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I. INTRODUCTION

Harald Fritzsch, together with Murray Gell-Mann, introduced in 1972 the color quantum
number of quarks as the source of the strong interactions, with the restriction that all phys-
ical states and observables are singlets under the color group SU(3)¢[1]. This far reaching
assumption provides a simple explanation of the spin-statistics problem which hindered the
quark model', but also allowed for the correct prediction of the observed decay rate of the
neutral pion and the ratio R for electron-positron annihilation [4]. While trying to under-
stand why a single color quark or gluon cannot be observed as a physical state, known as the
confinement problem, Fritzsh and Gell-Mann proposed to use the exact color symmetry as
a gauge group, thus establishing quantum chromodynamics (QCD) as a non-Abelian gauge
theory describing the interactions of quark fields, in the fundamental triplet representation
of the SU(3)¢ group, and the gluon color octet in its adjoint representation [1, 5].

The interactions between the fundamental degrees of freedom of the QCD Lagrangian,
the quark and gluons, observed in high energy scattering experiments is described to high
precision by QCD, establishing this theory as the standard model of the strong interac-
tions [6]. At low momentum transfers, however, the nonperturbative nature of the strong
interactions at large distances becomes dominant, and the usual techniques of perturbative
QCD become inapplicable. Despite the important advances of Euclidean lattice QCD [7]
and other nonperturbative approaches, a full understanding of color confinement, the origin
of the hadron mass scale and the emergence of hadronic degrees of freedom from the QCD
Lagrangian, has remained a deep unsolved problem.

Recent theoretical developments aimed at understanding strongly coupled dynamics are
based on AdS/CFT — the correspondence between classical gravity in a higher-dimensional
anti-de Sitter (AdS) space and conformal field theories (CFT) in physical space-time [8—
10]. In practice, the AdS/CFT duality provides an effective weakly coupled classical gravity
description in a (d + 1)-dimensional AdS,,; space in terms of a flat d-dimensional strongly
coupled quantum field theory defined on the AdS asymptotic boundary, the physical four-
dimensional Minkowski spacetime, where the boundary conditions are imposed [11].

Holographic models motivated by the AdS/CFT correspondence have provided a useful
semiclassical approximation which captures essential features of QCD and thus can give
important insights into its nonperturbative regime. Our approach to holographic QCD on
the light-front (HLFQCD) is based on the embedding of Dirac’s relativistic front form of
dynamics [12] into AdS space. This precise mapping between semiclassical LF Hamiltonian
equations in QCD and wave equations in AdS space [13], leads to relativistic boost-invariant
wave equations in physical space-time, similar to the Schrodinger equation in atomic physics,
providing an effective computational framework for hadron properties [14]. Further ex-

I Previously O. W. Greenberg proposed that quarks should be parafermions to comply with the Pauli
exclusion principle [2] and M.-Y. Han and Y. Nambu suggested the existence of three integer charged

triplets with a broken SU(3) x SU(3) symmetry group [3].



tensions of HLFQCD incorporate the exclusive-inclusive connection in QCD and provides
nontrivial interconnections between the dynamics of form factors and quark and gluon dis-
tributions [15-17] with pre-QCD nonperturbative approaches such as Regge theory and the
Veneziano model.

In our work with Hans Glinter Dosch, we found that a remarkable property of holographic
light front QCD is the emergence of a superconformal algebraic structure [18-20]: It is real-
ized in the holographic coordinate z of anti de Sitter (AdS) space and is responsible for the
introduction of a mass scale within the algebra. The superconformal symmetry determines
uniquely the confining interaction in the semiclassical Hamiltonian equations as well as the
corresponding modification of AdS space in the infrared region. It gives rise to striking con-
nections between the Regge trajectories of mesons, baryons and tetraquarks [21-23] which
can be visualized in terms of the fundamental SU(3)c representation of the constituent
quarks as a quark-diquark cluster configuration?. The pion is identified with the zero mode
which appears in the mass spectrum of the superconformal Hamiltonian equations and has
no baryonic supersymmetric partner according to the Witten index®. This characteristic
pattern is observed across all hadron families. The resulting picture has similarities to the
duality approach described in [5], where quark and gluons are not introduced initially, pro-
vided that mesons and baryons turn out to behave as if they were composite objects of
quarks and gluons.

We shall give in this contribution an overview of relevant aspects of the semiclassical
approximation to QCD quantized in the light front and its holographic embedding in AdS
space, with an emphasis on the superconformal structure in the dual gravity theory for
hadron spectroscopy and confinement. We will also discuss briefly the predictions of holo-
graphic QCD for the onset of color transparency in QCD, namely the reduced absorption
of a hadron propagating in a nucleus when produced at high-momentum transfer [28, 29],
a subject of renewed experimental interest. Other relevant aspects and applications of the
light-front holographic approach to hadron physics have been described in the recent re-

view [6].

