-

Dwayne L. Knirk

Software Testing Process

|mprovements'r
Dr. Dwayne L. Knirk

Sandia National Laboratories
P.O. Box 5800, MS 0638
Albuquerque, NM 87185-0638

Contents
1. Introduction
2. Software Testing Context
2.1. Purpose of software testing
2.2. Prerequisites for testing
3. A Process Framework
3.1. Work products
3.2. Testing Process Elements
4. Process Improvements
4.1. Interweave test and development processes
4.2. Automate test case execution
4.3, Establish testing objectives
4.4. Measure actual test coverage
4.5. Build test coverage systematically
4.6. Document failures and fixes
5. Improvement Strategies
5.1. A Cycle of Evolution
5.2. Technical and Business Goals

1. Introduction

Software process improvement has become a popular
pastime, for a variety of reasons. The Software
Engineering Institute’s summary of experiential data,
which resulted in the Capability Maturity Model, has
now had considerable corroboration.

There are nearly as many software processes as there
are combinations of developers, users, and products.

Similarly, there are probably as many software process

improvement approaches. However, the meta-process
for performing process improvement is quite
straightforward.! Processes can be represented by a
small number of abstractions, with variety supplied
through implementation details. The scheme for
improvement is almost self-evident: figure out where
you are now, use a software process maturity guide to
identify shortcomings, plot a change in a direction to
eliminate a shortcoming, and go for it.

This paper won’t dwell on the meta process and its
enactment; we simply assume one is in place. Rather,
we consider some ways to improve the testing aspects
of your software process. These may be changes in

DISTRIBUIIQN—OF—THIS—DOGUMEN!}' IS UNUM!TED

Thxs work was supported by the United States Department

of Energy under Contract DE-AC04-94A1.85000.

Thirteenth International Conference on Testing Computer Software

SANDRE 1228 C
Sofiware Testing Process Improvements

CONLLGLo61aG-—1

what you do for testing as well as in how you do it.

You wouldn’t want to make all these changes at once.
On the other hand, you should want to make some of
the changes. Which changes would be most suitable
for you? Which ones should you make first? This
paper describes some of the factors you should
consider in developing a good strategy for improving
the testing processes in your organization.

2. Software Testing Context

Testing is a process of executing software under
specific controlled conditions, observing or recording
the results, and making an evaluation of the software.
This standard definition, paraphrased from the IEEE
Std. 610.12, IEEE Standard Glossary of Software
Engineering Terminology, describes only the most
commonly visible step in the testing process. Just as
the software to be tested does not simply materialize,
neither does the testware? you need.

2.1. Purpose of software testing

The purpose of software testing is to reduce our
ignorance about the operational properties of our
software. No matter how well or how poorly we
developed the software, defects of omission and of
commission will most likely be present. Somewhere,
sometime, when you least expect it, those defects will
cause failure. Testing is the last chance to find these
defects so they can be fixed before the customer
experiences operational failures.

Testing allows an evaluation of the risk of shipping
software in its present form. The process for getting
the information needed for this evaluation is to
exercise the software:

(a) to demonstrate it does what is expected, and
nothing else, and

(b) to expose whatever bugs may be present.

We may regard positive test results as evidence for (a)
and negative test results as evidence for (b). We must
gather as much convincing evidence as we can for this
evaluation within time and budget constraints.

For most commercial and industrial software,
exhaustive testing is impossible. In its stead, we create
test cases by selectively sampling the variety of
situations in which the software may be used. Because
the number of sample situations is so small compared
to the number of possible situations, the few test cases
we create must be good. We can’t afford to waste our
testing resources. Every test case must show something

MASTER -

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are
produced from the best available original
document.

LY

Software Testing Process Improvements

about the software that no other test case shows.

The testing we do answers the questions “Does it
work?” and “What doesn’t work?” The testing we
don’t do reduces our confidence in the software’s
correctness. Thus, it is as necessary to know what has
not been tested as it is to know what has been tested.
Without a measure of overall “goodness” of testing, we
cannot use test results to quantify the goodness of the
software. That is, even if the software passes a poor set
of tests, you remain ignorant of its operational
qualities and unable to evaluate its adequacy.

2.2. Prerequisites for testing

Testing is not the only practice for detecting and
removing defects in the software, but it is the last one
in line before delivering software to your customers.
The value you derive from testing depends on several
other factors in the software development
environment. The adequacy of those factors does not
guarantee success in testing, but their absence or
inadequacy certainly diminishes your ability to
accomplish testing. In particular, software testing
success depends directly on the following things.

Documented software requirements, Software
requirements that are not documented must be
remembered from the beginning of the project to the
end of testing. If they are-not remembered, how can
they be checked? It is unreasonable to expect any
development team to keep all the requirements in their
head. Documented requirements provide the minimum
checklist for completeness of testing.

Design for testability. Besides the external
requirements for various software characteristics,
requirements for testability should also be met by
software design and development. If no thought for
testing is taken during development, the testing job
can become much more difficult.

