. This may save you time, if you run into this all-too-common mistake.

We proceed by verifying the symmetry criterion, i.e. F (x, y, p) = F (x̃, ỹ, p̃) = 0, is satisfied. We
first invert the Lie group (i.e., solve for x(x̃) and y(ỹ)), form the derivative p(p̃) = dy(ỹ)

dx(x̃) , plug those
expressions into F (x(x̃), y(ỹ), p(p̃)) and ensure it is the same as the original surface equation. Note
that this means the equation should look exactly the same, just that all the x, y, p have tildes above
them.

The inverted Lie group is:

x(x̃) = x̃− ϵ (2.53a)

y(ỹ) = ỹ e−ϵ . (2.53b)

Then the derivative becomes:
dy

dx
=

d(ỹ e−ϵ)

dx̃

dx̃

dx
= e−ϵ

dỹ

dx̃
.

Other useful transformations include:

ex = ex̃−ϵ = ex̃ e−ϵ

e−x y2 = e−x̃+ϵ ỹ2 e−2ϵ = e−ϵ e−x̃ ỹ2.

Recalling the original equation and inserting the above expressions, we find:

0 =
dy

dx
− e−x y2 − y − ex

= e−ϵ
dỹ

dx̃
− e−ϵ e−x̃ ỹ2 − e−ϵ ỹ − e−ϵ ex̃

=
dỹ

dx̃
− e−x̃ ỹ2 − ỹ − ex̃

Thus, because the first and third lines of the above are equivalent, the equation is indeed left invariant
under the Lie group of transformations. This would not be true if, say, one term had an extra e−ϵ

attached to it. Such an exercise is vital to ensuring 1. that you derived the SDEs correctly and 2.
that you do indeed have a Lie group of transformations.

2We can also incorporate the terminal conditions directly into the integration limits as:∫ x̃

x̃(ϵ=0)
dx̃′ =

∫ x̃

x
dx̃′ =

∫ ϵ

0
dϵ′ = x̃− x = ϵ → x̃(x; ϵ) = x+ ϵ

and similarly for ỹ: ∫ ỹ

y

dỹ′

ỹ′
=

∫ ϵ

0
dϵ′ = ln (ỹ/y) = ϵ → ỹ(y; ϵ) = y eϵ

12



2.7 Exercises
1. Using LGT, solve the ODE:

x2
dy

dx
= y2 + xy − x2 (2.55)

2. Using LGT, solve the ODE:

dy

dx
= y2 + aλ+ a(λ− a) cot2(λx) (2.56)

where a and λ are real constants.

3. Using LGT, solve the ODE:

x
dy

dx
= xy2 − a2x ln2k(βx) + ak lnk−1(βx) (2.57)

where a and β are real constants and k = 1, 2, . . ..

4. Consider the general Bernoulli ODE,

dy

dx
+ f(x)y = g(x)ya, a ̸= 0, 1. (2.58)

(a) Find the Lie group that permits the general solution:

[y(x)]1−a =C e−F (x) +(1− a) e−F (x)

∫ x

dx′ e−F (x′) g(x′),

where C is a constant and F (x) = (1− a)

∫ x

dx′f(x′).

(2.59)

(b) Comment on the form of this solution compared to the general solution of the inhomoge-
neous separable ODE: dy

dx +f(x)y = S(x) (i.e., solve this ODE with the integrating factor
method and compare solutions).

(c) Now derive the symmetry determining equations for the inhomogeneous separable ODE:
dy
dx + f(x)y = S(x). (Hint: can you manipulate the determining equations for Eq. 2.59
instead of re-deriving the determining equations?)

(d) Do the solutions share a Lie group, aside from the value of a? Start by simplifying the
Lie group from part (a) and see if that gives the desired solution.

(e) Comment on this Lie group and its global transformations.

5. Extra: Consider the generalized homogeneous first-order ODE:

dy

dx
=
y

x
f(xnym) (2.60)

Can you find a Lie group that allows for this equation to be separable? (Hint: the substitution
z = xnym leads to the separable equation x dz

dx = nz + mzf(z). Thus there must be a Lie
group corresponding to the canonical coordinate transformation that permits this reduction
to a separable equation).

13



Chapter 3

Symmetry Analysis of Second-Order
ODEs

3.1 Generalized Prolongation Formula for ODEs
If the ODE we wish to solve is of order-(n), then we must prolong our infinitesimal generator n times
to account for leaving all n derivatives invariant under the Lie group of transformations. Given the
K-order ODE:

F

(
x, y,

dy

dx
, . . . ,

dKy

dxK

)
= 0, (3.1)

we denote the k-th derivative as:

p(k) =
dky

dxk
. (3.2)

The transformations written as their convergent Lie series are:

x̃ = x+ ϵη(x, y) +O
(
ϵ2
)
= α(x, y; ϵ) (3.3a)

ỹ = y + ϵϕ(x, y) +O
(
ϵ2
)
= β(x, y; ϵ) (3.3b)

p̃(k) = p(k) + ϵζ(k)(x, y, p(1), . . . , p(k)) +O
(
ϵ2
)
= γ(k)(x, y, p(1), . . . , p(k); ϵ) (3.3c)

for k = 1, 2, . . . ,K.
The k-th prolongation of the infinitesimal generator is given by:

pr(k)V = η(x, y)
∂

∂x
+ ϕ(x, y)

∂

∂y
+

K∑
k=1

ζ(k)(x, y, p(1), . . . , p(k))
∂

∂p(k)
. (3.4)

As before in Sec. 2.1, we want to derive an expression for ζ(k). This is done by noting the total
derivative:

D =
∂

∂x
+ p(1)

∂

∂y
+ p(2)

∂

∂p(1)
+ · · ·+ p(k+1) ∂

∂p(k)
(3.5)

then we can define the k-th transformed derivative as:

p̃(k) =
Dp̃(k−1)

Dx̃

=
Dγ(k−1)(x, y, p(1), . . . , p(k−1); ϵ)

Dα(x, y; ϵ)

(3.6)
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We use Eq. 3.6 to find expressions for ζ(k). Thus, we treat the numerator and denominator of Eq.
3.6 independently and use the Lie series given by Eqs. 3.3a and 3.3c to find:

p̃(k) =
Dp̃(k−1)

Dx̃

=
D
[
p(k−1) + ϵζ(k−1) +O(ϵ2)

]
D [x+ ϵη +O(ϵ2)]

=

(
p(k) + ϵDζ(k−1)

1 + ϵDη

)
+O(ϵ2)

By now multiplying the last line by the denominator, we find:

p̃(k)(1 + ϵDη) = p(k) + ϵDζ(k−1) + (1 + ϵDη)O(ϵ2)

p̃(k) + p̃(k)ϵDη = p(k) + ϵDζ(k−1) +O(ϵ2)

Now inserting Eq. 3.3c into the second occurrence of p̃(k):

p̃(k) + (p(k) + ϵζ(k) +O(ϵ2))ϵDη = p(k) + ϵDζ(k−1) +O(ϵ2)

Now solving for p̃(k), we find:

p̃(k) = p(k) + ϵ
[
Dζ(k−1) − p(k) Dη

]
+O(ϵ2) (3.7)

Finally, if we compare Eq. 3.3c with Eq. 3.7, we may infer the definition of the coordinate function
for the k-th derivative as:

ζ(k) = Dζ(k−1) − p(k) Dη, k ≥ 1 (3.8)

By induction, we may also write:

ζ(k) = Dkϕ−
k∑
j=1

k!

(k − j)!j!
p(k−j+1) Djη (3.9)

where D2f = D(Df), D3f = D(D(Df)), and so on for Dkf . As an example, we derive the first
and second prolongation formula for the coordinate functions.

3.1.1 Derivation of the prolonged Infinitesimals
Example: derive the first prolonged infinitesimal, ζ(1), using Eq. 3.9.

ζ(1) = Dϕ(x, y)− p(1) Dη(x, y)

=
∂ϕ

∂x
+ p(1)

∂ϕ

∂y
− p(1)

[
∂η

∂x
+ p(1)

∂η

∂y

]
=
∂ϕ

∂x
+

(
∂ϕ

∂y
− ∂η

∂x

)
p(1) − ∂η

∂y

(
p(1)
)2 (3.10)

Clearly, the last line agrees exactly with Eq. 2.15.
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Example: derive the second prolonged infinitesimal, ζ(2), using Eq. 3.8. We choose to use
p(1) = y′ and p(2) = y′′ as well as using subscript notation for partials, e.g. ∂η

∂x = ηx, as that will
make the notation less confusing. Then,

ζ(2) = Dζ(1) − p(2) Dη

= Dζ(1) − y′′ [ηx + ηyy
′]

= Dζ(1) − ηxy
′′ − ηyy

′y′′.

(3.11)

Note that for these functions,

D =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
. (3.12)

We can use Eq. 3.10 to evaluate Dζ(1):

Dζ(1) = Dϕx +D[ϕyy
′]−D[ηxy

′]−D[ηy(y
′)2]

= Dϕx + y′ Dϕy + ϕy D[y′]− y′ Dηx − ηxD[y′]− (y′)2 Dηy − ηy D[(y′)2]
(3.13)

The necessary total derivatives are:

Dϕx = ϕxx + y′ϕxy Dϕy = ϕxy + y′ϕyy

Dηx = ηxx + y′ηxy Dηy = ηxy + y′ηyy

D[y′] = y′′ D[(y′)2] = 2y′y′′

Assembling all of these derivatives, we find:

Dζ(1) =ϕxx + y′ϕxy + y′[ϕxy + y′ϕyy] + ϕyy
′′ − y′[ηxx + y′ηxy]− ηxy

′′

− (y′)2[ηxy + y′ηyy]− 2ηyy
′y′′

=ϕxx + [2ϕxy − ηxx]y
′ + [ϕyy − 2ηxy](y

′)2 − ηyy(y
′)3

+ [ϕy − ηx]y
′′ − 2ηyy

′y′′

(3.14)

Finally, we find

ζ(2) =ϕxx + [2ϕxy − ηxx]y
′ + [ϕyy − 2ηxy](y

′)2 − ηyy(y
′)3

+ [ϕy − 2ηx]y
′′ − 3ηyy

′y′′
(3.15)

or written in the original notation

ζ(2) =
∂2ϕ

∂x2
+

[
2
∂2ϕ

∂x∂y
− ∂2η

∂x2

]
p(1) +

[
∂2ϕ

∂y2
− 2

∂2η

∂x∂y

](
p(1)
)2

− ∂2η

∂y2

(
p(1)
)3

+

[
∂ϕ

∂y
− 2

∂η

∂x

]
p(2) − 3

∂η

∂y
p(1)p(2)

(3.16)

3.2 Formulae for Second-Order Canonical Coordinate Reduc-
tions

Along with needing the second prolongation for second-order ODEs, we will also need additional
higher-order derivatives for the canonical coordinates, namely d2s/dr2. Without derivation, we will
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simply state the formulas for the derivatives and how to invert back to the original space once the
newly-obtained separable equation, d2s/dr2, is solved via integration.

Recall the first derivative is:
ds

dr
=

∂s
∂x + y′ ∂s∂y
∂r
∂x + y′ ∂r∂y

(3.17)

and the second-order derivative is:

d2s

dr2
= y′′f1

(
r, s,

ds

dr

)
+ g1

(
r, s,

ds

dr

)
(3.18)

where we have defined:

f1 =
1

δ3

(
∂s

∂y

∂r

∂x
− ∂s

∂x

∂r

∂y

)
(3.19a)

g1 =
1

δ3

[(
∂r

∂y

∂2s

∂y2
− ∂s

∂y

∂2r

∂y2

)
(y′)3 +

(
2
∂r

∂y

∂2s

∂x∂y
+
∂r

∂x

∂2s

∂y2
− 2

∂s

∂y

∂2r

∂x∂y
− ∂s

∂x

∂2r

∂y2

)
(y′)2

+

(
2
∂r

∂x

∂2s

∂x∂y
+
∂r

∂y

∂2s

∂x2
− 2

∂s

∂x

∂2r

∂x∂y
− ∂s

∂y

∂2r

∂x2

)
y′ +

∂r

∂x

∂2s

∂x2
− ∂s

∂x

∂2r

∂x2

] (3.19b)

δ =
∂r

∂x
+ y′

∂r

∂y
. (3.19c)

We will also need to write y, y′, and y′′ in terms of s and r and plug those into the above formulae.
The inversions for the first and second derivatives in the original space are:

y′ =
∂s
∂x − ∂r

∂x
ds
dr

∂r
∂y

ds
dr −

∂s
∂y

(3.20a)

y′′ =
1

f1

d2s

dr2
− g1
f1
. (3.20b)

Once we have formed the derivatives of s(r), we reduce the order of the equations as:

v(r) =
ds

dr
(3.21a)

dv

dr
=

d2s

dr2
. (3.21b)

We can then integrate (and hopefully solve) Eq. 3.21b as it will be separable, and finally revert back
to the original variable space to obtain the desired solution.

We are now prepared to apply LGT to second-order ODEs, shown in the next section.

3.3 Example: A Second-Order Nonlinear ODE
In this section, we show how to solve a second-order nonlinear ODE. We want to show an equation
that has actual physics involved to give the reader an idea of how to contextualize LGT with a
not-so-abstract example. There will be multiple times in the process where we stop and consider
the physical meaning of a result or step in the process, which help to guide our decisions.
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3.3.1 The Physics Model
Consider the “point-reactor power equation,” which is a well-known equation in the nuclear engi-
neering community:

dn

dt
=
ρ(t)− β

ℓ
n(t), (3.22)

where the following are defined:

• n(t) is the power output of the nuclear reactor due to neutron-induced fission reactions in the
uranium fuel, measured in Watts,

• ρ(t) is the reactivity, which is a measure of how the reactor responds to changes in its’ fuel;
e.g., moving control rods in/out of the reactor or the change in the isotopic composition of the
uranium fuel. We see that a positive reactivity increases the power production rate while a
negative reactivity reduces the power production rate.

• β is the total delayed neutron fraction, which accounts for neutrons that are emitted slightly
later due to radioactive decay of isotopes produced in the fission of uranium atoms. We see
that β always reduces the power output rate of a reactor (this is actually a good thing as it
allows us to control the reactor more effectively).

• ℓ is the neutron generation time and indicates how quickly fission chains are evolving. A typical
neutron generation time is on the order of a 100 nanoseconds to few nanoseconds.