II. SEMICLASSICAL APPROXIMATION TO LIGHT-FRONT QCD

A semiclassical approximation to QCD has been obtained using light-front (LF) quan-
tization, where the initial surface is the null plane, x* = 2° + 2% = 0 tangent to the light
cone, thus without reference to a specific Lorentz frame [12]. Evolution in LF time z7 is
given by the Hamiltonian equation [30]

.0 _ _ P7 + M?
i l) = Py, Pl =

2= 1), (1)

2 The idea to apply an effective supersymmetry to hadron physics is certainly not new [24-26], but had

failed to account for the special role of the pion.
3 The Witten index counts the difference between the number of bosonic and fermionic zero energy states

in a supersymmetric quantum system and it is a topological invariant [27].



for a hadron with 4-momentum P = (P, P~,P,), P* = P°+ P3 where P~ is a dynamical
generator and P and P, are kinematical. Hadron mass spectra can be computed from the

LF invariant Hamiltonian

P2y = M?[), (2)
where P? = P,P* = PTP~— P3. The linear evolution in Hilbert space with light-front
time ™ and the quantum-mechanical probabilistic interpretation of hadron states in terms
of the eigenfunctions of the LF Hamiltonian (2) in a Fock component basis, |¢) = > 4, |n),
leads to wave equations for the light-front wave functions (LEWFs) 4, similar to the usual
Schrodinger equation.

In practice, solving the actual eigenvalue problem (2) in QCD is a formidable computa-
tional task for a non-abelian quantum field theory beyond 1 + 1 dimensions [31]. In 1 + 1
dimensions, for example, the QCD coupling ¢ has dimensions of mass. In this case, the
theory can be solved for any number of constituents and colors using discretized light-cone
quantization (DLCQ) methods [32-34]: All physical quantities can be computed in terms of
the basic 1 4+ 1 Lagrangian parameters, the QCD coupling and the quark masses, thus no
emergent phenomena occurs. In contrast, in 3+1 physical space the coupling ¢ is dimension-
less and, in the limit of massless quarks, the QCD Lagrangian is conformally invariant. Thus,
in addition to the formidable computational complexity in this case, there is no indication
of the origin of the hadron mass scale from the QCD Lagrangian.?

Starting from the QCD Lagrangian, one can express the Hamiltonian operator P~ in
terms of dynamical fields, the Dirac field ¢, , and the transverse gauge field A in the AT =0
gauge [30]

. 2 9
P = %/dm‘d%@zﬂ%% + interactions, (3)
where the interaction terms in (3) vanish in the limit ¢ — 0 and the integral is over the
initial surface 2+ = 0, ¥ = 2% &+ 2. For simplicity, we have omitted in (3) the contribution
from the gluon field A.

The mass spectrum is computed from the hadronic matrix element ((P')|P,P*|¢(P)) =
M?(p(P")|1(P)). For a ¢ bound state we factor out the longitudinal X (z) and orbital e'-?
dependence from the LFWF v
i ¢(¢)
(@, Cp) =e X(x)\/m, (4)

where (? = z(1 — x)b% is the invariant transverse separation between two quarks and L

their relative LF orbital angular momentum. The relative impact variable b is conjugate

4 Renormalization of the theory introduces a scale Aqcp which breaks conformal invariance and leads to
a logarithmic decreasing coupling g(x), which depends on Aqep, and to asymptotic freedom [35, 36] for
large values of the momentum transfer 4?. The parameter Aqcp is determined in high energy experiments
and its value is renormalization scheme dependent. The link between the dimensionful parameter Aqcp

and the dimensionless coupling ¢ is known as dimensional transmutation.



to the relative transverse momentum k,, and x is the longitudinal momentum fraction x.
To reduce further the dynamical problem to a single variable we take the chiral limit of zero
quark masses, m, — 0, to obtain [13]

#1d 12\ ()
M2:/d§<;§*§ g<—————+—)—+/dc¢*<UC¢<, 5
where the effective potential U has units of M? and should enforce confinement at some IR
scale. It acts on the valence state and comprises all interactions, including those from higher
Fock states. The Lorentz invariant LF equation (2) thus becomes a LF wave equation for

¢ [13]

( > 1—4L2

i e U(©) 90 = 2(0) (6)

where the critical value of the LF orbital angular momentum L = 0 corresponds to the
lowest possible stable solution, the ground state of the light-front Hamiltonian. Eq. (6) is
relativistic and frame-independent: It has a structure similar to wave equations in AdS,
provided that one identifies z = (, the holographic variable [13].

