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ABSTRACT

This paper demonstrates a novel Eulerian computational framework for modeling anisotropic elastoplastic deformations of organic
crystalline energetic materials (EM) under shocks. While Eulerian formulations are advantageous for handling large deformations, constitu-
tive laws in such formulations have been limited to isotropic elastoplastic models, which may not fully capture the shock response of crystal-
line EM. The present Eulerian framework for high-strain rates, large deformation material dynamics of EM incorporates anisotropic
isochoric elasticity via a hypo-elastic constitutive law and visco-plastic single-crystal models. The calculations are validated against atomistic
calculations and experimental data and benchmarked against Lagrangian (finite element) crystal plasticity computations for shock-propaga-
tion in a monoclinic organic crystal, octahydro-1,3,5,7-tetranitro-1,3,5,7 tetrazocine (β-HMX). The Cauchy stress components and the
resolved shear stresses calculated using the present Eulerian approach are shown to be in good agreement with the Lagrangian computations
for different crystal orientations. The Eulerian framework is then used for computations of shock-induced inert void collapse in β-HMX to
study the effects of crystal orientations on hotspot formation under different loading intensities. The computations show that the hotspot
temperature distributions and the collapse profiles are sensitive to the crystal orientations at lower impact velocities (viz., 500 m/s); when the
impact velocity is increased to 1000 m/s, the collapse is predominantly hydrodynamic and the role of anisotropy is modest. The present
methodology will be useful to simulate energy localization in shocked porous energetic material microstructures and other situations where
large deformations of single and polycrystals govern the thermomechanical response.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091911

I. INTRODUCTION

Shock initiation of energetic materials (EMs) is a significant
concern, both from the standpoint of safety and performance of
these sensitive and hazardous materials. Initiation of EM occurs in
the microstructure (i.e., at the meso-scale) at “hotspots.” Such hot-
spots can arise due to inter- and intra-crystal void collapse,1,2 shear
band formation,3 inter-crystal frictional interactions, and energy
localization at defects and interfaces.4 Meso-scale simulations of
single crystals3,5,6 and microstructures containing fields of crystals7

have become increasingly important to understand, characterize,
and predict the shock response, in particular, the shock sensitivity
and advent of detonation in energetic materials. Accurately portray-
ing the shock dynamics of EM demands both computational

accuracy as well as physical fidelity in the modeling and simulation
frameworks. Several methods and corresponding models have been
explored in the literature to highlight the requirements for accurate
numerical calculations8,9 and material model representation6,10 of
EM at the meso-scale, i.e., in the microstructure. EM microstruc-
tures can vary depending on the application, typically consisting of
a mixture of energetic crystals, binder materials, and inclusions. The
crystals and defect structures (voids and interfaces) are morphologi-
cally complex, and they can dynamically evolve under shock
loading. Large deformations and topological changes can present
challenges to computational methods, such as Lagrangian finite
element methods, which discretize the computational domain using
boundary-fitted meshes. In recent years, Eulerian computational
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approaches8,9,11 using simple Cartesian, non-body-conforming
meshes have been extensively used for meso-scale simulations of
microstructures and their thermo-mechanical response to shock
loading. However, Eulerian formulations have mainly been used in
hydro-codes, which focused on accurate modeling of high volumet-
ric compression of materials under shocks.12 The material models
in such cases have tended to be isotropic, with models for the devia-
toric elastic and subsequent plastic responses that may not capture
key aspects of the deformation processes in anisotropic materials.
This work seeks to advance Eulerian material dynamics frameworks
by more accurately representing material deformation through the
incorporation of anisotropic single crystal plasticity models for EM.

High strain rate, high pressure and temperature, and extreme
deformation of EM need to be modeled to understand and predict
shock initiation. Organic crystals in high explosives (HEs) undergo
large anisotropic deformations under shocks. For example, the
widely used 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) is a
monoclinic crystal, while 1,3,5-triamino-2,4,6-trinitro benzene
(popularly known as TATB) is a triclinic crystal; the dynamic
response of these EMs is significantly affected by the direction of
the loading with respect to crystalline slip planes.13 Typical isotro-
pic plasticity models cannot explicitly model the sensitivity of these
materials for specific loading directions. Furthermore, they cannot
directly incorporate the crucial sub-grid scale (SGS) dynamics of
dislocation mobility, cross-slip, dislocation nucleation and annihila-
tion, etc., that drives the plastic flow, especially in organic crystals
under shocks.14–17 Accurate modeling of the elastoplastic deforma-
tion of shocked EM is critical for predicting the shock sensitivity of
these materials. Barton et al.6 incorporated dislocation generation
behind a shock wave via a thermal-activation based single-crystal
plasticity model for β-HMX and observed the formation of shear-
bands during shock-induced void-collapse of β-HMX. Austin
et al.3 used a similar model to perform reactive void-collapse com-
putations of β-HMX and demonstrated the roles of shear-enabled
micro-jetting and localization due to shear-bands in driving the
deflagration front of β-HMX. Luscher et al.10 developed a crystal
plasticity model for α-RDX (cyclotrimethylene trinitramine) to
incorporate dislocation multiplication on individual slip systems.
Grilli and Koslowski5 incorporated glide-based crystal plasticity
models into continuum frameworks for meso-scale modeling of
void-collapse in β-HMX and showed good agreement with void-
collapse experiments and atomistic calculations.18,19 These studies
indicate that the micro-mechanics of EM crystals can significantly
impact energy localization and therefore the initiation sensitivity of
EM. Therefore, at least at low to moderate shock strengths, the
anisotropic crystalline deformation processes must be captured in
meso-scale simulations of EM microstructures.

Eulerian formulations offer advantages in modeling materials
subject to extreme deformations under impact, shocks, and detona-
tions, including topological changes such as collapse, spall, and
fragmentation.9,20–22 They typically employ regular Cartesian grids,
where multiple materials are embedded and can flow through the
grid during the deformation process. Since the grid points are not
tied to the material, problems of extreme mesh deformation and
mesh management are avoided. The simple topology of the mesh
also facilitates the use of well-developed, high accuracy shock cap-
turing schemes that produce non-oscillatory solutions under high

strain rate, large deformation, and transient loading conditions.23–25

Additionally, for materials undergoing chemical reactions, multi-
species combustion and tracking of deflagration fronts are also rela-
tively straightforward to implement in Eulerian mixture-based
formulations.25–27 The challenge in Eulerian models is in accurately
representing the mechanics of elastoplastic deformation of solid
materials. For example, Wilkins28 incorporated plasticity into
hydrocodes via the J2 flow theory and Drucker’s postulate29 in
earlier works on modeling isochoric elastoplasticity in materials
under shocks. Such isotropic elastoviscoplastic flow models have
continued to be the norm in Eulerian8,9,11,23 as well as ALE2,3 codes
applied to study the dynamics of EM. To date, the use of single
crystal plasticity has been mostly limited to Lagrangian5 or ALE for-
mulations.3 An exception in this regard is the earlier work by Cazacu
and Ionescu30 that demonstrated a computational framework for
dynamic crystal plasticity using an Eulerian approach; however, the
work was limited to incompressible materials, isotropic elasticity,
and rigid plasticity. In a different application, Kratochvil et al.31

advanced the Eulerian formulation by relaxing the assumption of
rigid plasticity and incompressibility; however, they incorporated
their formulation in an ALE framework for modeling the plastic
response of materials under finite strains.

While these works on Eulerian crystal plasticity have been
pursued for finite strains, to the authors’ knowledge, there is no
computational framework for modeling crystal plasticity in high
strain-rate loading scenarios such as shocks and impacts. The work
presented here seeks to develop an Eulerian model that takes
advantage of the Cartesian grid, sharp interface, TVD-ENO shock
capturing, and arbitrary deformation features20,21,23,32,33 to simulate
the collapse of voids in an organic energetic crystal, specifically
HMX. While the baseline computational solver employed1,20,21,23,32

has been extensively validated, the novel Eulerian approach for
anisotropic crystal plasticity in this work needs to be validated and
benchmarked to establish that the computed anisotropic deforma-
tion and stress fields are correctly represented in the presence of
shock loading. This paper achieves this in the following ways:

1. Since Lagrangian models are traditionally employed for the sim-
ulation of anisotropic material dynamics simulations, they can
serve as a benchmark for the current Eulerian modeling frame-
work. In particular, the Lagrangian simulations can be employed
to compare head-to-head the details of stresses developed in the
material along different crystalline orientations; this would not
be possible to do with experimental data. The Lagrangian model
incorporates a glide-based model for describing the anisotropic
plastic response of shocked β-HMX and solves the governing
equations using the well-tested MOOSE finite element code.
The Lagrangian model has previously been validated against
both experimental void collapse results18 as well as molecular
dynamics (MD) computations.19 The material model, including
the equations of state, the elasticity constants, as well as the plas-
ticity model in the Lagrangian computations in Refs. 18 and 19
are identical to the material model implemented in the present
Eulerian approach. Therefore, for the purpose of benchmarking
the Eulerian framework, we compare our results with the
Lagrangian model for β-HMX.18,19
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2. To closely follow the material modeling framework in previous
studies on void collapse in β-HMX,5,18,19 the present Eulerian
representation uses an anisotropic hypo-elastic constitutive
description for modeling the elastic response of the EM, while
the plastic response is described using single crystal viscoplastic
models.5 Therefore, in addition to benchmarking against the
Lagrangian calculations for the individual components of the
stresses, the bulk response to shocks from Eulerian calculations
is also validated against MD-derived19 and experimentally mea-
sured material responses.34

The remainder of the paper is organized as follows. Section II
provides details of the global conservation laws, which are solved in
conjunction with the kinematic evolution equations to track the
crystalline orientations. Section III presents the results of the calcu-
lations, where the Eulerian computations are compared rigorously
against Lagrangian hyper-elastic computations for the monoclinic
crystal β-HMX, for different loading directions. Section III B com-
pares the shock Hugoniot obtained by using the Eulerian computa-
tions with MD Hugoniotstat data,19 as well as with the
experimental Hugoniot reported in Menikoff and Sewell.34 The
framework is then used in Sec. III C to simulate shock-induced
void collapse of β-HMX under different loading intensities to study
the effect of crystal orientation on hotspot formation. Conclusions
and directions for future work are discussed in Sec. IV.