Next, suppose the reactivity is a function of the reactor temperature T , but the reactor temperature
is a function of the reactor power, i.e. T (n). This is known as “reactor feedback”. We can also
allow for mechanical changes in the reactor due to motion of the control rods; think of pulling a
control rod out as a linear function in time, or perhaps the reactor operators move the control rods
up/down motion as a sine wave. In general, we can assume the mechanical motion of the control
rods is represented as a polynomial in time. Then the reactivity is expressed as:

ρ(t) = ρo − αT (n) +

J∑
j=1

ajt
j (3.23)

where ρo is the initial reactivity of the reactor, α is the temperature coefficient of reactivity and is
known, and the aj are known polynomial coefficients. The most common feedback model is written
in the form:

T (n) = κω1−γ
∫ t

0

dτ [n(τ)]γ (3.24)

where κ is the inverse heat capacity of the reactor, ω is a compensation coefficient, and γ is a
known exponent. Note that there are more complicated forms of the integrand, e.g. arbitrary-order
derivatives of n, but we avoid those for this lecture series.

We want to avoid dealing with integro-differential equations, which we would get by directly
inserting Eq. 3.23 into Eq. 3.22. Thus, we will take the time-derivative of Eq. 3.23,

dρ

dt
= −ακω1−γ [n(t)]γ +

J∑
j=1

jajt
j−1 (3.25)
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which can then be inserted into the time-derivative of Eq. 3.22 to yield the equation we will apply
LGT to:

n(t)
d2n

dt2
= −A[n(t)]γ+2 +

[n(t)]2

ℓ

J∑
j=1

jajt
j−1 +

(
dn

dt

)2

(3.26)

where A = ακω1−γ/ℓ is a known coefficient.

3.3.2 Derivation of the Symmetry Determining Equations
Equation 3.26 can be written as a surface equation as:

F (t, n, n′, n′′) = 0 = nn′′ +Anγ+2 − n2

ℓ

J∑
j=1

jajt
j−1 + (n′)

2
. (3.27)

The symmetry determining equations are given by:

pr(2)V F
∣∣∣
F=0

= 0 =

[
η(t, n)

∂F

∂t
+ ϕ(t, n)

∂F

∂n
+ ζ(1)

∂F

∂n′
+ ζ(2)

∂F

∂n′′

]∣∣∣∣∣
F=0

(3.28)

The partials to consider are:

∂F

∂t
= −n

2

ℓ

∑
j

j(j − 1)ajt
j−2 (3.29a)

∂F

∂n
= n′′ + (γ + 2)Anγ+1 − 2n

ℓ

∑
j

jajt
j−1

(3.29b)

∂F

∂n′
= −2n′ (3.29c)

∂F

∂n′′
= n (3.29d)

For additional simplification, we define:

Sk =
1

ℓ

J∑
j=1

j(j − 1) · · · (j − k + 1)ajt
j−k (3.30)

The once- and twice-prolonged coordinate functions are:

ζ(1) =ϕt + (ϕn − ηt)n
′ − ηn(n

′)2 (3.31a)

ζ(2) =ϕtt + (2ϕtn − ηtt)n
′ + (ϕnn − 2ηtn)(n

′)2 − ηnn(n
′)3 + (ϕn − 2ηt)n

′′ − 3ηnn
′n′′, (3.31b)

where we have switched from explicit partial derivative notation to subscript notation for brevity.
Inserting Eqs. 3.29 and 3.31 into Eq. 3.28 and enforcing invariance (i.e., forcing F = 0) by

setting

n′′ = −Anγ+1 + nS1 +
1

n
(n′)2, (3.32)

19



provides the overarching determining equation, after some algebraic manipulations:

pr(2) V F
∣∣∣
F=0

= 0 = − (n′)3n
[
ηnnn+ ηn

]
+ (n′)2

[(
ϕnn − 2ηtn

)
n2 − ϕnn+ ϕ

]
+ n′

[
3ηn
(
Anγ − S1

)
n2 +

(
2ϕtn − ηtt

)
n− 2ϕt

]
− ηS2n

2 +
[
ϕtt + γϕAnγ +

(
2ηtn− ϕnn+ ϕ

)(
Anγ − S1

)]
n,

(3.33)

The quantity n′ can take on arbitrary values limited only by the range of n′ covered by the family
of solutions of Eq. 3.27. Therefore, the only way the invariance condition given by Eq. 3.33 can
be satisfied is if each coefficient in n′ is individually equal to zero (this decomposition is strictly
permitted because we are searching for point transformations, which are transformations that are
not functions of the derivatives of the solution n′ and n′′). The infinitesimals must then satisfy the
following system of determining equations:

0 =n
∂2η

∂n2
+
∂η

∂n
(3.34a)

0 =

(
∂2ϕ

∂n2
− 2

∂2η

∂t∂n

)
n2 − ∂ϕ

∂n
n+ ϕ (3.34b)

0 =3
(
Anγ − S1

)∂η
∂n

n2 +

(
2
∂2ϕ

∂t∂n
− ∂2η

∂t2

)
n− 2

∂ϕ

∂t
(3.34c)

0 = − ηS2n+
∂2ϕ

∂t2
+ γϕAnγ +

(
2
∂η

∂t
n− ∂ϕ

∂n
n+ ϕ

)(
Anγ − S1

)
. (3.34d)

We proceed by first solving Eq. 3.34a as it as an equation that is a function only of η(t, n).
This equation is a homogeneous linear parabolic partial differential equation (PDE) with a variable
coefficient which has the solution:

η(t, n) = ln(n)c1(t) + c2(t), (3.35)

where c1(t) and c2(t) are unknown functions of time. Next, we solve Eq. 3.34b with Eq. 3.35 for
ϕ(t, n), which is an inhomogeneous linear parabolic PDE with the solution:

ϕ(t, n) = n ln2(n)
dc1
dt

+ nc3(t) + n ln(n)c4(t). (3.36)

where c3(t) and c4(t) are unknown functions of time. We note that the above general expressions for
η and ϕ do not depend on γ nor Sk and we will therefore only see alterations in the time-dependent
coefficients for differing reactivity models described later.

At this point, the system is underdetermined as we have two remaining determining equations
and four unknown time-dependent coefficients. By inserting the solutions of η and ϕ, given by
Eqs. 3.35 and 3.36, into the remaining determining equations, Eqs. 3.34c and 3.34d, we devise two
constraining equations for the time-dependent coefficients:

0 =3 ln(n)
d2c1
dt2

− d2c2
dt2

+ 2
dc4
dt

+ 3(Anγ − S1)c1 (3.37a)
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0 = ln2(n)
d3c1
dt3

+
d2c3
dt2

+ ln(n)
d2c4
dt2

− 2S1
dc2
dt

− ln(n)S2c1 − S2c2 + S1c4

+Anγ

[
γ ln2(n)

dc1
dt

+ 2
dc2
dt

+ γc3 + (γ ln(n)− 1)c4

]
.

(3.37b)

In order for Eqs. 3.37 to be satisfied, we note that all n-dependence must be removed as these are
ODEs for time. Concerning Eq. 3.37a, there does not appear to be simple rearranging to remove
the n dependence except to set

c1 ≡ 0 (3.38)

this is effectively a statement that η is a purely time-dependent function for all reactivity models
encapsulated by the rate function Eq. 3.25. With this enforcement, our determining equations for
the three remaining time-dependent coefficients are:

0 = − d2c2
dt2

+ 2
dc4
dt

(3.39a)

0 =
d2c3
dt2

+ ln(n)
d2c4
dt2

− 2S1
dc2
dt

− S2c2 + S1c4 +Anγ

[
2
dc2
dt

+ γc3 + (γ ln(n)− 1)c4

]
. (3.39b)

We are leaving c4 in the above because there are scenarios where we may remove the n-dependence
without setting c4 to zero (e.g., say A = 0, then we need only say c′′4 = 0 which indicates c4 is
at-most a linear function in time). Thus, our infinitesimal Lie group is:

η(t) = c2(t)

ϕ(t, n) = nc3(t) + n ln(n)c4(t)

(3.40a)
(3.40b)

where, again, we note that we have found the explicit functional dependence the Lie group has on n,
but because we have arbitrary-order polynomial-in-t, this is the most precise form of the Lie group
we can have while maintaining generality of the reactivity model. In the next section, we consider
a well-known reactivity model to then solve the system, Eq. 3.39.

3.3.3 A Specific Reactivity Model
The Nordheim-Fuchs (NF) Model assumes the reactivity rate is a linear function of the reactor power
and thus γ = 1 and we set aj = 0 for all j in Eq. 3.25. However, we will retain γ as an arbitrary value
in an attempt to capture a family of permitted analytical solutions. The corresponding reactivity
rate expression is dρ/ dt = −ακω1−γnγ and the power equation, Eq. 3.26, reduces to

n(t)
d2n(t)

dt2
= −A[n(t)]γ+2 +

(
dn(t)

dt

)2

, (3.41)

where A = ακω1−γ/ℓ.
Since aj = 0 for all j, then Sk = 0 and the coefficient system, Eq. 3.39, becomes:

0 = − d2c2
dt2

+ 2
dc4
dt

(3.42a)

0 =
d2c3
dt2

+ ln(n)
d2c4
dt2

+Anγ

[
2
dc2
dt

+ γc3 + (γ ln(n)− 1)c4

]
. (3.42b)
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We see that we are now required to set
c4 ≡ 0 (3.43)

to further untangle the n-dependence from Eq. 3.42b. Doing so, Eqs. 3.42 simplifies to:

0 =
d2c2
dt2

(3.44a)

0 =
d2c3
dt2

+Anγ

[
2
dc2
dt

+ γc3

]
. (3.44b)

Equation 3.44a informs us that c2 is, at most, a linear function in time:

c2(t) = m2t+ b2, (3.45)

where m2 is the slope of c2 and b2 is the arbitrary initial condition. Equation 3.44b is a polynomial
in n whose coefficients are not functions of n. Thus, in order for Eq. 3.44b to be satisfied for all
arbitrary values of n, its coefficients must individually equal zero. This reveals two more equations:

d2c3
dt2

=0 (3.46a)

2
dc2
dt

+ γc3 =0. (3.46b)

Equation 3.46a informs us that c3 is also a linear function in time:

c3(t) = m3t+ b3, (3.47)

where m3 is the slope of c3 and b3 is the arbitrary initial condition. Finally, we use Eq. 3.46b to find
2m2 + γm3t+ γb3 = 0, which can only be satisfied if m3 = 0 and we find m2 = −γb3/2. Therefore
c3 is not a function of time and ϕ is purely a function of n. To summarize, the coordinate functions
of the NF model are:

η(t) = − γb3
2
t+ b2

ϕ(n) = b3n,

(3.48a)

(3.48b)

which is a two-parameter symmetry group. In order to obtain analytical solutions through the
canonical coordinates method, we must consider the one-parameter symmetry groups separately by
setting either b2 = 0 or b3 = 0.

3.3.4 Solutions Admitted by the b2-group
We first derive the canonical coordinates for the infinitesimal generator corresponding to the one-
parameter b2 symmetry group:

η(t) = b2 (3.49a)

ϕ(n) = 0, (3.49b)

whose infinitesimal generator is:

V = b2
∂

∂t
. (3.50)
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The canonical coordinates must satisfy the PDEs:

V r =0 = b2
∂r

∂t
(3.51a)

V s =1 = b2
∂s

∂t
. (3.51b)

We first obtain r from the relation: dt
b2

= dn
0 → dn

dt = 0 which, upon integrating and solving for the
constant, results in:

r(n) = n. (3.52)

The next coordinate, s, is found by solving Eq. 3.51b to find:

s(t) =
t

b2
+ k, (3.53)

where k is an arbitrary constant. The relevant partial derivatives are: rt = 0, rn = 1, st = 1/b2,
and sn = 0. From Eq. 3.17, we find the constraint equation:

ds

dr
=

1

b2n′
(3.54)

where we have evoked y′ = n′. Next, we introduce v as a new variable to effectively reduce the order
of the original equation:

v(r) =
ds

dr
. (3.55)

The next step is to determine the derivative: dv
dr = d2s

dr2 corresponding to Eq. 3.18. For the canonical
coordinates of this symmetry group, all second-order partial derivatives are zero, and thus g1 = 0
and we find

dv

dr
= − 1

b2

n′′

(n′)3
. (3.56)

We will now use Eqs. 3.52, 3.54, and 3.56 to solve for n, n′, and n′′, respectively:

n = r (3.57a)

n′ =
1

b2v
(3.57b)

n′′ = − 1

b22v
3

dv

dr
(3.57c)

Inserting these identities into Eq. 3.41 transforms it into an equation in the canonical coordinate
space. The second-order nonlinear power equation is reduced to a first-order nonlinear ODE in v:

dv

dr
+

1

r
v(r) = Ab22r

γ+1v3, (3.58)

which is classified as a third-order Bernoulli ODE. This equation is independent of s, which is a
direct result of the requirement that the canonical coordinates abide to the translation group given
by Eq. 2.35. Ordinary differential equations of the Bernoulli-type are particularly convenient as they
are nonlinear ODEs with analytical solutions. We may transform Eq. 3.58 into a linear equation by
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introducing the substitution: u = v−2, which gives v =
√
u and dv/dr = − 1

2u
−3/2 du/dr. Making

these substitutions, Eq. 3.58 reduces to the linear ODE:

du

dr
− 2

r
u(r) = −2Ab22r

γ+1. (3.59)

Equation 3.59 may be further reduced using r−2 as an integrating factor and then solved to find:

u(r) =
1

v2
=

(
k1 −

2Ab22
γ

rγ
)
r2, (3.60)

where k1 is a constant. By solving for v and recalling v = 1/(b2n
′) and r = n, we obtain a first-order

nonlinear ODE satisfied by the reactor power:

dn(t)

dt
= ±n(t)

√
k1
b22

− 2A

γ
[n(t)]γ . (3.61)

By inspection, Eq. 3.61 is invariant under time translation transformations and is consequently
separable and may be integrated by quadrature to yield:

n(t) = γ

√
γk1
2Ab22

sech2/γ

(√
k1

2b2

[
γb2k2 − t

])
(3.62)

where k2 is another constant. By setting γ = 1, we obtain the classical result obtained by Nordheim
[3], Fuchs [4], and Hetrick [5] and may be rendered physically meaningful by using relevant initial
conditions. By taking the first and second derivatives of Eq. 3.62 and inserting into Eq. 3.41, we
find a condition on γ:

γ = ±1. (3.63)

This reveals one additional analytical solution that was not made present in the classical deriva-
tions for temperature feedback of the form dρ/ dt = −ακn and dρ/dt = −ακ/(ω2n). If one were
attempting to verify a code that applies the NF model, they could simply set γ = 1 and use the
necessary initial conditions to determine k1 and k2. We use the initial conditions: n(to) = no and
dn
dt

∣∣
to

= 0, which is to say that the power reaches a maximum at to, and we find the following
solutions:

n(t) =no sech
2

(√
ακno
2ℓ

[t− to]

)
, γ = 1

n(t) =no cos
2

(√
ακ

2ℓno
[t− to]

)
, γ = −1.,

(3.64a)

(3.64b)

The physics discussion is left to the footnote1.
1We demonstrate the qualitative difference between the two solutions in Fig. 3.1, noting that the classical solution

(γ = 1) decays at a lower rate than the reciprocal solution (γ = −1). This may be attributed to the corresponding
feedback model for each case, ρ′(t; γ = 1) ∝ −n(t) versus ρ′(t; γ = −1) ∝ −1/n(t), where we see that as time passes
and the power decreases, the reactivity rate for γ = 1 linearly decreases while the reactivity rate for γ = −1 tends to
increase.
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Figure 3.1: Comparison between the Nordheim-Fuchs solutions for the two permitted values of γ.

