6-/0-%¢
SANDIA REPORT

SAND96-1113 « UC-706
Unlimited Release
Printed April 1996

Sandia Airspace Recording System (SARS)
Software Reference Manual

John L. Tenney

Prepared by S
Sandia National Laboratories

TN 'ig AR
ol ﬂr,f;,‘ It ¢

Albuquerque, New Mexico 87185 and Livermore, California 94550 ;gfffifi';’ it

for the United States Department of Energy ',;;,:i’a"

under Contract DE-ACO4-94AL85000 :

Approved for public release; distribution is unlimited.

Ly Sedlds

I

VoL

BN

' ;h W")’ xlmtii”

| ’/; :Hx
) P
! .

SE2H00048-21) memﬂ OF ms mcvm IS mm MASTER




Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A05
Microfiche copy: A01




SAND96-1113 Distribution
Unlimited Release Category UC-706
Printed April 1996

Sandia Airspace Recording System (SARS)
Software Reference Manual

John L. Tenney
Assessment Technologies Department
Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

SARS is a data acquisition system designed to gather and process radar data from aircraft
flights. A database of flight trajectories has been developed for Albuquerque, NM and
Amarillo, TX. The data is used for safety analysis and risk assessment reports.

To support this database effort, Sandia developed a collection of hardware and software
tools to collect and post process the aircraft radar data. This document describes the data
reduction tools which comprise the SARS, and maintenance procedures for the hardware
and software system.



Acknowledgments

The author wishes to acknowledge the contributions Tom Lin and Norm Grandjean of
Sandia National Laboratories made to the SARS project. They developed and tested many
of the algorithms that make up the SARS.

Bob Roginski of Sandia National Laboratories provided sorting algorithms and technical
consulting throughout the SARS project.

David Skogmo of Sandia National Laboratories provided hardware, software, and
configuration support for the SARS project.




Table of Contents

1. Introduction

2. Overview of SARS

3. Data Collection Software

3.1. Zone 4 Software Description
3.2. Radar File Formats

3.2.1. Beacon File Format....

3.2.2. Filtered Primary Radar Format........

3.2.3. Unfiltered Primary Radar Format

3.3. Zone 4 Compile Instructions
3.4. Additions/Modifications to Zone 4 Software

3.4.1. Green Strip/Electronic File Time Correlation

3.4.2. Zone 4 Display Screen

3.5. Zone 4 Software Diagram

3.6. Zone4 Module Description.
3.6.1. ZONE4A.BAT File......

3.6.2. Zonea Executable File

4. Postprocessing Software

4.1. Sanitize Software Description

4.2, Sanitize Calling Sequence

4.3. Sanitize Subroutine Description

4.4, Sortdata Software Description

4.5, Sortdata Calling Sequence
4.6. Sortdata Subroutine Description

4.7. Sortilt Software Description

4.7.1. Flight Index File Description

4.7.2. Beacon Index File Description

4.7.3. Sortflt Report File Description......

4.8. Sortflt Include File
4.9. Sortflt Calling Sequence

4.10. Sortflt Subroutine Description o

5. Aircraft Viewing Software

5.1. Plotflt Software Description

5.2, Main Program Description

5.8. Main Program Calling Sequence

5.4. Plot Display Mode
5.4.1. Overview.

5.4.2. Plot Display Process

5.5. Data Input Mode.

5.5.1. Overview ..

5.5.2. Data Input Process

5.6. Plofflt Include File

5.7. Plotfit Function Descriptions

5.7.1. Main Function Headers

5.7.2. Plot Display Function Headers...............

5.7.3. Data Input Function Headers

5.7.4. Plot Display and Data Input Function Headers

5.7.5. General Purpose Function Headers
5.8. Pantex Plot Projection

5.9. VGA Pixel Coordinate System

6. References




List of Figures

Figure 2-1. SARS Hardware, Data Collection and Post-processing System......
Figure 2-2. FAA/SARS Interface ...... reeseosesssressrenesntsssisstesnesanasssssans

