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• Task 1: Exploring 3H diffusion across pure Ni-Zr interface. The diffusion pathway will be obtained and serves 

as our baseline for the following tasks. Completed

• Task 2: Calculating the 3H diffusion pathways across the Ni-Zr interface when NiOx/Ni(OH)x appeared in the Ni 

side of the interface region. Based on the  pure Ni-Zr interface model from Task 1, we will introduce NiOx/Ni(OH)x 

clusters on the Ni side closer to the interface. Then, the 3H diffusion pathways and barriers from Ni side to the 

zircalory-4 will be explored. We will investigate how NiOx/Ni(OH)x affects the 3H diffusion across the interface. 

Completed

• Task 3: Exploring the effects of impurities on 3H diffusion in Ni-plated Zircaloy-4 getter. Based on the model 

constructed in Task 2, we will introduce impurities (e.g., Sn, Fe, C, defects) on the Zr side of the interface. Then, 

the pathways and barriers of 3H diffusion from Ni side to the zircalory-4 will be calculated. From this task, we will 

determine whether the impurity can help or hinder the 3H diffusion into Zircalory-4 getter to form Zr3Hx phases for 
3H storage. Completed

NETL’s supercomputer was shutdown from February through June. 

Three Subtasks

Scope of Work
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LiAlO2 pellets and diffusion into Zircaloy-4 getter,” APS March Meeting, Mar.03-08, 2024, Minneapolis, MN.



Diffusion of H from 
Ni(111) surface to bulk

Review from 2023: Tritium Diffusion in Ni (111) Surface 
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H migration from surface 
to subsurface

• Explored 3H2 and 3H2O binding sites and their dissociation 

on the (111) surface of 3H2O→O3H+3H→O+3H+3H, and 
3H2→

3H+3H. 

• Formation of NiOx or Ni(O3H)x and higher diffusion energy 

barrier for O as compared to that of 3H.

• Only 3H diffuses through Ni layer and reaches Ni-

Zircalory-4 interface to form metal hydrides.



Review from 2023: Tritium Diffusion in Zr (0001) Surface 
(Completed by Morgan Redington, SUNY Buffalo: 2023 Summer Intern)
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Zr(001) Surface to Bulk TransferZr(100) Surface Transfer

The surface-surface and surface to subsurface diffusion barriers for 3H on these surfaces were 

calculated. The effect of Sn on 3H was shown to have a strong repulsive effect on these surfaces.

• The largest diffusion coefficient on the surface was found to be 9.53 x 10-10 m2/s at 600 K. 

• A surface-subsurface diffusion coefficient of 5.14 x 10-13 m2/s at 600 K was calculated, with Sn 

impurities determined to reduce this by up to 9 orders of magnitude. 

J. of Nuc. Mats. 88 (1980) 15-22 

~0.43 eV



Lattice Parameters Mismatch Minimization 

Creating Zr/Ni Interface Models
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Ni-Ni bond length = 2.457 Å

Zr-Zr bond length = 3.170 Å

5*2.457 = 12.28 Å

4*3.170 = 12.68 Å

Parameter ratio aNi/aZr = 1.070

Minimize the stress in xy plane!

Ni(111): 9 x 9

Zr(0001): 7 x 7

Ni(111): 5 x 5

Zr(0001): 4 x 4

Lattice aspect 

ratio ~ 1

22.113 Å

22.190 Å

12.28 Å

12.68 Å

Parameter ratio ~ 0.996 

Parameter ratio ~ 1.070 



Ni(111)/Zr(0001) Interfaces and Model Optimization

Zr/Ni Interface Models
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dz

Five-Layer Ni()/Zr Interface Model Interface Optimization

Ni(111)

Zr(0001)

5*2.457 = 12.28 Å

4*3.170 = 12.68 Å

New ratio aNi*/aZr* = 1.032 𝒅𝒐𝒑𝒕 = 𝟐. 𝟑2 Å



Literature Reviews 

• Ni atoms diffuse crossing the interface more easily and deeply into Zr side than Zr atoms into Ni side.

• The activation energies of Ni and Zr are 1.25 and 1.28 eV for Ni(100)//Zr(0001) interface, 1.33 and 

1.42 eV for Ni(110)//Zr(0001) interface at the temperature range of 950–1100 K.

• The interdiffusion for case of Ni(110)//Zr(0001) interface is easier than that of Ni(100)//Zr(0001) 

interface.

Jones et al., SAND2019-15034R
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𝑑𝑁𝑖−𝑁𝑖 = 2.45 Å

𝑑𝑍𝑟−𝑍𝑟 = 3.24 Å

On Ni side: 

• Bond distance varies 𝑑𝑁𝑖−𝑁𝑖= 2.5-2.65 Å

• More displacement along a-axis

• Minimal displacement along c-axis

On Zr side:

• More displacement along a-axis

• Boundary atoms are more displaced

• Displacement of some atoms by more than an Å 

𝒅𝒐𝒑𝒕 = 𝟐. 𝟑𝟓 Å

Six Layers Ni(111)Zr(0001) Interface Model

Ni(111)/Zr(0001) Interface Model 
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Zr(0001)

Ni(111)



Six Layers Ni(111)Zr(0001) Model Optimization

Ni(111)/Zr(0001) Interface Model 
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-3330

-3328

-3326

-3324

-3322

-3320

2.3 2.32 2.34 2.36 2.38 2.4

𝒅𝒐𝒑𝒕 = 𝟐. 𝟑𝟓 Å

𝑑

Total energy
𝒅𝒐𝒑𝒕 = 𝟐. 𝟑𝟓 Å

Ni(111)

Zr(001)



Ni(111)

Zr(0001)

Tritium Formation at Ni (111)/Zr(0001) - Initial State Optimization

Ni(111)/Zr(0001) Interface Model 
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Top site

H formation in 

Ni site = -0.36 eV 

E_f (eV)

Many local minima, challenging to accurately predict the 3H stable site!