II. GOVERNING EQUATIONS AND NUMERICAL
METHODS

A. Global conservation laws and constitutive models

The conservation laws for mass, momentum, and energy to
model the shock response of an anisotropic EM crystal are cast in
the Eulerian form,1,22,35 viz.,

@ρ

@t
þ (ρui),i ¼ 0, (1)

@(ρui)
@t

þ (ρuiuj þ pδij),j ¼ Sij,j, (2)

@(ρE)
@t

þ (ρEuj þ puj),j ¼ (uiSij),j, (3)

where ρ and ui are the density and the velocity components;
E ¼ eþ 1

2 uiui is the specific total energy and e is the specific inter-
nal energy. The temperature, T, is computed from e via the caloric
equation of state

T ¼ Tref þ e� eref
Cv

, (4)

where Cv is the specific heat and Tref and eref are the reference tem-
perature and the reference specific internal energy, respectively. In
Eqs. (2) and (3), the Cauchy stress tensor, σ ij, is decomposed addi-
tively as σ ij ¼ �pδij þ Sij, where p is an isotropic thermodynamic
pressure expressed as a function of density and internal energy via
an equation of state (EOS), and Sij is a coupling stress related to the

isochoric strain-rate tensor via a linear, anisotropic constitutive
model.19 The constitutive models are identical to that of the
Lagrangian framework of Ref. 18, which, in turn, was calibrated
against the MD calculations of Ref. 19.

The pressure is described by an EOS of the Mie–Grüniesen
form

p(e, ρ) ¼ Γρ(e� eref (ρ))þ pref (ρ) ¼ Γρeþ f (ρ), (5)

Γ is the Grüneisen parameter defined as Γρ ¼ Γ 0ρ0, where ρ0 is
the reference density of the unstressed material and Γ 0 is the refer-
ence value of the Grüneisen parameter. In Eq. (5), the reference
internal energy eref and the reference pressure pref depend on the
density only and are often combined into a single function, f (ρ),
which is fit to Hugoniot data,19

f (ρ)¼ pref (ρ)�Γρeref (ρ)¼ c20ρ0f

(1� sf)2
1�Γ

2
ρ

ρ0
�1

� �� �
for ρ� ρ0

¼ c20(ρ�ρ0), for ρ, ρ0,

8<
:

(6)

where f¼ 1� ρ0
ρ , s is the slope of the Hugoniot, c0 is the bulk

speed of sound, given by c20 ¼ K0
ρ0
, and K0 is the bulk modulus.

The coupling stress Sij is evolved using a hypo-elastic descrip-
tion given by

@(ρSij)

@t
þ (ρukSij),k � ρSikLkj � ρLikSkj þ ρDkkSij

¼ ρCijklD
e
kl � ρ

1
9
Ckkll

� �
Dppδij, (7)

where Cijkl are the elastic constants in the current coordinates with
the invariant 1

9Ckkll being the bulk modulus K0, Lij ¼ ui,j are the
components of the velocity gradient tensor, and Dij ¼ 1

2 (Lij þ L ji)
is the strain-rate tensor. The left-hand side of Eq. (7) is the
Truesdell rate of the coupling stress, Sij, while the last term on the
right-hand side of the equation removes the contribution of the
volumetric strain-rate to the evolution of Sij since the equation of
state [Eq. (5)] already accounts for the stresses due to the volumet-
ric strain. Note that unlike isotropic materials (or crystals with
cubic symmetry), the coupling stress Sij is not trace-free. In other
words, a purely deviatoric deformation induces a volumetric stress,
which is equal to �Sii/3. Thus, the total volumetric stress of the
material is the sum of the thermodynamic pressure and the trace of
the coupling stress, which arise from purely volumetric and devia-
toric deformations, respectively.

Note that Eq. (7) is a hypo-elastic model relating the evolution
of Sij to the isochoric strain-rates. While hyper-elastic models have
also been used in Eulerian elastoplastic formulations,9,36 they have
been limited to isotropic constitutive descriptions of the elasticity
in the material, i.e., where the Helmholtz free energy can be
decomposed into dilatational and deviatoric components.37 For an
anisotropic material, such a decomposition of the free energy is
non-trivial in an Eulerian frame of reference. Additionally,
hypo-elastic descriptions present computational advantages, espe-
cially for reactive multi-material systems under shocks. For reactive
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systems such as HEs or structural reactive materials,38 thermody-
namic closures (such as pressure-temperature equilibrium) are pre-
scribed in terms of stress components in a partially reacted/
mixed-cell. Since stresses are the primary variables in hypo-elastic
formulations, incorporating thermodynamic closures is also rela-
tively straightforward. The drawback is that with the exception of
specific choices of the tangent modulus (see Kratochvil et al.31),
hypo-elastic formulations are not inherently isentropic. However,
for moderate to strong shocks and for other high strain-rate pro-
cesses, the irreversible isochoric hypo-elastic stresses are small com-
pared to the pressure. A comparison of hypo-elastic and
hyper-elastic computations by Brepols et al.39 showed that for a
wide variety of loading conditions, hypo-elastic formulations yield
stresses, which are in good agreement with hyper-elastic computa-
tions. Because of its compatibility with the Eulerian framework,
this work adopts a hypo-elastic model [Eq. (7)] for describing the
isochoric elasticity of the material and extension to include
hyper-elastic constitutive models for reactive anisotropic multi-
material systems is left to future work.

To close Eq. (7), the deviatoric strain-rate tensor,
Dd
ij ; Dij � 1

3Dkkδij, is additively decomposed into elastic and
plastic parts, De

ij and Dp
ij, in a Prandtl–Reuss model, respec-

tively,40,41

Dd
ij ¼ De

kl þ Dp
ij: (8)

The plastic strain rate Dp
ij is obtained from the sum of the

shear strain rates, _γα , along the individual slip systems as follows:

Dp
ij ¼

1
2

Xn
α¼1

_γα(sαi n
α
j þ sαj n

α
i ): (9)

In Eq. (9), n is the total number of slip systems in the crystal, while
nαi and sαi are the components of the unit normals and the glide
direction unit vectors of the αth slip-system in the current configu-
ration. Note that Eq. (7) demands that the elastic constants Cijkl be
in the current coordinate system. Furthermore, in Eq. (9), nαi and
sαi —which are also typically specified in the material coordinate
system—are pushed forward to the current coordinates throughout
the process of deformation. The procedure for updating the elastic
constants, glide directions, and unit normals in the current coordi-
nates is described next.

B. Initialization and update of the elastic constants,
glide directions, and unit normals

Figure 1 shows an example of a monoclinic crystal such as
β-HMX, with the unit-cell vectors a, b, and c in the fractional coor-
dinates. The dimensions of the crystal lattices are l1, l2, and l3, and
the vectors a and c are at angle of β(= 90�) (a, c are not orthogo-
nal to each other), as shown in the figure. We define a Cartesian
coordinate system locally within the unit cell, with unit vectors e

0
1,

e
0
2, and e

0
3, such that e

0
1 and e

0
2 are parallel to a and b, respectively.

The elastic constants are typically specified in the Cartesian coordi-
nate system spanned by e

0
1, e

0
2, and e

0
3 and are denoted by ~Cijkl,

where the tilde is used to distinguish the elastic constants in the
unit cell basis (e

0
1, e

0
2, e

0
3) from those in the global Cartesian

coordinate system. Furthermore, the glide directions and the unit
normals of the slip and loading planes are specified in Miller
indices, i.e., in the non-orthogonal, fractional coordinate system
spanned by a, b, and c. The procedure for mapping the glide direc-
tions and the unit normals under the assumption of small elastic
stretches onto a Cartesian system is briefly described next.

Figure 1 shows a representative slip plane of the crystal with a
glide direction �sα and a unit normal �nα ; (hαkαlα), with respect to
the fractional coordinate system. �sα and �nα are mapped from the
fractional coordinate system into the (e

0
1, e

0
2, e

0
3) Cartesian coordi-

nate system via a transformation matrix, R(1), defined as

R(1) ¼
l1 0 l3 cos β
0 l2 0
0 0 l3 sin β

2
4

3
5: (10)

The glide direction, �sα , defined in the fractional coordinate
system is mapped onto the glide direction ~sα in the (e

0
1, e

0
2, e

0
3)

coordinate system using the transformation, ~sα ¼ R(1)�sα . Similarly,
the unit-cell vectors, a, b, and c are transformed into the (e

0
1, e

0
2, e

0
3)

coordinate system via the same transformation ~a ¼ R(1)e
0
1,

~b ¼ R(1)e
0
2, and ~c ¼ R(1)e

0
3. The reciprocals of ~a, ~b, and ~c, denoted

by ~a*, ~b
*
, and ~c* are computed using31

~a*¼
~b� ~c

~a:(~b� ~c)
, ~b

*¼ ~c � ~a
~b:(~c � ~a)

, ~c*¼ ~a� ~b

~c:(~a� ~b)
: (11)

These vectors are, in turn, used to map �nα onto the
unit-normal direction ~nα in the (e

0
1, e

0
2, e

0
3) coordinate system as

follows:

~nα ¼ hα~a*þkα~b
*þlα~c*: (12)

The same procedure is also followed to map the unit normal
of the loading plane from the fractional (a, b, c) to the (e

0
1, e

0
2, e

0
3)

coordinate system; the loading unit normal direction in the (e
0
1, e

0
2,

e
0
3) system is denoted by ~n0. Thus, after these mappings, similar to
~Cijkl , ~s

α and ~nα are also defined in the Cartesian coordinate system
spanned by the unit-cell Cartesian basis (e

0
1, e

0
2, e

0
3).

