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I. INTRODUCTION  

 

Power flow, sometimes called load flow, involves the computation of the bus voltages magnitudes and 

angles and it gives insight into the steady-state condition of the power system at a particular operating 

condition. Power flow solutions serve as a base in performing other power system studies such as 

transient and voltage stability studies. Ideally, a power flow case must be solvable under steady state 

before any dynamic study can be performed. Grid operators and planners regularly perform several power 

flow studies under various loading and generation dispatch to ensure reliable grid operation. From the 

power flow results, transmission planners can have a better understanding of line overloads, losses, and 

voltage violations in their network [1]. 

Several iterative and non-iterative methods currently exist for solving the non-linear power flow 

equations [2]. In practice however, the Newton-Raphson method and its variants stand out as the widely 

used solution method in industry because of its quadratic convergence property [1], [3]. Although the 

NewtonRaphson method is quite robust for solving power flow, it takes up significant computation time 

especially for large power grids with thousands of buses. Linear approximation methods like the DC 

power flow (DCPF) have been used to achieve faster solutions. DCPF requires several assumptions and 

may not converge to the true solutions as it does not consider critical parameters such as bus voltage 

magnitude, reactive power, and losses. Based on the limitations of DCPF, achieving a solved AC power 

flow (ACPF) case remains a high priority for transmission planners. Getting a converged ACPF can be 

particularly difficult, especially in large power grids. In some cases, the ACPF problem is unsolvable 

especially at high loading conditions [4]. Three major challenges exist in obtaining a converged/solved 

ACPF case for large power grids. 

Firstly, the loading condition and generation dispatch affect the solvability of a power flow case. Loads 

are generally modelled as PQ buses with constant active and reactive power. There exists a maximum 

loading for each bus above which there would be no solution [4]. This can be further analyzed using the 

PV curves which determine the maximum power that can be transferred [5]. Loading a bus above this 

limit (which is the nose of the PV curve) would cause the voltage to drop drastically, which would further 

affect the convergence of the power flow case. The active power dispatch of all generators is specified in 
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a power flow case except that of the slack generator which typically handles any mismatch between the 

load (including losses) and generation. Convergence problems would exist in cases where the extra power 

supplied or absorbed by the slack bus is excessively greater than the slack generator limits [4]. So, the 

non-slack generators need to be adequately dispatched to prevent unnecessary stress on the slack 

generator. The next major challenge is due to reactive power support. Reactive power does not travel far 

over long distances due to the inherently high X/R ratio in long transmission lines, thus reactive power 

support, if needed, must be provided locally. A power flow case may fail to converge if several buses have 

insufficient reactive power support. Several algorithms have been developed in [2], [4], [6], [7] to achieve 

power flow convergence through reactive power planning.  

The third major challenge is the choice of initial voltage magnitude and angle guess when solving ACPF 

using Newton based methods. Previous research has shown that NewtonRaphson is very sensitive to 

initial conditions [8], [9]. Ref. [10] have shown that Newton-Raphson method would not converge to any 

solution if the initial guesses were outside the region of attraction to the solution. This shows that even a 

well dispatched ACPF case may not converge due to the choice of the initial voltage magnitude and 

angles. The ACPF convergence region or region of attraction are rather complex and fractal in nature. The 

convergence region also varies with loading conditions and large number of iterations are needed when 

the initial guesses are far from the convergence region [1]. Ref. [9] developed an analytical iterative 

method to determine initial guesses to achieve power flow convergence. The iterative method starts with 

an initial guess and the Jacobian matrix after the first iteration is used to calculate a convergence operator 

ρ. This convergence operator is related to the non-singularity of the Jacobian matrix. If the convergence 

operator is greater than 0.5 then an affine matrix is calculated to update the initial guess. Else, an attempt 

is made to solve the power flow case. This iterative method was applied to small power flow cases up to 

118 buses. The technique has not been applied to large scale power grids under varying operating 

conditions. In practice, power system planners tend to initialize the voltage magnitude and angles using 

flat start, DCPF solutions, a reference case, or other solved cases; power flow tools developed in [2], [6], 

[7] used this approach. Machine learning offers a good approach to initialize Newton-Raphson power 

flow as it can map a dispatch case to the voltage solutions and once sufficiently trained, it requires little 

computational time to predict its solution. 

