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Classical Process Control

Table 1. Manipulated variables and their pairings in classical control. Artificial variables marked with *.
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Classical Control and NMPC Results

» Both classical control and NMPC reach target H, production rates by the end
of the 5-min ramps with NMPC not overshooting (3a).
 NMPC produces different trim heater duty profiles than classical control does

« Hydrogen will play a crucial role in energy transition and decarbonization.
« High-temperature reversible solid oxide cells (rSOCs) are a promising dual-
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« Dynamic system behavior is dominated
by thermal holdup in metal mass of
e Solution Approach

SOC, heat exchangers, and trim heaters. L;
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« Classical: PETSc variable-step implicit Euler DAE solver.

System Performance Constraints . NMPC: Full-discretization NLP with IPOPT solver.
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 Case Study: Hydrogen-Power Mode Switching
« Maximum H, production to power generation and back to maximum H..
« Hydrogen-power ramp performed over 5 min. followed by 5 h of settling time.

Figure 3. Comparison of classical control with NMPC.

Conclusions and Future Work

Figure 2: Schematic
of SOC model.

« |IDAES simulation results show that while both control methods attain similar
performance in a few areas, NMPC reduces SOC temperature gradients and
mixed partial derivatives more effectively during mode switching.

Future work
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Manage trade-off between operating performance and cell degradation
over long-term system operation and mode switching.

» Cell potential lies between 0.7 V and 1.4 V to prevent unintended electrolysis.

- H, concentration in feed remains no less than 5 mol% to avoid degradation.

* O, concentration in sweep outlet remains below 35 mol% to prevent
oxidation of process components.

* Fuel electrode temperature is kept below 1023.15 K and inlet-outlet
temperature difference below 75 K to avoid stack thermal stress.
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