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1. INTRODUCTION

When particles are fluidized by a gas, the resulting multiphase flow is almost always complex and chaotic,
generating heterogeneous structures commonly known as clusters in particle-dilute flows and bubbles in
particle-dense flows (Agrawal, et al. 2001; Fullmer and Hrenya 2018). These heterogeneous structures
create a modeling challenge. While methods such as kinetic-theory based two-fluid models (Garzo, et al.
2013) are able to capture these dynamics, it takes a significant amount of resolution to do so (Fullmer and
Hrenya 2016, Fullmer, et al. 2017). Coarse-grid approaches targeting large-scale, industrially-relevant
problems are unable to actively resolve the small-scale dynamics. Thus far, modeling has proved
challenging with most efforts focused on the filtered (unresolved) drag force, e.g., Igci, et al. (2008), Igci
& Sundaresan (2011), Sarkar, et al. (2016), Ozel et al. (2017), among many others. In this work, we focus
on another quantity, the granular temperature, @, a measure of the fluctuating kinetic energy in the particle
phase.

The model data come from a recently conducted large-scale CFD-DEM simulation campaign. In the CFD-
DEM method, the particles are resolved individually, including all collisions, and the fluid grid is twice
the particle size, dx = 2d,. The problem of interest is gravity driven, particle-laden, gas-solid flow in a
triply-periodic domain of length L. = 2048 particle diameters with an aspect ratio of 4, Ly = L. = L,/4. The
mean particle concentration, ¢y = Ny(n/6)d,’/LcLyL- for N, particles in the domain, and the Archimedes
number, Ar = p.Ap|g|d,’/ 11>, are varied over a 33-point phase-space as shown in Fig. 1. Constant properties
for all 33 simulations are the particle-to-fluid density ratio, p° = p,/p; = 1000, the particle-particle
restitution coefficient, eyp = 0.9, and the friction coefficient, 14, = 0.25. The mean (global) particle velocity
is constrained to zero. Cluster-induced turbulence generates heterogeneous structures which cause
particles to fall in dense clusters and rise in the dilute gas streams as exemplified by some example
snapshots in Fig. 1. Once a quasi-steady-state has been reached, a snapshot is saved 100 times for each
simulation at a frequency of 7, = ppdzz, /18ug = 0.025 s. The CFD-DEM data is post-processed to
compute the granular temperature and average over the entire domain. Two methods are used to calculate
the granular temperature: 1) grid based, e.g., using the local eight fluid cells surrounding a given particle,
and 2) filtered, using a constant diffusion filter width of &= 8d,.
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Fig. 1. Overview of the 33-point phase space in mean concentration and Archimedes number with
example snapshots for cases: run-01, run-12, run-23, and run-32.

2. MODEL EQUATIONS

We will rely on two models to estimate the granular temperature in this work. The first results from the
homogeneous equilibrium assumption of the kinetic theory of Garzé et al. (2012). This assumption
drastically simplifies the model by eliminating all transient and gradient terms, leaving only two algebraic
expressions. The first gives the (homogeneous) slip velocity as

U, _Aplgldy O
F* ~ 18ugF*’

Vsiip = |vp _vg| =

where u is the terminal velocity (of a single in an infinite medium) and F~ is the multi-particle drag law,
i.e., F© = Ca/Cax. In this work we use the DNS-based drag model of Tang et al. (2015). This is the same
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drag law that was used in the original MFIX-Exa CFD-DEM simulations. The second expression gives
the (homogeneous) granular temperature,

_Z
§=—0+(0, 2

where O is the granular temperature and m = p,(n/6)d,’, is the particle mass. Equation (2) describes the
balance of fluctuating kinetic energy generated by the neighbor effect, &, and dissipated by the gas through
thermal drag, 7, and the particle inelasticity through the zeroth-order cooling rate, . The neighbor effect
is given by,

d, (3rpyd,\ v
E — ' T[.ug D vSllp S* ’ (3)
3 m Vo

where " = S"(¢) is the concentration dependence of £ The thermal drag force is given by,
Yy = 3mugyd,R” 4)

where R* = Ro'(#) + Ri"(§)Reeo is the concentration dependence of y, which also includes a first order
dependence on the thermal Reynolds number,

Vod
Re@ = —pg P .
Hg
Finally, the zeroth-order cooling rate is given by
8 3 0
$o = d_pd’)((l _ez%p) (1 +1_6a2> o ®)

where a> is the kurtosis of the velocity distribution function, see Garzoé et al. (2012). The concentration
dependent functions S*, Ry", and R;" are all fit to DNS data as with drag, F"; see Fullmer et al. (2017) for
the exact expressions used in this work.