3.3.5 Solutions Admitted by the b3-group
We now derive the canonical coordinates for the infinitesimal generator corresponding to the one-
parameter b3 symmetry group

η(t) = − γb3t

2
(3.65a)

ϕ(n) = b3n, (3.65b)

whose infinitesimal generator is:

V = −γb3t
2

∂

∂t
+ b3n

∂

∂n
. (3.66)

Then the canonical coordinates satisfy:

V r =0 = −γb3t
2

∂r

∂t
+ b3n

∂r

∂n
(3.67a)

V s =1 = −γb3t
2

∂s

∂t
+ b3n

∂s

∂n
. (3.67b)

We first obtain r by solving the characteristic system: dt
η = dn

ϕ . The corresponding ODE is dn
dt =

−2n/γt. Upon integration and setting r to the constant of integration, we find:

r(t, n) = t2/γn. (3.68)

Next, we obtain s by directly solving Eq. 3.67b, which yields

s(t, n) = k1t
2/γn− 2

γb3
ln(t), (3.69)
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where k1 is a constant. Noting the partial derivatives for r and s,

rt = ata−1n, st = ak1t
a−1n− a

b3t

rn = ta, sn = k1t
a,

a =
2

γ

(3.70)

we may form the constraint derivative, keeping Eq. 3.17 in mind,

v(r) =
ds

dr
= k1 −

a

b3ta(an+ tn′)
, (3.71)

where we have simultaneously defined the reducing variable, v(r). The next derivative is determined
by utilizing Eqs. 3.18 and 3.19, where the second-order partial derivatives of r and s are:

rtt = a(a− 1)ta−2n, stt = a(a− 1)k1t
a−2n+

a

b3t2

rtn = ata−1, stn = ak1t
a−1

rnn =0, snn = 0.

(3.72)

Combining the necessary derivatives, we find:

dv

dr
=

d2s

dr2
=

a

b3t2(a−1)(an+ tn′)3

(
n′′ +

2a+ 1

t
n′ +

a2

t2
n

)
. (3.73)

From Eqs. 3.68, 3.71, and 3.73, we may write n, n′, and n′′ in terms of r, v, and t:

n =
r

ta
(3.74a)

n′ =
a

ta+1

[
1

b3(k1 − v)
− r

]
(3.74b)

n′′ =
a

ta+2

[
a

b23(k1 − v)3
dv

dr
− 2a+ 1

b3(k1 − v)
+ (a+ 1)r

]
. (3.74c)

Inserting these identities into Eq. 3.41, we obtain a first-order ODE satisfied by the constraint
condition, v(r),

dv

dr
= −γb

2
3r

2

(
γArγ

2
+ 1

)(
k1 − v(r)

)3
+
γb3
2

(
k1 − v(r)

)2
+

1

r

(
k1 − v(r)

)
. (3.75)

Equation 3.75 is classified as Abel’s Equation of the first kind due to it being cubic in its solution.
General solutions are known for Abel’s equation of the first kind [6, 7], and this particular equation’s
solution assumes the transcendental form:

k2 +

√√√√γArγ

2
+

(
1− 1

b3r(k1 − v(r))

)2

= sinh−1

(√
2

γArγ

[
1− 1

b3r(k1 − v(r))

])
(3.76)
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where k2 is the new integration constant. By now reverting back to t, n, and n′, we find the
relationship:

k2 +
γt

2n(t)

√
2Anγ+2

γ
+

(
dn

dt

)2

+ sinh−1

(√
γ

2Anγ+2
· dn
dt

)
= 0. (3.77)

In its current form, no analytical closed-form expressions for n′ may be directly obtained from Eq.
3.77. This revelation provides three options, the first being to return to the canonical coordinate
system, Eq. 3.67, and make functional assumptions on r and s (e.g., r = r(t) or s = s(n)) to
potentially elicit a target equation that is not transcendental in the solution. The second option is
to write Eq. 3.77 as a surface equation, apply the once-prolonged infinitesimal generator to obtain
coordinate functions from the resultant determining equations, and attempt to reduce the above
equation to an algebraic equation for n and t with the corresponding canonical coordinates. Any
attempt at pursuing option two will be done so in vain because the resulting reduced-order equation
is simply a transcendental algebraic equation. This leads into option three, which is to treat the
above transcendental ODE as an algebraic one in the derivative.

If we maintain the notion that an ODE is an algebraic equation, then it is clear that the solutions
are said to be its zeros, or roots. With that in mind, the roots of the surface equation, Eq. 3.77,
are then the values of n′ that cause the equation to vanish. Examining the above, the square
root function disappears for n′ = i

√
2Anγ+2/γ (for which we must then set k2 = −iπ/2 because

sinh−1(i) = iπ/2) and the inverse hyperbolic sine function is zero when n′ = 0. The resultant
equations corresponding to the roots of the surface equation are:

dn

dt
= i

√
2Anγ+2

γ
(3.78a)

dn

dt
=0 (3.78b)

0 = k2 +
γt

2n

√
2Anγ+2

γ
, (3.78c)

where Eq. 3.78c results from inserting Eq. 3.78b into the surface equation. The respective solutions
to the above are:

n(t) =

(
2

γ

)2/γ
[
k3 + i

√
2A

γ
t

]−2/γ

n(t) = k4

n(t) =

(
2k22
γAt2

)1/γ

,

(3.79a)

(3.79b)

(3.79c)

where k3 and k4 are constants. Equation 3.79a in its current form satisfies the original second-order
nonlinear power equation for arbitrary k3, thus, unlike the analytical solution given by Eq. 3.62
for the other NF symmetry group, we do not need to restrict γ to any specific values. We next
eliminate k3 with the initial condition n(to) = no, where no is some arbitrary initial operating power
and t ≥ to, which yields the expression

n(t) = no

[
1 + i

√
γAnγo
2

(
t− to

)]−2/γ

. (3.80)
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We leave a discussion on physics considerations to the footnote2.
We next consider Eqs. 3.79b and 3.79c, where we immediately see that n = k4 corresponds to

the trivial constant solution. Inserting Eq. 3.79c and its derivatives into the power equation tells us
that k2 = i and the solution becomes:

n(t) =

[
− 2

γAt2

]1/γ
. (3.85)

If the initial condition is once again n(to) = no, we find a condition that must be satisfied: 2 +
γAt2on

γ
o = 0. Any number of combinations of γ and A may result in satisfying said condition and

2In order to relate Eq. 3.80 to a realistic power excursion, we need to eliminate the unit imaginary by assuming
either A < 0 or γ < 0, and they must simultaneously have opposite signs. If we set A = ακ/ℓ < 0, we note that
both the inverse heat capacity, κ, and the prompt neutron generation time, ℓ, are always positive. Therefore, we
require α = −αT , the negative of the temperature coefficient of reactivity, to be negative. This means αT > 0, which
corresponds to systems with positive feedback. Interestingly, this provides an analytical solution in a regime that is
not specified by the Nordheim-Fuchs model analysis given by Hetrick [5]. Proceeding, we then set A = −|A| and,
more specifically, α = −|α| which provides the power behavior for a system with a positive reactivity feedback:

n(t) = no

[
1−

√
γ|α|κω1−γnγ

o

2ℓ

(
t− to

)]−2/γ

, γ > 0, A < 0. (3.81)

Alternatively, if we assume γ < 0 and A > 0, we arrive at the expression

n(t) = no

[
1−

√
|γ|ακω1+|γ|

2ℓn
|γ|
o

(
t− to

)]+2/|γ|

, γ < 0, A > 0. (3.82)

We see that the solution given by Eq. 3.81 will diverge at a time given by:

tdiv = to +

√
2

γ|A|ω1−γnγ
o
. (3.83)

This tells us that the time of divergence will occur earlier for increasing no or for increasing |A|. As stated earlier, α
and ℓ are held constant for a given material, then |A| will only change with system size (and therefore criticality). In
fact for increasing criticality, κ decreases which in turn causes |A| to decrease, consequently tdiv is expected to increase.
This is somewhat of an oversimplification because this logic assumes a constant initial operation power regardless of
system size, because the specific initial power (no/mass) will differ. Regardless, we continue and Fig. 3.2a illustrates
the power profile for a spherical uranium system with a feedback coefficient of the form α = −|α| for varying criticality
values. As explained before, the divergence time occurs later for larger systems due to the increasing mass which
requires more heat from the power produced to increase the temperature of the system. This can be gleaned from Eq.
3.81 by noting that as mass m → ∞, κ → 0, causing the denominator to vanish and n(t) → no for all time. We next
observe in Fig. 3.2b that the value of γ in the reactivity feedback expression, ρ′ = −ακω1−γnγ , drastically affects
the divergence time. Unsurprisingly, if we dampen feedback by decreasing γ, the reactor will take longer to respond
to the initial reactivity insertion ρo. We have set ω = 1 for all results shown.

For the type of reactor and reactivity feedback where Eq. 3.82 is applicable, we note that the reactor power goes
to zero, or terminates, at a time given by:

tterm = to +

√√√√ 2n
|γ|
o

|γ|Aω1+|γ| . (3.84)

We next consider the exact same uranium system as described above, but now with α = +|α|, corresponding to a
system with a negative temperature coefficient of reactivity. Figure 3.3a shows such a uranium system for varying
criticality, where we clearly see that an increase in criticality results in a persistence of the reactor operation. Figure
3.3b shows the k = 1.02 case for varying |γ| for a reactivity insertion rate of the form: ρ′ = ακω1+|γ|/n|γ|, where we
have again set ω = 1. As |γ| increases, the exponent 2/|γ| decreases while the

√
|γ|/2 factor increases. Noting the

limit limγ→∞ y1/γ = 1, it is clear that the 1−
√

|γ|/2 factor is what mathematically causes the power expression to
terminate at earlier times.
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(a) (b)

Figure 3.2: Reactor power as calculated by Eq. 3.81 for (a) systems of differing criticality with
γ = 1 and (b) a system with k = 1.02 and differing γ feedback.

(a) (b)

Figure 3.3: Reactor power as calculated by Eq. 3.82 for (a) systems of differing criticality with
γ = −1 and (b) a system with k = 1.02 and differing |γ| feedback.

we leave such a discussion open for now. From said condition, we may eliminate −2/(γA) = t2on
γ
o ,

yielding the solution:

n(t) = no

(
to
t

)2/γ

. (3.86)

The primary take-aways from this process are:

• We may reduce the second-order power equation to a first-order equation using canonical
coordinates obtained from the one-parameter infinitesimal symmetry groups.

• For the canonical coordinates of the group (η, ϕ) = (b2, 0), we reduced the equation to a
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first-order Bernoulli equation that we were able to solve for directly, resulting in the classical
sech2(·) solution.

• For the second set of canonical coordinates for the symmetry group (η, ϕ) = (−γb3t/2, b3n), we
again reduced the second-order equation to a first-order Abel equation of the first kind. The
solution to the Abel equation is transcendental in the first time-derivative of the reactor power,
and solutions are then obtained by finding the roots of that transcendental equation, resulting
in the solution for reactors with a positive coefficient of reactivity. This process showed how,
even after finding a Lie group and reducing the equation, we might still arrive at an intractable
equation. We got somewhat lucky that we could infer “roots” of the transcendental equation
to derive ODEs, but this might not always be the case. It might be necessary to consider
numerical solution or approximate solutions to the reduced equations (see Problem 3 in the
exercises section below).

3.3.6 Other Lie Groups
Other possible Lie groups can be obtained by considering other reactivity models, outlined below.
The authors implore the reader to test their understanding by using the methods outlined herein to
find the solutions pertaining to these Lie groups. If you get stuck, consult the paper much of this
chapter has been pulled from [8].

Arbitrary Order Polynomial Insertions

In this section we investigate the case of a reactivity insertion following an arbitrary order polynomial
in time. We therefore set A = 0 and the corresponding reactivity rate expression is dρ/ dt =∑J
j=1 jajt

j−1 and the power equation is

n(t)n′′ = n2S1 + (n′)2, (3.87)

where the aj are assumed to be known.
Now that A = 0, the coefficient system, Eq. 3.39, becomes:

0 = − d2c2
dt2

+ 2
dc4
dt

(3.88a)

0 =
d2c3
dt2

+ ln(n)
d2c4
dt2

− 2S1
dc2
dt

− S2c2 + S1c4. (3.88b)

We may remove n-dependence from Eq. 3.88b by setting c′′4 = 0 which provides:

c4(t) = m4t+ b4. (3.89)

Solving Eq. 3.88a for c2(t) yields:

c2(t) = m4t
2 +m2t+ b2. (3.90)

We now solve for c3(t) from Eq. 3.88b to find:

ℓc3(t) = m4

J∑
j=1

jaj
j + 1

tj+2 +

J∑
j=1

(
m2 −

b4
j + 1

)
ajt

j+1 + b2

J∑
j=1

ajt
j +m3t+ b3. (3.91)
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Recalling Eq. 3.40, the coordinate functions for an arbitrary-order polynomial in time reactivity
insertion are

η(t) =m4t
2 +m2t+ b2

ϕ(t, n) =
n

ℓ

[
m4

J∑
j=1

jaj
j + 1

tj+2 +

J∑
j=1

(
m2 −

b4
j + 1

)
ajt

j+1 + b2S0 +m3t+ b3

]

+ n ln(n)

(
m4t+ b4

)
.