Code inspections. Numerous comparative studies
show that code inspections can detect up to five times
as many defects as testing. Those studies also show
considerable savings of the time and effort needed for
detection by inspection compared with testing. If code
inspections are not performed, then testing has to
contend with the presence of many more defects. It is a
common situation that occurrence of one failure
during test execution often hides other possible
failures. Failures in testing one situation may prevent
testing other situations until the defects are fixed. This
impedes the rate of test execution and increases the
number of times the software must be reworked.

Page 2

Dwayne L. Knirk

Code version control. In the normal repetition of fix,
build, and test cycles, multiple versions of code are
being generated and tested. Testing will be completely
ineffective if the wrong version of code is being tested.
Also, you need to be able to back up from code fixes
which prove to be wrong. The original version must be
kept for starting over. Finally, if multiple versions of
the code are currently in the field and you must
maintain them (under warranty or service contract),
you must keep copies of source code for at least those
versions. You must also be able to propagate fixes into
each version having the same bug. '

Test entry criteria. A simple condition for all
software to be tested is that there be no compiler and
linker error messages. Warning messages may be
acceptable if there is a known reason that they should
occur in building the test executable code. Lint-like
tools and procedures like code inspections should be
applied before you start spending your testing
resources.

Test execution environment. Dynamic testing
requires some kind of execution platform for the
software. The primary requirement for a testing
platform is that the software under test can be
manipulated and observed in a controlled
environment. Among the platform alternatives are
these:

In-house target system. This alternative provides an
exact reproduction of the software’s operational
environment. This is easy for a software-only
application operating on a commercial computer
system, but it can be more costly for an embedded
application.

Simulator/stimulator. This alternative uses the target
computational hardware, but simulates the rest of
the system to produce equivalent interactions with
the software. Stimulations may be applied from
completely outside the target system. Capture/
playback tools, on the other hand, intercept
input/output paths in the internal software
infrastructure.

Emulator. Emulators are appropriate for deeply
embedded software. They are usually interpretive
and mimic the actual target code processing on a
different computer such as the development
computer. They offer the same visibility into code
operation as would an on-line debugger on the
real target system.

3. A Process Framework

For the discussions in this section, please refer to -

Thirteenth International Conference on Testing Computer Software

Dwayne L. Knirk

Figure 1. It illustrates a framework for software
process in terms of various technical work products
Note that the diagram does not focus on activities and
their sequencing. Rather, it focuses on work products
containing various kinds of software information and
the content dependencies among these.

The activities in the development and testing processes
are the lines connecting the work products. It seems
easy to understand a static diagram of interdependent
work products and to envision them coming into being
and maturing as time passes. The activities around
these work products, on the other hand, are multiple,
they are dynamic, and they can have multiple
occurrences as well. For example, a Software Design is
created to be consistent with a current specification.
Some prototyping and performance analysis may be
performed during its creation. It is reviewed for
testability, implementability, and completeness against
requirements, possibly leading to its update. And as
requirement change, many of these activities may be
repeated at a later time. All these activities serve but
one purpose — to maintain consistency between the
Software Design and the work products.

3.1. Work products

Labels across the top of Figure 1 name various work
product groups. In a waterfall process, these would
correspond to actual phase endpoints.

There are two distinct dependency threads in Figure 1,
one for software development and one for testware
development. Both start in the Isolation phase and
pass independently through the Formulation and
Implementation phases. They rejoin in the Evaluation

Software Testing Process Improvements

phase on test execution results (trace and pass/fail
information). Test execution requires both the software
and the testware to be available. Conversely, however,
test planning and the design and preparation of
testware can be performed simultaneously with, and
somewhat independently of, the design and
implementation of the software.

The activities that establish these dependency threads
from left to right in the figure are just the following
typical development steps:

e analyze problem requirements

design and specify the software’s behavior
design and specify code and data structures
encode data and unit algorithms

test and evaluate system

The vertical and diagonal lines correspond with
reviews (inspections) and working discussions between
developers and testers.

Here is a summary of the work product phases.’

Conception. The functions to be accomplished by
coordinated actions of the software, hardware, and
bioware must be understood. That understanding is
often captured in a concept of operations document.
That document should clarify the scope of the
application problem and the assumptions granted to an
intended solution. It places the software component in
perspective of its intended use.

Isolation. Focusing on the software in isolation is a
specification document identifying everything the
software should do. Ideally, this specification is
predictive. That is, it can actually be used to answer

Design

Conception Isolation Formulation Implementation Evaluation
Mechanization
Software
Design Software
Structure
/ Coverage
— 1 Scope and ST Trace and : -
Assertions Fertilization Pasial Evaluation
\ \ Behavior /
Coverage
Testware

Testware

Demonstration

Figure 1. Work Products of the Development and Testing Processes in the Software Project

Thirteenth International Conference on Testing Computer Software

Page 3

Software Testing Process Improvements

questions of the form, “What does the software do
when P happens in situation Q?” Such a specification
is called a Behavior Specification. It is sufficient for
designing the software as well as designing the
testware.