The second model used here is the simple expression of Tang et al. (2016),

60'85
p
= (%)
N3

where Ree 1s the thermal Reynolds number as before and Re, is the particle (mean flow) Reynolds number,

_ pg(l - ¢)vslipdp
Hg '

Reg = 2.108

Re

p

Equation (5) was fit to DNS data of dynamic suspensions. Therefore it is not necessarily as restrictive as
the homogeneous equilibrium assumption on the kinetic theory, but the DNS simulations were much,
much smaller than the CFD-DEM simulation data that is considered here.
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3. RESULTS

As mentioned previously, there are two post-processed datasets, one without filtering and one with
Gaussian filtering of width Jf = 8d,. The same analysis will be applied to both datasets individually,
revealing some interesting similarities and differences. We begin the analysis by looking at run-02 which
is the center-point of the phase-space, see Fig. 1. First, we show the phase-averaged granular temperature
as a function of time in Fig. 2. Note that this granular temperature quantity is both phase-averaged and
spatially averaged over the entire domain, i.e.,

(90) _ [If ¢© dx dy dz
@)~ [ @dxdydz

Note that (¢) =~ ¢, but minor differences exist due to the numerical process of depositing particle
properties onto the grid and then averaging the Eulerian quantity. The fluctuation of the granular
temperature in run-02 for both the filtered and no-filtered method are virtually identical, however the
magnitude in the filtered data is much higher compared to the non-filtered data. This is somewhat expected
due to the larger volume used to compute the granular temperature, i.e., more particles are included in the
averaging, increasing the likelihood of averaging particles with different velocity.

(o)) =

(7
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Fig. 2. Phase- and space-averaged granular temperature as a function of time for run-02, no filtering
on the left and filtered, &f = 8dp, on the right. Note that the data output frequency is one z, = 0.025 s
resulting in the noisy expected signal which is, ideally, statistically independent of the previous (saved)
time.
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Fig. 3. Mean slip velocity as a function of time for run-02, no filtering on the left and filtered, &f = 8dp,
on the right.

Another important parameter is the slip velocity,

filtered data of run-02 is shown in Fig 3. Like the granular temperature in Fig. 2, the slip velocity with and
without filtering are strongly correlated. However, unlike the granular temperature, there is not a

noticeable difference in magnitude. In fact, the slip velocity is virtually unaffected by filtering. For

(H) _
slip

et al. (2016) which was also used in the underlying CFD-DEM simulations. The phase-averaged slip
velocity is nearly an order of magnitude larger than the homogeneous value. This is not surprising given

reference, the homogeneous slip velocity in this case is v

Vsiip = [((vp)) = ()] -

In these simulations, the global average particle velocity is constrained to be zero in all directions, i.e.,
(vp) = 0, therefore ((v,)) = 0, and vy, is simply | {{vy)) |. The slip velocity for the non-filtered and

®)

the highly heterogeneous and dynamic CIT state, e.g., as typified in Fig. 1.
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Fig. 4. Granular temperature as a function of time for run-02, no filtering on the left and filtered, f =
8dp, on the right, compared to the models of Garzé et. al. (2012) (blue) and Tang et al. (2016) (red)
using the homogeneous slip velocity (dashed lines) and the actual, measured slip velocity (solid lines).

Page 6

0.135 m/s given by the drag law of Tang



Granular temperature modeling with large-scale CFD-DEM data

Now, we compare the average granular temperature data from our CFD-DEM simulation campaign to
homogeneous predictions, specifically the homogeneous equilibrium state of the kinetic theory of Garzo
et al. (2012), Eq. (2), and the simple correlation given by Tang et al. (2016), Eq. (5). In Fig. 4, these
predictions are compared to the phase-averaged granular temperature of run-02 (previously shown in Fig.
2) As with the slip velocity, the predictions of these models are very far from the granular temperature
extracted from the CFD-DEM simulations. And, again, this is not surprising, but provides a baseline and
framework for exploring more complex modeling approaches. Next, we simply attempt to use these same
models replacing the (homogeneous) slip velocity with the calculated slip velocity, i.e., from the
simulation results as given in Fig. 3. Figure 4 also shows that using the actual slip velocity now allows
both models to predict the average granular temperature quite well for the case of unfiltered data. We see
that the model of Garzo et al. (2012) slightly overestimates the CFD-DEM data while the model of Tang
et al. (2016) slightly underestimates the data. On the other hand, when this approach is applied to the
filtered data, the measured granular temperature is still significantly higher than the modified predictions.
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Fig. 5. Time-averaged mean slip velocity as a function of the global particle concentration, no filtering
on the left and filtered, of = 8dp, on the right.

