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1. INTRODUCTION 

When particles are fluidized by a gas, the resulting multiphase flow is almost always complex and chaotic, 

generating heterogeneous structures commonly known as clusters in particle-dilute flows and bubbles in 

particle-dense flows (Agrawal, et al. 2001; Fullmer and Hrenya 2018). These heterogeneous structures 

create a modeling challenge. While methods such as kinetic-theory based two-fluid models (Garzó, et al. 

2013) are able to capture these dynamics, it takes a significant amount of resolution to do so (Fullmer and 

Hrenya 2016, Fullmer, et al. 2017). Coarse-grid approaches targeting large-scale, industrially-relevant 

problems are unable to actively resolve the small-scale dynamics. Thus far, modeling has proved 

challenging with most efforts focused on the filtered (unresolved) drag force, e.g., Igci, et al. (2008), Igci 

& Sundaresan (2011), Sarkar, et al. (2016), Ozel et al. (2017), among many others. In this work, we focus 

on another quantity, the granular temperature, , a measure of the fluctuating kinetic energy in the particle 

phase.  

The model data come from a recently conducted large-scale CFD-DEM simulation campaign. In the CFD-

DEM method, the particles are resolved individually, including all collisions, and the fluid grid is twice 

the particle size, dx = 2dp. The problem of interest is gravity driven, particle-laden, gas-solid flow in a 

triply-periodic domain of length Lx = 2048 particle diameters with an aspect ratio of 4, Lx = Lz = Ly/4. The 

mean particle concentration, 0 = Np(/6)dp
3/LxLyLz for Np particles in the domain, and the Archimedes 

number, Ar = g|g|dp
3/g

2, are varied over a 33-point phase-space as shown in Fig. 1. Constant properties 

for all 33 simulations are the particle-to-fluid density ratio, * = p/g = 1000, the particle-particle 

restitution coefficient, epp = 0.9, and the friction coefficient, pp = 0.25. The mean (global) particle velocity 

is constrained to zero. Cluster-induced turbulence generates heterogeneous structures which cause 

particles to fall in dense clusters and rise in the dilute gas streams as exemplified by some example 

snapshots in Fig. 1. Once a quasi-steady-state has been reached, a snapshot is saved 100 times for each 

simulation at a frequency of 𝜏𝑝 = 𝜌𝑝𝑑𝑝
2/18𝜇𝑔 = 0.025 s. The CFD-DEM data is post-processed to 

compute the granular temperature and average over the entire domain. Two methods are used to calculate 

the granular temperature: 1) grid based, e.g., using the local eight fluid cells surrounding a given particle, 

and 2) filtered, using a constant diffusion filter width of f = 8dp.   
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Fig. 1. Overview of the 33-point phase space in mean concentration and Archimedes number with 

example snapshots for cases: run-01, run-12, run-23, and run-32.  

 

2. MODEL EQUATIONS 

We will rely on two models to estimate the granular temperature in this work. The first results from the 

homogeneous equilibrium assumption of the kinetic theory of Garzó et al. (2012). This assumption 

drastically simplifies the model by eliminating all transient and gradient terms, leaving only two algebraic 

expressions. The first gives the (homogeneous) slip velocity as  

 𝑣𝑠𝑙𝑖𝑝 = |𝑣𝑝 − 𝑣𝑔| =
𝑢∞

𝐹∗
=

Δρ|𝒈|𝑑𝑝
2

18𝜇𝑔𝐹∗
 , (1) 

where u∞ is the terminal velocity (of a single in an infinite medium) and F* is the multi-particle drag law, 

i.e., F* = Cd/Cd∞. In this work we use the DNS-based drag model of Tang et al. (2015). This is the same 
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drag law that was used in the original MFIX-Exa CFD-DEM simulations. The second expression gives 

the (homogeneous) granular temperature,  

 𝜉 =
2𝛾

𝑚
Θ + 𝜁0Θ , (2) 

where  is the granular temperature and m = p(/6)dp
3, is the particle mass. Equation (2) describes the 

balance of fluctuating kinetic energy generated by the neighbor effect, , and dissipated by the gas through 

thermal drag, , and the particle inelasticity through the zeroth-order cooling rate, 0. The neighbor effect 

is given by,  

 𝜉 =
𝑑𝑝

3
(

3𝜋𝜇𝑔𝑑𝑝

𝑚
)