Although ~Cijkl , ~s
α , and ~nα are all described in the (e

0
1, e

0
2, e

0
3)

Cartesian coordinate system, for arbitrary loading directions, the
(e

0
1, e

0
2, e

0
3) Cartesian coordinate system does not necessarily coin-

cide with the global Cartesian coordinate system spanned by
(e1, e2, e3) in which the global conservation laws [Eqs. (1) through
(3)] are cast. Therefore, ~Cijkl , ~s

α and ~nα need to be mapped from
the (e

0
1, e

0
2, e

0
3) coordinate system to that spanned by (e1, e2, e3). To

perform this mapping, a second transformation matrix, R(2), is
defined such that the unit normal of the loading plane ~n0 [defined
in the (e

0
1, e

0
2, e

0
3) coordinate system] aligns with ~n, which is the

desired loading direction in the (e1, e2, e3) coordinate system. This
matrix, R(2), is obtained using Rodrigues’ rotation formula

R(2) ¼ Iþ Aþ 1� c
s2

A2; A ¼
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
4

3
5 , (13)
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FIG. 1. (a) Schematic representation of a single-crystal of β-HMX. l1, l2, and l3 are the lengths of the crystal lattice, and a, b, and c are the basis-vectors in the fractional
coordinate system defined such that they are parallel to the three-lattice directions. e01, e02, and e03 define a local Cartesian coordinate system such that e01 and e02 are
parallel to a and b, respectively. The shaded plane is an example of a candidate slip-system of the crystal, with �sα being the glide direction. (b) and (c) Schematic repre-
sentation of the orientation of the crystal lattice with respect to the Cartesian grid for solving the global conservation laws. The global Cartesian system is spanned by
e1, e2, and e3. (b) shows the orientation at t ¼ 0, while (c) shows the orientation at an arbitrary time during shock passage. Both these schematics are zoomed in to
show the relative orientations of the crystal with respect to the grid.
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where I is the 3� 3 identity matrix, c ¼ ~n0:~n,
a ¼ ~n� ~n0 ¼ a1 a2 a3b c, s ¼ jaj. Once R(2) is computed for
specified values of ~n0 and ~n, the glide directions, sα , and the
directions of the unit normals, nα , in the (e1, e2, e3) co-ordinate
systems are given by sα ¼ R(2)~sα and nα ¼ R(2)~nα . To map the
elastic constants, ~Cijkl , from the (e

0
1, e

0
2, e

0
3) coordinate system to

the (e1, e2, e3) coordinate system, the direction cosines of the
unit vectors e1, e2, and e3 are computed with respect to the
crystal-fixed coordinate system, (e

0
1, e

0
2, e

0
3). The direction

cosines of e1, denoted by (k1, k2, k3) are the components of the
vector ~e1 ¼ R(2) � e01, i.e., the components of ~e1 are the projec-
tions of e

0
1 in the e1, e2, and e3 directions. Similarly,

(m1, m2, m3) and (n1, n2, n3), which are the direction cosines of
e2 and e3 are the components of the vectors ~e2 ¼ R(2) � e02 and
~e3 ¼ R(2) � e03, respectively; similarly, ~e2 and ~e3 are also the
respective projections of e

0
2 and e

0
3 in the e1, e2, and e3 directions

[see Fig. 1(b) for an illustration]. These direction cosines are
used to define a 6� 6 matrix42

Q ¼

k21 k22 k23
m2

1 m2
2 m2

3
n21 n22 n23

2k2k3 2k3k1 2k1k2
2m2m3 2m3m1 2m1m2

2n2n3 2n3n1 2n1n3
m1n1 m2n2 m3n3
n1k1 n2k2 n3k3
k1m1 k2m2 k3m3

m2n3 þ n2m3 m3n1 þ n3m1 m2n1 þ n2m1

n2k3 þ k2n3 n3k1 þ k3n1 n2k1 þ k2n1
k2m3 þm2k3 k3m1 þm3k1 m1k2 þ k1m2

2
6666664

3
7777775
: (14)

The above matrix Q is used to compute Cijkl from ~Cijkl via the
transformation C ¼ Q~CQT , where C and ~C are comprised of the
elastic constants Cijkl and ~Cijkl , expressed in the Voigt notation.
Following the above operations, the elastic constants are also
expressed in the current (e1, e2, e3) coordinate system.

As the shock-induced deformation of the crystal proceeds, it is
necessary to track Cijkl , sα , and nα throughout the process of defor-
mation (as shown in Fig. 2). To this end, the unit vectors ~e1 and ~e2
are evolved via the following equations:

@(ρ~e1i)
@t

þ (ρuj~e1i),j ¼ ρLeij~e1j, (15a)

@(ρ~e2i)
@t

þ (ρuj~e2i),j ¼ �ρLeji~e2j: (15b)

Equation (15) represent the rate-form of the push-forward
operations, ~e1 ¼ Fe~e01 and ~e2 ¼ Fe�T~e02, written in conservation
form.43 Here, Fe is the elastic component of the deformation gradi-
ent, while ~e01 and ~e02 are the projections of the Cartesian unit cell
basis vectors in the reference coordinate system. Once ~e1 and ~e2 are
computed using Eq. (15), ~e3 is obtained as the vector cross-product:
~e3 ¼ ~e1 � ~e2. After computing ~e1, ~e2, and ~e3, the updated direction
cosines (k1, k2, k3), (m1, m2, m3), and (n1, n2, n3) are used to
re-define the matrix Q using Eq. (14), which, in turn, is used to
transform ~Cijkl into the current coordinate system after deforma-
tion. These updated elastic constants, Cijkl , are then used in Eq. (7)
to compute the coupling stresses, Sij.

Similar to ~e1 and ~e2, the rate-forms of the push-forward oper-
ations, sα ¼ Fesα0 and nα ¼ Fe�Tnα0 are used to evolve the glide
directions and the directions of the unit normal during the process
of deformation, where sα0 and nα0 are the glide directions and the
unit normals in the reference coordinate system. The evolution

equations of sα and nα are given by

@(ρsαi )
@t

þ (ρujs
α
i ),j ¼ ρLeijs

α
j , (16a)

@(ρnαi )
@t

þ (ρujn
α
i ),j ¼ �ρLejin

α
j , (16b)

where Leij ; Lij � Lpij is the elastic part of the velocity gradient

tensor, and Lpij ¼
Pn
α¼1

_γαsαi n
α
j is the plastic part of the velocity gradi-

ent tensor. These updated glides and normals, computed using
Eq. (16), are used to calculate the plastic strain-rate tensor in Eq. (9).

Remarks:

(i) The evolution equations described by Eqs. (15) and (16) are
the rate-forms of the push-forward operations involving sα ,
nα , ~e1, and ~e2; these comprise a system of 6(nþ 1) partial
differential equations, where each component of sα , nα , ~e1,
and ~e2 is advected as a scalar variable with a source term on
the right-hand side. These transport equations require boun-
dary conditions, both at the domain boundaries as well as at
multi-material interfaces. Determining the appropriate boun-
dary conditions for these sub-grid scale crystallographic vari-
ables is non-trivial; to prevent spurious oscillations of ~e1,
~e2, sα , and nα , we assume the following Neumann boundary
conditions for these variables:

@sα

@n
¼ 0,

@nα

@n
¼ 0,

@~e1
@n

¼ 0,
@~e2
@n

¼ 0, (17)

where n is the unit normal at the domain/interfacial
boundaries.

(ii) The conservation form of Eq. (16) is obtained by adding
the continuity equation to the following rate equations:
_sα ¼ Lesα and _nα ¼ �LeTnα , where the dot denotes the
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material derivative. These rate equations are total derivates of
the push-forward operations: sα ¼ Fesα0 and nα ¼ Fe�Tnα0.
sα and nα remain orthogonal after their transport via Eq.
(16). This is because

(si _ni) ¼ _sini þ si _ni ¼ Leijsjni � siL
e
jinj ¼ Leijsjni � Leijsjni ¼ 0:

(18)

Thus, Eq. (18) shows that the angle between sα and nα does
not change after the evolution of the glides and unit normal
directions via Eq. (16). However, in practice, advection errors
accumulate with time due to the spatial discretization of the
terms (ρujsαi ),j and (ρujnαi ),j. This can result in non-orthogonality
of the glide-directions and the unit normals, and the plastic
strain-rate may develop a non-zero trace; i.e., Dp

ii in Eq. (9) may
no longer be zero and the plastic strain-rate no longer isochoric.
To ensure that the plastic-strain is isochoric (i.e., Dp

ij remains
trace-free after evolving sα and nα), sα and nα are corrected via
the Gram–Schmidt orthonormalization after solving Eq. (16).
In other words, sα and nα are first evolved using Eq. (16) and
then sα is normalized to ensure jsαj ¼ 1. Finally, the advected nα

is corrected via the Gram–Schmidt orthogonalization to ensure
that jnαj ¼ 1 as well as sα � nα ¼ 0 after the transport via
Eq. (16). Note that previous works on Eulerian crystal plastic-
ity30,31 did not employ a post-advection normalization of sα and
nα as presumably the advection errors were small in the types of
deformations considered in those works. The same normaliza-
tion procedure is also followed for ~e1 and ~e2 to ensure that the
crystallographic axes remain orthonormal throughout the
process of deformation.

(iii) Finally, we note that unlike previous works on Eulerian crystal
plasticity,30,31 the current formulation takes into account the
transformation of the elastic constants in the post-shock
region, which is done by updating the lattice basis vectors, ~e1,
~e2, and ~e3 during the deformation.

C. Flow rule for the shear strain rates

Following the works of Duarte et al.19 the plastic strain-rate,
_γα , is modeled using a power-law form44,45

_γα ¼ min _γ0sign(ταs )
ταs
ταth

����
����
1/m

, _γ pd
0

( )
, (19)

where _γ0 is the reference slip-rate, ταs ¼ Sijsαi n
α
j is the resolved shear

stress on the αth slip-system, m is the rate-sensitivity parameter,
and ταth is the threshold slip resistance of the αth slip-system. It is
assumed that _γα is limited by the phonon-drag limit, _γ pd

0 , which is
taken to be 2:5 ns�1 following Duarte et al.19 The threshold slip
resistance, ταth, follows the hardening rule

ταth ¼ rαgαs , (20)

where rα is the strength ratio on each slip-system and gαs is the
resistance to slip, which evolves according to

_gαs ¼
Xn
β¼1

hαβ 1� gβs
gsat

����
����
a

sign 1� gβs
gsat

� �
_γβ : (21)

In the above, a is the hardening exponent, gsat is the saturation
slip resistance, and hαβ is the hardening matrix, taken to be h0δαβ
as in Duarte et al.19 Note that since _gαs ¼ @gαs

@t þ ui
@gαs
@xi
, Eq. (21) com-

prises a set of additional n partial differential equations; similar to
sα , nα , ~e1, and ~e2, zero-gradient boundary conditions of the form

@gαs
@n

¼ 0 (22)

are assumed for the slip resistance at all domain boundaries and
interfaces.