After looking at only run-02 data, we now consider all the runs for both the unfiltered and filtered
simulation data. To reduce the data, we calculated the time-averaged granular temperature and the average
slip velocity for each run. The time- and domain-averaged mean slip velocity is shown as points in Fig. 5.
The homogeneous slip velocity is given by the family of curves which depend on the Archimedes number
with minimum, mean, and maximum values shown. The data points are colored by the scale of A» which
coincides with the homogeneous slip velocity curves. We see that the higher Ar values typically
correspond to a higher the slip velocity, indicating a larger degree of clustering or heterogeneity. The
general behavior, i.e., increasing slip velocity to with concentration to approximately 10 to 15% and then
decaying asymptotically to the homogeneous value at high concentration (¢ > 40%), has been observed
previously in similar studies, e.g., Radl and Sundaresan (2015) and Fullmer and Hrenya (2016). As with
run-02 in Fig. 3, there is no significant difference between the unfiltered and filtered data for the slip
velocity.
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Fig. 6. Time- and phase-averaged granular temperature re-fit using the model of Tang et al. (2016), no
filtering on the left and filtered, &f = 8dp, on the right.

Next, we consider the time-averaged granular temperature for the full 33-point dataset. The data is again
color coded by Ar using the same scale as in Fig. 5. At this point, both the Garzo et al. (2012) and the Tang
et al. (2015) were shown to provide a good estimate of granular temperature—provided that the actual
slip velocity is used—for the unfiltered data and both under-predicted the filtered data. Therefore, for the
rest of this work we will only consider the model of Tang et al (2016) which is considerably simpler and
easier to adjust because it is a data-fit correlation. Figure 6 shows the time-averaged granular temperature
for all simulations. For unfiltered data, the model of Tang et al. (2016) compares very favorably with the
data, appearing only to need a slight increase in the coefficient to fit the data. While this is indeed the case,
we have also freed the exponential parameter and preformed a two-parameter best-fit using Python’s
library, scikit-learn. The result is a leading coefficient 1.75-times larger and an exponent of 0.83, very
close to the value of 0.85 suggested by Tang et al. (2016). Although we are using the heterogeneous slip
velocity, this still seems to be an impressive result considering that the original model was fit on DNS data
of no more than 500 particles. The filtered data requires slightly more adjustment, a leading coefficient
3.84-times as large and a slightly smaller exponent of 0.73. To summarize, the adjusted fits are,

£0-83
Reg = 3.689 —2—, )
NS
for the unfiltered data, and
0.73
Reg = 8.095

£, 10
I (10)

for the filtered data.
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Fig. 7. Ratio of Ree to the primary influence of the adjusted Tang fit as a function of Ar, no filtering on
the left and filtered, &f = 8dp, on the right.
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Fig. 8. Ratio of Ree to the primary influence of the adjusted Tang fit as a function of Rep/(1 - ¢), no
filtering on the left and filtered, &f = 8dp, on the right.

Although these expressions fit the data quite well, we seek to improve the agreement through further
refinement of the original model. Originally, we had hoped that the impact of Archimedes number would
be an easy addition to improve model prediction. However, Fig. 6 shows significant spread in the data at
very similar Ar values. This indicates that, while there could be some underlying 4r-dependence, it may
be difficult to elucidate. This thought is confirmed in Fig. 7 where the primary fits, i.e., Rey®® and Re)”3
for the unfiltered and filtered data, respectively, have been removed from Reg and plotted against Ar. The

lack of a strong correlation suggests that Ar has a weak influence on @ or only as a secondary influence
through other parameters.
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Fig. 9. Ratio of Ree to the primary influence of the adjusted Tang fit as a function of ¢, no filtering on
the left and filtered, &f = 8dp, on the right.