III. HIGHER SPIN WAVE EQUATIONS IN ADS

Anti-de Sitter AdSy,; is the maximally symmetric d + 1 space with negative constant
curvature and a d-dimensional flat space boundary, Minkowski spacetime. In Poincaré coor-
dinates 2 = (20,21, .-+ , 297!, 2) the asymptotic boundary of AdS space is given by z = 0.

The line element is

ds® = gMNddexN
2

= % (nw,dx“d:c” — sz) , (7)

where 7, is the usual Minkowski metric in d dimensions and R is the AdS radius. Five-
dimensional anti-de Sitter space, AdSs, has 15 isometries which induce in the Minkowski
spacetime boundary the symmetry under the conformal group with 15 generators in four
dimensions [11]. This conformal symmetry implies that there can be no scale in the boundary
theory and therefore no discrete spectrum.

The variable z acts like a scaling variable in Minkowski space: different values of z corre-
spond to different energy scales at which a measurement is made. Short space-time intervals
map to the boundary in AdS space-time near z = 0. This corresponds to the ultraviolet (UV)
region of AdS space, the conformal boundary. On the other hand, a large four-dimensional
object of confinement dimensions of the hadronic size maps to the large infrared (IR) re-
gion of AdS. Thus, in order to incorporate confinement and discrete normalizable modes

in the gravity dual, the conformal invariance must be broken by modifying AdS space in



the IR large z region, by introducing, for example, a sharp cut-off at the IR border, as in
the “hard-wall” model of Ref. [37], or by using a “soft-wall” model [38] to reproduce the
observed linearity of Regge trajectories.

A. Integer-spin wave equations

The holographic embedding of the semiclassical LF bound-state wave equation in AdS
space allows us to extend (6) to arbitrary integer spin J [13, 39]. To this end, we start with
the action in AdSg44; space for a tensor-J field ®; = @y, n, in the presence of a dilaton
profile ¢(z) responsible for the confinement dynamics

S = /ddx dz\/ﬁe“’(z) (DM(]?JDM(I)J — MQCI)?]) ; (8)

where ¢ is the determinant of the metric tensor gp/n, g is the AdS mass, d is the num-
ber of transverse coordinates, and D), is the covariant derivative which includes the affine
connection. The variation of the AdS action leads to the wave equation

{_ Zd—l—zjaz( e?(?) 3 ) N (1 R)Q} B)(2) = MQQJ(Z% )

er(2) yd—1-2J 7% 2

after a redefinition of the AdS mass u, plus kinematical constraints which eliminate lower
spin from the symmetric tensor @y, n, [39)].

By substituting ®;(z) = 2(@"1/2=7e=¢(2)/2 ¢ ;(2) in (9), we find for d = 4 the semiclassical
light-front wave equation (6) with

1 1 2J -3

UAQ) = 58"(0) + 7¢O + =5(0) (10)

as long as z + (. This precise mapping allows us to write the LF confinement potential

U in terms of the dilaton profile which modifies the IR region of AdS space to incorporate
confinement [14], while keeping the theory conformal invariant in the UV boundary of AdS
provided that ¢(z) — 0 for z — 0. The separation of kinematic and dynamic components,
allows us to determine the mass in the AdS action in terms of physical kinematic quantities
with the AdS mass-radius (uR)?* = L?—(2—J)?, consistent with the AdS stability bound [13,
39, 40].

B. Half-integer-spin wave equations

A similar derivation follows from the Rarita-Schwinger action for a spinor field ¥; =
Uy,
does not lead to an interaction [41], and an effective Yukawa-type coupling to a potential V'
in the action has to be introduced instead [39, 42, 43]:

S = / d®rdz\/g ¥, (iI‘Ae%DM — u+ %V(z)) Uy, (11)

Nj_,, 0 AdSgyy for half-integral spin J [39]. However, in this case, the dilaton term



where el is the vielbein, and the covariant derivative Dy, on a spinor field includes the
affine connection and the spin connection. The tangent space Dirac matrices, I'4, obey
the usual anticommutation relations {I'4,I'?} = 248, Factoring out the four-dimensional
plane-wave and spinor dependence, W ;(xz, z)y = 7 2(d+0/2=7 4, (2) Uiy, 5 (P), We find
from (11) the coupled linear differential equations for the chiral components 1)+

d v+ 3

— — 2y~ V(@) = My, (12)
d 1
P Vj Sy =V (2)hy = My, (13)

with |[pR| = v + % and equal probability

/dzwi(z) = /dzzﬁ(z). (14)

