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ABSTRACT

The design of a pretraining dataset is emerging as a critical
component for the generality of foundation models. In the
remote sensing realm, large volumes of imagery and bench-
mark datasets exist that can be leveraged to pretrain founda-
tion models, however using this imagery in absence of a well-
crafted sampling strategy is inefficient and has the potential
to create biased and less generalizable models. Here, we pro-
vide a discussion and vision for the curation and assessment
of pretraining datasets for remote sensing geospatial foun-
dation models. We highlight the importance of geographic,
temporal, and image acquisition diversity and review possible
strategies to enable such diversity at global scale. In addition
to these characteristics, support for various spatial-temporal
pretext tasks within the dataset is also critical. Ultimately,
our primary objective is to place emphasis on and draw at-
tention to the data curation stage of the foundation model
development pipeline. By doing so, we think it is possible
to reduce biases of geospatial foundation models, as well as
enable broader generalization to downstream remote sensing
tasks and applications.

Index Terms— foundation models, datasets, pretraining,
self-supervised learning, unsupervised learning

1. INTRODUCTION

Foundation models (FMs) are large neural networks trained
in a self-supervised or unsupervised manner on vast amounts
of unlabeled data. Such models are generalizable to a broad
range of downstream tasks by adapting the features learned
in the pretraining process. They are an emerging paradigm in
artificial intelligence and have recently become a focus in the
remote sensing and geospatial communities [1, 2, 3].

The data creation and curation process is emerging as
an important precursor to pretraining foundation models. In
the context of the full foundation model ecosystem and de-
velopment process, data creation and curation occur before
training, adaptation, and deployment [4]. In the curation
stage, data is selected and filtered to meet requirements or
constraints and ensure quality and relevance. The outcome of
this curation step is a pretraining dataset.

The pretraining dataset is highly important for the devel-
opment of a foundation model. In addition to suitable archi-
tectures and learning objectives, vast and diverse pretraining
datasets have been a critical component determining the ca-
pabilities a model can acquire [4], as it provides the source
for learning useful representations that can later be leveraged
at the adaptation stage for a variety of downstream tasks. Fur-
thermore, dataset composition is a critical factor in establish-
ing biases and contributing to the overall risks and challenges
of developing these models. For geospatial foundation mod-
els, these risks and challenges include geographic bias, ge-
ographic fidelity, temporal bias, spatial scale, heterogeneity,
and generalizability [5]. As such, processes for curating data
and the resulting datasets must be well designed, documented,
understood, and managed.

Numerous benchmark training datasets exist in the remote
sensing community, some of which have been used to pretrain
geospatial foundation models [6, 7]. However, many of these
datasets are not global and lack geographic, temporal, and
image acquisition diversity. To overcome these limitations,
new datasets specifically designed for self-supervised learn-
ing and pretraining geospatial foundation models have been
proposed [8, 9, 10, 3, 11]. Given such variety in the usage of
pre-existing datasets and new datasets being developed spe-
cific for pretraining, a discussion and review of datasets and
dataset curation processes for foundation model pretraining is
needed to help the field moving forward in the development
of new FMs as well as better understanding their limitations.

Based on a brief review summarized in Section 2 of this
manuscript, we identify several limitations of current liter-
ature in pretraining datasets for remote sensing foundation
models, including: (1) lack of clarity in dataset curation pro-
cess and the contents of the dataset; (2) general lack of met-
rics, metadata, and dataset descriptions to inform their usage
and determine their diversity and representativeness; (3) some
applications, for example glaciology, illegal mining, and de-
forestation, are not represented in existing labeled datasets
or unlabeled datasets leading to question the usefulness of
the pretraining data and resulting pretrained model for sev-
eral downstream applications; (4) lack of consistency in pre-
training data and evaluation protocols across works leads to
question if the limitations of the model are a result of the pre-



training data, learning scheme, pretext tasks, architecture, or
other factors. This ultimately limits our community’s ability
to compare results and draw conclusions on the state of the
art.