Formulation. Dependencies on the Behavior
Specification split into upper and lower threads. The
upper half of the diagram illustrates our familiar
approach to the mechanization problem. Software is
designed and developed as a mechanism for providing
some computing capability to a user’s job. The lower
half of the diagram illustrates a parallel approach to
the demonstration problem. Testware is designed and
developed, not as a deliverable computing capability,
but as an exhibitor of the software’s intended
capabilities. This emphasizes the analogy between
software design as a problem in mechanism creation
and testware design as a problem in demonstration
creation.

Implementation. The principal information
dependencies continue separately through the upper
mechanization thread and the lower demonstration
thread. Software is produced in accord with the
software design. Software is embodied in code and
data files. Testware is prepared in accord with the
testware design. Testware should also be embodied in
code and data files, though it is often deposited into
documents.

A significant synergy occurs as cross-fertilization
between the two threads. This is indicated by the
vertical lines in the diagram. Concurrent design of the
software and the testware will enhance testability of
the software as well as software manipulation by the
testware.

Evaluation. Evaluation is split into three distinct
steps. The first step is to bring the testware and
software together for test execution. The software and
testware are set up, test cases are executed, and
observations collected. Traces of control and data flow
are produced during the tests. Test case results are
checked against the expected results to determine
whether the software passes or fails. Testware “fails” if
it doesn’t do what a test is supposed to do, just like
software “fails” if it doesn’t do what the code is
supposed to do.

Structure coverage of the tests is determined from
various characteristics of these traces: all statement
execution, all branch execution, all condition values,
all paths through decisions, etc. Test case pass/fail -
results are tallied against the test objectives to which
the test cases correlate. ’

Page 4

Dwayne L. Knirk

Based on the goodness of test objective coverage and
the extent of structure coverage, an overall evaluation
of the software is determined.

3.2. Testing Process Elements

A more comprehensive definition for the testing
process than the one in the IEEE glossary is this: the
development and application of testware by which
software can be exercised and its behavior evaluated
against expectations. This process includes

e determining requirements and designs for the
testware code, data, and procedures;

e creating, acquiring, or simulating representative
situations the software must handle;

e executing and observing the software’s behavior;
and

e evaluating testware and sofiware goodness.

These are the activities occurring across the bottom
thread in Figure 1.

IEEE Std. 829, IEEE Standard for Software Test
Documentation directs creation of several significant
work products for testing. To accomplish effective
testing you will find yourself doing the work they
describe. To accomplish effective retesting of modified
software, you will save time and effort by reusing the
information they capture. We paraphrase the standard
to identify the following work products: test objectives,
testware designs, testware, test logs, and test coverage.
They are described below.

Test objectives. These are statements of all
observable behaviors which the software must exhibit
during operation. Software requirements documents
are notoriously incomplete in this respect. As a tester,
it is up to you to

1. identify the required inputs to be provided;

2. indicate the particular situations in which those
actions can be executed, including any
dependencies on previous actions;

w

specify how to initiate the behavior; and

4. describe the outputs and other changes which may
result from the behavior.

Test objectives catalog every operational thing to be
shown about the software. The core of this catalog
constitutes a Behavior Specification of the software.
Testing to these objectives will build confidence that
the software does what it is supposed to and does not
do what it is not supposed to.

Thirteenth International Conference on Testing Computer Software

Dwayne L. Knirk

Testware design. No component as complex as
software is simply built. Rather a design for the
mechanism is created first. The mechanism’s design
identifies software elements that already exist as well
as new software elements to be created. A scheme for
interlinking the elements into the finished software is
settled, and a method for controlling the capabilities of
each element and integrating their behavior is
implemented. A software design is complete and
correct if all required behaviors of the software can be
produced by the mechanism.

Analogous statements can be made for testware. First,
a design for the demonstration is created. The
demonstration’s design identifies required test data,
support code, and tools that may already exist or that
may have to be created. A scheme for interlinking the
tools and support code with the software under test is
settled, and methods for stimulating the software with
the test cases and for observing the results of the tests
are determined. A testware design is complete and
correct if all required behaviors of the software can be
demonstrated by the testware.

Testware. Testware includes test cases, test
procedures, and a test execution environment. Test
cases consist of data values and event sequences that
are needed for demonstrating individual behaviors of
the software under test. It is important that there are
expected results for executing a test case. Inherent in
testing is the satisfaction of an expectation, since it is a
failure when something other than the expected
occurs.

Correspondent with the test cases are procedures for
their execution. Test procedures identify required
sequences of the individual test cases, specified
timings of event sequences, durations, and overlaps,
and the manipulations required to set up, initiate, and
observe the tests. These procedures are frequently
performed by automated test case execution tools.

Test logs. A test log is a time-stamped record of test
execution. It is a by-product of producing test
execution traces and test case pass/fail. When an
unexpected result is encountered, it is referenced in the
log. Later, the log can be examined to see what was
done to the software leading up to the failure. Test logs
are valuable debugging aids.