Egs. (12) and (13) are equivalent to the second-order equations [39]

d? 1— 402
(‘@ - 4Z2V + U*(Z)) by = My, (15)

d2 —4 2
(- - @) v = (16)

with

1+ 2v
z

Ut(z) = V3(2) £ V'(2) + V(z). (17)

Embedding semiclassical light-front Hamiltonian equations in AdS space gives important
insights into the nonperturbative structure of semiclassical bound state equations in QCD
for arbitrary spin, but it does not answer the question of how the effective confinement
dynamics is actually determined, and how it can be related to the symmetries of QCD itself.
An important clue, however, comes from the realization that the potential V(2) in Eq. (17)
plays the role of the superpotential in supersymmetric quantum mechanics (QM) [27].

IV. SUPERCONFORMAL SYMMETRY AND EMERGENCE OF A MASS
SCALE

We follow Fubini and Rabinovici [19] and consider a one-dimensional quantum field the-
ory invariant under conformal and supersymmetric transformations: It is a superconformal
symmetry which determines uniquely the superpotential V(z) and, consequently, the IR
deformation of AdS space.

As a first step, we examine supersymmetric QM which is based on a graded Lie algebra
consisting of two anti-commuting supercharges Q and Qf, {Q,Q} = {QT,Q'} = 0, which



commute with the Hamiltonian H [27]

;{Q.Q" = H, (18)
Q. H] = [Q', H] = 0. (19)

If the state |F) is an eigenstate with energy E, H|E) = E|FE), then, it follows from the
commutation relations (19) that the state Qf|E) is degenerate with the state |E) for E # 0,
but for £ = 0 we have Q'|E = 0) = 0, namely the zero mode has no supersymmetric
partner [27], a key result for deriving the supermultiplet structure and the pattern of the
hadron spectrum.

As a second step, and following Fubini and Rabinovici, we consider the scale-deformed
supercharge operator,

Ry = Q + \S, (20)

a superposition of supercharges within the extended graded algebra [19], where S is related
to the generator of special conformal transformations K. The generator R, is also nilpotent,
{Ry),R\} = {R;, Ri} = 0, and gives rise to a new scale-dependent Hamiltonian G, which
also closes under the extended algebra and is a compact operator

%{RMR;} =G, %{Sv ST} = K, (21)
[Ry,G] = [R},G] = 0. (22)

The fermion supercharges R, and RI\ have the matrix form

0 7 ; 00
Ry = ., Rl= , 23
A (00> i (7&0) (23)

which is realized as operators in the holographic z-coordinate:

f f

R rizafl—;—l—)\z. (24)

The parameter f is dimensionless and A has the dimension of [M?], since z has dimensions
[M~1]. Therefore, a mass scale is introduced in the Hamiltonian within the conformal group.

The Hamiltonian equation G|M) = M? M) leads to the wave equations

2 1-4 12
(- R =) Jos =, )
2 _ _1y2
(_%_#‘FV%—FQ/\U#L%))QL:M2¢_, (26)

which have the same form as the Euler-Lagrange equations obtained from the AdS action,
but here, the interaction potential is completely fixed by the superconformal symmetry [22,

23].



A. Light-front mapping and baryons

Upon mapping (25) and (26) to the semiclassical LF wave equations (15) and (16) using
the substitutions f — v + %, ¢ — Y_ and ¢_ — b, we obtain the result

Ut(z) = N22 + 2\(v + 1), (27)
U™ (2) = \2% + 2. (28)

Finally, thereafter the mapping z — (, and v + L, we find the light-front semiclassical wave
equation for the components 1, and _[22]

E LA e L) ) = M (29)
dCQ 4<2 + +
d>  1—-4(L+1)?
N2 = My, 30
(- - ¢ Vo= M (30)
which correspond to nucleons with LF orbital angular momentum L and L + 1.
6 -
50 n=3 n=2 n=1 n=0 6 n=1 n=0
4l N(2220)| sf A 2420)]
2 T4l
&3 53
¥ MO0 N(1720) § 3pA1600) A(1950)
2 N(1680) A(1920)
N(1440) 2 A(1700)  A(1910)
1+ 1 A(1620)  A(1905)
VA =0.485 GeV 1} A(1232) ]
N(339) VA =0.498 GeV
0% i > 3 4 0% i 5 3 i
L L

FIG. 1. Model predictions for the orbital and radial positive-parity nucleons (left) and positive
and negative parity A families (right) compared with the data from Ref. [44]. The values of v/A
are VA = 0.485 GeV for nucleons and v\ = 0.498 GeV for the deltas.

