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Abstract

We present a class of efficient algorithms for PAC learning continuous functions
and regressions that are approximated by feedforward networks. The algorithms are
applicable to networks with unknown weights located only in the output layer and are
obtained by utilizing the potential function methods of Aizerman et al. [1]. Condi-
tions relating the sample sizes to the error bounds are derived using martingale-type
inequalities. For concreteness, the discussion is presented in terms of neural networks,
but the results are applicable to general feedforward networks, in particular to wavelet
networks. The algorithms can be directly adapted to concept learning problems.
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1 Introduction

The problem of learning (or inferring) a function or a set (concept) from a finite set of exam-
ples has been the focus of considerable research in areas such as pattern recognition, machine
learning, neural networks, etc. From a theoretical viewpoint, machine learning problems have
been extensively studied in the past decade under the Probably and Approximately Correct
(PAC) paradigm pioneered by Valiant [23]. The main attractive feature of this paradigm
lies in the ability to quantify the learning performance based on finite samples. However,
many results in this direction are only existential in nature. Indeed, they establish that a
hypothesis consistent with a sample is a PAC approximator, but they do not specify algo-
rithms to compute that required hypothesis. The difficulty of the problem is compounded
by the fact that - due to the strict consistency requirement - most computational problems
are NP-hard. From an application perspective, neural networks have been employed in a
number of practical function estimation problems. One of the most appealing features of
neural network methods is that the learning algorithms are very simple to implement. Yet
the performance of these algorithms for learning based on finite samples has been assessed
only in very limited cases [18].

In this paper, we present a class of algorithms that solve the function estimation problem
for continuous functions that are approximated by a special class of feedforward networks.
These algorithms are easily implementable and at the same time provide performance easily
quantifiable guarantees based on finite samples. .

General density results guarantee that a continuous function can be approximated by a
finite-sized network of non-polynomial units with a single hidden layer within a specified pre-
cision [14], [15]. ( When the units are sigmoid functions, the networks are called feedforward
artificial neural networks [7], [10], [2].) Density properties of sigmoidal feedforward networks
with two hidden layers have been studied by Kurkova [13] by using Kolmogorov’s superpo-
sition theorem [12]. Similar density properties of slightly different architectures based on
wavelet networks have been studied by Zhang and Benveniste [26]. These density results
enable us to formulate the function learning problem as one of estimating finite dimensional
vectors (that typically represent the connection weights of a network) at the cost of set-
tling for an approximation. The learning methods that compute the connection weights of a
required network based on a finite sample have been extensively studied recently both ana-
lytically and heuristically. The recent renewal of interest in such methods can be attributed,
at least in part, to the success of neural networks in a wide variety of applications. Typically,
the performance of such methods depends on (a) the form of network employed, and (b) the
learning algorithm that computes the parameters of the network.

We illustrate the application of the potential function method (Aizerman et al. [1]) Ben-
veniste et al. [3]) to obtain learning algorithms implemented on feedforward network archi-
tectures. The method is applicable to feedforward networks with unknown weights located
only in the output layersuch as Kurkova’s networks [13]. Yet our approach can also be
used to obtain: (a) efficient algorithms for learning sets (concepts) - for which most existing
methods are non-algorithmic (Valiant [23], Natarajan [16]), and (b) learning algorithms for
wavelet networks [26] - for which no finite sample results are known and no existing learning
algorithms are shown to converge. “

For the task of learning functions from a finite sample, the utility of the above density




results depends critically on the availability of suitable learning (or training) algorithms.
There are several algorithms that train the networks of sigmoidal units based on finite
samples (Werbos [25], van der Smagt [24], Tang and Koehler [22]). The performance of
such algorithms has been assessed only to a limited extent and mostly in asymptotic cases.
The popular backpropagation algorithm (Werbos [25], Rumelhart et al. [20]), which is a
gradient descent method based on mean square error, seems to be effective in some cases but
very slow to converge in others. Significant effort has been spent to improve the convergence
of this and similar gradient search algorithms (Darken and Moody [8], Jacobs [11], Saarinen
et al. [21], Chen and Lai [6], Fitch et al. [9]). Convergence properties of learning algorithms
based on wavelet networks [26] are unknown. Also to our knowledge, no learning algorithms
have been published for the networks based on Kurkova’s model [13].

The organization of the paper is as follows. Some preliminary discussion on function
and regression learning problems, neural network approximations, and potential function
algorithms, are presented in Section 2. The potential function algorithms are utilized in
conjunction with Kurkova’s networks [13] to learn arbitrary continuous functions and re-
gressions in Section 3. The concept learning problems and wavelet network algorithms are
briefly described in Section 4.