(3.92a)

(3.92b)

The above is a 6-parameter symmetry group and we may proceed by applying the canonical coor-
dinate method to each group individually. As it turns out, all of the symmetry groups provide the
same analytical solution.

The Fuchs Ramp-Insertion Model

Consider the Fuchs ramp-insertion model, which assumes there is a linear reactivity insertion and
also accounts for adiabatic temperature feedback. This model is appealing as it is a first-order combi-
nation of the previous two reactivity models, the Nordheim-Fuchs Model and Arbitrary Polynomial
Insertion. The expression for the reactivity is:

ρ(t) = ρo − αT (n; γ = 1) + a1t. (3.93)

The power equation assumes the form:

n(t)
d2n

dt2
= −ακ

ℓ
n3 +

a1
ℓ
n2 +

(
dn

dt

)2

. (3.94)

Applying the appropriate restrictions of this model to the determining equations given by Eq. 3.39,
we see that we must set c4(t) ≡ 0. From this, the system reduces to:

0 =
d2c2
dt2

(3.95a)

0 =
d2c3
dt2

− 2a1
ℓ

dc2
dt

+An

[
2
dc2
dt

+ c3

]
. (3.95b)

Equation 3.95a provides the solution c2(t) = m2t+ b2. Inserting the derivative of c2 into Eq. 3.95b
provides a polynomial in n whose coefficients must simultaneously equal zero for the equation to be
satisfied, yielding the system:

0 =2m2 + c3(t) (3.96a)

0 =
d2c3
dt2

− 2a1m2

ℓ
. (3.96b)

Equation 3.96a tells us that c3(t) is a constant and is equal to c3 = −2m2. Thus, d2c3/dt2 = 0 in
Eq. 3.96b and we are required to set m2 = 0, thus c3 = 0. This results in a single symmetry group
corresponding to time-translation invariance:

η = b2

ϕ =0.

(3.97a)

(3.97b)
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3.4 Exercises
1. Find the global transformations, (t̃, ñ), of the Nordheim-Fuchs Lie group, Eq. 3.48. Do you

need to set b2 and b3 separately to zero before testing for invariance of the original equation
(e.g., set b3 = 0 and find the global transforms of the b2-group)? Why or why not?

2. Find a solution admitted by the arbitrary-order polynomial Lie group, Eq. 5.57,

(a) for the b3-group (set all other parameters to zero).

(b) Now for the m4-group.

(c) Now solve the original reactor power equation for this model,

dn

dt
=

ρo − β +
∑
j

ajt
j

 n(t)

ℓ
. (3.98)

(d) Why does such an equation, which is separable, have so many Lie groups that provide
the same solution?

(e) Rewrite the Lie group in terms of the reactivity and its’ derivatives (i.e., ρ, dρ/ dt,∫
dtρ(t)).

3. Consider the Lie group for the Fuchs ramp insertion model, Eq. 3.97.

(a) Apply the canonical coordinates method and obtain a reduced-order ODE for the reactor
power.

(b) Using the approximation ln(n) ≈ n − 1 − 1
2 (n − 1)2, solve this ODE and obtain an

approximate solution, napprox(t), to the reactor power equation, Eq. 3.94.

(c) Insert this solution into Eq. 3.94 to formulate an error, or residual, function. (Hint:
determine the derivatives n′approx and n′′approx, plug into Eq. 3.94, whatever does not
cancel is the error).

(d) Extra: numerically solve Eq. 3.94 with a convergence error of at least 10−6 (use an ODE
solver in Matlab or Python). Compare the difference of this numerical solution with
napprox(t). Is this difference small enough that a reactor’s dynamics can be sufficiently
approximated with the analytical approximate solution? Can the residual be used in
some way with the approximate solution to circumvent using the numerical solution?
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Chapter 4

Symmetry Analysis of Partial
Differential Equations

4.1 Generalized Prolongation Formula for a System of PDEs

4.1.1 A System of First-Order PDEs
Consider the system of N first-order partial differential equations,

Fn(x,u,p) = 0 (4.1)

where n = 1, . . . , N , x is an I-length vector containing the independent variables, u is a J-length
vector of the dependent variables (we switched from using y to u as that tends to be the practice in
literature), and p contains all the first-order partials that appear in the system F = 0, i.e.,

p =

(
∂u1
∂x1

, · · · , ∂u1
∂xI

,
∂u2
∂x1

, · · · , ∂u2
∂xI

, · · · , ∂uJ
∂x1

, · · · , ∂uJ
∂xI

)
. (4.2)

If the system is square, N = J . As with ODEs, every derivative appearing in the system must
contribute to maintaining the invariance of the system under a Lie group of transformations. For
this reason, there must be a prolongation of the infinitesimal generator to account for each order of
derivative and there is an coordinate function for each partial derivative that appears in the system.
We show the general formula below.

The infinitesimal generator for Eq. 4.1 is given by:

V =

I∑
i=1

ηi(x,u)
∂

∂xi
+

J∑
j=1

ϕ(j)(x,u)
∂

∂uj
(4.3)

and the first prolongation for the system of first-order PDEs is written as:

prV =

I∑
i=1

ηi(x,u)
∂

∂xi
+

J∑
j=1

ϕ(j)(x,u)
∂

∂uj
+

I∑
i=1

J∑
j=1

ζ
(j)
i (x,u,p)

∂

∂uji
(4.4)

where

uji =
∂uj
∂xi

(4.5a)
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Di =
∂

∂xi
+

J∑
k=1

uki
∂

∂uk
. (4.5b)

and the coordinate function for the uji = ∂uj/∂xi derivative is:

ζ
(j)
i = Diϕ

(j) −
I∑
k=1

ujk Diηk (4.6)

Example: suppose J = 1 and I = 2, thus we have a single first-order PDE of two variables and
then x = (x1, x2), u = u, u1 = ∂u/∂x1, u2 = ∂u/∂x2. Dropping the j superscript, the quantities of
interest are:

prV = η1(x, u)
∂

∂x1
+ η2(x, u)

∂

∂x2
+ ϕ(x, u)

∂

∂u
+ ζ1

∂

∂u1
+ ζ2

∂

∂u2
(4.7a)

Di =
∂

∂xi
+
∂u

∂xi

∂

∂u
(4.7b)

ζ1 = D1ϕ− u1 D1η1 − u2 D1η2

=
∂ϕ

∂x1
+

(
∂ϕ

∂u
− ∂η1
∂x1

)
∂u

∂x1
− ∂η1

∂u

(
∂u

∂x1

)2

−
[
∂η2
∂x1

+
∂η2
∂u

∂u

∂x1

]
∂u

∂x2

(4.7c)

ζ2 = D2ϕ− u1 D2η1 − u2 D2η2

=
∂ϕ

∂x2
+

(
∂ϕ

∂u
− ∂η2
∂x2

)
∂u

∂x2
− ∂η2

∂u

(
∂u

∂x2

)2

−
[
∂η1
∂x2

+
∂η1
∂u

∂u

∂x2

]
∂u

∂x1

(4.7d)

The reader should verify the ζi formulae for themselves.
Example: suppose J = 3 and I = 2, then we have a system of three first-order PDEs in two

variables. Then x = (x1, x2), u = (u1, u2, u3), u11 = ∂u1/∂x1, u12 = ∂u1/∂x2, and so on. Some
equations of interest are:

prV = η1
∂

∂x1
+ η2

∂

∂x2
+ ϕ(1)

∂

∂u1
+ ϕ(2)

∂

∂u2
+ ϕ(3)

∂

∂u3
+ ζ

(1)
1

∂

∂u11
+ ζ

(2)
1

∂

∂u21
+ ζ

(3)
1

∂

∂u31

+ ζ
(1)
2

∂

∂u12
+ ζ

(2)
2

∂

∂u22
+ ζ

(3)
2

∂

∂u32

(4.8a)

Di =
∂

∂xi
+
∂u1
∂xi

∂

∂u1
+
∂u2
∂xi

∂

∂u2
+
∂u3
∂xi

∂

∂u3

=
∂

∂xi
+ u1i

∂

∂u1
+ u2i

∂

∂u2
+ u3i

∂

∂u3

(4.8b)

ζ
(1)
1 = D1ϕ

(1) − u11 D1η1 − u12 D1η2

=
∂ϕ(1)

∂x1
+
∂ϕ(1)

∂u1
u11 +

∂ϕ(1)

∂u2
u12 +

∂ϕ(1)

∂u3
u13 −

[
∂η1
∂x1

+
∂η1
∂u1

u11 +
∂η1
∂u2

u21 +
∂η1
∂u3

u31

]
u11

−
[
∂η2
∂x1

+
∂η2
∂u1

u11 +
∂η2
∂u2

u21 +
∂η2
∂u3

u31

]
u12

(4.8c)

ζ
(2)
1 = D1ϕ

(2) − u21 D1η1 − u22 D1η2 (4.8d)

ζ
(3)
1 = D1ϕ

(3) − u31 D1η1 − u32 D1η2 (4.8e)
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ζ
(1)
2 = D2ϕ

(1) − u11 D2η1 − u12 D2η2 (4.8f)

ζ
(2)
2 = D2ϕ

(2) − u21 D2η1 − u22 D2η2 (4.8g)

ζ
(3)
2 = D2ϕ

(3) − u31 D2η1 − u32 D2η2 (4.8h)

where the other ζ(j)i follow in the same manner. Because the ui and uji are assumed known in the
context of the symmetry determining equations, one might need to rearrange the above formula
in order to simplify the system when enforcing invariance. For a system of first-order PDEs, the
symmetry determining equations are obtained via:

prV F
∣∣∣
F=0

= 0 (4.9)

4.1.2 A System of K-Order PDEs
If we now consider a system of N K-order PDEs, K ≥ 2,

F
(
x,u,p(1), . . .p(K)

)
= 0 (4.10)

where p(k) is the vector containing all k-order partial derivatives of the solution vector u:

p(k) =

(
∂ku1
∂xℓ1

, · · · , ∂
ku1
∂xℓI

, · · · ∂
kuJ
∂xℓ1

, · · · , ∂
kuJ
∂xℓI

)
(4.11)

where, using multi-index notation ℓm = (a1, a2, . . . aI), m = 1, 2, . . . ,M is a vector containing the
powers am such k =

∑J
m=1 am is satisfied and we may write

∂xℓj = ∂xa11 ∂x
a2
2 · · · ∂xaII (4.12)

and therefore M is the combinatorial maximum for which the set am can sum to k.
The infinitesimal generator for Eq. 4.10 is:

V =

I∑
i=1

ηi(x,u)
∂

∂xi
+

J∑
j=1

ϕ(j)(x,u)
∂

∂uj
(4.13)

and the Kth-prolongation of the infinitesimal generator for the system of PDEs is written as:

pr(K)V =

I∑
i=1

ηi(x,u)
∂

∂xi
+

J∑
j=1

ϕ(j)(x,u)
∂

∂uj
+

I∑
i=1

J∑
j=1

K∑
k=1

ζ
(k,j)
{ik}

(
x,u,p, . . . ,p(k)

) ∂

∂u
(k,j)
{ik}

(4.14)
where

{ik} = i1i2 · · · ik (4.15a)

u
(k,j)
{ik} =

∂kuj
∂xℓk

(4.15b)

Di =
∂

∂xi
+

J∑
j=1

K∑
k=1

u
(k,j)
{ik}

∂

∂u
(k,j)
{ik−1}

(4.15c)
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where it is implied that we sum over all mixed partials that sum to k in the total differentiation
operator. The coordinate function for the uji = ∂uj/∂xi derivative is:

ζ
(k,j)
{ik} = Dikζ

(k−1,j)
{ik−1} −

I∑
ℓ=1

uj{ik−1}ℓDikηℓ (4.16)

Example: suppose J = 1, I = 2, and K = 2, then we have a single second-order PDE in two
variables. Then x = (x1, x2), u = u. Some equations of interest are:

ui =
∂u

∂xi
, ui1i2 =

∂2u

∂xi1∂xi2
(4.17a)

ζ
(1)
1 =

∂ϕ

∂x1
+

(
∂ϕ

∂u
− ∂η1
∂x1

)
u1 −

∂η1
∂u

(u1)
2 −

[
∂η2
∂x1

+
∂η2
∂u

u1

]
u2 (4.17b)

ζ
(1)
2 =

∂ϕ

∂x2
+

(
∂ϕ

∂u
− ∂η2
∂x2

)
u2 −

∂η2
∂u

(u2)
2 −

[
∂η1
∂x2

+
∂η1
∂u

u2

]
u1 (4.17c)

ζ
(2)
11 =

∂2ϕ

∂x21
+

[
2
∂2ϕ

∂x1∂u
− ∂2η1

∂x21

]
u1 −

∂2η2
∂x21

u2 +

[
∂ϕ

∂u
− 2

∂η1
∂x1

]
u11 − 2

∂η2
∂x1

u12

+

[
∂2ϕ

∂u2
− 2

∂2η1
∂x1∂u

]
(u1)

2 − 2
∂2η2
∂x1∂u

u1u2 −
∂2η1
∂u2

(u1)
3 − ∂2η1

∂u2
(u1)

2u2

− 3
∂η1
∂u

u1u11 − 3
∂η2
∂u

u2u11 − 2
∂η2
∂u

u1u12

(4.17d)

ζ
(2)
12 = ζ

(2)
21

=
∂2ϕ

∂x1∂x2
+

[
∂2ϕ

∂x1∂u
− ∂2η2
∂x1∂x2

]
u2 +

[
∂2ϕ

∂x2∂u
− ∂2η1
∂x1∂x2

]
u1 −

∂η2
∂x1

u22

+

[
∂ϕ

∂u
− ∂η1
∂x1

− ∂η2
∂x2

]
u12 −

∂η1
∂x2

u11 −
∂2η2
∂x1∂u

(u2)
2

+

[
∂2ϕ

∂u2
− ∂2η1
∂x1∂u

− ∂2η2
∂x2∂u

]
u1u2 −

∂2η1
∂x2∂u

(u1)
2 − ∂2η2

∂u2
u1(u2)

2 − ∂2η1
∂u2

(u1)
2u2

− 2
∂η2
∂u

u2u12 − 2
∂η1
∂u

u1u12 −
∂η1
∂u

u2u11 −
∂η2
∂u

u1u22

(4.17e)

ζ
(2)
22 =

∂2ϕ

∂x22
+

[
2
∂2ϕ

∂x2∂u
− ∂2η2

∂x22

]
u2 −

∂2η1
∂x22

u1 +

[
∂ϕ

∂u
− 2

∂η2
∂x2

]
u22 − 2

∂η1
∂x2

u12

+

[
∂2ϕ

∂u2
− 2

∂2η2
∂x2∂u

]
(u2)

2 − 2
∂2η1
∂x2∂u

u1u2 −
∂2η2
∂u2

(u2)
3 − ∂2η2

∂u2
u1(u2)

2

− 3
∂η2
∂u

u2u22 − 3
∂η1
∂u

u1u22 − 2
∂η1
∂u

u2u12

(4.17f)

Once expressions for the prolonged coordinate functions are known, we may then obtain the
symmetry determining equations as:

pr(K)V F
∣∣∣
F=0

= 0, (4.18)

the solution of which is the Lie group (η,ϕ), where η = (η1, η2, . . . , ηI) and ϕ = (ϕ1, ϕ2, . . . , ϕJ).
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4.2 Devising New Coordinates with a Lie Group
Now that we no longer have a single independent variable and single dependent variable as we had in
ODEs, we cannot effectively use the canonical coordinates method to find the transformed coordinate
system given the Lie group of transformations (η,ϕ). We can still, in a somewhat formulaic manner,
construct the desired transformed coordinate system using the characteristic system.