The solutions of (29) and (30) give the eigenfunctions

e (Q) ~ (PR PLE), (31)
V- (Q) ~ P EPLE (A, (32)

with eigenvalues
M? =4\(n+ L +1). (33)

The polynomials LZ(x) are associated Laguerre polynomials, where the radial quantum

number n counts the number of nodes in the wave function. We compare in Fig. 1 the
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model predictions with the measured values for the positive parity nucleons [44] for VA =
0.485 GeV. The LF semiclassical wave equations (29) and (30) are J-independent equations
resulting in the absence of spin-orbit coupling, in agreement with the observed degeneracy
in the baryon spectrum for a fixed value of L along a given Regge trajectory, as illustrated
in Fig. 1.

B. Superconformal meson-baryon symmetry

In the usual applications of supersymmetry the supercharges connect bosonic to fermionic
states. In the present holographic context superconformal quantum mechanics leads to a
relation of meson and baryon wave functions, therefore to an effective hadronic supersym-
metry which underlies the SU(3)¢ representation properties, since a diquark cluster can be
in the same color representation as an antiquark, namely 3 € 3 x 3, thus incorporating
the dynamics of color. Supersymmetry at the hadronic level is realized at larger distances,
where the diquark cluster appears effectively as an antiquark. At larger momentum trans-
fer, however, where single quarks are resolved individually, this effective supersymmetry is
expected to be only an approximate symmetry. For example, the recent analysis in Ref. [16]
of the u-quark distribution in the proton shows a deviation by 10-15% from a quark-diquark
configuration °.

The specific meson—nucleon connection follows from the substitution A — Ag = Ay, f +—
Ly — % =Lg+ %, ¢y > Gy, ¢_ — ¢p and z — ( in the superconformal equations (25)
and (26). We find the LF meson (M)-baryon (B) bound-state equations [23]

2 _ 2

<_%—%+A?\4C2+2AM(LM_1)> onr = M gur, (34)
2 — 42

<_j_€_2— % + AR+ 2>\B(LB+1)> ¢p = M* ¢p. (35)

The superconformal structure imposes the condition A = Aj; = Ap and the remarkable
relation Ly; = Lp + 1, where L), is the LF angular momentum between the quark and
antiquark in the meson, and Lp between the active quark and spectator cluster in the
baryon. Likewise, the equality of the Regge slopes embodies the equivalence of the 3 — 3
color interaction in the ¢g meson with the 3 — 3 interaction between the quark and diquark
cluster in the baryon. The mass spectrum from (34) and (35) is

M2, = 4X(n+ Ly, (36)
Mz =4X(n+ Lp +1). (37)

The pion has a special role as the unique state of zero mass and, since L,; = 0, the pion

does not have a baryon partner, as illustrated schematically in figure 2. This remarkable

5 See also Sec. 5.4.13 of Ref. [6]
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M? 4 M

RIC L2
T

z =z

(2200)

©lw

wia

N
N
N3 (1720)
N3 (1680)
N3 (1520)
N3 (1535) 1(1670)

i+ b1(1235)
N2 (940)

n(140) L -

01 2 3 4 5

FIG. 2. This schematic figure from Ref. [23] illustrates the meson-nucleon superconformal con-
nection. The predicted value of M? in units of 4\ for S = 0 mesons and S = % baryons is plotted

vs the orbital angular momentum L. The m-meson has no baryonic partner.

result underlines the dual role played by the pion in light-front holographic QCD since, as
a unique state of zero energy, it formally plays the same role as the unique lowest state in
a supersymmetric quantum field theory [18, 19, 23, 27]. In the light front, the supersym-
metric constraint on the lowest state is realized by the exact cancellation in Eq. (34) of the
confinement potential and the quark LF kinetic energy for massless quarks.

C. AdS warped metrics and superconformal symmetry

Instead of introducing a dilaton profile ¢(z) in the AdS action as in Eq. (8) (the string
frame), one can modify the the AdS metric gy (the Einstein frame) by introducing a
J-independent warp factor: gyn — gune*®). Both descriptions are equivalent, provided
that f(z) = ¢(2)/(d—1) [14]. The dilaton profile can be determined by integrating Eq. (10)
for a given effective potential U;(z). To simplify the actual computation, we introduce the
function h(z) = e#*)/2 in (10) to obtain