In this paper, we build upon these observations and de-
scribe: (1) a vision for summarizing existing and future pre-
training datasets; and, (2) a vision for developing a globally
diverse and representative pretraining dataset. As a path for-
ward, we promote the following key aspects for a pretraining
dataset: (1) geographic diversity in landcover, biome, climate,
population density, built environment, and socio-economics;
(2) temporal diversity to support applications where temporal
invariance may or may not be desired; (3) image acquisition
parameter diversity such as ground sample distance, sensor,
and viewing geometry; (4) support for different pretext tasks
(spatial context, geolocation, temporal sequences); (5) sup-
port for numerous downstream tasks and applications (e.g.
ocean, land, wetland, snow and ice, forest monitoring, agri-
culture, urban and built environment, disaster assessment);
(6) support for different dataset sizes to promote different use
cases and data-centric studies related to pretraining geospa-
tial foundation models; and (7) detailed documentation of the
dataset following best practices established in [12] along with
metadata such as spatial resolution, sensor, geospatial coordi-
nates, and other relevant information for each sample in the
image dataset. As noted in [6], properties of diversity, rich-
ness, and scalability are highly relevant for creating bench-
mark datasets, and these same principles should be applied to
geospatial foundation model pretraining datasets.

2. RELATED WORK

Pre-existing Benchmark Datasets for Pretraining. Numer-
ous annotated remote sensing datasets have been gathered
over the years for benchmarking tasks such as image clas-
sification [7, 6], object detection [13, 14], and segmentation
[15, 16]. Several existing studies in self-supervised or unsu-
pervised pretraining have approached building a pretraining
dataset by combining many of these existing datasets and ig-
noring their labels [1, 17, 18, 19, 20].

In addition to combining various benchmark datasets to-
gether, it is also common to incorporate additional unlabeled
imagery into the pretraining dataset [21, 2]. Two popular sta-
ples in many of these pretraining datasets are the million-AID
[6] and the functional map of the world (fMoW) [7] datasets.
Many works (e.g., SatMAE [2], ScaleMAE [17] and RingMo
[1], [3]) use such imagery to train transformer-based architec-
tures using a Masked Autoencoder (MAE) scheme for model
pretraining, where the model is tasked to reconstruct pixels
of masked image patches given only the remaining visible
patches. However, there is a lack of works comparing the
capabilities of models pretrained using different datasets but
under similar training configurations (i.e., model architecture,
pretraining scheme and training schedule), which compro-

mises establishing a consensus on the best methodology for
merging these datasets or which datasets are better than oth-
ers for pretraining.
Purely Unlabeled Datasets for Pretraining. Previous works
for developing datasets from large archives of unlabeled re-
mote sensing imagery has also recently come into focus. Most
of these works focus on building in diversity to the dataset by
stratifying the study area using existing ancillary geospatial
data (coordinates, landcover, populated places, climate) and
leveraging sampling methods for obtaining geographic, tem-
poral, and image acquisition diversity [8, 21, 10, 3, 11, 9].
For example, in SeCo [8] locations of populated places along
with temporal information are used in a sampling strategy to
build a pretraining dataset from Sentinel-2 tiles.
Datasets to Support Pretext Tasks. In addition to MAE-
schemes, contrastive learning schemes leveraging additional
information have also been explored in the literature. For such
purposes, building pretext tasks into the dataset is also com-
mon practice. GASSL [19] leverage the images’ geographic
coordinates to aid learning in a constrastive-fashion. Tile2Vec
[22] takes advantage of ideas of spatial autocorrelation by
sampling neighboring image patches and distant neighbors in
a triplet sampling and learning scheme, while GASSL[19],
SeCo [8], and SatMAE [2] leverage multiple temporal views
of the same location to build temporal diversity in the dataset
to develop models capable of being sensitive or insensitive to
temporal change. Moreover, ScaleMAE [17] utilize an im-
age’s ground sample distance with a novel positional encod-
ing module to train a model that is more capable of being
adapted to images with a wide range of ground sample dis-
tances.

Table 1 provides a non-exhaustive list of examples of
datasets previously used in foundation model pretraining and
self-supervised model training studies.