D. Comparison of Eulerian and Lagrangian approaches

In Sec. III, the present Eulerian calculations are compared to
the Lagrangian finite element approach to simulate the shock
response of β-HMX. It is noted that while there are several material
models available for single crystal plasticity of HE crystals under
shocks,3,6,10 we chose the model described above as it allowed for
benchmarking the Eulerian computational framework against cal-
culations performed with a traditional Lagrangian crystal plasticity
framework. The above model, originally developed in Ref. 5, was
shown to capture the anisotropic response of HMX accurately and
has been validated against experiments18 as well as MD calcula-
tions.19 The above glide-based material model will be used to
directly compare the individual anisotropic stress components in
shocked β-HMX calculated from the previously validated
Lagrangian approach with the values calculated from the current
Eulerian framework. Investigation of other types of crystal plasticity
models10,17 and their Eulerian implementations is currently being
performed and will be reported in future work. The material model
employed by the Lagrangian calculations was calibrated against
molecular dynamics (MD) simulations in previous publica-
tions.5,18,19 The Lagrangian calculations are performed using the

TABLE I. The glide directions, the directions of the unit normals, and the
strength-ratios for the slip-systems of β-HMX. The glide directions and the directions
of the unit normals are in Miller notations in the P21/n space group.

Slip system index, α �sα �nα rα

1 [�100] (0�10) 1
2 [100] (0�1�1) 0.963
3 [�100] (0�11) 0.963
4 [0�10] (101) 0.933
5 [�100] (001) 1.681
6 [�101] (101) 0.376
7 [�11�1] (011) 0.931
8 [111] (0�11) 0.931
9 [001] (�110) 0.701
10 [00�1] (110) 0.701
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multi-physics finite element software MOOSE46 using the
MD-derived material models. The anisotropic crystal plasticity
model parameters are listed in Tables I and II, and identical
models are employed in both the Eulerian and Lagrangian
calculations.

The Lagrangian formulation and computational algorithm has
been described in detail in previously published work5,18,19 and is
not reproduced here. Instead, we summarize below the following
key differences between the Lagrangian and the current Eulerian
frameworks that are relevant to the current work:

1. The Lagrangian model employs a hyperelastic formulation,
where the deformation gradient, F is decomposed multiplica-
tively as F ¼ FeFp, where Fe is the elastic component of the
deformation gradient and Fp is the plastic component obtained
by integrating the plastic strain-rate tensor defined in Eq. (9). In
contrast, the Eulerian framework is based on a hypo-elastic for-
mulation, which obviates the computation of F and directly
relies on an additive decomposition of the strain-rate tensor as
shown in Eq. (8).

2. In Lagrangian computations, the second Piola–Kirchoff stress,
P, is computed directly from a hyper-elastic constitutive model;
these are then pushed forward to the current coordinate system
to compute the Cauchy stresses. In the current Eulerian frame-
work, the Cauchy stresses are computed from Eq. (7), while the
elastic constants are mapped into the current coordinate system
in the hypo-elastic constitutive model.

3. The Lagrangian computations employ a finite element method
for spatial discretization, which can experience oscillations at
shocks and other discontinuities. Artificial viscous stresses are
used to obtain smooth solutions; consequently, the second
Piola–Kirchoff stress tensor, P consists of three stress compo-
nents, viz., P ¼ Pcoupling þ Peos þ Pviscous. The first stress com-
ponent, Pcoupling

, is the stress which accounts for isochoric
stretches due to material anisotropy and is the pull-back of cou-
pling stress, S, described in Sec. II A. The second component,
Peos, is the pull-back of pδij, where the pressure, p, is defined by
Eq. (5). The third component, Pviscous, is the artificial viscous
stress tensor modeled as follows:

Pviscous ¼ C0ρ0
_Jj_Jj
J2

h2Iþ C1ρ0c0
_J
J
hI, (23)

where h is the element size, J is the Jacobian of the deformation
gradient, I is the 3� 3 identity matrix, and C0 and C1 are artificial
viscosity coefficients used to distribute the shock front across a few
elements. In contrast to the Lagrangian formulation, the current
Eulerian framework uses a shock-capturing scheme (third-order
ENO47) for spatial discretization. Since the ENO scheme implicitly
satisfies the entropy condition, spurious oscillations do not arise at
shocks and other discontinuities. Due to the use of shock-
capturing schemes in the present Eulerian approach, artificial
viscous stresses need not be introduced in the Eulerian calcula-
tions.48,49 The implications of the differences in the numerical
treatment of shocks are examined in the Results section.

4. Finally, the Lagrangian computational setup does not use
embedded levelsets to represent the block of β-HMX but uses aTA
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body-fitted finite element mesh to simulate the shock response.
Furthermore, in the Lagrangian computation, a uniform velocity
is directly prescribed at the south face of the material-block to
initiate the shock in the material. A reverse ballistic impact is
employed in the Eulerian calculations to mimic the boundary
conditions imposed in the Lagrangian simulations. These differ-
ences in supplying boundary conditions are typical of
Lagrangian and Eulerian formulations but have no observable
impacts on the benchmarking exercise to study shock propaga-
tion through the material.

E. Numerical procedure for solving the governing
equations

The overall system of equations for modeling single crystal plas-
ticity of a material with n slip systems comprises a set of 17þ 7n
partial differential equations, viz., 5 equations for the global conserva-
tion of mass, momentum and specific total internal energy
[Eqs. (1)–(3)], 6 equations for the coupling-stress evolution [Eq. (7)],
6 equations for evolving each component of ~e1 and ~e2 [Eq. (15)], 6n
equations for evolving each component of sα and nα [Eq. (16)], and
n equations for evolving gαs [Eq. (21)]. These equations are closed by
the equations of state [Eqs. (5) and (6)], the shear strain rate model
[Eqs. (19) and (20)] and the definition of plastic strain rate [Eq. (9)],
while the temperature is obtained as a passive scalar, via Eq. (4).

Note that even for crystals with modest numbers of slip
systems, the number of partial differential equations to be solved
can become large for the anisotropic crystal plasticity model. For
example, for β-HMX, which consists of ten slip systems, the total
number of equations is 87 for a full 3D simulation. Solving such
large systems of equations with high-order schemes is computa-
tionally expensive. Therefore, we use high-order shock-capturing
schemes for the hydrodynamic variables (ρ, ui, E) and the coupling
stresses (Sij), while employing upwind schemes for advecting the
SGS glide resistance, gαs and the lattice variables, viz., sα , nα ~e1, and
~e2. This is based on the assumption that, under modest to strong
shocks, the overall dynamics is governed by the hydrodynamic
characteristics (i.e., the hyperbolicity is governed by the conserva-
tion laws for ρ, ui, E, and Sij), while gαs , s

α , nα ~e1, and ~e2 only
follow the characteristics of ρ, ui, E, and Sij.

Furthermore, the shear strain-rates and the glide-resistances
evolve under stiff source-terms [i.e., the right-hand sides of
Eqs. (19) and (21) are power laws]. Therefore, all variables (Sij, gαs ,
sα , nα ~e1, ~e2), which are explicitly coupled to gαs are solved by an
operator-splitting approach, i.e., by additively decomposing them
into predicted values (S*ij, gα*s , sα*, nα*, ~e*1, ~e*2) followed by a cor-
rection update. In the predictor step, the variables are transported
via the following equations:

@(ρS*ij)

@t
þ (ρukS

*
ij),k � ρS*ikLkj � ρLikS

*
kj þ ρDkkS

*
ij

¼ ρCijklDkl � ρ
1
9
Ckkll

� �
Dppδij, (24)

FIG. 3. Computational setup showing a block of a single-crystal β-HMX being
impacted against the south domain boundary. The material contains a circular
void of diameter Dvoid, whose center is at a distance of l/2 and w/2 from the
bottom and the left surfaces of the block. The block is initialized with a uniform
velocity of V m/s, directed toward �e2.

FIG. 2. Schematic conceptualization of the deformation of a material using
crystal platicity models. The original configuration is denoted by C0, the configu-
ration after lattice shearing is denoted by CF

p, and the configuration after elastic
stretching is denoted by CPe. The deformation gradient, F , is decomposed
multiplcatively into elastic and plastic components, Fe and FP , via,
F ¼ FeFp ¼ ReUeFp, where Re and Ue are the elastic rotations and stretches.
The original glide directions and directions for the unit normals are denoted by
sαo and nαo . It is assumed that lattice stretches do not alter sαo and nαo ; the
elastic stretch changes the directions of glide and unit normals to ŝαo and n̂αo ,
which are further rotated elastically to the final directions, sα and nα .
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@(ρ~e*1i)
@t

þ (ρuj~e
*
1i),j ¼ ρLij~e

*
1j, (25)

@(ρ~e*2i)
@t

þ (ρuj~e
*
2i),j ¼ �ρL ji~e

*
2j, (26a)

@(ρsαi
*)

@t
þ (ρujs

α
i
*),j ¼ ρLijs

α*
j , (26b)

@(ρnαi *)
@t

þ (ρujn
α
j
*)
,j
¼ �ρL jin

α*
j , (27a)

and

@(ρgαs
*)

@t
þ (ρujg

α
s
*),j ¼ 0: (27b)

In the corrector step, the intermediate values of S*ij, g
α*
s , sα*S,

nα*, ~e*1, and ~e*2 are updated via the following equations:

dSij
dt

¼ �Cijkl , (28)

d~e1i
dt

¼ �Lp*
ij ~e

*
1j, (29)

d~e2i
dt

¼ Lp*
ji ~e

*
2j, (30a)

dsαi
dt

¼ �Lp*
ij s

α*
j , (30b)

dnαi
dt

¼ Lp*
ji n

α*
j , (31a)

and

dgαs
dt

¼
Xn
β¼1

hαβ 1� gβs
*

gsat

�����
�����
a

sign 1� gβs
*

gsat

 !
_γβ*, (31b)

where Lp*
ij ¼ Pn

α¼1
_γα*sα*i nα*j and Dp*

ij ¼ 0:5(Lp*
ij þ Lp*

ji ). _γα* is given
by

_γα* ¼ min _γ0sign(τα*s )
τα*s
τα*th

����
����
1/m

, _γ pd
0

( )
, (32)

where τα*s ¼ S*ijs
α*
i nα*j and τα*th ¼ rαgα*s . The procedure for solving

the entire set of equations is as follows:

(i) First, the direction cosines, (k1, k2, k3), (m1, m2, m3), and
(n1, n2, n3), computed from the current values of ~e1, ~e2, and
~e3, are used to calculate the transformation matrix Q, using
Eq. (14). This transformation matrix is used to compute the

elastic constants Cijkl in the current coordinate system, using
the procedure described in Sec. II B.