At no loss of generality, we consider the case where J = 1 and therefore we have a single PDE
of I variables. By constructing the “parameter-invariant” Lagrange-Charpit equations, i.e. the
characteristic system, we have:

dx1
η1(x, u)

=
dx2

η2(x, u)
= · · · = dxI

ηI(x, u)
=

du

ϕ(x, u)
, (4.19)

from which a set of similarity variables, ξ(x, y), and reducing variable, v(ξ), may be obtained.
Note that (ξ, v(ξ)) is akin to the (r, s(r)) canonical coordinates from the previous chapters. As an
example, one similarity variable, ξ1, would be obtained by integrating the first and second members
of Eq. 4.19 over the relevant domain D and solving for the constant of integration:

ξ1(x, y) ≡ constant =
∫
D

(
dx1
η1

− dx2
η2

)
(4.20)

where, again, this is exactly what we did to obtain the canonical coordinate r for ODEs. Similarly,
the reducing variable, v(ξ) is found by integrating the last member and another (strategically chosen)
member and solving for the constant of integration:

v(ξ) ≡ constant =
∫
D

(
dy

ϕ
− dxi

ηi

)
. (4.21)

The original PDE may then be written in terms of ξ and v(ξ), reducing the number of independent
variables from I to I − 1.

4.3 Example: A Single Second-Order PDE of Two variables,
the Heat Equation

Consider the well-known homogeneous heat equation, a linear second-order PDE in two variables:

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= 0, (4.22)

or written as a surface equation:

F (x, t, u, ut, uxx) = 0 = ut − uxx, (4.23)

where we adopt the shorthand ut = ∂u/∂t and uxx = ∂2u/∂x2.

4.3.1 Symmetry Determining Equations
From this surface equation, we may write down the infinitesimal generator and the twice-prolonged
infinitesimal generator as:

V = η(x)(x, t, u)
∂

∂x
+ η(t)(x, t, u)

∂

∂t
+ ϕ(x, t, u)

∂

∂ϕ
(4.24a)
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pr(2)V =V + ζ
(1)
t (x, t, u, ut, uxx)

∂

∂ut
+ ζ(2)xx (x, t, u, ut, uxx)

∂

∂uxx
, (4.24b)

where we have added the superscripts (x) and (t) to indicate the coordinate function being attached
to the respective derivative; as indicated, this does not preclude these coordinate functions from
being functions of any combination of the original independent and dependent variable space. We
know other ζ functions, e.g. ζ

(1)
x or ζ(2)tt , will not be present in the final symmetry determining

equations because the surface equation does not explicitly contain those quantities, e.g. ∂F
∂ux

= 0 or
∂F
∂utt

= 0. Noting the partials,

∂F

∂x
= 0,

∂F

∂t
= 0,

∂F

∂u
= 0,

∂F

∂ut
= 1,

∂F

∂uxx
= −1,

(4.25)

we find
pr(2)V F = ζ

(1)
t − ζ(2)xx . (4.26)

From Eqs. 4.17b and 4.17f, we find expressions for ζ:

ζ
(1)
t =

∂ϕ

∂t
+

(
∂ϕ

∂u
− ∂η(t)

∂t

)
ut −

∂η(t)

∂u
(ut)

2 −
[
∂η(x)

∂t
+
∂η(x)

∂u
ut

]
ux (4.27a)

ζ(2)xx =
∂2ϕ

∂x2
+

[
2
∂2ϕ

∂x∂u
− ∂2η(x)

∂x2

]
ux −

∂2η(t)

∂x2
ut +

[
∂ϕ

∂u
− 2

∂η(x)

∂x

]
uxx − 2

∂η(t)

∂x
uxt

+

[
∂2ϕ

∂u2
− 2

∂2η(x)

∂x∂u

]
(ux)

2 − 2
∂2η(t)

∂x∂u
utux −

∂2η(x)

∂u2
(ux)

3 − ∂2η(x)

∂u2
ut(ux)

2

− 3
∂η(x)

∂u
uxuxx − 3

∂η(t)

∂u
utuxx − 2

∂η(t)

∂u
uxuxt.

(4.27b)

Next we enforce F = 0 by substituting

uxx = ut when F = 0

in the above and, after some algebra, we obtain the symmetry determining equation for the homo-
geneous heat equation:

pr(2)V F
∣∣∣
F=0

= 0 =Hϕ−
[
Hη(t) − 2η(x)x

]
ut −

[
Hη(x)2ϕxu

]
ux

+ 2
[
η(t)xu + η(x)u

]
uxut + 2

[
η(t)x + η(t)u ux

]
uxt

+
[
(ux + ut) η

(x)
uu − ϕuu + 2η(x)xu

]
(ux)

2

(4.28)

where we have defined the “heat equation operator” as:

H =
∂

∂t
− ∂2

∂x2
(4.29)

and we use the partial derivative shorthand notation on the coordinate functions.
There are a number of known solutions to the heat equation without initial and boundary con-

ditions to constrain it. We will go over one solution so the reader can see the process where the
process differs from the previous PDE example (recall in that example, the Lie group we devised was
immediately known because that PDE’s general solution is given by the Method of Characteristics).
We want to give the reader an additional example when such a convenient solution is not readily
available.
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4.3.2 A Solution Permitted by a Lie Group
A known solution to the heat equation’s symmetry determining equations is given by the Lie group:

η(x) =0 (4.30a)

η(t) =1 (4.30b)

ϕ(u) = au (4.30c)

where a is a constant. Clearly, Hϕ = aHu = 0 from Eq. 4.22, and all other coordinate function
derivatives appearing in Eq. 4.55 are zero, thus this is indeed a Lie group of transformations of the
heat equation. The global transformations are given by:

∂x̃

∂ϵ
= η(x) → x̃(x; ϵ) = x (4.31a)

∂t̃

∂ϵ
= η(t) → t̃(t; ϵ) = t+ ϵ (4.31b)

∂ũ

∂ϵ
= ϕ(ũ) → ũ(u; ϵ) = u eaϵ, (4.31c)

where we used the terminal conditions x̃(ϵ = 0) = x, t̃(ϵ = 0) = t, and ũ(ϵ = 0) = u. From Eq. 4.30,
the characteristic system is readily obtained:

dx

0
=

dt

1
=

du

au
= dϵ. (4.32)

We may determine a new coordinate system (x, t, u) → (r, s, w) using solution curves given by the
characteristic system. We will find the coordinates from the following equations:

r from
dx

dt
= 0 (4.33a)

s from
dt

dϵ
= 1 (4.33b)

w from
du

dt
= au. (4.33c)

Note that it should not matter which new coordinate comes from which characteristic member as
the end result should always give the same solution, but sometimes it is easier to deal with one set
of equivalent coordinates over another (the reader is implored to test this themselves). Performing
the necessary integrations on the above set of ODEs and setting the constant of integration to the
desired coordinate, we find:

dx

dt
= 0 → x = constant = r(x) (4.34a)

dt

dϵ
= 1 →

∫
dt =

∫
dϵ = t = ϵ+ c = s(t) (4.34b)

du

dt
= au→

∫
du

u
= a

∫
dt = ln(u) = at+ c→ u = w eat (4.34c)

where we note that we do not want the new coordinates to be functions of the group parameter,
ϵ. This is because the Lie group parameter is reserved for mappings between transformations and
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should not appear in the new coordinate system itself but, rather, is a parameter between surfaces
within that old or new coordinate system. With that, the Lie group of transformations provides the
new coordinate system:

r(x) =x (4.35a)

s(t) = t (4.35b)

w(t, u) =u e−at . (4.35c)

Next, we want to determine the new coordinate system’s characteristic system as it will provide
information on the behavior of the Lie group in the new coordinate system (this will hopefully make
sense in a few steps!). The process of finding the new coordinate system’s characteristic system is
broken down into the steps:

1. Take Eq. 4.35, simply put tildes on every variable

2. Use Eq. 4.31 to go to the original coordinates

3. Use Eq. 4.35 to write back in rsw-space.

We demonstrate each step below:

1. Take Eq. 4.35, simply put tildes on every variable:

r̃(x̃) = x̃ (4.36a)

s̃(t̃) = t̃ (4.36b)

w̃(t̃, ũ) = ũ e−at̃ (4.36c)

2. Use Eq. 4.31 to go to the original coordinates

r̃(x̃) = x̃ = x (4.37a)

s̃(t̃) = t̃ = t+ ϵ (4.37b)

w̃(t̃, ũ) = ũ e−at̃ = u eaϵ e−at−aϵ = u e−at (4.37c)

3. Use Eq. 4.35 to write back in rsw-space.

r̃(x̃) = x̃ = x = r (4.38a)

s̃(t̃) = t̃ = t+ ϵ = s+ ϵ (4.38b)

w̃(t̃, ũ) = ũ e−at̃ = u e−at = w (4.38c)

Thus, we may write:

r̃ = r (4.39a)

s̃ = s+ ϵ (4.39b)
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w̃ =w (4.39c)

and we can see (by now, from experience!) the coordinate functions that give these global transfor-
mations are:

η(r) =0 (4.40a)

η(s) =1 (4.40b)

ϕ(w) =0 (4.40c)

and the characteristic system in the new coordinate system is

dr

0
=

ds

1
=

dw

0
= dϵ. (4.41)

This characteristic system will become very important in a few steps.
Next we convert the original heat equation into the new coordinate system. This is done by first

substituting Eq. 4.35c into Eq. 4.22 to find:

0 =
∂(w eat)

∂t
− ∂2(w eat)

∂x2

= eat
[
aw +

∂w

∂t
− ∂2w

∂x2

] (4.42)

Then, we find:

0 = aw +
∂w

∂t
− ∂2w

∂x2
. (4.43)

Next, we need to convert the (x, t) partial derivatives to (r, s) partials. Note:

∂w

∂t
=
∂w

∂r

∂r

∂t
+
∂w

∂s

∂s

∂t
(4.44a)

∂w

∂x
=
∂w

∂r

∂r

∂x
+
∂w

∂s

∂s

∂x
, (4.44b)

and from Eqs. 4.35a and 4.35b, we know ∂r
∂t = 0, ∂r

∂x = 1, ∂s∂t = 1, and ∂s
∂x = 0. Thus,

∂w

∂t
=
∂w

∂s
(4.45a)

∂w

∂x
=
∂w

∂r
(4.45b)

∂2w

∂x2
=

∂

∂x

(
∂w

∂r

)
=
∂2w

∂r2
∂r

∂x
+
∂2w

∂s∂r

∂s

∂x
,

=
∂2w

∂r2
.

(4.45c)

The heat equation in the new coordinate system is:

0 = aw(r, s) +
∂w

∂s
− ∂2w

∂r2
(4.46)
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This equation is of course more complicated than the original equation as it now has an additional
term the original did not have. However, we can simplify this equation using the characteristic
system, Eq. 4.41. First, we note the total derivative of w:

dw

dϵ
=
∂w

∂r

dr

dϵ
+
∂w

∂s

ds

dϵ
, (4.47)

which is thought of as a directional derivative in the direction dϵ. From the characteristic system,
Eq. 4.41, we can form the derivatives (by simply rearranging the members):

dw

dϵ
= 0,

dr

dϵ
= 0,

ds

dϵ
= 1,

which reduces Eq. 4.47 to provide the crucial identity:

∂w

∂s
= 0 in the direction dϵ, thus w(r, s) → w(r) (4.48)

Thus, by simply considering Eq. 4.46 along the direction dϵ, we can use the identity given by Eq.
4.48 to yield the simplified equation:

0 = aw(r)− d2w

dr2
along direction dϵ (4.49)

Note that w is only a function of r along the direction dϵ and therefore the partial derivatives
become ordinary derivatives. Equation 4.49 is a standard second-order linear ODE with constant
coefficients, thus we may make the assumption of the solution as:

w(r) ∝ eλr, (4.50)

then Eq. 4.49 becomes:
0 = eλr

(
a− λ2

)
. (4.51)

Therefore we find:
λ = ±

√
a, (4.52)

and we can write the solution as:

w(r) = A e
√
ar +B e−

√
ar . (4.53)

We note the special case when a = 0, then d2w/dr2 = 0 can be integrated twice to yield:

w(r) = Ar +B, a = 0. (4.54)

Finally, recalling Eq. 4.34c, i.e. u = w eat, we find the desired solution of the heat equation in our
original coordinate system:

u(x, t) =

{
A eat−

√
ax+B eat+

√
ax, when a ̸= 0

Ax+ b, when a = 0
(4.55)

To summarize, the process of solving the PDE, given a Lie group, is to use the Lie group to
transform the to a new coordinate system. The new coordinate system will have its own global
transformations with a different characteristic system. This new characteristic system is then used
to determine the directional derivative, which will simplify the equation in the new coordinate
system. Sometimes we might have to repeat this process more than once (see the example in
the next chapter), but each successive iteration should reduce the order or reduce the number of
independent variables. This process is clearly arduous in this example, but it may be the only way
to find solutions to much more complicated problems.
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4.4 Exercises
1. Prove that the symmetry criterion is satisfied for the Lie group we studied given by Eq. 4.30

(i.e., use the global transformations, Eqs. 4.31, and show that the heat equation is left invariant
under the Lie group of transformations).

2. Consider the heat equation,
∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= 0 (4.56)

Find the solution permitted by the Lie group (x̃, t̃, ũ) = (x+αϵ, t+ϵ, u), where α is a constant.

