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Optimally deploy a process system across decentralized sites with 
different geographical, environmental and operating requirements.
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Variant 1 Variant 2

Process Family Design includes the benefits of both.

A set of products that share one or more common “element(s)” yet target a 

variety of different market segments

Each vehicle shares a basic components

The rest is customized for a specific model

Product Family Design[2]

Product Family

Common Units

✓ Reduced manufacturing costs. 
o Economies of numbers (modular concepts at unit level).

o Economies of scale (customization to design range).

✓ Multiple scalable optimization formulations.

✓ Economies of Numbers formulation adds cost savings 
and determines size of platform.

✓ Increased annual cost savings using the new approach.

❑ Perform a rigorous costing analysis for each design approach.

❑ Incorporate Econ. Of Num. and decomposition for ML Surrogates.

❑ Use the explicit equation oriented system model within formulation.
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Discretization

Product Platform

Product Variant
model cars = [a,b,c,d,e]

Product
model car

a b c d e

Common Module Design
designs = [I., II.]

Common Module Type
steering wheel

I. II.

Economies of Numbers[5,6]

Carbon Capture
Monoethanolamine (MEA)

Discretized + Econ. of Num.

1) Diam. of the Absorber
2) Diam. of the Regenerator

𝑐 = 𝒂𝒃𝒔

𝑐 = 𝒓𝒆𝒈

𝐶 = [𝒂𝒃𝒔, 𝒓𝒆𝒈]

(1.2) requires us to specify size of the platform a priori.Challenge:

Approach:

Process Family

Process Platform

a b c d e

Process Variant
HVAC systems = [a,b,c,d,e]

Process
Common Unit Module Type

[evaporator, compressor]

I. II.

III. IV. V.

𝑚 ∈ 𝑀 𝑢 ∈ 𝑈 𝑐 ∈ 𝐶

Unique Unit Module Type
[condenser, valve]

Unit Module Types

Common Unit Module Design
evaporator = [I., II.]

compressor = [III., IV., V.]

Include Economies of Numbers savings within formulation

Discretization Approach[3,4]

෍

𝑙∈𝐿𝑐

𝑧𝑐,𝑙 ≤ 𝑀𝑐
s.t. ∀ 𝑐 ∈ 𝐶

෍

𝑎∈𝐴𝑣

𝑥𝑣,𝑎 = 1 ∀ 𝑣 ∈ 𝑉

𝑥𝑣,𝑎 ≤ 𝑧𝑐,𝑙
∀ 𝑣 ∈ 𝑉, 𝑎 ∈ 𝐴𝑣 , 

𝑐, 𝑙 ∈ 𝑄𝑎

0 ≤ 𝑥𝑣,𝑎 ≤ 1 ∀ 𝑣 ∈ 𝑉, 𝑎 ∈ 𝐴𝑣

𝑧𝑐,𝑠 ∈ {0,1} ∀ 𝑐 ∈ 𝐶, 𝑙 ∈ 𝐿𝑐

Select units for manufacture

Select 1 alternative

Alternative must be manufactured

At optimality, the solution will converge to 
binary under mild assumptions[5]

ReVelle, Charles S., and Ralph W. Swain. "Central facilities location." Geographical analysis 2.1 (1970): 30-42.

Minimize the total weighted cost of all 
variants in the process family

෍

𝑣∈𝑉

𝑤𝑣 ෍

𝑎∈𝐴𝑣

𝑝𝑣,𝑎𝑥𝑣,𝑎min.

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.1)

Given design ranges 
∀𝑐 ∈ 𝐶

Discretize and select 
candidate designs 𝐿𝑐

Optimize and define the 
alternatives 𝐴𝑣

Decision 
Variables

(1) which candidate designs 𝑙 ∈ 𝐿𝑐 are in the platform 𝒫?

(2) which 𝑎 ∈ 𝐴𝑣 is assigned to each variant 𝑣 ∈ 𝑉?

𝑧𝑐,𝑙

𝑥𝑣,𝑎

𝐹𝑛 = 𝑛−𝛼

EoN yields large increases in productivity as organizations 
gain experience in production.

𝐹𝑛 = 𝐹𝑏𝑜𝑢𝑛𝑑 + 1 − 𝐹𝑏𝑜𝑢𝑛𝑑 𝑛−𝛼

෍

𝑙∈𝐿𝑐

(𝟏 − 𝒚𝒄,𝒍,𝟎) ≤ 𝑀𝑐
s.t.

∀ 𝑐 ∈ 𝐶

෍

𝑎∈𝐴𝑣

𝑥𝑣,𝑎 = 1 ∀ 𝑣 ∈ 𝑉

𝑥𝑣,𝑎 ≤ (𝟏 − 𝒚𝒄,𝒍,𝟎) ∀ 𝑣 ∈ 𝑉, 𝑎 ∈ 𝐴𝑣, 𝑐, 𝑙 ∈ 𝑄𝑎

෍

𝒏=𝟎

𝑵

𝒚𝒄,𝒍,𝒏 = 𝟏 ∀𝒄 ∈ 𝑪, 𝒍 ∈ 𝑳𝒄

෍

𝒏=𝟎

𝑵

𝒏 ⋅ 𝒚𝒄,𝒍,𝒏 = ෍

𝒗∈𝑽

𝒘𝒗 ෍

𝒂∈𝑨𝒗,𝒄,𝒍

𝒙𝒗,𝒂

𝝆 = ෍

𝒄∈𝑪

෍

𝒍∈𝑳𝒄

෍

𝒏=𝟎

𝑵

𝒏 ⋅ 𝒚𝒄,𝒍,𝒏 ⋅ (𝒑𝒄,𝒍 − ෞ𝒑𝒄,𝒍
𝒏)

∀𝒄 ∈ 𝑪, 𝒍 ∈ 𝑳𝒄

Minimize total weighted cost of every variant
discounted by savings from EoN

min. ෍

𝑣∈𝑉

𝑤𝑣 ෍

𝑎∈𝐴𝑣

𝑝𝑣𝑥𝑣,𝑎 − 𝝆

Decide integer number of unit module 
type 𝑐 design 𝑙 are manufactured

Constrain number of unit module 
type 𝑐 design 𝑙 manufactured to 

reflect family

Compute the total discount 𝜌

Objective: $75.4𝑀 Objective: $72.5𝑀 

• In the discretization formulation, we need to specify 𝑀𝑐.

• In the EoN formulation, we determine 𝑀𝑐 as apart of the optimization.

• $2.38𝑀 annual cost savings compared to discretization approach (~3.3%).

• Considering only capital costs, we gain 26.8% annual cost savings.
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