(ii) The global conservation laws for mass, momentum, and
energy [Eqs. (1)–(3)], and the predictor equation for the cou-
pling stress [Eq. (24)] are solved to compute ρ, ui, E, and S*ij
at the current time step. To solve Eq. (24), the updated elastic
constants Cijkl of step (i) are used. The advection terms in
these equations are spatially discretized using a third-order
essentially non-oscillatory (ENO) scheme47 and the fluxes
are reconstructed using a local Lax–Friedrichs scheme,48

while the spatial derivatives on the right hand-side in these
equations are discretized using central differencing. These
equations are integrated in time using a total variation dimin-
ishing third-order Runge–Kutta method.50

(iii) The pressure and the temperature are computed using the
equation of state [Eqs. (5) and (6)] and Eq. (4), respectively,
using the values of ρ, ui, E calculated in step (ii).

(iv) The predictor equations for the SGS lattice variables and the
slip-resistance [Eqs. (25)–(27)] are then solved to compute gα*s ,
sα*, nα*, ~e*1, ~e

*
2. The advection terms in the L.H.S. of these

equations are spatially discretized using the first-order upwind
scheme, while the velocity gradient terms on the right-hand
side are discretized using central differences. The equations are
integrated in time using a first-order forward Euler update.

(v) The SGS lattice variables and the slip resistances are cor-
rected by solving Eqs. (28)–(31). These equations are solved
by a semi-implicit stiff-equation solver using the computa-
tional package DVODE51 to compute the updated values of
Sij, gαs , s

α , nα ~e1, ~e2.
(vi) The updated values of gαs , s

α , nα are used to compute the
plastic strain-rate, _γα using Eq. (19), which, in turn, is used
to compute the plastic-strain rate tensor, Dp

ij using Eq. (9).

In the above solution strategy, it is assumed that the character-
istics of the system are dominated by the shock hydrodynamics.
Therefore, the stress evolution is solved using an operator splitting
approach, where the elastic stresses are only updated in step (v) by
a semi-implicit solve. For a more general setting, the shear rates
may need to be fully coupled with the stress evolution. The above
steps are repeated at every time instant to march the flow variables
ρ, ui, E, p, T, Sij, as well as the SGS variables, gαs , s

α , nα ~e1, ~e2
forward in time. For delineating voids and multiple materials
embedded in the flow field, a narrow-band levelset52 method is
used; this allows for tracking the material interfaces in a sharp
manner. Once the interfaces are identified by the zero levelset con-
tours, the interfacial boundary conditions are applied using a
variant of the ghost fluid method (GFM).53 Detailed descriptions of
the levelset and ghost-fluid methods are provided in our previous
works22,23,32,35,54 and are not repeated here for brevity.

III. RESULTS AND DISCUSSION

The methods presented in Sec. II are used to perform 2D
(plane strain) simulations of the response of a single crystal
β-HMX material subject to shock loading. The glide directions and
the unit normals of the slip systems for the material are given in
Table I. Amore detailed description of the crystal system provided
in previous works,3,6 where the model was originally developed and
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validated. Table II lists the non-zero elastic constants and the
values of other material parameters required for simulating the
shock-response of β-HMX.6,19 The computational framework
described in this paper is used to first perform grid refinement
studies on a shocked purely elastic sample of β-HMX (Sec. III A).
Following this, we compare the individual stress components from
the Eulerian computational models with the Lagrangian model. We
benchmark our computations using the full elastoplastic model pre-
sented in the preceding section, comparing both the individual
stress components as well as the resolved shear stresses on

individual slip planes. After benchmarking the Eulerian computa-
tions and establishing confidence that the calculations of the
current framework are reliable, we then validate the complete elas-
toplastic predictions of the current Eulerian framework against
MD-computed Hugoniotstat data19 as well as the experimental
Hugoniot reported in Menikoff and Sewell.34 These studies seek to
show that the current Eulerian framework satisfies the essential
physics of β-HMX under shock loading. Shock-induced collapse of
a micrometer-sized void, i.e., of a size typically encountered in
microstructures of energetic materials is then simulated for

FIG. 4. Grid refinement study showing the effect of mesh-sizes on the pressure [Figs. (a)–(c)], normal components of Sij [Figs. (d)–(f )], and the shear components of Sij
[Figs. (g)–(i)] at 60 ps after an impact for a purely elastic void-free HMX material subjected to a velocity of 500 m/s. The first column [(a), (d), and (g)] is for a shock travel-
ing normal to (010), the second column [(b), (e), and (h)] is for a shock traveling normal to (100), while the third column [Figs. (c), (f ), and (i)] is for a shock traveling
normal to (110). In Fig. (g), S12 and S23 are not shown, as they are zero.
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different impact velocities to investigate the effect of anisotropy on
hotspot formation. The void size studied in this work is signifi-
cantly larger than the nano-scale voids that are typically simulated
in MD calculations. This is because, as discussed in Refs. 55, 56,
voids smaller than 0:1 μm are rather sparse in real HMX samples
and do not contribute significantly to the global porosity of the
material. Furthermore,11,57,58 the hotspots produced by nano-sized
voids are easily quenched by thermal diffusion and are unlikely to
contribute to the shock sensitivity of β-HMX.

The computational setup for performing shock simulations is
shown in Fig. 3. The setup comprises a patch of solid β-HMX with
dimensions w and d in e1 and e2 directions, respectively; for void
collapse simulations, a circular void of diameter, Dvoid ¼ 0:5 μm, is
inscribed within the patch with its center coincident with the cen-
troid of the block, as shown in the figure. The void and the patch
of material in the computational setup are delineated by levelsets
and embedded inside the overall computational domain. The com-
putational domain outside the levelset defining the patch is

FIG. 5. Comparison of the stresses and the thermodynamic pressure between the current Eulerian formulation and the Lagrangian formulation. The plots compare the
pressure [Figs. (a)–(c)], normal components of Sij [Figs. (d)–(f )], and the shear components of Sij [Figs. (g)–(i)] at 60 ps after the impact for a purely elastic void-free
HMX material subjected to a velocity of 500 m/s. The first column [(a), (d), and (g)] is for a shock traveling normal to (010), the second column [(b), (e), and (h)] is for a
shock traveling normal to (100), while the third column [Figs. (c), ( f ), and (i)] is for a shock traveling normal to (110). In Fig. (g), S12 and S23 are not shown, as they are
zero. The solid lines show the computations of the Eulerian formulation, while the dotted lines show the computations of the Lagrangian formulation.
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modeled as vacuum, and reflective boundary conditions are applied
at all edges. To initiate a shock in the material, a reverse-ballistic
setup is simulated, i.e., the material is prescribed a uniform down-
ward velocity of V at t ¼ 0 and impacts the south boundary of the
domain. Reflective boundary conditions at the south boundary
mimic a stationary rigid piston, i.e., once the material is in contact
with the boundary, the rigid translation of the material is arrested
and a shock wave is initiated in the positive e2 direction. The mate-
rial is oriented such that the normal to the loading plane is parallel
to the e2 direction; all computations in this paper are performed
for three different loading directions, i.e., the impact is normal to
the planes (010), (100) , or (110).

A. Grid refinement studies

To study the effect of numerical approximations induced by
the grid size employed, we first set _γ pd

0 to 0 and obtain the solu-
tions for a pure elastic anisotropic material model. This allows for
ascertaining the influence of numerical viscosity on the shock
dynamics of the material. The propagation of a planar shock in a
void-free block of β-HMX is simulated; the setup is as in Fig. 3,
with w and d set to 0:4 and 0:65 μm, respectively, and Dvoid set to
0. Computations are performed for an impact velocity
V ¼ 500m/s, and the solutions at time instant t ¼ 64 ps are com-
pared at x ¼ 0:2 μm for three different grid sizes,
Δx ¼ Δy ¼ 7, 5, 2:5, and 1:25 nm.

Figure 4 shows the comparison of the pressure and stress
fields, p and Sij, respectively, for the different grid sizes.
Convergence of the solutions with improved resolution is observed.
As expected, the figure shows that the jumps in the calculated
quantities become steeper as the mesh resolution increases. In

addition to monotonic convergence, Fig. 4 also shows the effects of
loading direction on p and Sij. The magnitude of pressure is the
highest for the (010) direction in Fig. 4(a) and the lowest for the
(110) direction in Fig. 4(c), while the normal stress in the shock
propagation direction, S22, shows the opposite trend. It is lowest
for the (010) direction and the highest for the (110) direction.
Figures 4(d) and 4(e) also show that the transverse normal stress,
S11, is negligibly small for the (100) direction and is the highest for
the (110) direction. However, the out-of-plane stress, S33, is negligi-
ble for the (010) direction and comparable for the other two
loading directions. With regard to shear stresses, it is observed that
all three components are non-zero for the (100) and (110) direc-
tions, as seen is Figs. 4(h) and 4(i), while only S13 is non-zero for
the (010) direction. This is due to the monoclinicity of the β-HMX
crystal. Since the impact velocity V and, consequently, the shock
propagation direction is parallel to e2 and D22 is the only non-zero
component of the strain-rate tensor. From Eq. (7), it follows that
for S23, S13, and S12 to be non-zero, the corresponding elastic con-
stants C24, C25, and C26 must also be non-zero. However, due to
the monoclinicity of the crystal, it can be shown that for the (010)
direction, C25 ¼ ~C25 ¼ 6:81GPa, while C24 ¼ ~C24 ¼ 0 and
C26 ¼ ~C26 ¼ 0. Therefore, S13 is the only non-zero shear compo-
nent in Fig. 4(g). It can further be verified that for the (100) and
the (110) directions, all three components, viz., C24, C25, and C26

are non-zero, with C25 having the smallest value. Therefore, in
Figs. 4(h) and 4(i), all the three shear stresses are non-zero, with
S13 being the lowest shear-stress component. Thus, different shear
stress components are activated due to the monoclinicity of the
crystal for different loading directions.

Finally, Fig. 4 provides verification that the components of Sij
are in the same ratio as the corresponding elastic constants. For
example, for the (010) direction, Figs. 4(d) and 4(g) show that the
ratio of the stress components S11:S22:S33:S13 follows the ratio
(C12 � K0):(C22 � K0):(C23 � K0):C25 ¼ 0:5:� 0:79: 0:1:� 0:85.
These ratios are consistent with Eq. (7) for the case where the
impact velocity V is parallel to the e2 direction (i.e., when D22 is
the only non-zero component of the strain-rate tensor). Thus, the
above grid refinement study demonstrates that the current Eulerian
implementation provides grid independent computation of shock
propagation in the anisotropic β-HMX crystal and captures the dis-
tribution of stresses expected due to the crystalline orientation rela-
tive to the shock direction. Based on this grid refinement study, to
balance the computational cost and discretization errors, a grid size
of Δx ¼ Δy ¼ 2:5 nm is adopted in further computations unless
otherwise mentioned. Further benchmarking of the Eulerian com-
putational model is presented in Sec. III B.

