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This project was funded by the United States Department of Energy, National Energy
Technology Laboratory, in part, through a site support contract. Neither the United States
Government nor any agency thereof, nor any of their employees, nor the support
contractor, nor any of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by frade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any
agency thereof.
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GCS systems include environmental,
social, socio-economic, and regulatory
considerations in addition to the
subsurface.

Micro-Seismic
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Matrix Development for Carbon Storage Data
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Motivation:

e Need data fo inform
CO, storage resource ‘
assessments -

1.

« Carbon storage
technical viability
determined by more
than geological factors:

 Environmental
» Socio-economic
e Infrastructure

= I\

E=EVA. . . .
Energy Data exchango | What information is needed for carbon storage?
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Matrix Development:

Review and compile
previous carbon
stforage assessment
frameworks

Integrate existing
frameworks together
and add missing
components/categories

Review, test, and
improve framework by
incorporating feedback
and expert review

4CCS
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Matrix is an integrated, comprehensive knowledge framework.
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Environmental Justice,
Social Justice, and
Community Impacts

5 Categories m 14 Subcategories

« Reflects multidisciplinary requirements of carbon storage projects

Retention and Hazards
Geomechanical Risk

- = o
acili ectio
. . o ,’w racer Injection Location
rine Production, 4 & )
: - | —

Reservoir Suitability

.
.
e

Siting, Regulatory, and
Jurisdiction Considerations

Land Rights/Use

eismic

Population and Habitats

Jurisdiction

Regulatory
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5 Categories = 14 Subcategories = 46 Components

Porosity Porosity
Permeability Impact of permeability on
injectivity

Reservoir Suitability

Depositional Environment,
Lithology, Grainsize, and
Sorting

Quality of internal
reservoir characteristics

Diagenesis, Grain Scale |Impact of alteration on
Deformation, Secondary pore space, connectivity,
Alteration and resulting injectability

Siting, Regulatory, and
Political Considerations et s P s g o an s




Comprehensive Matrix Includes Viability Designations

« Build upon previous studies (e.g.,
Rodosta et al., 2011) to define criteria

« Components of technical viability are
described for designations ranging

from “Non-Viable to Excellent Viability”

- Viability designations help evaluate
data utility

Non-Viable

Possibly Non-Viable

Viable with Hurdles

—

Viable but Non-Ideal

Yo7 ——

W

Fair/Decent Viability
Good Viability
Excellent Viability
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Reservoir Quality

Categories [Subcategories components Desgnation Non-Viable Possibly Non-Viable |  Viable with Hurdles | Viable but Non-Ideal | Fair / Decent Viability |  Good Viability Excellent Viability
= je reduce its| detrimental il 5%
moving f ittl i L o optimal, but should be il o J
o o] iespan, project : for this project.
F e eaig) capacity. Jor money. ‘moving forward. il
Reservoir Porosity Porosity Limited porosity. Low porosity. po Good porosity. Excellent porosity. Unknown porosity.
Reservoir Permeability Wit o bR iy, | ted s mm'v ¥ Urieed ity Z Mod Excelent and extensive), |\ meabiit

Lithologsh Grainsize, and Sorting

Quality of i
characteristics.

Poor internal reservoir characteristics.

Decent internal reservoir characteristics.

Moderate internal reservoir

Good internal reservoir

Excellent internal reservoir

Unknown internal

Di is, Grain Scal

Alteration and

Impact of reservoir

connectivity. Fractures decrease

Little alteration and fracturing|

Either no alteration or
fractures or alteration

Alteration level, extent,

Deformation, Secondary | fractures on pore space, connectivity, eliminates some pore space and Some alteration and fractures impacting pore space and connectivity. detrimentall impacting pore [ "2C1U7%5 O NN |ty density, and
Alterati i injectability. " connectvity. space. Proving el impact are unknown.
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fecti " anslogously. pressure. -
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i ]
" y . and spatial extent with some . Seal has excallent thickness | 53 thickness, spatia
Top Seal y of seal thickness and Seal orbas | — e, | Topseaihas iy [ oete extent, and
Variability spatial extent. insufficient spatial extent. !y, L2 o it 2| likely effective. and Spenl axcentc and by effectiveness are
Its previous effectiveness may be proven effective.
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unknown.
Top Seal Viability, Fractu Porosi ity ihol i llent seali
o8 Ston Vi [ ace. | Pt paamenk PONRN O iow soul bie| Top seal may [Fop seal has some issues with porosity and permesability but may bel Sealhas excellent s23ling | oy characteristics are
Pressure, Lithology, Porosity, and| breakthrough pressure, and sealing el ey Lol Top seal rties, and is proven 5
oz o lcdmritean sffective. permesble to be effective suffcien i unknown.
Seals and
Secondary confining unit is
Pressure
— . No secondary confining unit and ; W— 5
» : : Layers in the overburden could have is | present, has 2 sealing ;
et overburden highly porous and likely to ; : : [ vin .
Presence and Viability seal. potential. present. iithology, and is relatively lconfning seal unknown.
flow sasily. by injsction location.
Lo o A ol

Manuscript in prep:

Mulhern, J., Mark-Moser, M., Creason, C.G., Cordero Rodriguez, N. in prep.
An Integrated Framework for Geologic Carbon Storage Viability
Assessments
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« Data availability assessment - a machine T e e e o 7'
learning centered workflow which is ’
currently in development by the NETL e |
feam to perform spatial data gaps Ty | i
assessments (Creason et al., next talk) NETL oo s ety

Unit Presence and SOl e telan
interpretations of

- Data gaps assessment — matrix framework ,
provides an organization framework for —
reviewing available data at various spatial

Induced Seismicity

Pressure

Communication with
Reservoir
scqa | es e i G A e Geological Trap Type
30 June 2024 and Certainty
Aggregated data . Some'
) information
on traps available. can be
L] L] . . P
Some information Limited data on traps for the
- F k f [ deling -
rq m ewor or eo o IC m o e I n Trap Trap Viability and can be garnered region based on limited garréili':iinfgrom

R N ., Office of Fossil Energy and . P .
@cnEray | N5 Carbon Management Previously from existing subsurface mapping.
hydrocarbon

C O n Si d e ro 'I'i O n S O n d q U O n 'I'i 'I'O 'I'i V e . . Demonstrated Integrity | hydrocarbon field field

b d . ,| d .'I'h 'I'h 'I' . information. information.
. p Fault Presence, Depth,
as a guide for model development
g p Status (Active vs.
Inactive)
Fracture Type and Mapped Mapped faults
Density Mapped faults faults from from USGS. Mf?grﬂsff;l:ts
Fault Reactivation from USGS. Some USGS. Some Some Faults mappéd
Faulting Likelihood with earthquake earthquake earthquake o
. Increased Pressure occurrence data occurrence occurrence included in
Mulhern, J. S.; Mark-Moser, M., Rose, K. Offshore Geologic Carbon Storage Data Fault Gouge and aggregated. data data ataset
Collection and Data Gaps Analysis; DOE.NETL-2024.4804; NETL Technical Report Series; U.S. Cementatiog(Fau't Seal aggregated. aggregated.
Department of Energy, National Energy Technology Laboratory: Aloany, OR, 2024; p 24. ViobTlty
. Earthquake Prevalence
https://doi.org/10.2172/2382659 and Likelihood
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Benefits of a Comprehensive Approach
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* Integrated matrix framework
ensures that mulfi-faceted
aspects of carbon storage are
considered up front

« Creates a starting point for
those new to geologic carbon
stforage

« Ensures that stakeholders
consider project aspects
which may be outside of their
primary discipline
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