3. Consider the Inviscid Burgers’s equation,

∂u(x, t)

∂t
+ u

∂u(x, t)

∂x
= 0 (4.57)

(a) Derive the symmetry determining equation(s).

(b) Assuming η(x) = m(x)t + b(x) and η(t) = M(t)x + B(t), use the determining equations
to to determine the coordinate functions, including ϕ (you should end up with an eight-
parameter Lie group).

4. Consider the 2-D wave equation,

∂2u(x, y, t)

∂t2
− ∂2u(x, y, t)

∂x2
− ∂2u(x, y, t)

∂y2
= 0 (4.58)

(a) Derive the symmetry determining equation(s)

(b) Find the solution permitted by the Lie group (x̃, ỹ, t̃, ũ) = (x cos ϵ − y sin ϵ, x sin ϵ +
y cos ϵ, t, u)
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Chapter 5

Symmetry Analysis of
Integro-Differential Equations

As we have seen in the previous chapters, when one starts the symmetry analysis, one is tasked with
obtaining the symmetry determining equations- from which the Lie groups may be obtained and
a path to order-reduction and/or solution is paved. This process can be called the traditional Lie
algorithm (TLA), often referred to as Ovsiannikov’s method. The TLA requires local invariance to
effectively derive the symmetry determining equations. An issue arises when an equation contains
both local and nonlocal operators, such as integro-differential equations, delay differential equations,
and stochastic differential equations, and the algorithm becomes overly cumbersome for a variety of
reasons and we quote several authorities on their perspectives. From Ibragimov et al. in [9] (Chapter
5),

The main obstacle for the application of Lie’s infinitesimal technique to integro-differential
equations is their nonlocality. These equations do not have a frame locally defined in
the space... of differential functions. Consequently, the algorithmic approach based on
the definition of a symmetry group as a group of transformations leaving the frame
unalterable... does not apply to integro-differential equations.

From this, the “space of differential functions” precludes the presence of nonlocal functions as they
are, by definition, not purely differential. As a consequence, the frame (i.e., the manifold defined by
the IDE) is not guaranteed to be left invariant and therefore the TLA is not applicable. If one were
to apply the TLA cast in the language of differential forms [10] onto an IDE (as was done in [11]),
Fushchich, Shtelen, and Serov observe [12],

...we note that the standard Lie algorithm is inapplicable to the IDE... The symmetry
properties of [an IDE] can be studied by means of method of differential forms, but in this
case one faces a problem of unwieldy calculations which become really enormous when
the order of the differential operator... and the number of components... increase. This
circumstance essentially restricts the applicability of the method of differential forms.

The realization of this insufficiency has resulted in two classes of solution methods for obtaining the
symmetry determining equations of equations with nonlocal operators: indirect and direct methods.
In this chapter, we provide the foundations form deriving the SDEs of IDEs and then provide an
example.
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5.1 Another Way to Derive the Symmetry Determining Equa-
tions

We now present the Grigoriev-Meleshko Method (GMM) [13] for obtaining the symmetry determin-
ing equations for an integro-differential equation (IDE) (which can be applied to ODEs and PDEs
as well). Consider the IDE defined as:

Φ(x,u,p) = 0 (5.1)

where x and u are vectors containing the dependent and independent variables, respectively, and
p is a vector of the derivatives. For the ensuing illustration of the GMM, we do not treat integral
operators as independent quantities the same way we have been treating derivatives as independent
variables defining the over-arching surface equation of the ODEs and PDEs. Continuing, suppose
there is a one-parameter Lie group of transformations, Tϵ = (α,β), whose action transforms x → x̃,
u → ũ and leaves Φ invariant, i.e.,

x̃(x.u; ϵ) = α(x,u; ϵ) (5.2a)

ũ(x,u; ϵ) = β(x,u; ϵ) (5.2b)

Φ(x̃, ũ, p̃) = Φ(x,u,p) = 0. (5.2c)

Here ϵ is a real parameter called the group parameter and we consider only point transformations.
First, let us consider the process of obtaining the determining equations for a purely local equation

as we did in every previous chapters. Normally, when Eq. 5.1 is a local equation, we define the
infinitesimal operator V , apply V to Φ, and enforce invariance such that Eq. 5.2c is satisfied. This
yields the determining equation(s):

V Φ(x,u,p)
∣∣
Φ=0

= 0, (5.3)

where for argument’s sake V is sufficiently prolonged.
For an equation consisting of local and nonlocal operators, this derivation process breaks down

because V is defined to enforce infinitesimal (i.e., local, differential) invariance. This is to say that
V cannot act on nonlocal operators because said operators feed nonlocal information into the local
domain and the requirement of local invariance is not guaranteed under the action of Eq. 5.3. For
this reason, such a direct application of Eq. 5.3 onto the IDE Φ will prove nigh. Thus, we instead
consider the more fundamental idea of what an admitted Lie group is and how it may be used to
derive the desired determining equations for IDEs.

Predicated on the satisfaction of the conditions given by Eqs. 5.2, there is therefore an admit-
ted Lie group (x̃, ũ) with corresponding coordinate functions (η(x,u),ϕ(x,u)). The relationship
between (x̃, ũ) and (η,ϕ) is expressed with the Lie series:

x̃ = x+ ϵη(x,u) +O(ϵ2), (5.4a)

ũ = u+ ϵϕ(x,u) +O(ϵ2), (5.4b)

such that
η(x,u) =

dx̃

dϵ

∣∣∣∣
ϵ=0

ϕ(x,u) =
dũ

dϵ

∣∣∣∣
ϵ=0

(5.5)

which is no different from how we defined the Lie series and the coordinate functions in previous
chapters. From this we may appropriately define our infinitesimal generator:

V = η · ∂x + ϕ · ∂u (5.6)
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where ∂x and ∂u are vectors containing all partial derivatives of the independent and dependent
variables, respectively. Equation 5.6 can be written in our previous notation as:

V =
∑
i

η(i)
∂

∂xi
+
∑
j

ϕ(j)
∂

∂uj
(5.7)

Equation 5.6 is also consistent with the definition for the ODE and PDE cases. By now taking the
Lie derivative of Φ, the following relationship may be established using Eqs. 5.4b - 5.6:

dΦ(x̃, ũ, p̃)

dϵ

∣∣∣∣
ϵ=0

= V Φ(x,u,p)
∣∣
Φ=0

= 0, (5.8)

and therefore we gain an additional invariance condition identity:

dΦ(x̃, ũ, p̃)

dϵ

∣∣∣∣
ϵ=0

= 0. (5.9)

Equation 5.9 is another definition of the determining equations as ascribed by Eq. 5.8. This identity
is more suited to our needs when Φ is an IDE as it allows us to derive the required relationships be-
tween the coordinate functions when nonlocal operators are present in the original surface equation.
As was seen in the previous chapters for the determining equations of a purely local equation, this
is not different from those determining equations because Eq. 5.8 holds for any equation (where V
is sufficiently prolonged).

The process of obtaining the determining equations for an IDE is as follows. We assume there is
a solution to the IDE and therefore there is an admitted Lie group. Thus, condition 5.2c is satisfied
and we may write Φ(x̃, ũ, p̃) immediately (by simply replacing all variables x,u with x̃, ũ) which is
now parameterized by ϵ. We then evaluate the Lie derivative given by Eq. 5.9 which provides the
determining equations which must now be solved to obtain explicit representations of η,ϕ.

If the determining equations are solved for a non-trivial solution, say for the simple case where
(x,u) = (x, u) for which (η,ϕ) = (η, ϕ), we may then write down the characteristic system:

dx

η(x, u)
=

du

ϕ(x, u)
, (5.10)

which are clearly equivalent to all other Lagrange-Charpit equations we have written previously.
Thus, once the determining equations are solved, the ensuing process of obtaining similarity variables
for reduction and/or solution is the same, no matter the type of equation we are dealing with.

5.2 Example: The 1-D Neutron Transport Equation

5.2.1 The Physics Model
The form of the neutron transport equation (NTE) that we consider is for a one-dimensional slab
(planar geometry) with monoenergetic prompt neutrons, constant material properties, isotropic
scattering, and no inhomogeneous source. The NTE is then:

1

v

∂ψ

∂t
+ µ

∂ψ

∂x
+ σψ(x, µ, t) =

σc

2

∫ 1

−1

dµ′ψ(x, µ′, t), (5.11)

where
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• ψ(x, µ, t) is the angular neutron flux passing through the point x with velocity v at time t in
the direction µ = cos(θ), where θ is the off-axis angle,

• σ = σt is the total macroscopic cross section and c is the average number of neutrons emitted
per collision, defined as

c =
σs + νσf

σ
. (5.12)

Here σs and σf are the scatter and fission macroscopic cross sections, respectively, and ν is
the average number of neutrons emitted per fission.

Equation 5.11 is a first-order integro-differential equation in three variables. We perform a symmetry
analysis on this equation in a more general form in [14], but here we show how we can obtain a
solution to this difficult equation via symmetry analysis.

5.2.2 Symmetry Determining Equations of the NTE
We begin the Lie group analysis by defining the transport system as:

Φ(x, ψ,p) = 0, (5.13)

where x = (x, µ, t) and p = (∂ψ/∂x, ∂ψ/∂t). We now suppose there is a one-parameter group of
transformations, Tϵ = (α(x, ψ; ϵ), β(x, ψ; ϵ)), whose action transforms x → x̃, ψ → ψ̃ and p → p̃
that leaves the system invariant, i.e.,

x̃(x, ψ; ϵ) =α(x, ψ; ϵ) (5.14a)

ψ̃(x, ψ; ϵ) =β(x, ψ; ϵ) (5.14b)

Φ(x̃, ψ̃, p̃) =Φ(x, ψ,p) = 0. (5.14c)

Equation 5.14c is referred to as the symmetry criterion as it states that, under the action of Tϵ,
the original system is left invariant. We will use the second definition of a Lie group as being an
invariant transformation of solutions to solutions and thus the symmetry determining equations are
defined from the following:

dΦ(x̃, ψ̃, p̃)

dϵ

∣∣∣∣
ϵ=0

= 0. (5.15)

Continuing, we may define the admitted transformation group following Eq. 5.14a:

x̃(x, ψ; ϵ) =α(x, ψ; ϵ) =
〈
x̃(x, ψ; ϵ), µ̃(x, ψ; ϵ), t̃(x, ψ; ϵ)

〉
(5.16a)

ψ̃(x, ψ; ϵ) =β(x, ψ; ϵ) (5.16b)

where it is understood that α and β act on x and ψ, respectively, and the resulting transformations
satisfy the symmetry criterion given by Eq. 5.14c. From Eqs. 5.16, we see Tϵ = [α, β] maps the
point (x, µ, t, ψ) in xµtψ-space to a new point (x̃, µ̃, t̃, ψ̃) in xµtψ-space. If Φ is invariant under the
transformation Tϵ, then Tϵ forms a Lie group of transformations.

The coordinate functions of the infinitesimal transformations are related to Tϵ by:

η(j)(x, ψ) =
∂α(j)

∂ϵ

∣∣∣∣
ϵ=0

, j = 1, 2, 3 (5.17a)

ϕ(x, ψ) =
∂β

∂ϵ

∣∣∣∣
ϵ=0

(5.17b)
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where j refers to the independent variable index of x = ⟨x, µ, t⟩, b = ψ̃(x, ψ; ϵ) is the transformed
neutron flux.

We now suppose there is indeed a solution to Eq. 5.13 given by

ψo(x),

which essentially means we are parameterizing ψ by x. Thus x̃ is known as

x̃ = α (x, ψo(x); ϵ) (5.18)

and can be inverted to find
x = α̂(x̃; ϵ) (5.19)

where we note that there is now no dependence on ψ̃ in the inversion α̂. We also note that â(j) refers
to the j-th independent variable, parameterized by ϵ, contained in x = α̂. Since the transformation
group, Eqs. 5.16, is admitted by Eqs. 5.13 and transforms the solution ψo(x) to another solution,
the family of functions

ψ̃ = ψ̃o(x; ϵ) = β
(
α̂(x̃; ϵ), ψo

(
α̂(x̃; ϵ)

)
; ϵ
)

(5.20)

also satisfy Eq. 5.13 for any value of ϵ, i.e., written explicitly:

Φ(x̃; ϵ) = 0 = − 1

v

∂ψ̃o(x̃; ϵ)

∂t̃
− µ̃

∂ψ̃o(x̃; ϵ)

∂x̃
− σψ̃o (x̃; ϵ) +

σc

2

∫ 1

−1

dµ′ψ̃o
(
x̃, µ′, t̃; ϵ

)
(5.21)

We note that Φ(x̃; ϵ) is not dependent on ψ̃(x; ϵ) = ψ̃o because we have parameterized these quanti-
ties by the original independent variable phase-space x = α̂, as seen in Eq. 5.20. We may now apply
Eq. 5.15 to derive the symmetry determining equations by taking the ϵ derivative and evaluating at
ϵ = 0. We note that the second definition of a Lie group is a statement that a Lie group transforms
solutions to solutions and therefore an ϵ-derivative will only apply to the transformed solutions ψ̃o
and not on the transformed independent variables x̃. With this in mind, we find:

dΦ(x̃; ϵ)

dϵ
= 0 = − 1

v

d

dϵ

{
∂ψ̃o(x̃; ϵ)

∂t̃

}
− µ̃

d

dϵ

{
∂ψ̃o(x̃; ϵ)

∂x̃

}
− σ

dψ̃o (x̃; ϵ)

dϵ

+
σc

2

∫ 1

−1

dµ′ dψ̃o
(
x̃, µ′, t̃; ϵ

)
dϵ

(5.22)

From the chain rule, we write the ϵ-derivative of ψ̃o:

dψ̃o(x̃; ϵ)

dϵ
=

∂ψ̃o
∂ϵ

+
∂ψ̃o
∂ψo

J∑
j=1

∂ψo
∂α̂(j)

∂α̂(j)

∂ϵ
(5.23)

Equation 5.23 may be further simplified by first noting the Lie Series:

x̃ =x+ ϵη +O
(
ϵ2
)
= α̂+ ϵη +O

(
ϵ2
)

(5.24a)

ψ̃o =ψo + ϵϕ+O
(
ϵ2
)

(5.24b)

from which we may invert Eq. 5.24a by solving for α̂:

α̂ = x̃− ϵη −O
(
ϵ2
)
. (5.25)
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To be more explicit, the inverted components of Eq. 5.25, α̂ = (x, µ, t), are:

x = x̃− ϵη(x) −O
(
ϵ2
)

(5.26a)

µ = µ̃− ϵη(µ) −O
(
ϵ2
)

(5.26b)

t = t̃− ϵη(t) −O
(
ϵ2
)
. (5.26c)

Thus, the partial derivatives of interest are:

∂ψ̃o
∂ϵ

=ϕ(x) (5.27a)

∂ψ̃o
∂ψo

=1 (5.27b)

∂α̂(j)

∂ϵ
= − η(j)(x). (5.27c)

By evaluating Eqs. 5.23 at ϵ = 0, we may define the quantity

Υ(x) =
dψ̃o(x; ϵ)

dϵ

∣∣∣∣
ϵ=0

= ϕ(x)−
3∑
j=1

η(j)(x)
∂ψo(x)

∂xj
. (5.28)

The quantity Υ is known as the Lie-Bäcklund operator for the solution and it is known that every
Lie-Bäcklund operator has an equivalent Lie point operator [26]. This means that the ensuing
SDEs written in terms of the Lie-Bäcklund operator, Υ, can be written in terms of the infinitesimal
transformation coordinate functions. Finally, by evaluating Eqs. 5.22 at ϵ = 0, we arrive at the
symmetry determining equation of the NTE:

dΦ(x̃; ϵ)

dϵ

∣∣∣
ϵ=0

= 0 = − 1

v

∂Υ

∂t
− µ

∂Υ

∂x
− σΥ(x, µ, t) +

σc

2

∫ 1

−1

dµ′Υ(x, µ′, t), (5.29)

As expected, the symmetry determining equation is itself an integrodifferential equation in Υ and, in
the form presented in Eq. 5.29, is no easier to solve than the original equation. We have introduced
four unknown functions (η and ϕ) that must satisfy the equation in Υ.