B. Benchmarking and validation

1. Shock propagation in an anisotropic elastic material
—Comparison with Lagrangian simulations

Calculations performed with the present Eulerian framework
are compared to Lagrangian calculations under identical shock
loading conditions. First, we examine the stresses developed along
relevant crystalline orientations, focusing on the shock response of
a pure elastic β-HMX material by setting _γ pd

0 to 0. The sample
shown in Fig. 3 is loaded along three different directions to test the

FIG. 6. Artificial viscous stresses at 60 ps after a 1-D impact for a purely elastic
HMX material subjected to a velocity of 500 m/s. The solid lines show the addi-
tiional artificial viscous stress in the material used in the Eulerian computations,
while the dashed lines show the push-forward of the artificial viscous stresses
used in the Lagrangian computations. For the purpose of brevity, only the two–
two component of the artificial viscous stress tensors is shown.
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ability of the Eulerian model to accurately calculate orientational
effects on the stress field. Figure 5 shows the comparison of the cal-
culated pressure p and deviatoric stress component Sij between the
Eulerian and the Lagrangian computations. Several observations
can be made from Fig. 5 as described below.

First, it can be noted that the shock locations for all the three
loading directions are in good agreement between the Eulerian and
the Lagrangian computations. The observed difference between the
two computational models is in the resolution of the shock front.

As seen in Fig. 5(a), the jump in pressure across the shock is cap-
tured sharply in the Eulerian computation, while the discontinuity
is distributed over a larger spatial extent in the Lagrangian compu-
tation. This is because the Lagrangian computation spreads the
shock over a few elements due to the use of an artificial viscous
stress, where the first viscosity coefficient C0 in Eq. (33) controls
the thickness of the shock front. In contrast, the present Eulerian
computations discretize the governing equations using a shock-
capturing scheme (ENO), which ensures that the entropy condition

FIG. 7. Comparison of the stresses and the thermodynamic pressure between the current Eulerian formulation using the artificial viscosity and the Lagrangian formulation.
The plots compare the pressure [Figs. (a)–(c)], normal components of Sij [Figs. (d)–(f )], and the shear components of Sij [Figs. (g)–(i)] at 60 ps after the impact for a
purely elastic void-free HMX material subjected to a velocity of 500 m/s. The first column [(a), (d), and (g)] is for a shock traveling normal to (010), the second column [(b),
(e), and (h)] is for a shock traveling normal to (100), while the third column [(c), (f ), and (i)] is for a shock traveling normal to (110). In Fig. (g), S12 and S23 are not shown
as they are zero. The solid lines show the Eulerian computations, while the dotted lines show the computations of the Lagrangian formulation.
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is satisfied and therefore explicit artificial viscosity is not required.
Thus, the difference in resolution of the shock-fronts between the
Eulerian and the Lagrangian computations, which can be observed
for all the three loading directions in Fig. 5, results from the differ-
ences in numerical schemes employed to capture shocks in these
frameworks.

Second, Fig. 5 shows that the transition from the unshocked
to the post-shocked state is monotonic in the Eulerian

computations for the pressure p as well as all components of Sij
and for all the loading directions. However, in the Lagrangian cal-
culations, the post-shocked p, S11, and S12 show small oscillations
for the (110) loading direction [Figs. 5(c), 5(f ), and 5(i)], while a
few stress components manifest an initial dip, followed by a rise for
the (010) and (100) directions. This is observed in S11, S22, and S33
in Fig. 5(d) and in S22 in Fig. 5(e). Since the Eulerian computations
use shock capturing schemes with inbuilt viscosity solutions, these

FIG. 8. Comparison of the volumetric and the components of the deviatoric stresses between the current Eulerian formulation and the Lagrangian formulation. The plots
compare the volumetric stress, σvol , [Figs. (a)–(c)], normal components of the deviatoric stresses, σd , [Figs. (d)–( f )], and the shear components of the deviatoric stresses,
σd [Figs. (g)–(i)] at 60 ps after the impact for an elastoplastic void-free HMX material subjected to a velocity of 500 m/s. The first column [(a), (d), and (g)] is for a shock
traveling normal to (010), the second column [(b), (e), and (h)] is for a shock traveling normal to (100), while the third column [(c), (f ), and (i)] is for a shock traveling
normal to (110). In Fig. (g), 12 and 23 components of σd are not shown as they are zero. The solid lines show the Eulerian computations, while the dotted lines show the
computations of the Lagrangian formulation.
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oscillations or non-monotonicity are not present in the post-
shocked p and Sij Eulerian results in Fig. 5. The oscillations and
non-monotonicity are also due to the artificial viscous stresses and
has been observed in other works (see Noh59). Calibration of the
viscosity coefficients to tune the amount of shock-front diffusion
supplied to suppress spurious oscillations may obviate the non-
monotonicity through the shock zones. Such calibration is chal-
lenging to perform for a general anisotropic field and for a wide
range of shock loading intensities.

Finally, Fig. 5 shows that the magnitudes of the post-shocked
pressure p, shear stresses (S12, S23, and S13), and the transverse and
the out-of-plane components of the normal coupling stresses (S11 and
S33) are in good agreement between the Lagrangian and the Eulerian
computations. However, the normal coupling stress in the direction of
shock propagation, S22, is somewhat higher in the Eulerian computa-
tion, compared to the Lagrangian solutions. Closer examination
shows that in the Lagrangian computations, the ratios of the stresses,
S11:S22:S33:S13, are considerably different from the ratio of the elastic
constants, (C12 � K0):(C22 � K0):(C23 � K0):C25. It has been verified
for the (010) loading direction that this difference in ratios is not due
to push forward of the PK2 stresses, as both the Jacobian and the
non-zero component of the deformation gradient, F22, are of order 1

(O � 0:87� 0:9) in the pull-back operation, JF�1SF�T ; this verifica-
tion is not presented here for the sake of brevity. We hypothesize that
this disagreement arises due to the difference in the decomposition of
the stress tensor between the Lagrangian and the Eulerian computa-
tions. In the Eulerian framework, the stress tensor is comprised of the
pressure and the coupling stresses, whereas in the Lagrangian frame-
work, an artificial viscous stress is used in addition to the pressure
and the coupling stress. Figure 6 shows Pviscous in the Lagrangian
computations for the different loading directions, with the value of
the transient viscous stress ∼ O(0:5GPa) near the shock front.
Comparison of Fig. 6 with Figs. 5(d)–5(f) shows that this artificial
viscous stress is comparable in magnitude to the post-shocked cou-
pling stresses S22 in the Lagrangian computations. This implies that a
significant component of the imparted momentum is partitioned into
the viscous stresses, at least near the shock front. This additional
viscous dissipation near the shock front is absent in the post-shock
S22 in the Eulerian computational framework; therefore, the post-
shock S22 is higher in the Eulerian computations. Additionally, we
note that in the present Eulerian calculations the components of
stresses are in the same ratio as the elastic constants, indicating a
physically correct evaluation of the stresses along the different
orientations.

FIG. 9. Comparison of the individual resolved sheared stresses (RSS) between the current Eulerian formulation and the Lagrangian formulation. Figures (a)–(c) compare
the RSS for the first five slip systems, while Figs. (d)–(f ) compare the RSS for the last five slip systems, as compared at 60 ps after the impact for an elastoplastic void-free
HMX material subjected to a velocity of 500 m/s. The first column [(a) and (d)] is for a shock traveling normal to (010), the second column [(b) and (e)] is for a shock travel-
ing normal to (100), while the third column [Figs. (c) and (f )] is for a shock traveling normal to (110). The solid lines show the Eulerian computations, while the dotted
lines show the computations of the Lagrangian formulation.
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To evaluate the above hypothesis regarding the causes under-
lying the differences in the ratio of stresses between the Lagrangian
and Eulerian calculations, a small viscous stress was purposefully
added to the coupling stresses in the Eulerian formulation. Thus,
the Cauchy stress tensor, σ ij, was decomposed additively as,
σ ij ¼ �pδij þ Sij, where an additional viscous stress was explicitly
added in the Eulerian framework, of the same form as the artificial
viscous stress in the Lagrangian case, viz.,60

Sviscousij ¼ [C2c0Δx þ C3jDkkj(Δx)2]Dij, (33)

where C2 and C3 are viscosity coefficients, whose values are given in
Table II. The key question that underpinned the addition of Sviscousij in
the Eulerian system was the following: Do all components of the
stress tensor of the Lagrangian and the Eulerian computations agree if
an appropriate amount of additional dissipation is added to the
Eulerian system? Note that the values of C2 and C3 are chosen to be
smaller than the values of the Lagrangian viscosity coefficients, C0

and C1. This is because these coefficients in the Lagrangian computa-
tion are calibrated to prevent spurious oscillations near the shock
front. However, in the Eulerian computations, the ENO scheme
already satisfies entropy conditions and prevents oscillations near the
shock-front by construction. Therefore, only a small amount of addi-
tional artificial viscous stresses is added in the Eulerian computations
with the express purpose of emulating the dissipation of the
Lagrangian computational system. The simulations for shock propa-
gation in a pure elastic β-HMX material are then repeated for the
same computational setup as before. Figure 6 shows the stress compo-
nent containing the viscous contribution Sviscous22 for the three loading
directions in the Eulerian computations. Note that Sviscous22 is small

compared to the push-forward of the Lagrangian stress Pviscous. This
is expected because Pviscous is the total viscous dissipation demanded
by the Lagrangian computations to suppress oscillations near the
shock-front, whereas Sviscous22 only reflects the additional viscosity artifi-
cially added in the Eulerian system via Eq. (33).

Figure 7 compares the components of p and Sij between the
Lagrangian and the Eulerian computations with the added artificial
viscous stress. The figure shows that with the additional viscosity in the
Eulerian system, all components of Sij agree well between the Eulerian
and the Lagrangian computations. The pressure is slightly higher in
Figs. 7(a)–7(c) in comparison to the Lagrangian computations as well
as in comparison to the previous Eulerian computations without the
additional viscosity [Figs. 5(a)–5(c)]. Therefore, with the added dissipa-
tion in the Eulerian system, the elastic solutions of the current Eulerian
formulation are in better agreement for all stress components with the
Lagrangian computations. Therefore, the differences between the
present Eulerian and the Lagrangian calculations can be attributed to
the application of explicit artificial viscous terms in the latter approach.