Test coverage. Test coverage is a measure of
“thoroughness” of testing. It contains two parts:
coverage with respect to demonstration of the test
objectives and coverage with respect to exercise of the
software mechanism. Coverage with respect to
demonstration of the test objectives requires tracing

Thirteenth International Conference on Testing Computer Software

Software Testing Process Improvements

between test cases which “pass” and the test objectives
which are met by the test case. Coverage with respect
to the software mechanism requires tracing the
software’s internal control logic flow and data flows
and determining which flows have been exercised by
the test cases.

4. Process Improvements

Do you need to make changes in your testing process?
The answer may be yes if your software testing is
planned, managed, and practiced like this:

o Testing means running the software continuously
between the time sofiware development concludes
and the time the product ships.

o A test case is whatever the tester has decided to
do next.

o A test case passes if the tester is happy with the
results.

e The sofiware fails frequently in operation.

If we agree what we should be doing, and we admit
what we aren’t doing, the question is “How do we get
from where we are to where we would like to be?” The
rest of this section describes six potential
improvements to the testing process:

Interweave test and development processes
Automate test case execution

Establish testing objectives

Measure actual test coverage

Build test coverage systematically
Document failures and fixes

Attach no significance to the order of presentation.
Different situations would recommend different
sequencing of improvements. This is discussed in
Section 5.

A general process improvement philosophy is that of
capturing work results in some kind of document, even
ASCII text files. The cost justification for this is very
strong in a maintenance-oriented organization. It may
be cheaper initially just to create test cases on the fly.
But every time a bug is found and fixed, or the
software is enhanced or adapted, you must perform
that test creation job again from the beginning! You
faced either paying the cost of repeating work you
have done before, or avoiding the cost by simply not
re-testing. (Don't bother, it was a small change...)

Neither of these alternatives compares sensibly with
documenting the test cases when they are created,
augmenting them when changes are made, and then
reusing them for every subsequent release.

Page 5

Software Testing Process Improvements

In addition, the “create and apply on the fly” approach
forces developers and testers to work in isolation.
Whatever one learns is not transferable to another
unless it is captured in a reusable form. Furthermore,
whatever one does cannot benefit from the knowledge
of others through inspections unless it is captured in a
readable form.

In the following subsections, each process
improvement is described in terms of its purpose and
your likely benefits and costs. Each will cause the
establishment of concrete, reusable testing work
products. Each can and should be considered for
implementation at the system testing as well as the
unit testing levels.

4.1. Interweave test and
development processes

If you defer all testing work until the code is complete,
there is rarely enough time to execute and evaluate
those test cases that occur to the testers. There is never
enough time for the intentional design and preparation
of adequate testware and for the evaluation of test
goodness. Thus, except for a list of test failures, there
is no support for any quantitative evaluation of
software goodness or acceptability.

In addition, by deferring all test-oriented issues until
the code is complete, there is little possibility of
actually designing and implementing testable code.
The software staff provides themselves with no more
facility for manipulating and observing their
software’s behavior than they provide their external
customers.

In this process improvement, you partition the current
testing work into two separately accountable activities:
(1) testware design and preparation, and (2) test
execution and evaluation.

Schedule the first activity concurrently with software
design and implementation. Test cases and test
procedure(s) should be the work products from this
activity. These work products may be in either
electronic or paper form, but they must be explicit,
concrete, and shareable between staff members. The
intention here is to try to use the specification
information as soon as possible for testing. First, this
is an operational “review for testability” and can have
a salutary effect in minimizing the propagation of
misconceptions into the software design work. Second,
doing this work now provides concrete interpretations
of the specification for reference by the mechanism
builders. Third, it furnishes enough detail for really

Page 6

Dwayne L. Knirk
planning the necessary testing effort.

The second activity is essentially the usual execution
and evaluation work. However, the testing work
performed earlier does not have to be done now. How
you perform tests is unaffected. Use whatever
approach you used in the past, whether manual or
automated, but do it now with documented cases and
procedures. In addition, scripted procedures can be
annotated to record progress through the testing and
incidents that may be software failures.

If you don’t currently prepare test case and procedure
documentation, you will feel this is an increment in
the cost of testing. Actually, you can expect a
systematic approach to improve your test cases and
reduce the costs you incur for defect delivery. Even if,
in the worst case, you find no more defects than you
would have, the considerable value of preparing test
cases and procedures is apparent on the very next
release of the software. All the mental testing work
done before to devise the cases and procedures is now
available for reuse. Some changes may be needed to
account for enhancements or changes to the software,
but you are not starting over on testing. Only the test
execution and evaluation activities need to be repeated.

Imagine if we just threw away the “useless” source
code once the executables were compiled and shipped.
Talk about starting over! Yet that is just the effect of
“create and apply on the fly” testing.

4.2. Automate test case execution

Another improvement is to enlist the computer itself to
assist in the test execution and evaluation activity. The
automation of test case execution does not directly
help you test any better, but it does help you test faster,
more consistently, and with minimal human
involvement. The time you save in repeated test
execution can be invested in other improvements that
do help you test better.