To separate the effects of ¢ and vy, which are linearly combined in Re,, the same quantity is plotted in
Fig. 8 as a function of Re, / (1-¢). Again, only a weak correlation is observed; i.e., the primary influence
of vuip on Ree (beyond Re, as already fit) is also weak. Conversely, Fig. 9 shows that there remains a
significant influence of ¢ on Ree beyond Rep. As shown in Fig. 9, we fit a simple quadratic which takes
the form (¢py — €;0.22)? + €,0.072 with C; = 0.22 and Cy = 0.072 for the unfiltered data and C; = 0.23
and Co = 0.173. The new expressions are given by,

Reg = ((¢o — 0.22)% + 0.072)Re3, (11)
for the unfiltered data, and
Reg = ((po — 0.23)2 + 0.173)Red 3, (12)

for the filtered data. Note that we have dropped the density ratio dependence and should be added back in
with a leading coefficient of 1000"? for general modeling purposes.
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Fig. 10. Parity plot comparison of the adjusted Tang model, Egs. (9) and (10), to the time-averaged
granular temperature, no filtering on the left and filtered, &f = 8dp, on the right.
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Fig. 11. Parity plot comparison of the re-fit model, Egs. (11) and (12), to the time-averaged granular
temperature, no filtering on the left and filtered, &f = 8dp, on the right.

The models are compared to the raw data in Figs. 10 — 12. We refer to Egs. (9) and (10) as the “adjusted
Tang” model and Eqgs. (11) and (12) as the “re-fit” model. Figures 10 and 11 show a marked improvement
of the re-fit model over the adjusted Tang model. The R? values increase from 90% and 95% to over 99%
for the unfiltered and filtered data, respectively. Additionally, the re-fit model is compared to the
underlying time-dependent, phase-averaged granular temperature, i.e., the full 3300 dataset, in Fig. 12.
Obviously, there is more noise comparing to 100x the amount of data, but the overall agreement is still
very good, R? > 0.97 for both unfiltered and filtered data.
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Fig. 12. Parity plot comparison of the re-fit model, Egs. (11) and (12), to the time-dependent granular
temperature, no filtering on the left and filtered, &f = 8dp, on the right.

3. CONCLUSIONS

In this study, we investigated methods to predict granular temperature. The data that was used for
comparison and regression came from a large-scale CFD-DEM simulation campaign. The data is
organized into 33 conditions, each with 100 data “snapshots” from a triply-periodic cluster-induced
turbulence simulation. The CFD-DEM data was post-processed to provide phase- and (space) domain-
averaged particle and fluid properties. Two types of post-processing were used: not filtering the particle
data (beyond the native 8 fluid cell neighborhood deposition) and filtering with diffusion solve
representing a Gaussian filter of width (at half max) &= 8d,. Two models were used to predict the granular
temperature: the homogeneous equilibrium reduction of the kinetic theory of Garzo et al. (2012) and the
simple DNS-data fit of Tang et al. (2016). As expected, both models significantly under-predict the phase-
averaged granular temperature from the CFD-DEM simulations. However, it was noticed that both models
preformed reasonably, at least for the unfiltered data, when the actual (heterogeneous) slip velocity was
used in the granular temperature expressions rather than the homogeneous value. Using this approach, we
adjusted the Tang et al. (2016) correlation for both unfiltered and filtered data as given in Egs. (9) and
(10). The model was further improved by re-fitting a coefficient quadratic in concentration, @, given by
Egs. (11) and (12). The refit model compares favorably to not only the time-averaged data it was fit on
but also to the full set of time-dependent data as shown in Fig. 12.

The two sets of post-processed data were independently, i.e., unfiltered vs. filtered, in this work. There is
clearly a significant impact on the choice of post-processing filter on the data, specifically the granular
temperature. Future work should focus on developing a more complete model as a function of the filter
width. Additionally, the accuracy of the model is entirely dependent on accurately predicting the slip
velocity which is known to be a very challenging issue in coarse representations of heterogeneous
(clustered) particle-laden flows. Future work aimed at accurately predicting the heterogeneous (filtered)
slip velocity based on the flow conditions would be of interest.
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APPENDIX I

Another approach we took was to use a machine learning technique called multiple linear regression
(MLR), using the particle, concentration, Archimedes number, and slip velocity as its features to predict
the granular temperature. We hope to simply the equation to predict the granular temperature by finding a
multiple linear equation which is easier to interpret. Using the LinearRegression and train_test split
functions in Python from scikit-learn library, we were able to create the models. After training and testing
the models based each time-dependent data for each run, 3300 data points in total for each of the unfiltered
and filtered datasets, we developed two multiple linear regression models. The MLR model for the
unfiltered data is given by

0 x 10% = 2.5389vg;, — 8.3684(¢) + 0.040824A4r, (A1)
and the MLR model for the filtered data is given by:
0 x 103 = 9.8774vg;, — 22.0256(¢) + 0.103314r . (A2)

It was found that the MLR models were not as correlated with the data as the adjusted Tang model. The
R? values for Eq. (A1) and (A2) are 0.77749 and 0.84442 on the unfiltered and filtered data, respectively.
Therefore, we do no recommend using these fits.
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