3. A VISION FOR SUMMARIZING PRETRAINING
DATASETS

Developing Dataset Metrics. Due to the large number of ex-
isting datasets and the never-ending interest in creating new
ones, a method for summarizing datasets must be developed.
A first goal is to formulate a suite of metrics for large remote
sensing foundation model pretraining datasets that describe
the geographic, temporal, and image acquisition diversity and
representativeness of the dataset. While difficult due to the
vast number of potential remote sensing applications, it could
also be beneficial to quantify a dataset’s capability to support
any number of downstream tasks. One possible metric for
diversity to consider is entropy, which was used by [21] to in-
dicate improvement in their GeoPile dataset’s content relative
to a Sentinel-2 dataset.

Applying Metrics and Review Methodology. Follow-
ing this, a second goal will be to apply the developed method
and metrics to existing datasets used during foundation model



Name \ Datasets and Data Sources
Benchmark
RingMo [1] MillionAID, DOTA, LoveDA,

FAIR1M, DIOR, iSAID

ScaleMAE [17] fMoW
BillionScale [18] MillionAID
RVSA [20] MillionAID
GASSL [19] fMoW
Custom

SeCo [8] Sentinel-2 tiles

Satlas Pretrain [9]
WorldStrat [10]

NAIP tiles, Sentinel-2 tiles
Airbus SPOT 6/7 tiles,
Sentinel-2 tiles
Prithvi [3] Landsat-Sentinel HLS tiles
SkySense [11] WorldView-2,3, Sentinel-1,2
Mix of Benchmark and Custom
GeoPile [21] NAIP tiles, RSD46-WHU,
MLRSNet,
RESISC45, PatternNet
fMoW, Sentinel-2 tiles

SatMAE [2]

Table 1. Examples of remote sensing pretraining datasets and
data sources used in the literature. The Cusfom methods also
define sampling strategies for data curation.

pretraining. By doing so we hope to quantify the utility of a
pretraining dataset before a model has been trained. Several
questions that we would like to answer through this review
and analysis are: Where are these samples located geograph-
ically? What dates and times were they collected? What are
the acquisition parameters? How diverse in terms of image
content and geography is this data? Are the datasets miss-
ing certain content to enable key downstream applications? Is
this data geographically referenced? Is the dataset curation
process documented and reproducible? Does the dataset have
a datasheet [12]?

4. A VISION FOR REPRODUCIBLE, DIVERSE, AND
REPRESENTATIVE GLOBAL PRETRAINING
DATASETS

Geographic, Temporal, and Image Acquisition Diversity.
To achieve geographic diversity, one could uniformly sam-
ple across the entire globe. However, doing so would yield a
dataset with numerous imbalances. Populated areas would be
underrepresented, certain ecosystems (e.g. tundra) would be
underrepresented while others would dominate. One solution
to such a problem is to leverage existing geospatial datasets as
a guide for sampling. Datasets such as terrestial ecoregions,
climate zones, landcover, and population density should be
among some of the core inputs to be considered to ensure
diversity. The work of [10] on developing WorldStrat, for
example, used urban density, landuse, and underrepresented

points of interest (e.g. informal human settlements) to guide
dataset curation and sampling.

Use of ancillary datasets for sample site selection is also
common in land cover classification data products. ESA
WorldCover v200 [23], for example, incorporates biome and
realm features from a 2017 ecoregions data product [24],
climate data from TerraClimate, digital elevation models, and
the global human settlement layer. Dynamic world [25], a
near real-time landcover data product, also uses the ecore-
gions layer as a reference during training sample selection.
In addition, they partition the globe into three hemispheres to
further diversify their samples.