1

Us(z) = 8 27710, (2720.h(2)), (38)
with v = 2J — d: It can be expressed as the linear differential equation
[ZZag (A —1—2J)20, — 22Uy (2)| h(z) = 0, (39)

amenable to analytic solution.®

6 Eq. (38) was found previously in the context of a renormalization group flow study in Ref. [45] in terms

of the one-particle irreducible effective action in AdS.
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The meson potential for J = L (no internal spin) follows from (34): It is given by
U(z) = XN222 +2\(J — 1), (40)
and the corresponding solution of (39) by
hz)=Ae/? + BT (2= J,A2%) e 2, (41)

where I'(a,b) is the incomplete Gamma function. In the semiclassical approximation (ne-
glecting backreaction from the metric), the dilaton profile should depend only on the modi-
fication of AdS space, therefore independent of J. This condition implies that B = 0, and
since ¢(z) — 0 for z — 0 we set A = 1. Thus the solution

©(z) = 2loglh(2)] = Az, (42)

imposed by the superconformal algebraic symmetry: It has the same form as the result found
in Ref. [46] using a different procedure. Since the dilaton profile (42) is J-independent, an

equivalent description can be given in the Einstein frame.

D. Spin interaction and diquark clusters

The LF bound-state equations in AdS space allows us to extend the superconformal
Hamiltonian to include the spin-spin interaction, a problem not defined in the chiral limit
by standard procedures. Since the dilaton profile ¢(z) = A2? is valid for arbitrary J, it leads
from (9) to the additional term 2AS in the effective potential for mesons. We are thus led
to extend the original superconformal Hamiltonian by writing

G = YR\ R} +2)S, (43)

which maintains the meson-baryon supersymmetry [47]. The spin & = 0,1, is the total
internal spin of the meson, or the spin of the diquark cluster of the baryon partner. The
effect of the spin term is an overall shift of the quadratic mass,

M3, =4X(n+ L) +2)S, (44)
Mz =4X(n+ Lp + 1) +2)S, (45)

as depicted in Fig. 3 for the spectra of the p mesons and A baryons by shifting one unit the
value of Lp [23].

For the A baryons the total internal spin S is related to the diquark cluster spin S by
S=8+ %(—1)L, and therefore, positive and negative A baryons have the same diquark spin,
S = 1. As aresult, all of the A baryons lie, for a given n, on the same Regge trajectory, as
shown in Fig. 1. Positive parity nucleons are assigned & = 0 and are well described by the
holographic model as shown in Fig. 1. For negative parity nucleons, both S =0 and S =1
are possible, but the precise comparison with data is not as successful as for the A baryons

and positive parity nucleons.
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Ly=Lg+1

FIG. 3. Supersymmetric vector meson and A partners from Ref. [23]. The experimental values
of M? from Ref. [44] are plotted vs Ly = L + 1 for VA ~ 0.5 GeV. The p and w mesons have no

baryonic partner, since it would imply a negative value of Lp.
E. Completing the supersymmetric hadron multiplet

Besides mesons and baryons, the supersymmetric multiplet

o (0 0) g

contains a further bosonic partner, a tetraquark, which, follows from the action of the SUSY
operator R\ (23) on the negative-chirality component of a baryon [47], as illustrated in
Fig. 4. A clear example is the SUSY positive parity J¥ multiplet 27, %Jr, 1% of states
f2(1270), A(1232), a1(1260), where the a; is interpreted as a tetraquark.

o, Lp+1 Ypy, Lp

Y-, Lp+1 or, Lp

FIG. 4. The meson-baryon-tetraquark supersymmetric 4-plet {¢y, ng, ¢z, ¢r} follows from the
two-step action of the supercharge operator R; (23): 3 — 3 x 3 on the pion, followed by 3 — 3 x 3

on the negative chirality component of the nucleon.

Unfortunately, it is difficult to disentangle conventional hadronic quark states from exotic

ones and, therefore, no clear-cut identification of tetraquarks for light hadrons, or hadrons
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with hidden charm or beauty, is possible [47-49]. The situation is, however, more favor-
able for tetraquarks with open charm and beauty which may be stable under strong in-
teractions and therefore easily identified [50]. Our prediction [51] for a doubly charmed
stable boson T,.. with a mass of 3870 MeV has been observed at LHCb a year later at
3875 MeV [52], and it is a member of the positive parity J¥ multiplet 2+,% .1 of states

Xe2(3565), Z..(3770), T..(3875)." The occurrence of stable doubly beautiful tetraquarks and
those with charm and beauty is also possible [50, 51].