It is noted that an artificial viscosity is not required in the
current Eulerian framework and was only added for the discussion
of Fig. 7 to examine the effect of the additional dissipation applied
in the Lagrangian computations. Since an entropy satisfying shock-
capturing scheme is used in the present Eulerian framework, the
artificial viscous stresses of Eq. (33) will not be retained in the defi-
nition of Sij for the remainder of the paper.

2. Comparison of shock propagation in an elastoplastic
material

In Sec. III B 1, the purely elastic material model was employed
to compare results between the present approach and a traditional

FIG. 10. Comparison of the (a) pressure-particle velocity variation behind the shock between the current Eulerian computations and the MD Hugoniotstat data as reported
in Ref. 30, and (b) the pressure and the compression–ratio relation behind the shock between the Eulerian computations and the experimental data as reported in Ref. 33.
In the Eulerian computations, the void-free β� HMX specimen described in Fig. 3 is loaded in a reverse-ballistic configuration in the (010) direction. The loading velocities
are 500, 750, 1000, 1500, and 2000 m/s.
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Lagrangian formulation. The two methods are now compared for
an elastoplastic material, i.e., the constraint _γ pd

0 ¼ 0 is removed;
instead, the value shown in Table II is prescribed. Similar to the
cases in Secs. III A and III B 1, computations are performed for
V ¼ 500m/s, and the solutions at t ¼ 64 ps are compared at
x ¼ 0:2 μm. Comparisons between the Eulerian and the Lagrangian
computations are shown with respect to the volumetric stresses,
σvol ¼ �pþ Skk/3, and the components of the deviatoric stresses,
σd
ij ¼ Sij � 1

3 Skkδij.
Figure 8 shows comparisons of the calculated stress compo-

nents for the three loading directions, (010), (100), and (110).
Figure 8(a) through 8(c) show that for all three loading directions,
σvol is slightly higher in the Eulerian computations, in comparison
to the Lagrangian values. Similar observations are also made in

Fig. 8(d) through 8(f ), where the normal components of the devia-
toric stresses are seen to be slightly higher in the Eulerian computa-
tions. With regard to the shear stresses, with the exception of
minor oscillations in the Lagrangian solutions of σd

12 and σd
13 for

the (110) loading direction [Fig. 8(i)], the Eulerian computations
are in good agreement with the Lagrangian case. Furthermore, the
plastic relaxation of the deviatoric stresses is also seen to be in rea-
sonable agreement between the Lagrangian and the Eulerian com-
putations. For instance, in Fig. 8(e), both the Lagrangian and the
Eulerian simulations show that the normal components of σd

ij peak
at the shock front followed by a decay behind the shock. The
spatial extent of the post-shock relaxation zones is also in good
agreement between the two approaches. Thus, Fig. 8 shows that the
stresses from the elastoplastic Eulerian computations agree well

FIG. 11. Evolution of the von Mises stress in GPa at different time-instances during the collapse of a void of diameter 0.5 μm due to a reverse-ballistically induced impact
velocity of 500 m/s. The three columns show the contours of the von Mises stresses for the shock directed normal to the (100), (010), and (110) planes for HMX.
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with those from the Lagrangian simulations, despite the use of an
artificial viscosity in the latter approach.

In addition to the components of the Cauchy stresses, the
resolved shear stresses, τα , on the different slip-systems are

compared between the Lagrangian and the Eulerian computations.
Figure 9 shows the comparisons of τα for the three loading direc-
tions. The values of τα are observed to be in good agreement.
Additionally, the figure also shows that the same set of slip-systems

FIG. 12. Evolution of the pressure in GPa at different time-instances during the collapse of a void of diameter 0.5 μm due to a reverse-ballistically induced impact velocity
of 500 m/s. The three columns show the contours of the pressure for the shock directed normal to the (100), (010), and (110) planes for HMX.
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FIG. 13. (a)–(c) Evolution of the temperature field at different instants of time during the collapse of a 0:5 μm void subjected to a velocity of 500 m/s. In Fig. (a), the
loading is normal to the (010) plane, while in Figs. (b) and (c), the loading is normal to the (100) and (100) planes, respectively. Figure (d) shows the area with temperature
exceeding T at different time instances of void collapse for the three loading directions. Figure (e) shows the variation of the hotspot area, Ahs, over time for all three
loading directions. Ahs is the cumulative area of the material above 650 K.
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are activated in both the formulations for a given loading direction.
For instance, Figs. 8(a) and 8(d) show that τ1 and τ5 are zero,
implying that in both the Eulerian and the Lagrangian computa-
tions, all slip-systems, except α ¼ 1 and 5 are activated for the
(010) direction. Similarly, in the (100) case, the two slip-systems
(α ¼ 1 and 5) are only weakly activated, as shown in Figs. 9(b) and
9(e). In contrast, for the (110) loading directions, all slip-systems

are activated in both the Lagrangian and the Eulerian computations
[Figs. 9(c) and 9(f )]. In addition to the activated slip-systems, the
Eulerian and the Lagrangian computations also show the same
direction of shearing of the slip-systems; τ8 is seen to be negative
for the (010) case, while it is positive for the other two loading
directions in Figs. 9(d)–9(f ). Therefore, Figs. 8 and 9 show that the
Eulerian framework provides reliable and accurate descriptions of

FIG. 14. Evolution of the von Mises stress in GPa at different time-instances during the collapse of a void of diameter 0.5 μm due to a reverse-ballistically induced impact
velocity of 1000 m/s. The three columns show the contours of the stress for the shock directed normal to the (100), (010), and (110) planes for HMX. The region of local-
ized shear is indicated in the figures.
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the effects of crystal orientation on the evolution of stresses for
materials under shocks.

3. Validation of the elastoplastic computations

While in the previous sections, we compare the current com-
putations with those of a MD-calibrated Lagrangian computational
model, here we focus on validating the full elastoplastic Eulerian

computational model by comparing with molecular dynamics
(MD)19 and available experimental data.34 To this end, we load a
coupon of β-HMX in the (010) direction in a reverse-ballistic
setting, using the computational set-up shown in Fig. 3 (in the
absence of a void). The coupon impacts at different particle veloci-
ties, viz., V ¼ 250, 500, 750, 1000, 1500 , and 2000m/s and the
post-shock pressure, p, as well as the densities, ρ, behind the shock
are computed for these velocities. The variation of the calculated

FIG. 15. Evolution of the pressure in GPa at different time-instances during the collapse of a void of diameter 0.5 μm due to a reverse-ballistically induced impact velocity
of 1000 m/s. The three columns show the contours of the pressure for the shock directed normal to the (100), (010), and (110) planes for HMX. The release regions are
indicated in the figures.
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FIG. 16. Evolution of the temperature field at different instants of time during the collapse of a 0:5 μm void subjected to a velocity of 1000 m/s. In Fig. (a), the loading is
normal to the (010) plane, while in Figs. (b) and (c), the loading is normal to the (100) and (100) planes, respectively. Figure (d) shows the area with temperature exceed-
ing T at different time instances of void collapse for the three loading directions. Figure (e) shows the variation of the hotspot area, Ahs, over time for all three loading direc-
tions. Ahs is the cumulative area of the material above 1050 K.
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post-shock pressure p with the impact velocity Up is compared
with the Hugoniostat data computed using molecular dynamics
(MD),19 while the variation of p with the compression ratio ρ0/ρ is
compared with the experimental Hugoniot curve.34

Figure 10(a) compares results from the current Eulerian com-
putations with the MD Hugoniostat data. As observed in the figure,
the current computations show excellent agreement with the MD
simulations. In particular, it is noted that both in MD as well as in
the current Eulerian computations the Hugoniot Elastic Limit
(HEL) is observed to be reached at an impact velocity of �1 km/s,
as discerned from the location on the graph where the slope of the
p� V curve shows a discontinuity. In addition to agreement with
the MD computations, the computed Hugoniot is also observed
to be in good agreement with the experimental Hugoniot34 in
Fig. 10(b). Note that as discussed in Menikoff and Sewell,34 the
experimental Hugoniot data for values of ρ0/ρ less than 0.65 likely
correspond to conditions exceeding the melting point of β � HMX.
Therefore, in the current work, the comparison against the experi-
mental Hugoniot is limited to V , 2 km/s, where ρ0/ρ is greater
than 0.65. Therefore, the results in Fig. 10 show that the current
Eulerian computations produce good agreement with both MD
computations as well as with experiments for the overall elastoplas-
tic shock response of the material.

C. Shock-induced void-collapse in β-HMX

The above validation and benchmarking efforts have demon-
strated that the present Eulerian crystal plasticity modeling frame-
work captures the elastoplastic dynamics, including the orientation
sensitivity of β-HMX under shock conditions. Initiation sensitivity
of shocked HMX-based materials is strongly influenced by the col-
lapse of voids in the material. As shown in the previous work,11 the
sizes of critical voids, i.e., those that lead to critical or self-
sustaining hotspots in the energetic material, are centered around
1 μm. Voids of size ranges much smaller or larger than the micron
range contribute weakly to the energy localization in β-HMX.57 To
study the collapse of voids relevant to the initiation sensitivity of
the material, we study the effect of crystalline anisotropy on the
mechanics of void collapse under the conditions of reverse ballistic
impact illustrated in Fig. 3. In the computational setup l and w are
set to 1.6 and 1:5 μm, respectively. The diameter of the void is
taken to be 0:5 μm, which is a representative void-size commonly
found in HMX-based explosive formulations.56 Similar to the pre-
vious section, three loading directions are considered: the crystal is
orientated such that the impact direction is parallel to the unit
normals of the (010), (100), and (110) planes. The evolution of the
stresses and temperature in the material for these three loading
directions is studied for two impact velocities, viz., V ¼ 500 and
1000m/s as discussed below.

1. Void collapse for impact velocity V ¼ 500 m/s

Figures 11 and 12 show the von Mises stress, σv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 σ

d
ijσ

d
ij

q
,

and the pressure p respectively, at different time instances of void
collapse for the low velocity case, V ¼ 500m/s. The columns in
each figure show the Mises stresses, at four instants of time
through the void collapse process. It can be observed that although
the magnitude of p and σv are similar for the three loading

directions, their distributions differ significantly at a particular
instant of time. For instance, in all three cases, the voids begin to
collapse at 130 ps, and the maximum values of p and σv at the
earlier stages of collapse are similar in Figs. 11, 12(a-i), and 12(a-ii).
However, while for the (010) direction, a sustained shock impinges
on the void, for the other two directions, the void interacts with a
shock followed by a release zone. In addition to the initial shock,
the rarefaction zones developed during void collapse are also
different for the different loading directions. As observed in
Figs. 12(a-ii)–12(c-ii), the (010) direction manifests a symmetric
rarefaction zone, while the (110) case results in a wider region of
expansion.