2
𝑣𝑠𝑙𝑖𝑝

2

√Θ
𝑆∗ , (3) 

where S* = S*() is the concentration dependence of . The thermal drag force is given by,  

 𝛾 = 3𝜋𝜇𝑔𝑑𝑝𝑅∗ (4) 

where R* = R0
*() + R1

*()Re is the concentration dependence of , which also includes a first order 

dependence on the thermal Reynolds number,  

 𝑅𝑒Θ =
𝜌𝑔√Θ𝑑𝑝

𝜇𝑔
 .  

Finally, the zeroth-order cooling rate is given by  

 𝜁0 =
8

𝑑𝑝
𝜙𝜒(1 − 𝑒𝑝𝑝

2 ) (1 +
3

16
𝑎2) √

Θ

𝜋
,  (5) 

where a2 is the kurtosis of the velocity distribution function, see Garzó et al. (2012). The concentration 

dependent functions S*, R0
*, and R1

* are all fit to DNS data as with drag, F*; see Fullmer et al. (2017) for 

the exact expressions used in this work.  

The second model used here is the simple expression of Tang et al. (2016),  

 𝑅𝑒Θ = 2.108
𝑅𝑒𝑝

0.85

√𝜌∗
 , (5) 

where Re is the thermal Reynolds number as before and Rep is the particle (mean flow) Reynolds number,  

 𝑅𝑒𝑝 =
𝜌𝑔(1 − 𝜙)𝑣𝑠𝑙𝑖𝑝𝑑𝑝

𝜇𝑔
 .  

Equation (5) was fit to DNS data of dynamic suspensions. Therefore it is not necessarily as restrictive as 

the homogeneous equilibrium assumption on the kinetic theory, but the DNS simulations were much, 

much smaller than the CFD-DEM simulation data that is considered here.  
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3. RESULTS 

As mentioned previously, there are two post-processed datasets, one without filtering and one with 

Gaussian filtering of width f = 8dp. The same analysis will be applied to both datasets individually, 

revealing some interesting similarities and differences. We begin the analysis by looking at run-02 which 

is the center-point of the phase-space, see Fig. 1. First, we show the phase-averaged granular temperature 

as a function of time in Fig. 2. Note that this granular temperature quantity is both phase-averaged and 

spatially averaged over the entire domain, i.e.,  

 〈〈Θ〉〉 =
〈𝜙Θ〉

〈𝜙〉
=

∭ 𝜙Θ 𝑑𝑥 𝑑𝑦 𝑑𝑧

∭ 𝜙 𝑑𝑥 𝑑𝑦 𝑑𝑧
 .  (7) 

Note that 〈𝜙〉 ≈ 𝜙0 but minor differences exist due to the numerical process of depositing particle 

properties onto the grid and then averaging the Eulerian quantity. The fluctuation of the granular 

temperature in run-02 for both the filtered and no-filtered method are virtually identical, however the 

magnitude in the filtered data is much higher compared to the non-filtered data. This is somewhat expected 

due to the larger volume used to compute the granular temperature, i.e., more particles are included in the 

averaging, increasing the likelihood of averaging particles with different velocity.  

 

Fig. 2. Phase- and space-averaged granular temperature as a function of time for run-02, no filtering 

on the left and filtered, f = 8dp, on the right. Note that the data output frequency is one p = 0.025 s 

resulting in the noisy expected signal which is, ideally, statistically independent of the previous (saved) 

time. 
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Fig. 3. Mean slip velocity as a function of time for run-02, no filtering on the left and filtered, f = 8dp, 

on the right. 