1 2 3 4
E_f (eV)

-0.6

-0.4

-0.2

0

0 1 2 3 4

H formation in 

Zr site = -0.46 eV 

Many local minima, challenging to accurately predict the 3H stable site!

Tritium Formation at Ni (111)/Zr(0001) - Final State Optimization

Ni(111)/Zr(0001) Interface Model 
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Initial State
0
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0.4
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Final State
Images

Initial State

E_diff (eV)

0.83 eV

0.08 eV

Tritium Diffusion Across Ni(111)/Zr(0001) Interface

Ni(111)/Zr(0001) Interface Model 
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Final State

Zr (0001) site for 3H is 0.83 eV lower than Ni (111) site.  



Tritium Diffusion Across Ni(111)/Zr(0001) Interface: With One Zr Vacancy 

Ni(111)/Zr(0001) Interface Model 

17

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

0.34 eV

0.74 eV

Initial State

Final State

Images

E_diff (eV)



Tritium Diffusion Across Ni(111)/Zr(0001) Interface: With a Sn Impurity 

Ni(111)/Zr(0001) Interface Model 
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-0.4

0

0.4

0.8

1.2

1 2 3 4 5 6 7 8

-0.2

Trapping well

0.76 eV

E_diff (eV)

0.24 eV

With a Sn impurity, small 3H trapping well was found at the interface.  



Diffusion of H in Ni(111)/Zr(001) Six Layers

Ni(111)/Zr(0001) Interface Model 
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0

0.2

0.4

0.6

1 2 3 4 5 6 7

3H in Ni side

3H in Zr side

-0.05 eV

3H is more stable by 0.26 eV in Zr region than in Ni! 

0.20 eV

0.35 eV

0.26 eV



Introducing Ni(OH) at the Interface

Ni(111)/Zr(0001) Interface Model 
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-4.87 eV -6.64 eV -6.59 eV 

Optimization

3H Formation



Introducing Ni(OH) at the Interface: Diffusion of 3H

Ni(111)/Zr(0001) Interface Model 
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0
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Initial energy barrier height for tritium diffusion in presence of O in Ni (111) was found to be 0.35 eV, 

almost 0.25 eV higher than with no O impurity but 3H is more stable by 0.43 eV in Zr region. 



Introducing Sn and Ni(OH) at the Interface: Diffusion of 3H

Ni(111)/Zr(0001) Interface Model 
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-0.05
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Image

E_diff (eV) dSn-H = 2.15 Å  

dSn-H = 2.13 Å  

The 3H stability in Zr region is reduced by 0.2 eV with Sn and Ni(OH) as compared to with Ni(OH) only. 



Ni(001)/Zr(0001) Interface Model

Ni(111)/Zr(0001) Interface Model 

23

Ni(001)

Zr(0001)

This model provides a more realistic picture for the 3H diffusion at Ni/Zr interface. However, it requires 

intensive computational resources for the diffusion property calculations.



Simple Toy Model for Ni(111)/Zr(0001) Alloy at the Interface

Ni/Zr Alloy Interface Development
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Ni-Ni bond length = 2.457 Å

Zr-Zr bond length = 3.170 Å

TEM studies for microstructure evolution of 
the as-deposited film (EDXS spectrum 
showing the Ni and Zr elements).

Journal of Alloys and Compounds 844 (2020) 156078

Journal of Phase Equilibria and Diffusion 36, 4, 2015

Five intermetallic compounds, Ni5Zr, Ni7Zr2, Ni10Zr7, NiZr and 

NiZr2 are found to grow in the interdiffusion zone.

Activation energy is found to be lowest for Ni10Zr7 (178 ± 8 kJ/mol) and highest 

for NiZr (323 ± 6 kJ/mol).

In amorphous NiZr smaller atoms are the predominant diffusing species.

Back-scattered electron (BSE) 
image of the interdiffusion zone.

Machine learning assisted computational 

model for complex interfacial Ni/Zr alloy 

with varying elemental composition.



• We created Ni/Zr interface models with different Ni and Zr surfaces. 

• We optimized the interface models for Ni(111)/Zr(0001) with total of five and six layers and studied the 
tritium diffusion pathways. 

• Ni-Zr bond length was optimized and was found to be 2.32 Å for five layer and 2.35 Å for six layers 
interface systems. 

• In Ni/Zr interface model, 3H was found to be relatively more stable by 0.83 eV in Zr (0001) region 
than Ni (111) region.  

• With a substitutional Sn in in Zr-site, the relative stability was found to be 0.24 eV higher in Zr(0001) 
region.

• 3H was found to trap by an energy 0.2 eV at the interface region with Sn impurity. 

• Initial energy barrier height for tritium diffusion in presence of O in Ni (111) was found to be 0.35 eV, 
almost 0.25 eV higher than with no O impurity but 3H was more stable by 0.43 eV in Zr region. 

• The 3H stability in Zr region was reduced by 0.2 eV with Sn and Ni(OH) as compared to with Ni(OH) 
only. 

Summary and Conclusions
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