2 Preliminaries

We first provide basic formulations of the function and concept learning problems. We then
discuss the required density properties of networks proposed by Cybenko [7] and Kurkova
[13]. Then we briefly summarize the potential function method developed by Aizerman et
al. [1]. Throughout the paper, X and z denote random and deterministic variables, respec-
tively, and it is assumed that all the functions satisfy the required measurability conditions.

2.1 Function and Regression Learning Problems

A training n-sample of a function f : [0,1]% — R is given by (X1, f(X1)), (Xz, f(X2)), ---»
(Xn, f(X,)) where X1, X, ..., X,, Xi € [0,1]%, are independently and identically generated
(iid) according to a distribution Px (X = [0,1]). The function learning problem is to esti-
mate a function f : [0,1]¢ — R, based on the sample, such that f (z) “closely” approximates
f(z). More precisely, we consider either the expected square error

1) = [1f00) - F(X)PdPx (2.1.10)

or the expected absolute error

I = [1f(0) = F(X)IdPx (2.1.10)

which is to be minimized over a family of functions F based on the given n-sample. Let
f« € F minimize I( f ) (or J( F)) over all f € F. In general, f. cannot be computed from
(2.1.1a) or (2.1.1b) since Px is unknown. Furthermore, since no restrictions are placed on the
underlying distribution, it will not always be possible to infer f. (with probability one) based
on a finite sample. Consequently, most often only an approximation f to f, is feasible. We
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shall provide (sufficient) conditions under which an approximation f to f. can be computed
such that for a sufficiently large sample we have

PII(f)—I(f.)>€e <6 (2.1.2a)

> PI(f)=J(f) > € <6 (2.1.28)

corresponding to (2.1.1a) and (2.1.1b) respectively for arbitrarily specified ¢ > 0 and 6,
0 < 6 < 1, where P = Py is the product measure on the set of all iid n-samples. Thus
the “error” due to f is to be bounded within an arbitrarily specified precision ¢ of minimum
possible error, with an arbitrarily specified confidence 1 -6 (given a sufficiently large sample).

In the same context, consider the more general regression learning problem. We are given
a training sample (X3,Y1), (X2,Y2), ..., (Xn,Ys) iid according to a probability distribution
Pxy (X ={0,1]4Y = R) such that f(z) = E(Y|z). The problem is to compute an estimate
f of the regression function f that satisfies the condition (2.1.2a) or (2.1.2b) with P = Pgy.

2.2 Function Approximation by Neural Networks

Consider feedforward networks with two hidden layers that have been studied by Kurkova
[13]. It can be shown (Theorem 2 of [13]) that any continuous function can be represented
within an arbitrarily specified precision € in the following form:

m [m(m+1)" n m+l
> [ > (djp (Z > vjwpgagip(byiz, + qu)) + uj)

g=1 Jj=1 p=1 i=1

where p(.) is a fixed function and the other parameters depend on the function to be learned.
Furthermore, this function can be represented in the following simpler algebraic form

M
> aini(z) (2.2.1)

i=1

where the functions 7;(.) are universal and the weights a;’s depend on the function being
approximated. The functions 7;(.) correspond to single hidden layer feedforward networks
consisting of sigmoid functions (see Kurkova [13] for details on the construction of these
functions). As shown in the original formulation of Kolmogorov [12], when ¢ = 0, the
elemental functions 7; are highly non-smooth functions, which do not seem to be directly
amenable to computer implementations.

2.3 Potential Function Method

The potential function algorithm was proposed by Aizerman et al. [1]. Consider a function
of the form

M
f(z) =2 aigi(z) (2.3.1)

1=1




where ¢;(z) form a linearly independent set of functions. Now for some real Ay, Ag,...,Ap
let

M
K(y,2) = 2 Aiiy)di(=). (2.3.2)

Given the sequence (Xi, f(X31)), (X2, f(X2)),... consider the following algorithm
1 .
(@) = 7 @) + T (Xn) = 7HXR) K (2, X) (2.3.3)

such that A > i—,meai;( K(y,y). The conditions under which f"(.) converges to f(.) have been
Yy

studied extensively. A survey of these results is provided in [1]; our application involves the
results shown by Braverman and Pjatnickii [5], which deal with the case where M is finite.
Since in Kurkova’s networks [13] only the weights of the output layer depend on the function
to be determined, we can apply the potential function method to wide classes of functions.
On the contrary, in Cybenko’s networks [7] the weights of both hidden and output layers
depend on the function to be approximated. Hence these networks are not directly amenable
to potential function methods, but they can be handled by alternative methods such as the
stochastic approximation [17]).