There are two distinguishable cases based on the
predominant interfaces to the subject software system
or component.

APl interfaces. For software components bounded by
command lines or application programming
interfaces (API), the primary behavior to be tested
is functional. That is, use of the software elicits
one or more stimulus-response interactions
between the software and its environment
(operating system, other hardware,
communication systems, or client/server

Thirteenth International Conference on Testing Computer Software

Dwayne L. Knirk
interfaces).

GUI interfaces. For software components bounded by
graphical user interfaces (GUI), the primary
behavior to be tested is operator-sofiware dialog.
The software goes through various sequences of
interactions at the GUI The net effect of a
sequence is to prepare one functional input to the
rest of the system or to communicate one
functional output from the rest of the system.

Many software systems, even if not designed this way
intentionally, can be tested successfully by combining
these two interface perspectives.

Automated dialog execution. Many GUI
development platforms can be supplemented with
capture/playback tools. These tools work only with
inputs and outputs across the GUI itself. They can -
record all inputs and outputs during a test, then later
they can repeat the test identically by re-entering all
inputs and comparing all new outputs with the
original. Discrepancies suggest possible failures of the
software.

Capture/playback tools do not help with testing at the
other interfaces because they do not capture and
playback data and signals at those kinds of interface
ports.* Nevertheless, capture/playback tools can
provide considerable benefit. The first time they are
used, all GUI test procedures are followed and the
capture function collects all GUI inputs and outputs,
including timing information. This is the just like the
manual testing job. However, all successive times
these tests must be run, the playback from the initial
testing is completely automatic.

Software Testing Process Improvements

Automated function execution. Any development
platform can be supplemented with standardized tools
to harness code elements at their programming
interfaces. Figure 2 illustrates one kind of harness you
might use. The idea is to create a controlled
environment around the test subject.

A driver is code that sets up unit input data in its
executable form and actually invokes entry points to
execute the test. It replaces the potential callers of the
unit under test. A unit test driver can be largely
standardized so individual developer has very small
amount of extra work in adapting it to any particular
unit.

A stub is simple code that has the same invocation
interface as a real subordinate for receiving and
returning calls or messages from the unit. It provides
substitutes for services the unit requires in
accomplishing its specified behaviors. It may be so
dumb as to record only that "Kilroy was here," or it
may record or print the calling argument values. A
smarter stub might let you specify what kind of
response to make.

Previously tested code as well as operating system
services may be used in establishing the control and
observation environment for the unit under test.

4.3. Establish testing objectives

Another improvement is to expand your behavior
specification activity to include the production of a
catalog of test objectives. These objectives can be
included in tables in an existing software requirements
specification document, or they can be captured in a

interactive Control

input
Script

Instrumented
Code

Standard Driver

Output
Script
Logic
Trace

Stubs

Tested Programs

Operating System / Environment

Figure 2. Standardized Test Execution Harness

Thirteenth International Conference on Testing Computer Software

Page 7

Software Testing Process Improvements
separate documentation form.

It is a common practice in commerce and industry to
jump directly from a statement of the application
problem to an architecture of a solution. Time is not
available for determining that behavior offered by the
solution meets the problem’s requirements. [Recall the
comments in subsection 3.1 about the behavior
specification.]

Test objectives are often created very early in the
software design work, but then they are not
documented anywhere. A detailed requirement
statement may say “User errors when entering recipe
names will be caught and an error message displayed.”
The designer begins clarifying this by asking questions
like

e Does the message come up after the list is
Jinished or immediately after an ervoneous entry?

¢ Does the message require user acknowledgment?
What should the message say?

Answers to these questions describe specific
observable behaviors of the software. None of this
information is internal software design.’

Given these specifics, internal software designs may be
created and appropriate tests for them conceived. Each
specific statement is a test objective. These statements
should be collected into a catalog of test objectives.
This catalog identifies every observable function, the
valid and invalid subdomains of possible inputs that
must be responded to, and all operation modes and
mode changes. By creating a test case for each test
objective, you know you are demonstrating every
operational requirement of the software.

It is too common that such specific behaviors are not
written down for the software requirements. They are
conceived and used by the software designers. Later,
they are recalled and explained to manual writers and
customer trainers, or they are left to be discovered by
experimentation. Testers cannot discover them until
after coding is complete. If they were captured in the
beginning, much repetition and miscommunication
could be avoided.

In addition, by having test cases for each test objective,
and test objectives for each operational requirement,
you would be far more likely to expose possible
software failures before your customer finds them. You
would also bave a much better understanding of the
full scope of the testing that needs to be performed.

Page 8

Dwayne L. Knirk

4.4. Measure actual test coverage

This improvement implements a specific activity for
evaluating test results. It is separate from the test
execution activity that produces those results.
Evaluation has two components: one is an evaluation
of the software adequacy, the other is an evaluation of
the testware adequacy, each measured against its own
criteria. Simplistically, we must check that the
software not only passes all tests, but that those test
cases represent all application situations in which the
software is to be used. (We don’t require the software
to do anything meaningful outside its intended scope
of application.)