The next step is to write the symmetry determining equations explicitly in terms of the coordinate
functions η and ϕ. This is done by simply inserting Eq. 5.28 into Eqs. 5.29 and performing the
necessary algebra. For brevity, we define the operators:

Hf = −Lf + Sf (5.30a)

Lf = T f + σf (5.30b)

T f =
1

v

∂f

∂t
+ µ

∂f

∂x
(5.30c)

Sf =
σc

2

∫ 1

−1

dµ′f(µ′) (5.30d)

Proceeding, we have:

dΦ(x̃; ϵ)

dϵ

∣∣∣∣
ϵ=0

= 0 = H[ϕ(x)]−
3∑
j=1

H
[
η(j)(x)

∂ψo(x)

∂xj

]
(5.31)
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Expanding some of the operators and collecting terms, we have:

0 = H[ϕ(x)] +
∑
j

{
∂ψo
∂xj

L
[
η(j)
]
− S

[
η(j)

∂ψo
∂xj

]
+ η(j)T

[
∂ψo
∂xj

]}
(5.32)

We next wish to eliminate the second-order derivatives of ψo appearing in Eq. 5.32. The second-
order derivatives appear in the T [∂ψo/∂xj ] of Eq. 5.32, which can be solved for using Eq. 5.30c in
combination with the NTE (i.e., solve for T ψo using Hψo = 0) to find:

T
[
∂ψo
∂xj

]
=

∂

∂xj
T [ψo] =

∂

∂vj
[−σψo + S[ψo]] (5.33a)

Recalling the components of x = ⟨x, µ, t⟩, the operation ∂/∂xj is appropriately given by the com-
ponents of the total derivatives ψo(x). From Eq. 5.33a, we may reduce the sum containing the
second-order derivatives in Eq. 5.32 to:∑

j

η(j)
∂T [ψo]

∂xj
= η(x)

[
− σ

∂ψo
∂x

+
∂

∂x
S[ψo]

]
+ η(µ)

[
− σ

∂ψo
∂µ

+
∂

∂µ
S[ψo]

]

+ η(t)
[
− σ

∂ψo
∂t

+
∂

∂t
S[ψo]

]
.

(5.34)

As a reminder, in general the coordinate functions pertaining to the original independent variables
may be functions of the entire independent phase space, i.e. η(j) = η(j)(x) = η(j)(x, µ, t). The
derivatives operating on the S[ψo] terms require explicit treatment. For the spatial and angular
derivatives, we have:

∂

∂x
S[ψo] =

σc

2

∫ 1

−1

dµ′ ∂ψo(x, µ
′, t)

∂x
(5.35a)

∂

∂µ
S[ψo] = 0 (for this model, but not in general) (5.35b)

Inserting Eq. 5.34 into Eq. 5.32, we arrive at our desired symmetry determining equation

0 =H[ϕ(x)] +
∑
j

{
∂ψo
∂xj

L
[
η(j)
]
− S

[
η(j)

∂ψo
∂xj

]}
+ η(x)

[
− σ

∂ψo
∂x

+
∂

∂x
S[ψo]

]

− η(µ)σ
∂ψo
∂µ

+ η(t)
[
− σ

∂ψo
∂t

+
∂

∂t
S[ψo]

]
.

(5.36a)

We note that S[η(j)∂ψo/∂vj ] is not readily simplified, so we leave them in this more general form.
Expanding the sum over j, and further expanding the Lη(j), we find some term cancellation to arrive
at our desired determining equation, written explicitly in terms of the coordinate functions:

0 = − 1

v

∂ϕ

∂t
− µ

∂ϕ

∂x
− σϕ+

σc

2

∫ 1

−1

dµ′ϕ+

[
1

v

∂η(x)

∂t
+ µ

∂η(x)

∂x

]
∂ψo
∂x

− σc

2

∫ 1

−1

dµ′η(x)
∂ψo
∂x

+

[
1

v

∂η(µ)

∂t
+ µ

∂η(µ)

∂x

]
∂ψo
∂µ

− σc

2

∫ 1

−1

dµ′η(µ)
∂ψo
∂µ′

+

[
1

v

∂η(t)

∂t
+ µ

∂η(t)

∂x

]
∂ψo
∂t

− σc

2

∫ 1

−1

dµ′η(t)
∂ψo
∂t

+
σc

2
η(x)

∫ 1

−1

dµ′ ∂ψo
∂x

+
σc

2
η(t)

∫ 1

−1

dµ′ ∂ψo
∂t

(5.37)
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where dependence on µ′ is implied for all integrands. Equation 5.37 is the most simplified form of
the determining equations without making further restrictions on the functionality of the coordinate
functions.

5.2.3 Solution to the Determining Equation and the Associated Lie Groups
For the sake of showing how to obtain a solution to the symmetry determining equation and the
neutron transport equation, we can assume a solution corresponds to a space- and time-translation
invariance coupled with solution-scaling invariance. These types of invariant forms, translation and
scaling, imply the following forms of the coordinate functions: η(x) = f , η(t) = b, ϕ = aψ, where a,
b, and f are arbitrary constants. Inserting these into Eq. 5.37 gives a determining equation satisfied
by η(µ). Using the fact that H[ϕ] = aH[ψ] = 0 gives:

0 =

[
1

v

∂η(µ)

∂t
+ µ

∂η(µ)

∂x

]
∂ψ

∂µ
− σc

2

∫ 1

−1

dµ′η(µ)
∂ψ

∂µ′ . (5.38)

An easy solution to this equation is the trivial solution: η(µ) = 0; this solution implies the identity
transformation, which we state below. We will use this solution and proceed by stating a solution
to the symmetry determining equations 5.37, i.e. the Lie group is:

η(x) = f (5.39a)

η(µ) =0 (5.39b)

η(t) = b (5.39c)

ϕ = aψ. (5.39d)

These coordinate functions have the associated infinitesimal generator and characteristic system:

V = f
∂

∂x
+ b

∂

∂t
+ aψ

∂

∂ψ
,

dx

f
=

dµ

0
=

dt

b
=

dψ

aψ
= dϵ,

(5.40a)

(5.40b)

where ϵ is the group parameter.
The group of global transformations, that leave the NTE invariant, corresponding to the Lie

group 5.39 is obtained by solving the system of equations:

∂x̃(x; ϵ)

∂ϵ
= η(x) = f (5.41a)

∂µ̃(µ; ϵ)

∂ϵ
= η(µ) = 0 (5.41b)

∂t̃(t; ϵ)

∂ϵ
= η(t) = b (5.41c)

∂ψ̃(ψ; ϵ)

∂ϵ
=ϕ = aψ, (5.41d)

with respective initial conditions: x̃(x; ϵ = 0) = x, µ̃(µ; ϵ = 0) = µ, t̃(t; ϵ = 0) = t, ψ̃(ψ; ϵ = 0) = ψ.
Solving each of the above yields the group of global transformations:

x̃(x; ϵ) =x+ fϵ (5.42a)
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µ̃(µ; ϵ) =µ (5.42b)

t̃(t; ϵ) = t+ bϵ (5.42c)

ψ̃(ψ; ϵ) =ψ eaϵ (5.42d)

We will define a new coordinate system that maps (xµtψ)-space to (qrsw)-space by solving members
of Eq. 5.40b and we will be able to construct a new characteristic system using the global transforms
Eqs. 5.42a - 5.42d. The member equations we solve will will be dx

dϵ ,
dµ
dx , dt

dx , and dψ
dt . Integrating

these equations and solving for the constant of integration defines a variable in the new coordinate
system. We first solve the dx

dϵ equation to determine q:

dx

dϵ
= f → q = x = fϵ+ c1. (5.43)

We note that we set the new variable q to include the group parameter ϵ because we do not need
the new variables to be parameterized by ϵ. Solving the remaining members, we find:

dµ

dx
=0 → r = µ (5.44a)

dt

dx
=
b

f
→ s =

t

b
− x

f
(5.44b)

dψ

dt
=
aψ

b
→ w = ψ e−at/b . (5.44c)

Note that we could have solved other members of Eq. 5.40b, such as dψ
dx to find w = ψ exp(−ax/f),

and such choices are arbitrary as we will end up with the same solution. Admittedly, some choices
make the ensuing analysis easier, and we did in fact chose to solve dψ

dt for this reason. Equations
5.43 - 5.44c define the new coordinate system in (qrsw)-space.

We next determine the global transformations of the new coordinates, (q̃, r̃, s̃, w̃). This is done
in three steps, by (1) taking the definitions Eqs. 5.43 - 5.44c and placing tildes over all variables in
the definitions, then (2) using Eqs. 5.42 to recover the original coordinates, then (3) rearranging to
write the expressions in the new coordinates. We demonstrate below, where each line is one of the
outlined steps:

q̃ = x̃

=x+ fϵ

= q + fϵ

(5.45a)

r̃ = µ̃

=µ

= r

(5.45b)

s̃ =
t̃

b
− x̃

f

=
t+ bϵ

b
− x+ fϵ

f

= s

(5.45c)

w̃ = ψ̃ e−at̃/b

=ψ eaϵ e−a(t+bϵ)/b

=w.

(5.45d)
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Thus we have a translation transformation in q and the identity transformation for r, s, and w. This
allows us to immediately construct a new characteristic system:

dq

f
=

dr

0
=

ds

0
=

dw

0
= dϵ. (5.46)

Using the transformation group, Eqs. 5.43 - 5.44c, we may transform the NTE into an equivalent
equation in (qrsw)-space, then we will be able to simplify this new transport equation using the
characteristic system Eq. 5.46. First we will need the identities for ∂w

∂t and ∂w
∂x , which can be

determined using the chain rule to find:

∂w

∂t
=
∂q

∂t

∂w

∂q
+
∂r

∂t

∂w

∂r
+
∂s

∂t

∂w

∂s

=
1

b

∂w

∂s

(5.47a)

∂w

∂x
=
∂q

∂x

∂w

∂q
+
∂r

∂x

∂w

∂r
+
∂s

∂x

∂w

∂s

=
∂w

∂q
− 1

f

∂w

∂s
,

(5.47b)

where, in going from the first to the second line, we utilized the partial derivatives of q, r, and s via
Eqs. 5.43 - 5.44b. Next, we write the ψ derivatives of the NTE in terms of the new coordinates
using Eqs. 5.47a - 5.47b:

∂ψ

∂t
= eat/b

[
a

b
w +

∂w

∂t

]
=eat/b

[
a

b
w +

1

b

∂w

∂s

] (5.48a)

∂ψ

∂x
=eat/b

∂w

∂x

=eat/b
[
∂w

∂q
− 1

f

∂w

∂s

]
.

(5.48b)

Finally, we insert Eqs. 5.48a - 5.48b as well as Eqs. 5.43 - 5.44c into the NTE, Eq. 5.11, cancel and
collect terms to find:[

1

vb
− r

f

]
∂w

∂s
+ r

∂w

∂q
+
[ a
vb

+ σ
]
w(q, r, s) =

σc

2

∫ 1

−1

dr′w(q, r′, s). (5.49)

As was mentioned, Eq. 5.49 is an equivalent NTE to Eq. 5.11 in the new coordinate system
defined by Eqs. 5.43 - 5.44c. In its current form, this new transport equation has not provided any
useful information as it is still an integro-differential equation with two derivatives and one integral.
However, we are in a position to simplify this equation by considering the directional derivative with
respect to the group parameter, dw

dϵ . Using the characteristic system, Eq. 5.46, and the chain rule,
we have:

dw

dϵ
= 0 =

∂w

∂q

dq

dϵ
+
∂w

∂r

dr

dϵ
+
∂w

∂s

ds

dϵ
. (5.50)

Now assembling directional derivatives of Eq. 5.46:

dq

dϵ
= f (5.51a)
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dr

dϵ
=0 (5.51b)

ds

dϵ
=0, (5.51c)

and inserting these into Eq. 5.50 yields a useful identity along the directional ϵ:

∂w

∂q
= 0 along direction ϵ (5.52)

thus
w(q, r, s) → w(r, s) along direction ϵ (5.53)

and Eq. 5.49 simplifies now to:[
1

vb
− r

f

]
∂w

∂s
+
[ a
vb

+ σ
]
w(r, s) =

σc

2

∫ 1

−1

dr′w(r′, s). (5.54)

Equation 5.54 is the NTE in (rsw)-space along the direction ϵ. We have reduced the equation from
being a function of three independent variables down to an equivalent equation of two independent
variables via the transformation group Eqs. 5.43 - 5.44c. Clearly, Eq. 5.54 is still somewhat difficult
to solve as it is still an integro-differential equation. As an aside, had we solved for w using dψ/dx,
we would have found the same equation, except the coefficient of w would be ar/f +σ. There would
then be two r variables in the equation, so we opted to use the “cleaner” route of solving for w using
dψ/dt.