3 Learning Algorithms Based on Potential Functions

Given a finite sample (X1, f(X1)), (X2, f(X2)), ..., (Xn, f(X,)), consider the algorithm (2.3.3)

which can be implemented in terms of coefficients as follows

f = a4 2IF) = 7 (X]6K), (3.1)

We will now provide sufficient conditions under which algorithms of this type can be used
for solving the function and regression learning problems.

3.1 Exactly Representable Functions
The following condition is utilized for the potential function method.
Condition 3.1 For a fized M, any function f € F is given by f(z) = %1 a;¢;(z), where w
: i=
is the parameter vector with components a; such that j%i al #0, and){fz(:c)dPX > 0.
This condition is satisfied if f(.) is continuous and vanishes at no more than a finite

number of points. This condition implies that the M x M matrix [p;;] = [[x ¢:i(z)d;(z)p(z)dz]
is positive definite. Thus

M M M M

2 2

ry a; < Zzaip.ijaj < RZai
=1 =1 j=1 i=1

where r and R are the smallest and largest eigenvalues of the matrix [p;;].
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Theorem 3.1 Suppose the sample size, n, is given by

n = In(ée/RC) [In(1 — ra)

max K(z,z)
where C = Z a?anda =1 [2 — 24— | with 1 —ra > 0, where v and R are the smallest

and largest ezgenvalues of the matriz [p;;], and A is a free parameter chosen such that a > 0.
Then under Condition 3.1, for f € F and f" produced by the algorithm (3.1), we have

PII(f")<e>1—6.
Furthermore I(f™) converges to 0 with probability one.

Proof: The outline of the proof is direct: Braverman and Pyatnitskii (Theorem 1 of [5])
showed that E[I{f")] < RC(1 —ra)", which is combined with the Chebyshev’s inequality to
show the theorem.

We provide the details here for completeness (this proof can be found in [5] which makes
use of results from earlier publications) and also to facilitate the proof of Theorem 3.4. Define
the following quantities:

f(z) = f(z) = X_ Adféi(=)

i=1

M
where Aa? = a; — a? and f(z) = ¥ a;di(z), and
i=1

M
-3 (aay
=1
M M
I(f") = B = / [F(X) = f*(X)PdPx = 3.3 Ad}pi;Ad?.
X =1 5=1
We express a,4; in terms of «,, as
M M
Qpt1 = Z(Aa?)z = 2rp41(Aa”, ¢(Xpy1)) + 7‘31+1 Z[¢i(Xn+1)]2
i=1 i=1

= on = 2p41 [f(Xnt1) = FH(Xn1)] + 750 K (Xia, Xnga)
Where ¢( ) (¢1(‘T) ¢2( ) »QSM(Z'))Ta Aan - (al - a?aa2 - agv ~es QM a%(w))T and

rn = x[f(Xn41) = F4( Xns1)]- By taking conditional expectations on both sides of the above
equation we obtain

Elonula’] = an— = [17(X) - [{(X)PdPx + 55 / K(X, X)[f(X) - f(X)PdPx

IA

X
—a [Uf(X) = f(X)dPx
X




where a = % - % and max K(z,z) < Q. In summary we have

Elant1]Ad®] € an — aB,.
By taking expectations on both sides we obtain
Blawn] < Blaa) - e[S,

Since the matrix [p;;] is positive definite, we have the condition ra, < 8, < Ra,, which
yields the following inequality

rElon] < E[Ba] < RE[on]

and
Elon] £ Elon-1](1 - ra) < Elap)(1 = ra)™

Then by taking f°(.) = 0, we have E[ag] = Z a?, which yields E[8,] < RC(1 — ra)" for

sample size n. By Chebyshev’s inequality we have

Plg,> g < 2L

The right hand side is equated to § to obtain the bound on the sample size. The proof for
almost sure convergence follows along the lines of [5]. O

The algorithm (3.1) uses constant the step-size +, which is referred to as the learning rate
in the context of neural network algorithms. We now consider the case where the step-size
is variable in the the following simpler algorithm:

fr@) = 77 (@) + msignlf(Xa) — 7 (X) K (2, Xn) (3-2)

where v, is a sequence of positive numbers such that Z ~; — oo and Z 7% < co. These
i=1 =1

are the well-known Robbins-Monro [19] conditions on the step-size; for example, the choice
¥ = /(¢ + 1), v > 0 satisfies these conditions.