Another important parameter is the slip velocity,  

 𝑣𝑠𝑙𝑖𝑝 = |〈〈𝑣𝑝〉〉 −  〈〈𝑣𝑔〉〉| . (8) 

In these simulations, the global average particle velocity is constrained to be zero in all directions, i.e., 

〈𝑣𝑝〉 = 0, therefore 〈〈𝑣𝑝〉〉 = 0, and vslip is simply | 〈〈𝑣𝑔〉〉 |. The slip velocity for the non-filtered and 

filtered data of run-02 is shown in Fig 3. Like the granular temperature in Fig. 2, the slip velocity with and 

without filtering are strongly correlated. However, unlike the granular temperature, there is not a 

noticeable difference in magnitude. In fact, the slip velocity is virtually unaffected by filtering. For 

reference, the homogeneous slip velocity in this case is 𝑣𝑠𝑙𝑖𝑝
(𝐻)

 = 0.135 m/s given by the drag law of Tang 

et al. (2016) which was also used in the underlying CFD-DEM simulations. The phase-averaged slip 

velocity is nearly an order of magnitude larger than the homogeneous value. This is not surprising given 

the highly heterogeneous and dynamic CIT state, e.g., as typified in Fig. 1.  

 

Fig. 4. Granular temperature as a function of time for run-02, no filtering on the left and filtered, f = 

8dp, on the right, compared to the models of Garzó et. al. (2012) (blue) and Tang et al. (2016) (red) 

using the homogeneous slip velocity (dashed lines) and the actual, measured slip velocity (solid lines).  
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Now, we compare the average granular temperature data from our CFD-DEM simulation campaign to 

homogeneous predictions, specifically the homogeneous equilibrium state of the kinetic theory of Garzó 

et al. (2012), Eq. (2), and the simple correlation given by Tang et al. (2016), Eq. (5). In Fig. 4, these 

predictions are compared to the phase-averaged granular temperature of run-02 (previously shown in Fig. 

2) As with the slip velocity, the predictions of these models are very far from the granular temperature 

extracted from the CFD-DEM simulations. And, again, this is not surprising, but provides a baseline and 

framework for exploring more complex modeling approaches. Next, we simply attempt to use these same 

models replacing the (homogeneous) slip velocity with the calculated slip velocity, i.e., from the 

simulation results as given in Fig. 3. Figure 4 also shows that using the actual slip velocity now allows 

both models to predict the average granular temperature quite well for the case of unfiltered data. We see 

that the model of Garzó et al. (2012) slightly overestimates the CFD-DEM data while the model of Tang 

et al. (2016) slightly underestimates the data. On the other hand, when this approach is applied to the 

filtered data, the measured granular temperature is still significantly higher than the modified predictions.  

 

Fig. 5. Time-averaged mean slip velocity as a function of the global particle concentration, no filtering 

on the left and filtered, f = 8dp, on the right. 

After looking at only run-02 data, we now consider all the runs for both the unfiltered and filtered 

simulation data. To reduce the data, we calculated the time-averaged granular temperature and the average 

slip velocity for each run. The time- and domain-averaged mean slip velocity is shown as points in Fig. 5. 

The homogeneous slip velocity is given by the family of curves which depend on the Archimedes number 

with minimum, mean, and maximum values shown. The data points are colored by the scale of Ar which 

coincides with the homogeneous slip velocity curves. We see that the higher Ar values typically 

correspond to a higher the slip velocity, indicating a larger degree of clustering or heterogeneity. The 

general behavior, i.e., increasing slip velocity to with concentration to approximately 10 to 15% and then 

decaying asymptotically to the homogeneous value at high concentration (0 > 40%), has been observed 

previously in similar studies, e.g., Radl and Sundaresan (2015) and Fullmer and Hrenya (2016). As with 

run-02 in Fig. 3, there is no significant difference between the unfiltered and filtered data for the slip 

velocity.  
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Fig. 6. Time- and phase-averaged granular temperature re-fit using the model of Tang et al. (2016), no 

filtering on the left and filtered, f = 8dp, on the right. 