We further reduce this new equation, Eq. 5.54, by casting the (rsw)-space to another new
coordinate system, say (RSW)-space. Instead of deriving the symmetry determining equations for
Eq. 5.54 to find a symmetry group, we can simply infer a symmetry group. Thus, we simply state
the coordinate functions we proceed with:

η(r) =0 (5.55a)

η(s) =1 (5.55b)

ϕ(w) = γw, (5.55c)

where γ is some scaling parameter to be determined. The corresponding global transformation group
is:

r̃2 = r (5.56a)

s̃2 = s+ ϵ2 (5.56b)

w̃2 =w eγϵ2 , (5.56c)

where we add the subscript to distinguish this transformation group from Eqs. 5.45 as we are now
mapping between another parameterized coordinate system. Thus the infinitesimal generator and
characteristic system are:

V2 =
∂

∂s
+ γw

∂

∂w
,

dr

0
=

ds

1
=

dw

γw
= dϵ2.

(5.57a)

(5.57b)
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To determine the new coordinate system, we solve the members of Eq. 5.57b: dr
ds ,

ds
dϵ2

, and dw
ds , from

which we solve for the constants of integration to yield R,S, and W; doing so gives:

R = r (5.58a)

S = s (5.58b)

W =w e−γs . (5.58c)

As was done in Eqs. 5.45, we may determine the global transformations of the new coordinates:

R̃ =R (5.59a)

S̃ =S + ϵ2 (5.59b)

W̃ =W, (5.59c)

and we have a characteristic system for (RSW)-space:

dR
0

=
dS
1

=
dW
0

= dϵ2. (5.60)

We can now transform Eq. 5.54 from (rsw)-space to (RSW)-space using the derivatives:

∂W
∂s

=
∂R
∂s

∂W
∂R

+
∂S
∂s

∂W
∂S

=
∂W
∂S

(5.61a)

∂w

∂s
= eγs

[
γW +

∂W
∂s

]
=eγs

[
γW +

∂W
∂S

]
,

(5.61b)

where we used the partial derivatives of Eqs. 5.58a and 5.58b to go from the first to the second
line of Eq. 5.61a. Inserting Eqs. 5.58a - 5.58c and Eq. 5.61b into Eq. 5.54 and simplifying yields
another equivalent transport equation in (RSW)-space:[

1

vb
− R
f

]
∂W
∂S

+

[
γ + a

vb
+ σ − γ

f
R
]
W(R,S) = σc

2

∫ 1

−1

dR′W(R′,S). (5.62)

Again, we simplify this equation by considering the directional derivative dW
dϵ2

, which may be con-
structed from the characteristic system, Eq. 5.60. Applying the chain rule, we find

dW
dϵ2

= 0 =
∂W
∂R

dR
dϵ2

+
∂W
∂S

dS
dϵ2

. (5.63)

From the characteristic system, we also know dR
dϵ2

= 0 and dS
dϵ2

= 1, which provides the condition:

∂W
∂S

= 0 along direction ϵ2 (5.64)

thus
W(R,S) → W(R) along direction ϵ2. (5.65)
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Finally, we find a reduced equation in one-variable:[
γ + a

vb
+ σ − γ

f
R
]
W(R) =

σc

2

∫ 1

−1

dR′W(R′). (5.66)

We can simplify the form of the coefficient on the LHS by considering the exponent of Eq. 5.44c:
at/b. In order for this quantity to be dimensionless, we set

a = − σ (5.67a)

b =1/v (5.67b)

γ =σfγ1 (5.67c)

here we have included a −1 in a for convenience and have also made the assumption that γ is
proportional to σ and f , where γ1 is some value to be determined. Inserting Eqs. 5.67a - 5.67c into
Eq. 5.66 and isolating the LHS, we find:

W(µ) =
c/2

(f − µ)γ1

∫ 1

−1

dµ′W(µ′), (5.68)

where we have applied the double-identity mapping R = r = µ to recover µ. Equation 5.68 is
classified as a homogeneous Fredholm integral equation of the Second Kind with an asymmetric non-
degenerate singular kernel [15]. The kernel, K(µ, µ′) = c/2

(f−µ)γ1 , is asymmetric because K(µ, µ′) ̸=
K(µ′, µ). It is non-degenerate because it cannot be written as a finite sum of the form K(µ, µ′) ̸=∑N
n=0 g1(µ)g2(µ

′) (note the kernel can be written as a product of two functions g1(µ)g2(µ′), the
issue is that the sum is not finite). Also, the kernel is singular at the point µ = f , which implies
any solutions W lie in the complex plane.

Though it appears relatively simple in form, Eq. 5.68 requires rigorous mathematics to completely
solve. The typical method for solving Fredholm equations is the Liouville-Neumann Series, also
known as the Neumann Series Method1, but that method only applies to inhomogeneous Fredholm
equations. A formal solution to Eq. 5.68 requires a spectral analysis of the Fredholm operator,
defined by the RHS of Eq. 5.68, and a treatment of the solution as a Schwarz distribution [17],
i.e. a generalized function or simply a distribution, to which the Singular Eigenfunction Expansion
Method may be applied [18, 19, 20, 21, 22]. For our purposes, it suffices to simply state the solution
as we have succeeded in our goal of deriving the Lie group corresponding to the Case solution. To
that end, we may further define γ1 and f :

f =α (5.69a)

γ1 = − ik, (5.69b)

where α is a real eigenvalue and k is a fixed real number and the solution is indexed accordingly:
Wα,k(µ). Thus, we obtain exactly the same equation that Case originally obtained:

Wα,k(µ) =
ic

2k

1

(α− µ)

∫ 1

−1

dµ′Wα,k(µ
′). (5.70)

We note that the “i” appears in Case’s solution from a Laplace transform in time while “k” shows
up from a Fourier transform in space (see Case and Zweifel, Sec. 7.2.A and 7.3.A [18]).

1See Ash Sec. 2.10, Eqs. 2.144 - 2.146 for an example where Liouville-Neumann Series is applicable because the
equation is inhomogeneous [16].
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Finally, we can map our two coordinate systems back to the original coordinate system using
Eqs. 5.58a - 5.58c to go from (RSW) → (qrsw) and Eqs. 5.43 - 5.44c to go from (qrsw) → (xµtψ).
Solving for ψ using Eq. 5.44c, i.e.

ψ = w eat/b, (5.71)

we may use Eq. 5.58c to replace w with W to find

ψ =W(R) eγs eat/b

=W(µ) eγ(t/b−x/f) eat/b,
(5.72)

where we used R = µ and Eq. 5.44b to revert s back to t and x. Finally, by inserting Eqs. 5.67a -
5.67c and 5.69a - 5.69b, we find the solution:

ψ(x, µ, t) = eikσx e−(1+iαk)vσtWα,k(µ), (5.73)

where it is understood that one must further solve the Fredholm equation, Eq. 5.70, to fully obtain
µ-dependence and doing so is beyond the scope of this paper.

We now discuss the physical meaning of the Lie groups used in this section to arrive at Case’s
solution. The first Lie group given by Eq. 5.42 is restated here using the inferred values given by
Eqs. 5.67 and 5.69:

x̃(x; ϵ) =x+ αϵ

µ̃(µ; ϵ) =µ

t̃(t; ϵ) = t+ ϵ/v

ψ̃(ψ; ϵ) =ψ e−σϵ .

This transformation group is a simultaneous space-translation, time-translation, and solution-scaling
transformation, while remaining in the original µ-space. The combination of time-translation and
solution-scaling results in the consolidated semi-solution given by Eq. 5.44c, i. e. w = ψ exp{+vσt}
which implies, for invariance, that a change in space and time of +αϵ and +ϵ/v, respectively2, must
be met by a scaling of the solution by a factor exp{−σϵ}. The new, less-one dimension along the
group-parameter characteristic curve, coordinate system is given by:

⟨r, s, w⟩ =
〈
µ, vt− x

α
, ψ evσt

〉
, (5.75)

where we see s acts as a Galilean boost, or a shear, while w scales the original solution ψ with a factor
exp{vσt}. Often we see the combination of space- and time-translation invariance in the construction
of traveling wave solutions. This Galilean boost combined with a scaling of solution suggests that the
traveling wave, i.e. the neutron flux information of the solution, is either amplified or dampened by
neutrons moving at speed v in a medium characterized by the interaction probability σ. The traveling
wave is exponentially dampened when the system is subcritical and will exponentially amplify for
supercritical systems. In the new coordinate system given by the Lie group of transformations, space
and time are bundled into a single dimension and similarly the flux with time providing the reduced
transport equation given by Eq. 5.54 (where the coefficient of w is zero when using Eqs. 5.67a and
5.67b), restated here: [

1− r

α

] ∂w
∂s

=
σc

2

∫ 1

−1

dr′w(r′, s).

2The parameter α has an implicit dependence on the physical parameters (e. g. v, σ, c) when the Fredholm
equation is solved.
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This transport equation has a Lie group that is the “same” Lie group of transformations given by
Eq. 5.56, such that we have a Lie group of leaving the angle identical, s-translation (translation in
the shear vt− x/α) with solution scaling:

r̃2(r; ϵ2) = r

s̃2(s; ϵ2) = s+ ϵ2

w̃2(w; ϵ2) =w e−ikασϵ2 .

Thus a translation in s by +ϵ2 requires a scaling of the solution by the factor exp{−ikασϵ2},
which can be thought of as a rotation of kασϵ2 radians in the complex plane. As before, k and α
have constraints derived from solving the Fredholm equation for the angular dependence. The new
reduced coordinate system is

⟨R,W⟩ =
〈
r, w e−ikασ(vt−x/α)

〉
, (5.77)

which results in the final Fredholm equation along the characteristic curve ϵ2. Thus the second Lie
group reduces the transport variables into a complex exponential for the original angle dependence.

5.3 Exercises
1. Consider a flux of neutrons, that initially have an energy Eo, passing through a material

composed of atoms with atomic mass A. The flux that has undergone n collisions, Fn(u), will
have a lethargy u = ln(Eo/E) with Eo ≥ E. The equation describing the n-th collision flux is:

Fn(u) =S(u) + g(u)

∫ nδ

u−δ
du′f(u′)Fn−1(u

′)

+ g(u)

∫ u

nδ

du′f(u′)Fn(u
′)

(5.78)

where

g(u) = e−u (5.79a)

f(u) = γ(u)
eu

1− α
. (5.79b)

Also, S(u) is an arbitrary source producing neutrons with lethargy u, δ = ln(1/α) is the max
lethargy a neutron can gain in a single collision, α = (A−1)2/(A+1)2, and γ(u) = Σs(u)/Σt(u)
is an arbitrary function of the scattering and total macroscopic cross sections of the medium.

(a) Derive the symmetry determining equation for this integral equation

(b) Show that the Lie group below satisfies the determining equation:

(η, ϕ) =

(
0, c exp

{∫ u

nδ

du′A(u′)

})
, (5.80)

where A(u) = 1
g(u)

dg
du + f(u)g(u).

(c) Determine the solution permitted by this Lie group
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(d) Find the global transformations of this Lie group and prove invariance of the surface
equation.

(e) Comment on the functional form of this Lie group, i.e. specifically, what is the connection
between this Lie group’s form and the integrating factor?
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Chapter 6

Conclusions

Throughout these lectures, we have provided a framework for the systematic implementation of
Lie Group Theory to solve varying types of differential equations. We hope the reader can follow
along, step-by-step, in solving their own problems. This work is clearly focused on the utility, or
application, of LGT, but there are many texts that provide deeper insight, in the pure mathematical
sense, to how LGT truly is a “generalized integration theory.” The motivated reader is pointed to
the texts [23, 24, 25, 26, 27, 28, 29, 30] for such an academic journey. To conclude these lectures,
we will simply summarize the overarching themes and steps that are present in the solution process
via LGT. These steps, are:

1. Write the equation under investigation as a surface equation, such that F (x,u,p) = 0.

2. Derive the symmetry determining equations using the formula:

pr(K)F (x,u,p)
∣∣∣
F=0

=
dF (x̃, ũ, p̃)

dϵ

∣∣∣∣∣
ϵ=0

= 0. (6.1)

We tend to use pr(K)F (x,u,p)|F=0 = 0 for differential equations that contain purely local
operators, and we are required to use dF (x̃,ũ,p̃)

dϵ |ϵ=0 = 0 for equations with nonlocal operators.
Note that we can use dF (x̃,ũ,p̃)

dϵ |ϵ=0 = 0 on all equations, regardless of the presence of nonlocal
operators.

3. Find solutions to the symmetry determining equations, which are known as Lie groups. This
is of course easier said than done, but usually we can determine whether or not F permits the
basic forms of Lie groups (e.g. translation, scaling) by inspection. A “sanity check” at this
stage is to derive the global transformations,

∂x̃

∂ϵ
= η(x̃, ũ), x̃(x,u; ϵ = 0) = x (6.2a)

∂ũ

∂ϵ
= ϕ(x̃, ũ), ũ(x,u; ϵ = 0) = u, (6.2b)

and to ensure that the symmetry criterion is satisfied by inserting the global transforms into
the original equation

F (x,u,p) = F (x̃, ũ, p̃) = 0. (6.3)
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4. Given a Lie group, we construct the characteristic system,

dx1
η(1)(x,u)

= · · · = dxI
η(I)(x,u)

=
du1

ϕ(1)(x,u)
= · · · = duJ

ϕ(J)(x,u)
= dϵ, (6.4)

to systematically determine a new coordinate system that we can then transform our original
variable space into to either simplify the surface equation or outright solve it. For ODEs, we
are able to use canonical coordinates which guarantee that, at a minimum, the equation in the
new variable space will be separable. For PDEs, we have a less systematic approach, and we
must strategically solve members of the characteristic system.

Perhaps the most crucial detail in this step is to use the fact that the surface equation, once
converted to the new variable space, will only simplify when we “evaluate it” along the direction
dϵ; this process allows us to construct an identity for the total parametric derivative dw

dϵ (where
w is the transformed variable corresponding to u) using the characteristic system. From which
we may determine relations between the partials and the new coordinate space’s parametric
dependence on ϵ, which will result in a reduction of order of the equation. See the discussion
leading up to Eq. 4.48 for the heat equation and Eqs. 5.52 and 5.64 for the neutron transport
equation example.

5. Once the equation in the new coordinate system is solved, we can revert back to the original
variable space to obtain the desired solution.

Given these steps, one can explore the mathematical structure of an equation and, based on the
permitted Lie groups, make deeper observations on the nature of the equation.

Now onward!
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