Theorem 3.2 Suppose there exist a constant Ay and a sufficiently large sample size, n, such

that 6¢ = VRC)/2, where C = ¥ a? and R is the largest eigenvalue of the matriz [p;;].
=1 !

Then under Condition 3.1, for f € F and f™ produced by algorithm (3.2), we have
PlI(f")<e>1-04.
Moreover I(f™) converges to 0 with probability one.
Proof: The outline of the proof consists of first establishing that
Elang] < Elan] = 2y, E[Ba] + Q724

and then showing that E[8,] < vV RC~)°/%. The details of the proof are like in Theorem 3.1
for the estimation of the sample size; Lemma A.1 of [17] is utilized to show the boundedness
of expectations. Almost sure convergence results directly follow from [5]. O
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Consider a variable step-size version of the algorithm (3.1) as follows:
M) = 771 @) + lf (Xn) — XK (2, Xa) (3.3)

(o] (e

where {v;} is a sequence of positive numbers such that 3" v; — oo and ¥ 42 < co. We can
=1 =1

state:

Theorem 3.3 Suppose there exists a constant A and a sufficiently large sample size, n, such
1/2
that v, = [1—%] /
=1
under Condition 8.1, for f € F and f* produced by the algorithm (3.8), we have

, where C = 3" a? and R is the largest eigenvalue of the matriz [p;;]. Then

PlI(f,) <€¢>1-36.
Moreover I(f™) converges to 0 with probability one.

Proof: The outline of the proof consists of first establishing that

E[an+1] S E[an] - 7n+1E[13n] + Q7r21,+1

and then showing that E[8,] < RC«;. The details of the proof are as in Theorem 3.1 with
an application of Lemma A.1 of [17]. O

3.2 Approximately Representable Functions
We now address the question of using the algorithm of the form (2.3.3), based on functions

M M
of the form f(z) = Y ai¢i(x), to approximate a function of the form g(z) = ¥ c;x:(z). For
=1 =1

two functions fy and f2, we define the distance functional

10 f2) = [1A(X) = f(X)PdPx.

X

Given an infinite sample (X1, ¢(X1)), (X2, 9(X32)), ..., consider the algorithm (2.3.3) in the

form

(@) = 17 @)+ Flo(Xa) = £ KK (o, o). (34)

Specifically, we are interested in the conditions under which {f"} converges to some f*, and
if f* exists how good it is as an approximation to g(z). The first part of the question is
answered affirmatively in the next theorem. To answer the second part consider the best
approximation ¢g* to ¢ from among F in the following sense:

¢ =minl(f,9)
feF

e =I1(f",9)
Then the following theorem shows that the error due to f* can be made arbitrarily close to
€* with arbitrarily high probability by using a sample of suitable size.
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Theorem 3.4 Suppose the sample size, n, is given by:

n = In(6¢/RC) [In(1l — ra)

M max K(z,z)
where C = Y. a?, a = % 2285 ——1 withl —ra >0, r and R are the smallest and
1=

largest eigenvalues of the matrix [p;;], and A is a free parameter chosen such that a > 0.

M.
Then under Condition 3.1, for g(z) of the form g(z) = i cxi(z), and f* produced by the
=1
algorithm (3.4), we have

fmg \/-6-:‘|'\/—) >1-9¢

Moreover, I{f,,g) converges to € with probability one.

Proof: Consider g(z) = Z cxi(z) and f*(z) = Z a;¢;(z). Without loss of generality

assume that My = M, smce otherw1se the requlred number of a;’s or ¢;’s with zero values

can be added. We have

g(z) = f*(z) = [g() = [ ()] + [f*(z) - f*(2)] = 9(z) — [*(z) + Z(az — af)¢i(x).

=1

M
As in Theorem 3.1 define o, = ¥ (a; — a?)? and Aa? = a; — a? . Then consider
t=1

- M 2
lo(a) = @ = zAa?qsi(mg(x)—f*(x)}

Li=1
"M M

= ZZAG?@(%)@(@")AG?} + lg(z) — f*(=)]?

| i=1 =1

+2[9(z) — f*(2)] ; Aaidi(z).