Fundamental to a remote sensing foundation model pre-

training dataset is diversity in image acquisition parameters
such as sensor, off-nadir angle, ground sample distance, scan
direction, sun azimuth, sun elevation, and satellite azimuth.
This information is especially relevant to very high resolu-
tion satellite imagery where these collection parameters have
significant impact on overall image appearance and the ob-
jects within those images. Also relevant are image acquisition
dates and times, which provide the essential information for
incorporating temporal diversity into the dataset.
Support for Pretext Tasks Pretext tasks refer to objectives
constructed from unlabeled data that a model is trained to
solve. For example, in masked image modeling the pretext
task is for the model to reconstruct or predict the original im-
age after portions of the image have been masked or erased.
Studies in self-supervised and unsupervised learning for re-
mote sensing data have suggested the importance of spatial
and temporal pretext tasks. The works of SatMAE [2], SeCo
[8], and GASSL [19], for example, have all indicated tempo-
ral views can improve pretraining. Spatial pretext tasks such
as those highlighted by [19] and [22] indicate improved pre-
training as well. Given these successes, we emphasize the
need to support both spatial and temporal pretext tasks within
a remote sensing pretraining dataset. Including all possible
image metadata (e.g. ground sample distance, off-nadir an-
gle, sensor, coordinates, date and time) is one way to enable
further pretraining objectives in the future. This aspect also
helps establish documentation for the data.

4.1. Preliminary Dataset Development

In this section we present preliminary work in developing
a remote sensing foundation model pretraining dataset that
meets the key requirements highlighted in the introduction
of this paper. We create two global spatial point datasets of
different resolutions that we use during the sampling stage.
The first point dataset has 0.05 degree spatial resolution while
the second is higher resolution at 0.01 degrees and includes
only points at locations where population density is greater
than 1000 in the reference ORNL Landscan dataset [26]. The
higher resolution point dataset is needed to better capture the
diversity of built environment and populated areas, whereas
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Fig. 1. Example of the sample point grid and attributes considered for geographic diversity sampling.

the lower resolution dataset is primarily used to capture non
built-up characteristics. We merge these two point grids into a
single point dataset and conflate it with the ancillary geospa-
tial layers to obtain biome [24], biogeographic realm [24], cli-
mate zone [27], population density [26], and landcover [23]
type for each point. Figure 1 provides an illustration of the
final spatial point dataset over a small area of interest and sev-
eral of the attributes used for diversification sampling.

Image acquisition parameter diversity will be achieved by
including images from Maxar’s WorldView-2 and -3, Planet’s
Planetscope constellation, and ESA’s Sentinel-2. Together,
a single location will feature data collected at a variety of
ground sample distances of approximately 0.5 meters, 3 me-
ters, and 10 meters. For consistency, all images include Blue,
Green, Red, and Near-Infrared channels. We plan to further
diversify on an image’s viewing geometry attributes such as
off-nadir angle, azimuth, scan direction. To achieve tempo-
ral diversity and support for temporal pretext tasks, we plan
to sample each location at 8 different dates, with each collect
spaced approximately 3 months apart.

5. CONCLUSION

Development and usage of foundation models in remote sens-
ing is growing rapidly. The pretraining dataset is an important
component in the development process of these models. This
preliminary review and analysis of pretraining datasets illus-
trates that there is not a standard protocol or curation pro-
cess for developing these datasets. Many existing studies use
different pretraining datasets and methodology to assemble
datasets.

The volume of existing pretraining datasets and their vari-
able usage in existing research, makes it difficult to under-
stand the contributions that pretraining data make to a founda-
tion model’s ability to adapt to downstream tasks. A careful
review, summary, and development of metrics for pretrain-
ing data should be developed to help us better understand the

qualities of these data and their impacts on foundation mod-
els.

Several key elements to consider in developing a pretrain-
ing dataset are geographic diversity, temporal diversity, im-
age acquisition diversity, support for spatial-temporal pretext
tasks, support for different downstream tasks, support of dif-
ferent dataset sizes, and clear documentation. Many of these
themes are present to varying degrees in existing pretraining
datasets, but through our review we see opportunities to fill
existing gaps in developing large, diverse, and representative
datasets for remote sensing foundation models.

Our immediate next steps are to further develop our pre-
training dataset. Following this, we would like to train a foun-
dation model on this dataset and assess the trained model on
downstream tasks including building extraction, road extrac-
tion, land use and land cover classification, and change detec-
tion of damaged buildings.
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