Software adequacy. Software is adequate if it
produces correct responses for the situations in which
it will be applied using all parts of its mechanism. To
determine if correct responses are given, you examine
the actual outputs for acceptability, often within some
tolerance range. While this may sound obvious, it has
been overlooked by testers intent on achieving usage of
all parts of the mechanism,

To determine if all parts of the mechanism are used,
you examine execution traces of code control and data
flow with respect to various criteria like statement
coverage, branch coverage, and def-use path coverage.
(A def-use pair is a statement assigning a value to a
variable followed by a statement later in the path that
uses the value from that assignment.) When all
behaviors of the software have been exercised, no parts
of the mechanism should be unused. If they are, your
understanding of the required behaviors may be
incomplete. ‘

Testware adequacy. Testware is adequate if it
correctly sets up enough samples of all the situations
in the software’s intended application, and then forces
the software to demonstrate the required responses for
each of them. To determine this, you must trace, or
correlate, each test case to the test objective(s) that its
execution demonstrates (for example: function F3, in
state S7, at low boundary of the input variable V12).
The second step is iterated over all test objectives: You
collate the pass/fail decisions for each test case that
demonstrates a given test objective; and if they all
passed, you declare the test objective met. Testware
adequacy is an evaluation of how “thoroughly” the
black-box requirements are satisfied by the software.

When both of software and testware adequacy are
high, your confidence in the goodness of the product
can be high. When either of these is iow, your risk of
delivering unfound defects in the code is much higher.
There may be no defects, but without establishing

Thirteenth International Conference on Testing Computer Software

Dwayne L. Knirk

consistency between the behavior specification, the
execution traces of the code implementation, and the
test objective demonstrations, you simply cannot
know.

Low coverage is likely to be followed by substantial
bug reports from customers. Over time, you can
correlate measures of test coverage with how much
field support is needed for a software release. Then the
measurement of coverage supports intelligent business
decisions about when a software release is ready to
ship and what costs to expected for its support.

4.5. Build test coverage
systematically

This improvement also has two components, The first
is refining the granularity of test objectives and
distributing them across levels of testing. The second
is systematizing the design of test cases for a set of test
objectives. These operate together to increase the
confidence in the software for a given investment of
effort. Conversely, they reduce the investment of effort
required to gain a given level of confidence.

Levels of testing. The futility of doing all testing on
the finished system is an old song. Many would claim
that they don’t do this, that code units are tested by
their developers. But, if developers test their own code
and have no evidence afterward of what was done or
how adequate it was, can a system tester afford to
assume anything about the units in the system? No.
They must perform unit testing in the system context,
which is costly in time and quality. They may be
repeating work that was already performed. The cost
to locate and fix a unit’s bug during system testing can
be up to one hundred times as much as the cost during
unit testing because unit testing in the system context
is very inefficient. And every dollar spent on unit
testing at system test time reduces the resources that
can be spent on actual integration and system testing
issues.

The point of this improvement, then, is to test software
at three levels. You must allocate testing objectives to
the lowest level at which they can be demonstrated,
and then test for them at that level. You must build
your confidence in the correctness of the system with
the evidence you gather as you build the system.

Unit. Each software unit of work should have its own
testware elements: test objectives, test cases and
procedures, execution framework, etc. The unit’s
developer should test whatever behaviors of the
unit can be tested. Simple tables of test objectives

Thirteenth International Conference on Testing Computer Software

Software Testing Process Improvements

and test designs in files are sufficient
documentation. Automated test execution scripts
and code segments can provide the rest.

Integration build. Units are combined into higher
level integration builds. Depending on the
product’s architecture, builds could be object
clusters (or some equivalent), functional layers,
transaction centers, or functional areas. They
could be functional subsets of the entire system.
Test builds for those things that could not be
tested in the individual units, such as internal
interface compatibility, internal state sequencing,
and non-interference between the build
components. Often, some end-to-end functions of
the software can be tested as well. Structurally,
one should try to execute all subordinate unit calls
and call slices for each unit.

System. When the complete software system is
available, you need to test for compatibility of
physical interfaces, temporal sequences of
execution, safety, robustness, and end-to-end
functions of the software. But test only for those
things that could not be tested in the various
builds.

If you accumulate your evidence of software
correctness as you test across levels, you reduce the
total amount of work required to achieve a given level
of confidence in the correctness of a complex software
product. Planning a leveled strategy for a software
product may also provide valuable insight into more
testable software design alternatives. It certainly
simplifies retesting during maintenance.

Systematizing test design. The objective here is to
incorporate well-known specification-based test design
techniques into your testware design activity. Expand
on basic functional testing to include equivalence class
testing, boundary value testing, partition testing, and
state transition network traversals. Contrary to popular
belief, developers and testers are nof born with these
skills. They need to learn them, not to discover them
on the job.