Figure 3-1. Zone 4 Output Screen

Figure 3-2. Sample Flight Arrival Green Strip

Figure 5-1. Main Program Diagram
Figure 5-2. Sample Plot Using Display Mode.
Figure 5-3. Display Mode Process Diagram

Figure 5-4. Data Input Process Diagram..........
Figure 5-5. Radar Source and Recording Coordinate Systems

---------------

Figure 5-6. Pantex Slant Range Diagram

Figure 5-7. Pantex Pixel Coordinates.....cceeenee-

Table 3-1. Beacon File Format

------------------

List of Tables

Table 3-2. Filtered Primary Radar Format

oo

Table 3-3. Unfiltered Primary Radar Format

Table 4-1. B940201.IDX Flight Index Table

Table 4-2. B940201.BID Beacon Index File

W N
S®©



1. Introduction

SARS is a system developed by Sandia for support in environmental studies at the J upiter
test facility in Albuquerque and the Pantex Plant in Amarillo, TX. Aircraft crash was
determined to be a significant contributor to the environment if a crash occurred near a
specific target. To support the analysis, Sandia developed a method to gather and analyze
aircraft radar data in an efficient manner.

SARS is a hardware and software system which was developed to collect and analyze
radar data. Although implemented for Amarillo and Albuquerque air traffic centers,
SARS not site specific. The software and hardware configurations are the same for both

airports.

This document describes the hardware and software system which comprise the SARS. It
describes changes and enhancements made to existing software and provides
documentation for new software. It is written for system personnel and programmers
responsible for maintenance of the SARS system.

2. Overview of SARS

The production hardware ties directly into the radar facility at the local airport. The
hardware responds to a input signal from the source radar and displays a point (or pixzel)
on the PC VGA screen. The dot represents the actual location of the aircraft as it flies
overhead. A series of dots represents the entire flight path for the aircraft.

The hardware includes two PC’s linked to two digitizers. The data is recorded on the local
hard drive for each machine. Two machines are used a pseudo fault tolerant setup in case
of failure.

Figure 2-1 depicts the interaction between the hardware, data collection software, and
post-processing software.




FAA Radar

— l ] ) :
Digitizer Digitizer Hardware
| |
PC PC
| I
Disk Disk
Data
—
Zone4 Collection
Software
Sanitize
I
v
: Post-
Sortdata «— processing
Software
Sortflt
Radar
Plotflt +— Viewing
Software

Figure 2-1. SARS Hardware, Data Collection and Post-processing System

2




The hardware interface diagram is shown in Figure 2-2. The interface is documented in

[Ref. 1].

Radar MTI Video
Pretrigger Radar
Digitizer
Azimuth Reference Pulse
Azimuth Change Pulse
Beacon Video[—
Outputs
Beacon
Digitizer ) PC

Figure 2-2. FAA/SARS Interface




Intentionally Left Blank




3. Data Collection Software

3.1. Zone 4 Software Description

Zone4 is the name of the primary data collection software. Itis a modified version of the
security detection software named RAMS (Radar Airspace Monitor System). This
program processes radar signals from the FAA air traffic control center and converts the
signals into graphics (see Figure 3-1). The flight paths consist of x,y,z coordinate
information. The z component represents the elevation. These flight paths are saved to

an ASCII formatted file while the graphics is displayed. The format is described in section
3-2.

% Zone4 % Lz S
i +
Dlsplay Sandia Peak
Zone4 Menu 3y Brvd

r-startrain mode
S - stop rain mode
¢ -chg. bkup disk

d - end change diskl
g - quit program

dves: su

Tue Oct 10 07:13:43

Figure 3-1. Zone 4 Output Screen

Figure 8-1 shows the flight trajectories plotted on the VGA display. This is a subset of
actual flight data over Albuquerque on October 7, 1995. On the display, flight 4254:61 is
plotted as a series of pixels or points near the center of the screen. The Beacon ID for this
flight is 4254 and the elevation is 61 times 100 = 6100 feet. This flight is a takeoff
heading to the southwest.