By taking expectations on both sides we obtain

M
1(£",9) = o+ € +2 [lg(X) = (O] Y Aa?g(X)dPx
X =1
where 8, = [[f*(X) — f™(X)]?dPx and ¢ = I(f*,g). By comparing with the proof of
X

Theorem 3.1, we have same forms for a, and 3,,. Thus for the sample size stated here, with
probability at least 1 — 6 we have

JUF(X) = fr(X)FdPx < e

X
which implies [f*(z) — f*(z)| < v/e. Further |g(z) — f*(z)| < V/¢*, and hence the third term
of the above equation is bounded above by 21/e*y/c. Thus with probability at least 1 — § we

have I(f",9) < (Ve + 6. D

This theorem is useful in solving the general regression estimation problem. Also, variants
of the theorem along the lines of Theorem 3.2. and 3.3 are straightforward.
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3.3 Regression Estimation

We consider now the problem of minimizing

Q)= [ 1f(X) - YPdPxy

Xy

over all f € F based on a finite sample. The regression function f(z) minimizes Q( f ) since

Q)= [ [(X) = YPdPxy +1()
Xy
and I(f) = 0. By treating the sample as if it had been generated by a function f.m, (i.e.
Yi = femp(wi) for ¢ = 1,2,...,n), we compute an approximation femp t0 femp such that

PlI(fomp) > €emp] < 6

by using the potential function method. Then we show that femp is close to the regression
function f(z) in the following theorems under Condition 3.1. To illustrate the main point,
we first solve the problem under the additional constraint that the sample is consistent with
some function in F; a more general form is provided later.

Theorem 3.5 Suppose that Condition 3.1 is satisfied and the sample size, n, is sufficiently
large, such that eqpnp = §(1 — ra)", where ¢ and r are constants. Moreover, suppose that
supry.;(y—f(2))* € 7 and F has finite capacity, such that (X1,Y3),...,(Xn, Ys) is consistent
with a function of F. Then for § = 9e~<™167 gnd f() = f* given by algorithm (3.1), we
have

PU(f) < (Ve+ eamp)] > 1 -6,

Proof: Under Condition 3.1, the regression function f(z) € F minimizes Q( f) By the
hypothesis that the sample is consistent with some function f.., € F we obtain that

Qemp(femp) = 0. By using the algorithm of last section, we obtain a approximation femp
to femp such that for n given by €cmp = §(1 — ra)™, we have

P[I(femp7 femp) > €emp] < 6.

Since femp minimizes empirical error Qem, overall f € F, from Theorem 2.1 of [17], for
§ =916 we have

Pl|Q(femp) — Q(f) > €] < 6.

This condition is equivalent to

PlI(femp) > €] < 6
since Q(f) — Q(f) = I(f). Then, we have

I(femp) = /[f(X) - femp(X)]zdPX
X
= [UermoX) = fomp(X)PAPx + [Ufemol(X) = FX)PdPx
X

X

+2 [ empl(X) = fomp(FONF(X) = femp( X)) P
X

9




where the first and second terms of right hand side are I (f emps femp) a0d I(femp) respectively;
with probability of at least 1 — 4, these two quantities are bounded above by €., and e,
respectively. Then the last term of the above equation is bounded above by 2,/€cmpv/e. O

We now state a more general result applicable to the case when there is no f e F
consistent with the sample; the proof follows along the lines of Theorems 3.1 and 3.5.

Theorem 3.6 Let f* = Ipin](f, f) and & = I(f*,f). Suppose the sample size, n, is
feFr

sufficiently large, such that €.mp = $(1 — ra)", where ¢ and r are constants. Then under

Condition 3.1 together with sup;, f(y — f(z))* < 7 and finite capacity of F, we have

PI(f,f) < (Ve + Vet Jems) ] >1-6

where § = 9 e=™16 gnd f(.) = f~ is given by algorithm (3.1).

4 Discussion

We have presented a class of convergent function learning algorithms implemented on neu-
ral networks. Two immediate generalizations are in order. First, we extend the learning
paradigm to concepts where the problem is to learn indicator functions that are not neces-
sarily continuous. Second, we extend the applicability of the learning algorithms to other
classes of networks in particular to wavelet networks. Notice that the proof methods used in
last two sections (with the exception of Section 3.1) depend critically on the architecture of
the networks, but are independent of the particular nonlinearity used in the network. Thus
these methods are applicable to more general feedforward networks of suitable structure. We
illustrate this aspect by applying the learning algorithms to the wavelet networks.