Next, we consider the time-averaged granular temperature for the full 33-point dataset. The data is again 

color coded by Ar using the same scale as in Fig. 5. At this point, both the Garzó et al. (2012) and the Tang 

et al. (2015) were shown to provide a good estimate of granular temperature—provided that the actual 

slip velocity is used—for the unfiltered data and both under-predicted the filtered data. Therefore, for the 

rest of this work we will only consider the model of Tang et al (2016) which is considerably simpler and 

easier to adjust because it is a data-fit correlation. Figure 6 shows the time-averaged granular temperature 

for all simulations. For unfiltered data, the model of Tang et al. (2016) compares very favorably with the 

data, appearing only to need a slight increase in the coefficient to fit the data. While this is indeed the case, 

we have also freed the exponential parameter and preformed a two-parameter best-fit using Python’s 

library, scikit-learn. The result is a leading coefficient 1.75-times larger and an exponent of 0.83, very 

close to the value of 0.85 suggested by Tang et al. (2016). Although we are using the heterogeneous slip 

velocity, this still seems to be an impressive result considering that the original model was fit on DNS data 

of no more than 500 particles. The filtered data requires slightly more adjustment, a leading coefficient 

3.84-times as large and a slightly smaller exponent of 0.73. To summarize, the adjusted fits are,  

 𝑅𝑒Θ = 3.689
𝑅𝑒𝑝

0.83

√𝜌∗
 , (9) 

for the unfiltered data, and  

 𝑅𝑒Θ = 8.095
𝑅𝑒𝑝

0.73

√𝜌∗
 , (10) 

for the filtered data.  
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Fig. 7. Ratio of Re to the primary influence of the adjusted Tang fit as a function of Ar, no filtering on 

the left and filtered, f = 8dp, on the right. 

 

Fig. 8. Ratio of Re to the primary influence of the adjusted Tang fit as a function of Rep/(1 - ), no 

filtering on the left and filtered, f = 8dp, on the right.  

Although these expressions fit the data quite well, we seek to improve the agreement through further 

refinement of the original model. Originally, we had hoped that the impact of Archimedes number would 

be an easy addition to improve model prediction. However, Fig. 6 shows significant spread in the data at 

very similar Ar values. This indicates that, while there could be some underlying Ar-dependence, it may 

be difficult to elucidate. This thought is confirmed in Fig. 7 where the primary fits, i.e., 𝑅𝑒𝑝
0.83 and 𝑅𝑒𝑝

0.73 

for the unfiltered and filtered data, respectively, have been removed from 𝑅𝑒Θ and plotted against Ar. The 

lack of a strong correlation suggests that Ar has a weak influence on  or only as a secondary influence 

through other parameters.  
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Fig. 9. Ratio of Re to the primary influence of the adjusted Tang fit as a function of , no filtering on 

the left and filtered, f = 8dp, on the right. 

 

To separate the effects of  and vslip, which are linearly combined in Rep, the same quantity is plotted in 

Fig. 8 as a function of Rep / (1-). Again, only a weak correlation is observed; i.e., the primary influence 

of vslip on Re (beyond Rep as already fit) is also weak. Conversely, Fig. 9 shows that there remains a 

significant influence of  on Re beyond Rep. As shown in Fig. 9, we fit a simple quadratic which takes 

the form (𝜙0 − 𝐶10.22)2 + 𝐶00.072 with C1 = 0.22 and C0 = 0.072 for the unfiltered data and C1 = 0.23 

and C0 = 0.173. The new expressions are given by,  

 𝑅𝑒Θ = ((𝜑0 − 0.22)2 + 0.072)𝑅𝑒𝑝
0.83 , (11) 

for the unfiltered data, and  

 𝑅𝑒Θ = ((𝜑0 − 0.23)2 + 0.173)𝑅𝑒𝑝
0.73 , (12) 

for the filtered data. Note that we have dropped the density ratio dependence and should be added back in 

with a leading coefficient of 10001/2 for general modeling purposes.  
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Fig. 10. Parity plot comparison of the adjusted Tang model, Eqs. (9) and (10), to the time-averaged 

granular temperature, no filtering on the left and filtered, f = 8dp, on the right. 

 

 

Fig. 11. Parity plot comparison of the re-fit model, Eqs. (11) and (12), to the time-averaged granular 

temperature, no filtering on the left and filtered, f = 8dp, on the right. 