To the knowledge of the authors in this paper, no attempt has been successfully made to use machine 

learning to achieve ACPF convergence in large scale power grids by accurately predicting the initial 

conditions. Although machine/deep learning has been regularly used to predict power flow solutions[11]–

[17], no attempt has been made to solve previously unsolved power flow cases by predicting adequate 

initial bus voltage magnitude and angles. Perhaps the closest attempt was by researchers in [13] where 

previously solved ACPF test cases were initialized to achieve faster solution time. In [13], it was assumed 

that all dispatch cases that form the training and testing dataset converged, cases that failed to converge 

were not used. 

This paper aims to address the third major power flow convergence issue highlighted earlier. Here we 

introduce a new way to achieve ACPF convergence in large power grids by estimating the initial voltage 

magnitude and angles using Random Forest machine learning algorithm. Previously nonconverging 

power flow cases were solved by providing better initial voltage magnitude and angle estimates within the 

convergence region. The machine learning initializer was applied to a real ERCOT 6102 bus power flow 

case under various operating conditions. The simulation was performed using Python and PSS/E. 
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II. OVERVIEW OF AC POWER FLOW FORMULATION 

The power flow problem is formulated as non-linear algebraic equations that maps the bus active and 

reactive power injection to the voltage phasor as shown in (1) and (2) [7]. 

𝑃𝑖
𝑖𝑛𝑗

= 𝑉𝑖 ∗ ∑ 𝑉𝑘(𝐺𝑖𝑘 sin 𝜃𝑖𝑘
𝑁
𝑘=1 − 𝐵𝑖𝑘 cos 𝜃𝑖𝑘)  (1) 

𝑄 = 𝑉𝑖 ∗  ∑ 𝑉𝑘(𝐺𝑖𝑘 sin 𝜃𝑖𝑘
𝑁
𝑘=1 − 𝐵𝑖𝑘 cos 𝜃𝑖𝑘)  (2) 

Where 𝑃𝑖
𝑖𝑛𝑗

 and 𝑄𝑖
𝑖𝑛𝑗

 are the net active and reactive power injection. 𝐺𝑖𝑘 and 𝐵𝑖𝑘 are real and imaginary 

parts of the admittance matrix element 𝑌𝑖𝑘 ∙  𝜃𝑖𝑘 represent the bus voltage angle difference between bus i 

and k. Vi and Vk are the bus voltage magnitude at bus i and k while N is the total number of buses. For the 

ERCOT case N  = 6102. Although there is no guarantee that the machine learning algorithm would learn 

the actual power flow equations in (1) and (2), the machine learning performs satisfactorily in providing 

key mappings between the active and reactive powers and the bus voltage solutions. 

III. DATASET GENERATION  

In this paper, the dataset was generated using the generator and load dispatch obtained from the U.S 

Energy Information Administration (EIA) [18]. The data contains the hourly generation and loadings in 

ERCOT for the year 2022 and the first hour of 2023, so a total of 8761 hourly data. To generate the actual 

power flow case, a solved reference ERCOT case is required. The active power of the generators 𝑃𝑔𝑒𝑛 and 

loads 𝑃𝑙𝑜𝑎𝑑 in the reference PSS/E case are then varied as specified in the EIA data. The conventional 

(hydro, gas, thermal), nuclear and renewable (solar, wind) generators in the PSSE reference case are 

scaled uniformly based on the EIA data for each generator resource category. The active power of the 

loads in the PSS/E case are scaled uniformly with the reactive power maintained at a constant P/Q ratio. 

At this stage 8761 power flow cases were generated corresponding to various loading conditions. The 

minimum load in the dispatch is 31.9 GW while the peak load is 79.8 GW. After modifying the reference 

case to create the dispatch, full Newton-Raphson power flow initialized with the reference case was 

applied to solve all cases as shown in Fig. 1. 4,862 power flow cases successfully converged while 3,899 

power flow cases did not converge. The 4,862 solved cases would form the training and validation case. 

The 3,899 unsolved (non-converged) cases formed the testing case. 