V. COLOR TRANSPARENCY

A striking property of QCD phenomenology is color transparency (CT) [28], the reduced
absorption of a hadron as it propagates through nuclear matter, if it is produced at high
transverse momentum in a hard exclusive process, such as elastic lepton-proton scattering.
The nuclear absorption reflects the effective size of the propagating hadron; i.e., the sepa-
ration between its color constituents. CT has been confirmed in many experiments, such as
semi-exclusive hard electroproduction, eA — /X for mesons produced at Q> > 3 GeVZ.
However, a recent JLab (Jefferson Laboratory) measurement for a proton electroproduced
in carbon e C — €¢/pX fails to observe CT at Q% up to 14.2 GeV? [54].

In a recent paper [29], the onset of CT for different hadrons was determined by comparing
the Q%-dependence of the effective hadronic cross sections for the initial formation of a small
color-singlet configuration, a pointlike configuration (PLC), using the generalized parton
distributions (GPDs) from holographic light-front QCD [15]. To discuss this problem, we
can start from the flavor form factor of a hadron written in terms of its GPD, H,(z,t) =
H(xz,& =0,1) at zero skewness, &,

Fq(t):/o dx H(z,t)
_ /0 dz q(x) exp [t ()], (47)

where ¢(z) is the longitudinal parton distribution function (PDF) and f(x) is the profile
function. In HLFQCD f(z) is flavor independent and, for hadron twist 7, the number of
hadron constituents in a given Fock component, the FF has the reparametrization-invariant
integral representation, expressed in terms of Euler’s Beta function [15]:

F(t), = iB( ~1,1-a(t)

- / da ! () w ()0 [1 — w(@)] 2, (48)

7 For the inclusion of quark masses and longitudinal dynamics in holographic models see Sec. 5.5.9 of

Ref. [6]. In the limit of heavy quark masses HLFQCD leads to linear confinement, see Ref. [53].
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where a(t) = a(0) + o't is the Regge trajectory of the vector meson which couples to the
quark current in the hadron, and N is a normalization factor. The trajectory a(t) can be
computed within the superconformal LF holographic framework, and the intercept, «/(0),
incorporates the quark masses [22, 23]. The function w(z) is a flavor-independent function
with w(0) = 0, w(1) = 1 and w'(x) > 0. The profile function f(z) and the PDF ¢,(x) are
determined by w(z) [15]:

) = 3508 (7). (19)
tr(z) = 5w @la) O - w(@) (50

with o/ = 1/4X. Boundary conditions follow from the Regge behavior at x — 0, w(x) ~ =,
and at x — 1 from the inclusive-exclusive counting rule [55, 56], ¢,(z) ~ (1 —x)* 3, which
fix w'(1) = 0. These physical conditions, together with the above-given constraints, basically
determine the form of w(x).

One expects from general considerations that the initial formation of a PLC with a larger
number of constituents —the proton for example, with its large phase space, has a lower
probability to fluctuate to a small configuration as compared with a two-particle bound state,
say the pion. Consequently, it presents a larger transverse impact area as it traverses through
the nucleus, and it will be slowed down or absorbed with greater probability as compared
with a pion projectile with a smaller impact area for the same transverse momentum square
Q? = —t. The onset of color transparency will be higher in Q? for the particle with a larger
number of constituents compared to a hadron with fewer constituents.

The GPDs incorporate the far-off-shell components of the LEWF which controls the
behavior of the FF at large Q? and the power counting rules from the inclusive-exclusive
connection [15]. The GPDs are thus essential to compute the Q2 evolution of the effective
transverse impact surface of a hadron from its physically observable value at Q* = 0, namely
the hadron square radius, to its high-virtuality PLC configuration. To this end we compute
the transverse impact surface dependence on the momentum transfer, t = —Q?, from the
expectation value of the profile function f(z)%:

[ dzAf(z)HY(x,1)
- [dxHi(x,t)

11
:XZ ~ ()’ (51)

which depends explicitly on the hadron’s twist, 7, and the properties of the specific quark

(4f (1)

current, which couples with the active quark in the hadron, characterized by the hadron’s

8 The procedure described here to compute the off-shell Q2 evolution of the effective transverse size differs

from the procedure in reference [57], given instead in terms of relative impact variables.
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Regge trajectory, a(t). For large values of t = —Q?, Eq. (51) leads to

(52)

It shows that, as expected, the effective transverse size decreases as 1/Q?, but the value of
Q? required to contract all of the valence constituents to a color-singlet domain of a given
transverse size grows as 7 — 1, the number of the spectator constituents.
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FIG. 5. The transverse impact area (left) (4 f (¢)) as a function of @2 and the number of constituents
(twist), 7, implies a significant delay in the onset of color transparency for 7 > 2. The off-shell Q>

evolution (right) also shows an important dependence on the number of constituents.