The models are compared to the raw data in Figs. 10 – 12. We refer to Eqs. (9) and (10) as the “adjusted 

Tang” model and Eqs. (11) and (12) as the “re-fit” model. Figures 10 and 11 show a marked improvement 

of the re-fit model over the adjusted Tang model. The R2 values increase from 90% and 95% to over 99% 

for the unfiltered and filtered data, respectively. Additionally, the re-fit model is compared to the 

underlying time-dependent, phase-averaged granular temperature, i.e., the full 3300 dataset, in Fig. 12. 

Obviously, there is more noise comparing to 100x the amount of data, but the overall agreement is still 

very good, R2 > 0.97 for both unfiltered and filtered data.  
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Fig. 12. Parity plot comparison of the re-fit model, Eqs. (11) and (12), to the time-dependent granular 

temperature, no filtering on the left and filtered, f = 8dp, on the right. 

 

3. CONCLUSIONS  

In this study, we investigated methods to predict granular temperature. The data that was used for 

comparison and regression came from a large-scale CFD-DEM simulation campaign. The data is 

organized into 33 conditions, each with 100 data “snapshots” from a triply-periodic cluster-induced 

turbulence simulation. The CFD-DEM data was post-processed to provide phase- and (space) domain-

averaged particle and fluid properties. Two types of post-processing were used: not filtering the particle 

data (beyond the native 8 fluid cell neighborhood deposition) and filtering with diffusion solve 

representing a Gaussian filter of width (at half max) f = 8dp. Two models were used to predict the granular 

temperature: the homogeneous equilibrium reduction of the kinetic theory of Garzó et al. (2012) and the 

simple DNS-data fit of Tang et al. (2016). As expected, both models significantly under-predict the phase-

averaged granular temperature from the CFD-DEM simulations. However, it was noticed that both models 

preformed reasonably, at least for the unfiltered data, when the actual (heterogeneous) slip velocity was 

used in the granular temperature expressions rather than the homogeneous value. Using this approach, we 

adjusted the Tang et al. (2016) correlation for both unfiltered and filtered data as given in Eqs. (9) and 

(10). The model was further improved by re-fitting a coefficient quadratic in concentration, , given by 

Eqs. (11) and (12). The refit model compares favorably to not only the time-averaged data it was fit on 

but also to the full set of time-dependent data as shown in Fig. 12.  

The two sets of post-processed data were independently, i.e., unfiltered vs. filtered, in this work. There is 

clearly a significant impact on the choice of post-processing filter on the data, specifically the granular 

temperature. Future work should focus on developing a more complete model as a function of the filter 

width. Additionally, the accuracy of the model is entirely dependent on accurately predicting the slip 

velocity which is known to be a very challenging issue in coarse representations of heterogeneous 

(clustered) particle-laden flows. Future work aimed at accurately predicting the heterogeneous (filtered) 

slip velocity based on the flow conditions would be of interest.  
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APPENDIX I  

Another approach we took was to use a machine learning technique called multiple linear regression 

(MLR), using the particle, concentration, Archimedes number, and slip velocity as its features to predict 

the granular temperature. We hope to simply the equation to predict the granular temperature by finding a 

multiple linear equation which is easier to interpret. Using the LinearRegression and train_test_split 

functions in Python from scikit-learn library, we were able to create the models.  After training and testing 

the models based each time-dependent data for each run, 3300 data points in total for each of the unfiltered 

and filtered datasets, we developed two multiple linear regression models. The MLR model for the 

unfiltered data is given by  

 Θ × 103 = 2.5389𝑣𝑠𝑙𝑖𝑝 − 8.3684〈𝜙〉 + 0.040824𝐴𝑟 , (A1) 

and the MLR model for the filtered data is given by: 

 Θ × 103 = 9.8774𝑣𝑠𝑙𝑖𝑝 − 22.0256〈𝜙〉 + 0.10331𝐴𝑟 . (A2) 

It was found that the MLR models were not as correlated with the data as the adjusted Tang model. The 

R2 values for Eq. (A1) and (A2) are 0.77749 and 0.84442 on the unfiltered and filtered data, respectively. 

Therefore, we do no recommend using these fits.  

 