IV. PROPOSED FRAMEWORK AND MODEL SETUP 

Random Forest (RF) is a widely used machine learning algorithm in power system applications. One of 

its key advantages is that it avoids overfitting and takes advantage of an ensemble of trees for improved 

accuracy. A RF regressor was trained to learn the mapping between the power injections and power flow 

solutions (voltage magnitude and angle). The input data are 𝑃𝑔𝑒𝑛,𝑖…𝑁𝑔𝑒𝑛, 𝑃𝑙𝑜𝑎𝑑,𝑖…𝑁𝑙𝑜𝑎𝑑 and 𝑄𝑙𝑜𝑎𝑑,𝑖…𝑁𝑙𝑜𝑎𝑑, 

where 𝑃𝑔𝑒𝑛,𝑖…𝑁𝑔𝑒𝑛 is the active power of the generator at the bus i to the last generator at 𝑁𝑔𝑒𝑛 likewise, 

𝑃𝑙𝑜𝑎𝑑,𝑖…𝑁𝑙𝑜𝑎𝑑 and 𝑄𝑙𝑜𝑎𝑑,𝑖…𝑁𝑙𝑜𝑎𝑑 are the active and reactive power load at bus i to the last load at bus 

𝑁𝑙𝑜𝑎𝑑. 

The outputs are the bus voltage magnitude, bus angles, star bus voltages and star bus angles. Large scale 

grids regularly have three-winding transformers which are modelled in commercial software’s like PSS/E 

and PowerWorld as three separate two-winding transformers connected to a fictitious star point [19], [20]. 

This star point or star bus has a calculated voltage magnitude and angle and is crucial for the effectiveness 

of the machine learning initializer. 
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The 4,862 solved cases were split into training and validation based on a 90/10 split. The main 

preprocessing done is the minmax normalization of the input data. Also, the bus/star bus angles were 

converted to radian to avoid large negative angles during training. The ERCOT power flow model has 

6102 buses and 134-star buses (corresponding to 134 three-winding transformers). Fig. 3 shows the setup 

for training the RF model. Four RF models were trained for each output categories namely bus voltage 

magnitude, bus angle, star bus voltage magnitude and star bus angle. The same hyperparameters were 

used for all 4 RF models. Fig. 2 shows the entire machine learning initializer framework. After the models 

have been sufficiently trained to learn the mappings between the bus power injections and the 

voltage/angle solutions, the trained model was then applied to the previously 3,899 non-converging cases. 

The RF model then predicts the solutions of the bus/star bus voltage magnitude and angle. This solution 

was then used as the initial values of the 3,899 unsolved cases. This is based on the concept that although 

there is no guarantee that the machine learning model would predict the exact voltage magnitude and 

angle solution, the values would be close to the actual solution and therefore within the convergence 

region. Full Newton-Raphson power flow is then applied to this newly initialized power flow case. 

V. RESULTS 

A. Random Forest Initializer 

This section looks at the performance of the RF models. Table I shows the accuracy of the RF model 

based on the Root Mean Square Error (RMSE). The RMSE is a suitable accuracy metric when dealing 

with a regression problem. RMSE is computed using (3), where n is the total data points, 𝑌𝑖 is the true 

value while 𝑌̂𝑖 is the predicted value. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∗ ∑ (𝑛

𝑖=1 𝑌𝑖 − 𝑌̂𝑖)2   (3) 

From Table I, RF provides a very small root mean square error although with significant training time. 

But once sufficiently trained the model takes only a few seconds to predict. 

Regardless of the accuracy of the algorithm, the main task is to investigate the ability of the algorithm to 

assist in NewtonRaphson convergence. The RF models are applied to the 3,899 non-converging cases for 

which we do not know the actual solutions, and the predicted voltage magnitudes and angles were then 

used to initialize their respective power flow cases. 2,106 power flow dispatch cases successfully 

converged due to the better initialization provided by the RF models. This shows that the RF initializer 

was able to assist the Newton-Raphson solution method in converging 54% of the previous 3,899 

nonconverging cases. The remaining 1,793 cases would need to be further investigated, because even 

though the problem of initialization was addressed in this work, non-convergence could be due to several 

other problems. Although the power flow cases successfully converged there exist certain voltage 

violations. From Table II a typical converged testing case has about 315 buses with voltage magnitude 

below 0.9pu or above 1.1pu. These voltage violations were reduced by adding switched shunts using the 

automated process described in [6]. After adding the switched shunts, the average number of voltage 

violations (1.1pu) dropped from 315 to about 9 buses per converged testing power flow case. 