The differences in the distributions of p and σv lead to differ-
ences in the shapes of the collapsing voids for the three loading
directions. For the (010) direction, Figs. 11 and 12 show that the
void collapses symmetrically with respect to its longitudinal axis
(x ¼ 0:75 μm). For the (100) and the (110) cases on the other
hand, Figs. 11 and 12 show that the void shapes are skewed with
respect to the longitudinal axis. It is also noted in these figures that
the distributions of p and σv are symmetric with respect to the lon-
gitudinal axis for the (010) case, while this longitudinal symmetry
is not observed for the (100) and the (110) directions.
Consequently, from Fig. 11, it is noted that there are localized
regions of stress in the post-collapse flow field for the (100) and the
(110) cases, while such stress localizations are absent in the sym-
metric flow-field of the (010) case. Figure 13 shows the evolution of
the hotspot that results from void collapse for the three loading
directions. Similar to the p and σv distributions, Figs. 13(a)–13(c)
show that the peak temperature in the hotspots is the same for all
three loading directions. Furthermore, Figs. 13(a-ii)–13(c-ii) show
that in all three cases, the maximum temperature is developed at
the edges of the voids, i.e., the hotspots are initiated due to plastic
heating as the void is pinched towards closure from the sides; this
mode of heating and collapse is distinctly different from the hydro-
dynamic jetting mode, which is commonly observed for isotropic,
elastic-perfectly plastic models of β-HMX.11 However, while the
orientation of the crystal has modest effects on the maximum tem-
peratures or the mode of hotspot formation (i.e., pinching from the
sides as opposed to jetting from the lower surface), the distribution
of the temperatures is significantly affected by the crystal orienta-
tion. Thus, Fig. 13(a) shows that the hotspots are formed as two
distinct circular lobes of high temperature which are symmetric
with respect to the longitudinal axis of the void for the (010) case.
In contrast, for the (100) case, the hotspots originate as annular
regions of high-temperature [for example, at 510 ps, Fig. 13(b-ii)]
and the post-collapse hotspot is asymmetric with respect to the
longitudinal axis. The (110) case also shows asymmetric hotspots
[Fig. 13(c)]; however, instead of circular lobes or annular structures,
the hotspots evolve as convex regions of high temperature.

Hotspot areas formed due to void collapse are known to
depend on the void size, shock strength, and on the porosity of the
material. The hotspot areas are also expected to depend on the
crystalline orientations; we examine this orientational dependency
in Fig. 13. Figure 13(d) shows the area occupied by regions at the
specified cumulative temperature at different instances of time.
From the figure, it is observed that the local temperatures for the
(110) case are initially lower [e.g., at 410 ps in Fig. 13 (d-i)], while
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at later times, they are lower for the (010) and the (100) cases.
Finally, Fig. 13(e) shows the temporal variation of the total area of
the hotspot, Ahs, which is calculated to be the cumulative area of
the domain at a temperature T > 650 K. The figure shows that Ahs is
slightly higher for the (010) case, i.e., where the hotspots develop as
circular lobes, compared to the other loading directions. Thus, crys-
talline anisotropy has observable effects on the shapes of hotspots
developed during shock-induced void-collapse.

2. Void collapse at V ¼ 1000 m/s

Figures 14 and 15 show the distributions of σv and p at differ-
ent time instances during void collapse under a higher shock
strength, corresponding to a velocity V ¼ 1000m/s. Unlike for
V ¼ 500m/s, the figures show only modest effects of loading direc-
tions on the distributions of σv and p for V ¼ 1000m/s. Thus,
Figs. 14, 15(a), and 15(b) show that the distributions of σv and p
are symmetric with respect to the longitudinal axis (x ¼ 0:75 μm)
for the (010) and the (100) cases, while only minor asymmetries
are noted for the (110) case in Figs. 14 and 15(c). Furthermore, in
contrast to the V ¼ 500m/s cases where the void collapsed due to
pinching from the sides, for V ¼ 1000m/s, the mode of collapse is
noted to be predominantly hydrodynamic jetting for all three direc-
tions. As seen in Figs. 14 and 15, the lower surface of the impinges
on the opposite surface in a typical jet formation. Finally, yet
another difference between the V ¼ 500 and V ¼ 1000m/s cases is
that a distinct post-collapse spherical blast wave is observed at
350 ps for the latter case. The figures also show complex interac-
tions of the blast-wave with localized zones of σv and p concentra-
tions in all three loading directions. These are markers of a
hydrodynamics dominated deformation and void collapse process.

All of the aforementioned differences between the
V ¼ 500m/s cases and V ¼ 1000m/s indicate that for the higher
velocity case, pressure predominates over the deviatoric stresses
during void collapse. Since the equation of state [Eqs. (5) and (6)]
is isotropic, despite the anisotropic models for the isochoric defor-
mations, loading directions only modestly affect the distribution of
σv and p. However, the anisotropic material models are observed to
influence the σv localizations in the core of collapse in Fig. 14. In
fact, localized zones of high σv concentrations are observed for the
(010) and the (010) cases at 205 ps in Fig. 14; these localized zones
manifest as sharp lines intersecting with a crisscross pattern, e.g., at
x ¼ 0:5 and 1:25 μm and y ¼ 0:5 μm. As the flow evolves, these
localized regions of high σv develop further with time and manifest
as isolated bands emanating from the core of collapse in the figure.
A single band is also observed to develop for the (110) case in
Fig. 14. However, unlike the (010) and (100) cases, this band does
not develop symmetrically with respect to the longitudinal axis. It
is expected that thermal softening of the plastic strain would local-
ize the bands further and result in distinct shear-bands or melt-
cracks, as has been observed previously by Austin et al.3 as well as
others33,61,62 for isotropic rate dependent elastoplasticity models
used for simulating void collapse. Models for such thermal soften-
ing and localization are available for crystal plasticity material
descriptions of organic crystals3,6,10,17 and will be studied in future
work.

Figure 16 shows the evolution of hotspots during void-collapse
for V ¼ 1000m/s. Figures (a) through (c) show that for all three
loading directions, the hotspots originate as circular lobes of
regions of high temperature at the edge of the collapsed voids. This
is in contrast to the V ¼ 500m/s cases, where it was observed that
for the (100) and (110) cases the hotspots developed as annular
and convex regions, respectively, while distinct circular lobes were
observed only for the (010) case. Furthermore, contrary to the
V ¼ 500m/s, Figs. 16(a)–16(c) show that the hotspots are symmet-
ric with respect to the longitudinal axis for V ¼ 1000m/s.
Additionally, Figs. 16(d) and 16(e) show the local temperature dis-
tributions and the hotspot area (defined as the cumulative area
under a temperature above 1050 K, which is approximately the bulk
temperature in a void-free material subjected to an impact velocity
of 1000 m/s). The evolution of the local temperature and hotspot
area is virtually indistinguishable for the three loading directions.
Thus, similar to σv and p, for this high velocity case of
V ¼ 1000m/s, the temperature field is also nearly unaffected by
anisotropy, i.e., the hotspot evolution is largely governed by the iso-
tropic equation of state for the pressure. Thus, the regime of impact
velocity/shock strength where crystalline anisotropy plays a role in
the void collapse behavior of β-HMX is limited to velocities signifi-
cantly lower than 1000 m/s.

IV. CONCLUSIONS

This paper presented a Eulerian framework for computational
modeling of anisotropic elastoplastic response of crystalline materi-
als under shocks and high-strain rate loading conditions. The
framework was used to compute the shock response of a mono-
clinic high-explosive material, β-HMX. It was shown that the
results from the Eulerian framework agreed well with those of
Lagrangian computations. For an initially planar shock, the volu-
metric and deviatoric stresses from the Eulerian and the
Lagrangian computations were in close agreement with each other
for three different loading directions for both a purely elastic as
well as a full elastoviscoplastic material model. Good agreement
was also shown for the individual resolved shear stresses along spe-
cific slip systems activated during shock loading for different crys-
talline orientations relative to the shock direction. Differences in
stress distributions between the Eulerian and Lagrangian simula-
tions were due to the use of artificial viscosity in the finite element
Lagrangian framework. Such artificial viscosity is not required in
the Eulerian framework due to the inbuilt entropy satisfying condi-
tion in the shock-capturing (ENO) scheme employed. After estab-
lishing confidence in the Eulerian calculations, the framework was
validated against Hugoniostat data obtained from molecular
dynamics calculations as well as experimental data for the full elas-
toplastic material model. It was shown that the current Eulerian
framework accurately predicts the shock Hugoniot of β-HMX.

The framework developed was then used to simulate collapse
of a 0:5 μm isolated void in β-HMX under two different loading
velocities to study the effect of anisotropy and loading direction on
hotspots. For the lower loading velocity, viz., V ¼ 500m/s, the dis-
tributions of the von Mises stresses and the pressure as well as the
hotspot shapes were affected significantly by the loading direction
and material anisotropy. On the other hand, for higher impact
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velocity of V ¼ 1000m/s, the collapse was predominantly in the
form of hydrodynamic jetting. Therefore, the pressure obtained
from the isotropic equation of state dominates over the deviatoric
stresses from the anisotropic isochoric constitutive laws; rather
weak effects of loading directions on the von Mises stresses, pres-
sure, and temperature distributions were observed for the high
impact velocity.

Several extensions of the Eulerian framework are currently
under way. First, more advanced single crystal viscoplastic models
with thermal softening of the material are being incorporated. This
will allow for shear-induced localization under shock loading, cul-
minating in the development of shear bands in the material. Such
shear bands can serve as additional sources of hotspots and initia-
tion in the material under moderate shock loads. Second, high-
order numerical schemes and local mesh refinement are being
deployed to better resolve the evolution equations of the
subgrid-scale lattice variables. Finally, reactive void-collapse simula-
tions employing anisotropic constitutive models are being per-
formed to study the effects of crystalline orientations on hotspot
ignition and growth rates. These extensions will enable greater
physical fidelity in calculating various sources of energy localization
(and their interactions), leading to accurate, anisotropy-sensitive
models of initiation in energetic materials.
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