We represent in Fig. 5 the critical dependence on the hadron’s twist 7 of the effective
transverse impact surface (4f(t)). It implies an important delay in the onset of CT in
terms of the number of quark constituents. For example, the effective transverse impact
surface for twist-2 at 4 GeV? is similar to that of twist-3 at 14 GeV?. Likewise, the impact
surface at 4 GeV? for twist-2 is similar to that of twist-4 at 22 GeV?2, thus, implying an
important delay in the onset of CT at intermediate energies in terms of the number of quark
constituents. This is particularly relevant for the proton since it contains, at approximately
equal probability, both twist-3, but also twist-4, in its LEFWF'. The proton is thus expected to
have a “two-stage” color transparency with the onset of CT differing for the spin-conserving
(twist-3) Dirac form factor with a higher onset in Q? for the spin-flip Pauli (twist-4) form
factor. This predicts a larger value of Q% in order to produce color transparency for the
proton, consistent with the absence of proton CT in the present kinematic range of the
JLab experiment [54].

Complementary with the results in Ref. [29], we also show in Fig. 5 the PLC off-shell
twist dependence computed from the Q? evolution of the invariant mass, along similar lines
as the computation of the effective transverse surface in Ref. [29]. The results in this figure
clearly indicate that the pion goes off-shell much more rapidly than the proton. We only
include in this figure the off-shell dependence of the spectator quarks, since the active quark
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remains close to its initial value at Q? = 0, independent of ()2, indicating that most of the
transverse momentum in this model is transferred to the spectator quarks. A comparison of
the expansion effects of the pion and proton formed in a high-momentum transfer collision
was carried out in Ref. [58] using superconformal baryon-meson symmetry in holographic
QCD. No significant difference was found which could explain the JLab results in terms
of the fast hadrons expanding their size, from the PLC configuration, as they escape the
nucleus. Future experiments at higher values of Q2 are critical to test the mechanisms
discussed here which predict a significant twist-dependent delay in Q? for the onset of color
transparency [28].

VI. SUMMARY AND OUTLOOK

Although it has been half a century since the SU(3)¢ color symmetry was introduced by
Fritzsch and Gell-Mann [1] as the gauge field theory of the strong interactions, there has
been little progress in understanding the fundamental physics which confines the colored
quarks and gluons within hadrons. In fact, a basic understanding of the essential features
of hadron physics from first-principles QCD has remained among the most important un-
solved problems of the last 50 years in particle physics. Hadronic characteristics are not
explicit properties of the QCD Lagrangian but large distance emergent phenomena, where
perturbative QCD, so successful in describing short distance phenomena, is not applicable.

Our present goal is trying to understand how emerging QCD properties would appear in
an effective computational framework of hadron structure and as a step in this direction,
we have reviewed in this article recent developments in hadron physics which follow from
the application of superconformal quantum mechanics and light-front holography. This
includes new insights into the physics of color confinement and the origin of the mass scale,
chiral symmetry, the spectroscopy and dynamics of hadrons, the remarkable cancellation
of quark kinetic energy and the color confining potential in the pion, as well as surprising
supersymmetric relations between the masses of mesons, baryons, and tetraquarks. We have
also given a description of the holographic QCD approach to color transparency phenomena
in nuclei [29].

There are other aspects and applications of HLFQCD which are not described in this
article but are reviewed in reference [6]. For example, LF holographic QCD also incorporates
important elements for the study of hadron form factors, such as the connection between
the hadron twist and the scaling behavior for large Q?, and the incorporation of vector
meson dominance which is relevant at lower energies. HLFQCD also incorporates features
of pre QCD, such as the Veneziano model and Regge theory. Further extensions incorporate
the exclusive-inclusive connection in QCD and provide nontrivial relations between hadron
form factors and quark distributions [15, 16], including the intrinsic strange-antistrange [59]

and charm-anticharm [60] asymmetry distributions in the proton. HLFQCD has also been
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applied successfully to the description of gravitational form factors, the hadronic matrix
elements of the energy momentum tensor, and gluon distributions in the proton and the
pion [17]. Holographic QCD has also given new insights on the infrared behavior of the strong
coupling in QCD [61, 62]. Study of diffraction physics [63] and the EMC effect in various
nuclei [64], constitute other examples of the application of the holographic light front ideas
to QCD. More recently holographic QCD has been used to study the relation between the
gluon density in a hadron and entanglement entropy to the high energy diffractive scattering
behavior of hadrons [65]. It was shown, for example, that the growth above the classical
geometric cross section in proton-proton scattering at high energies is directly related to
the increase of the internal quantum entropy from the entangled parton distribution in
hadrons [65].
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