B. Comparison with Other Initialization Methods 

The results obtained from RF were compared with other analytical and machine learning methods. Table 

III compares the performance of RF with other machine learning methods in terms of RMSE. The RF 

models provided better accuracy with the least RMSE, while linear regression had the worst RMSE.  
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Although the RF model had the best accuracy in terms of RMSE it required significant training time as it 

is an ensemble of many regression trees as shown in Table IV. Linear Regression (LR) on the other hand 

takes very little training time but offers poor accuracy. The Decision Tree (DT) had a relatively shorter 

training time when compared with RF, but its accuracy was not as good. Table V compares the 

convergences performance between the RF initializer and other initialization techniques. In practice, 

power system planners regularly initialize power flow cases using DCPF or flat start on rare occasions. In 

this work, none of the 3,899 unsolved power flow cases converged with flat start. It is difficult to achieve 

convergence from flat start for power flow cases with thousands of buses, although for small systems with 

a few hundred of buses, flat starting may be useful. However, initializing with DCPF which provides 

voltage angle estimates helped solve about 758 cases which represent about 19.44% of the 3,899 test 

cases. The process for initializing with DCPF is similar to that of the other machine learning methods. 

First the 3,899 cases were solved with DCPF with the voltage magnitude assumed as 1 p.u since DCPF 

only solves for the voltage angles. The voltage magnitude (1pu) and calculated angles are then used to 

initialize all 3,899 unsolved cases and a full Newton-Raphson ACPF was then applied. 

From Table III and Table V, it can be observed that the lower the RMSE of the machine learning method, 

the higher the number of cases to converge. Amongst the machine learning methods, the RF algorithm 

had the least RMSE and best convergence rate, followed by DT and finally LR. The LR model performed 

poorly as it could not capture the relevant non-linear mappings. But even at that it solved about 246 cases. 

Fig. 4, shows overlapping and unique cases solved by different initialization methods. RF and DT had the 

most overlap due to the similarity in their algorithms. From Fig. 4a and Fig.4c, it can be observed that 

1413 dispatch cases were solved by both RF and DT initialization methods. 

Although both Linear Regression and DC power flow are linear initialization techniques, there is very 

little overlap in the cases solved by both methods as seen in Fig. 4b. Just 58 cases are solved by both LR 

and DCPF, even though LR solved a total of 246 cases and DCPF initialization solved 758 cases. The key 

inference from all this is that the initialization method used has an impact on what particular power flow 

case would be solved. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, machine learning was used to predict the initial voltage/angle guesses to initialize Newton-

Raphson power flow. The developed Random Forest initializer successfully converged 2,106 power flow 

cases which did not converge originally due to bad initialization. The RF initializer performed better 

when compared with popular analytical methods like DCPF initialization which is used in industry. After 

achieving a converged/solved power flow case, power system planners regularly analyze these cases for 

(voltage and thermal) violations and then propose adequate measures to solve these violations. In future, 

the capabilities of physics based deeplearning initializers need to be further investigated and compared 

with already established machine learning methods. In addition to this, retraining the model with more 

data and varying topology configurations could provide further insights and improve the success rate of 

the model. 
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TABLES AND FIGURES 

 

Fig. 1 Generation of 8761 Hourly Dispatch Power Flow Cases 

 

Fig. 2 Proposed Framework for Machine Learning Initializer 
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Fig. 3 Model Training Setup 

 

TABLE I. PERFOMANCE OF RANDOM FOREST 

 

TABLE II. SOLVED CASES WITH VOLTAGE VIOLATING LIMITS 
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TABLE IV. TRAINING COMPARISON WITH DIFFERENT MACHINE LEARNING ALGORITHMS 

 

TABLE V. CONVERGENCE PERFORMANCE COMPARISON 

 

Fig. 4 Overlap in Power Flow Cases Solved by different Initialization Methods 