Improved test design provides a much stronger set of
test cases for exhibiting possible failures. Empirically,
we find the increased coverage of the test cases can
dramatically reduce the number of defects remaining
in the software when it is delivered.®

Here is an effective process combining specification-

based test design with structural coverage to the
benefit of both. -

Page 9

Software Testing Process Improvements

1. Apply black box test design methods to create test
cases that will demonstrate required behaviors.

2. Execute those test cases with code that has been
instrumented for code control and data flow
tracing.

3. Remedy discrepancies. In particular, if code is
missing, some tests of behavior will fail. If code
has behaviors besides those required, then the
traces will not completely cover the code
structure. Either code should be removed, or
documented behavior should be expanded. Upon
code or specification change, iterate to self-
consistency.

4.6. Document failures and fixes

This improvement applies the knowledge of failures in
the past to reduce the number of defects in the future.
It can be leveraged through two mechanisms, reducing
the number of defects inserted into the software during
design and implementation, and sharpening the ability
to design useful test cases to catch those defects. This
improvement would supplement a similar feedback
cycle that may already be present in an inspection
process.

This improvement effectively recycles ordinary waste
from the debugging activity. When failures are
demonstrated during test execution, the defect(s)
causing them is (are) normally located and corrected.
Except for unanticipated hardware failures, these
defects are the result of design or coding errors. By
recording the kind of defects causing the failures, the
software team accumulates information about the most
probable errors in their design and coding practices.
When it is possible to do so, modified practices can be
adopted which prevent the insertion of those defects in
the future.

Reported field failures can be recycles into testware
design activities as well. In that case, your test design
techniques are augmented to include the kinds of test

cases that are sure to detect such defects in future code.

Declare this improvement wildly successful when the
only software failures reported from the field are those
due to requirement errors.

5. Improvement Strategies

5.1. A Cycle of Evolution

A process is “implemented” by providing those
elements in the work environment that make it

Page 10

Dwayne L. Knirk

possible, by setting appropriate policies, and by
convincing people that the following the given process
is easier than not following it.

An implemented software process can be modeled in
two layers which we call architecture and
implementation in Figure 3, below. The architecture
layer is a virtual framework, while the implementation
layer is the actual physical embodiment of process
capability. (The diagram is meant to suggest an IDEF0
node, with architecture playing the role of control and
implementation playing the role of resource.) Notice
the faint input/output arrows. They imply that the
model does not convert inputs to outputs, but it does
describe the capability for the process to deal with
prescribed kinds of inputs and outputs.

The architecture layer contains

Activity Model. This is a description of an interrelated
network of tasks to be performed for producing
the process results. This description too often
thought to be all there is to a process.

Techniques and Heuristics. These are descriptions of
kinds of methods by which each of the tasks in the
Activity Model may be performed.

Standards and Metrics. These are descriptions of the
kinds of work products through which the tasks in
the Activity Model are related.

The implementation layer provides the actual things
(agents and materials) with which an occurrence of the
process can happen.

Computing System, People. These are the agents of
process activity, a collection of general purpose
capabilities. Computing systems are generally
thought to be more trainable and more reliable
than human agents.

Tools. A tool is the usual way to embed a method
and/or a standard into computing system agents.

Activity Techniques Standards
Model and Heuristics and Metrics
Inputs architecture Cutputs

) Process
Model

implementation

>

Computing Tools

People Training Reference
Systems

Materials

Figure 3. Elements of a Software Process Model

Thirteenth International Conference on Testing Computer Software

Dwayne L. Knirk

Tools implement the mechanics of various
techniques and heuristics with which tasks are
performed. Tools often provide de facfo standards
for the work product components they create.

Training. This is the usual way to embed methods and
standards into human agents.

Reference Materials. These may be electronic or non-
electronic recordings of various facts used by the
agents during their activity. Document templates
(providing document outline and style for a word
processor and thematic explanations for the
author) and standards documents are typical
examples.

A process is “enacted” when it actually occurs. This is
illustrated as the Project Application arrow in Figure
4. If the model includes the entire software
development process, the process occurrence is called
a “software project.” The project converts actual
instances of the prescribed inputs into instances of the
outputs, hence the heavy input/output arrows.

Starting with the Software Process Model in the
figure, a cycle of process evolution goes through these
steps:

1. One or more projects apply the model by
realizing its implementation and "turning on the
activity.” (Application is more efficient by having
implementation elements in reusable form.)

2. Measurements of the activities and work products
are made during those projects. Some
measurements are used as scaling factors
(representing the project's actual inputs and
outputs) while other measurements (after scaling)
are attributed to the process model.

3. A separate software process improvement (SPI)
project analyses the measurements and infers
deficiencies in either the particular

Objectives

—)

Architecture &
Implementation
SPI Process

Occurrence

Measures

Software
p Process >
Model

%roject Application

User Software
Needs Product
Software Process

Occurrence

Figure 4, Cycle of Process Evolution

Thirteenth International Conference on Testing Computer Software

Software Testing Process Improvements

implementation elements of the process model, or
in the architecture of the process model.