4.1 Concept Learning

We consider now the framework of concept learning proposed by Valiant [23]. We are given
a set X = [0,1] called the domain, and C C 2%¥and H C 2% called the concept class and
hypothesis class respectively; members of C' and H are measurable under a distribution Px
on X. A concept is any ¢ € C and a hypothesis is any h € H. For s C X, an indicator
function 1, : X — {0,1} is defined such that for any = € X, 1,(z) = 1 (0) if and only if
z €s{z¢s) A pair (z,1.(z)) is called an ezample of ¢ € C, and set of m such examples
is called m-sample of c. For a,b C X, we have aAb = (&N b) U (a N b).

The concept class C' is said to be learnable [4] if given a finite sample, a hypothesis & € H,
C C H, can be produced such that for any 0 < ¢,6 < 1, we have the following condition
satisfied

Plu(hAc) <€ >1-46. (4.1)
Note that p(hAc) is the probability that a randomly chosen test point X € X will be
classified differently by ~ and ¢, i.e. u(hAc) = J dPx.
I(X)£In(X)

The connection of PAC learning to the network learning is twofold: first, PAC learning
provides a framework to obtain finite sample results for the network learning problem, and
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second, the network learning provides constructive algorithms to solve several PAC learning
classes (many results in PAC learning do not directly yield algorithmic solutions).

Let f be an indicator function (which is not necessarily a continuous function) of any
finite measurable set of [0,1]%. For any ¢ > 0, for some M, there exists [7] a function
g(z) of the form (2.2.1) and a set D C [0,1]? with Lesbegue measure of at least 1 — ¢ and
lg(z) — f(z})| < e for v € D. We impose a condition analogous to Condition 3.1 as follows:

Condition 4.1 For X = [0,1] and for a fired M, the set of functions of the form

M
h(w,z) =) ajo(blz —t))

=1

approzimates the set of indicator functions {1.(.)}cec of the concept class C' in the sense
that for each 1.(.) and € > 0, there exists some h(w,.) such that |1.(X) — h(w, X)| < & for
all X € D C X where the Lebesque measure of D is at least 1 — ¢.

By using Kurkova’s results [13], density of functions of the form (2.2.2) in the set of
indicator functions (as in Condition 4.1) can be established along the lines of [7]. Thus
the potential function method of Section 3 can be employed to solve the concept learning
problem; in this formulation note that I[h(w,.)] = [[h(w, X) — 1.(X)]?dPx = p(h(w,.)Ac).
Also, the regression estimation methods of Section 3 can be used to handle the cases where
the membership functions are probabilistically defined. Finally, the case where the indicator
functions of the concepts are not exactly represented as in Condition 4.1, results along the
lines of Theorem 3.4 can be derived for the PAC concept learning problem.

4.2 Wavelet Networks

Consider the wavelet network of Zhang and Benveniste [26] of the form
M
h(w,z) = ap(Diz —t;)+ g (4.2)
=1 )

where a; € R, ¥ : R — R is a wavelet function t; € R¢, g € R, and D; is d x d diagonal
matrix with the diagonal entries given by d; € ®¢. Let ¢, : R — R be a scalar wavelet in
the Morlet-Grossmann sense [26] in that its Fourier transform %,(w) satisfies the condition

+o00

o= [,

w

Then the desired wavelet can be obtained by ¥(z) = (¢s(z1) ... ¥(zq)) where z = (z1, .. ., Zq).
The general architecture of a wavelet network is given in (4.2). Let w denote the parameter
vector of the network which consists of ay, as, ..., apr, dy,ds2,...,da, G and t1,¢5,..., 0.
The wavelet networks satisfy density properties that are analogous to those in (2.3.1). Thus
the wavelet networks can also be used for concept learning by using the following result.
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Theorem 4.1 Let f be an indicator function of any finite measurable set of [0,1]%. For any
e > 0, for some positive integer M, there exists

~

M
g9(z) = h(w,2) = aip(Diz — t:) +§ (4.3)

1=1

and a set D C [0,1]% with Lebesque measure of at least 1 — ¢ such that |g(z) — f(z)| < € for
z€D.

Proof: Sums of the form (5.3) are shown in [26] to be dense in L?(R¢). The theorem follows
by noting that the indicator functions on [0, 1]¢ belong to L2(R?) (see [7] for detailed proof
for the networks of sigmoid functions; this proof can be adapted to the present case). O

Finally, wavelets can be employed to play a role similar to the sigmoids in the networks
proposed by Kurkova [13]; in particular, the 5;’s in (2.2.2) can be obtained by suitably using
wavelet based functions. In this case the wavelet networks are also amenable to the potential
function methods of Section 3.1.
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