4. The process model architecture or the
implementation is revised and made available for
use in later projects. Figure 3 identifies those
things which you may have fo create or update so
the process can be enacted again.

The goal of "continuous process improvement" is to
keep this cycle active.

Notice that SPI is itself a process whose outputisa
process model. Thus, there is an SPI process model,
too, though it is not shown in the figure. Resources
should be available for supporting that process
occurrence as well as for software projects.

5.2. Technical and Business Goals

Consider the testing process changes suggested in this
paper. Which changes, if not all, would be most
suitable for you? Which ones should you make first?
Answering these questions requires you to understand
the objectives that drive software process improvement
in your organization. In this section, we describe some
factors you should consider in developing vour
answers to these strategic questions. We consider
objectives arising from technical goals and business
goals. Conflicts among these must be resolved
according to your unique circumstances.

Technical goals. These are the goals of the
development staff for improving their work
environment. Developers want to improve their work
products, too, but often their first thoughts are to get
enough “breathing space” just to think about what that
would mean.

One strategy is this: First, establish the production of
specific testing work products and later, improve the
methods of producing them. By focusing first on the
production of specific testing work products,
developers and testers get visibility of their work and
they don’t have to recreate as much of it during the
debugging cycles. Heuristics, templates, and tools
should be formalized initially as prototypical elements
of the process implementation, but they should be
readily evolved as the easiest ways of dealing with the
work products evolve in practice.

The order of improvements in Section 4 supports this
strategy. The first two improvements are aimed at
simply reducing the time required for doing your
current quality of testing. The remaining ones then
apply that saved time to increasing the quality of your
testing.

Page 11

Software Testing Process Improvements

In planning such improvements, it is invaluable to
have some group, even ad hoc, to coordinate which
improvements are being made and to share
information about the improvements across the
different projects. This is frequently called a Software
Engineering Process Group (SEPG).”

Business goals. The strategy above may be too
simplistic for you. Consider two common, yet rather
different, drivers for testing process improvement.®

Reliability. This driver appears when you are being
pressured to deliver fewer defects to customers. It
is external in that it is usually raised directly by
the customers. Defects are costing you and your
customers too much in rework time, and are
hurting the prospect of future sales.

Resources. This driver appears when you are being
pressured to accomplish more with less. It is
internal in that it probably isn’t even visible to
customers. You are looking for faster cycle time in
development and maintenance, so you need more
efficient testing.

If the first driver predominates, you may want to order
the improvements to start with those which enable you
to be more effective with the given level of effort.

If the second driver predominates, you may want to
order the improvements so start with those which
enable you to work faster with the same level of
effectiveness you now have.

In either case, these are no longer technical issues.
The proper evaluation and tradeoffs between drivers
and impacts requires insight into a business’ status
and long-term objectives. These are managers’
decisions, to be made by a Management Steering
Group (MSG).” The MSG provides the vision to guide
software process improvement, the leadership to pull
success out of problems, and the resources to give it
legitimacy.

This two-level scheme, with technical issues in the
province of an SEPG and business issues in the
province of a MSG, has been proven in practice. It is
a suitable framework for implementing the software
testing process changes suggested here.

Acknowledgments
The author thanks Dr. David Peercy of Sandia National

Laboratories for his inexhaustible supply of independent
critical thinking about software process improvement.

Page 12

Dwayne L. Knirk

References

For a general description of such a process, see
Robert McFeely, “IDEAL: A User’s Guide for
Software Process Improvement, * Software
Engineering Institute, CMU/SEI-HB-001, Feb.
1996. This is the successor to Robert S. McFeeley,
David W. McKechan, and Timothy Temple,
“Software Process Improvement Roadmap,”
Software Engineering Institute, Special Report
CMU/SEI-94-SR-2, Mar. 1994.

Testware includes test cases, a controlled test
execution environment, agent(s) for setup,
execution, and observation of the test cases, and test
procedures.

This summary of phase work products is general
regarding software, but not systems. If the software
is a component in a larger system, we assume a
systems engineering framework in which functional
requirements have been allocated to the software.

Robert M. Poston, “Testing Tools Combine the Best
of the New and Old,” /IFEFE Software, vol. 12, no. 2,
Mar. 1995, pp. 122-126.

Brian Marick, “The Craft of Software Testing,”
Prentice Hall, 1995.

6 Robert M. Poston and Mark W. Bruen, “Counting

Down to Zero Software Failures,” IEEE Sofiware,
vol. 4, no. 5, Sep. 1987, pp. 54-61.

Priscilla Fowler and Stan. Rifkin, “Software
Engineering Process Group Guide,” Software
Engineering Institute, Technical Report CMU/SEI-
90-TR-24, Sep. 1990.

Robert V. Binder, “Design for Testability in Object-
Oriented Systems,” Commun. ACM, vol. 37, no. 9,
Sep. 1994, pp. 87-101.

See Reference 7.

Thirteenth International Conference on Testing Computer Software

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