Zone 4 a real time program; the air traffic is plotted as it enters the airspace with
minimum latency. The operator interface is shown on the left side of the screen. The
additions and modifications to the original RAMS program are described in section 3.4.




3.2. Radar File Formats

Two types of radar are processed: Beacon and Primary. Beacon radar requires that the
aircraft have a transponder in order to communicate with the air traffic tower. The

~ Beacon code is a four digit number that is unique for a given time frame (e.g. 4254). Most
commercial flights and large commuter aircraft use a Beacon ID’s to identify the aircraft.
Primary radar reflects off the skin of the plane. All aircraft, including commercial flights,
are tracked by primary radar. Although not shown in Figure 3-1, primary radar will plot
as a series of white dots near the trajectory of the Beacon radar path. The Beacon
trajectory will plot as a series of blue dots. Small aircraft may or may not have a Beacon
path, but it will always have the primary path plotted.

As a flight passes overhead, the radar data is captured to a file as it is displayed. At the
end of the day, the file is closed and the next day is opened. Three types of radar files are
saved for further analysis: Beacon, filtered primary, and unfiltered primary.

3.2.1. Beacon File Format

The Beacon radar file name use this format: BYYMMDD.DAT (e.g., B951107.DAT), where
B is the first character, followed by the year, month, and day. An example of an unsorted
Beacon file is shown is Table 3-1.

9511151459008 145925 +1.33e+04  +1.79e+04 0452 64
9511151459018 145925 +1.56e+04 -3.51e+04 0423 54
9511151459025 145925 -1.50e+04 -2.65e+04 4357 77
9511151459035 145925 -2.48e+04  +4.90e+03 0743 61
951115145904S 145925 -4.47e+03  +4.98e+03 2602 50
9511151459055 145925 -3.94e+03  +5.8%e+03 7243 50
951115145900P 145929 +1.33e+04  +1.8%+04 0452 64
951115145901P 145929 +1.49e+04 -3.48e+04 0423 54
951115145902P 145929 -1.63e+04 -2.62e+04 4357 75
951115145903P - 145929 -2.40e+04  +4.99e+03 0743 60
951115145904P 145929 -3.88e+03  +4.83e+03 2602 50
951115145905P 145929 -3.93e+03  +5.89e+03 7243 50
951115145900P 145934 +1.32e+04  +1.97e+04 0452 65
951115145901P 145934 +1.42e+04 -3.52e+04 0423 54
951115145902P 145934 -1.80e+04 -2.57e+04 4357 773
951115145903P 145934 -2.26e+04  +4.90e+03 0743 61
951115145904P 145984 -2.78e+03  +4.39e+03 2602 50
951115145905P 145934 -3.66e+03  +6.07e+03 7243 50
951115145900P 145938 +1.38e+04  +2.11le+04 0452 66

Table 3-1. Beacon File Format




Each record in the Beacon file is fixed length 49 bytes.

The flight records
Column (1:2)
Column (8:4)
Column (5:6)
Column (7:8)
Column (9:10)
Column (11:12)
Column (13:13)
Column (15:16)
Column (17:18)
Column (19:20)
Column (22:30)
Column (82:40)
Column (42:45)
Column (47:49)

are structured as follows:
Year
Month
Day
Start hour of flight (GMT)
Start min. of flight (GMT)
Flight sequence number (00 through 99)
(S)tart, (P)rogressive point , or (E)nd of flight
Time 1 - hour of flight
Time 1 - min. of flight
Time 1 - seconds of flight
X coordinate - true north (in feet)
Y coordinate - true north (in feet)
Beacon ID or squawk code
Elevation * 100 (in hundreds of feet)

Columns 1 through 13 are referred to as the unique ID of the flight. Every recorded flight
will have one unique ID. This unique string is useful for sorting data.

Column 13 determines the complete path of a flight. The S(start), P..P..P..., E(end)
sequence must be set for a good flight. The first 13 characters of each record (e.g.,
9402011013018) are used throughout the programs as a unique identifier. The flight
sequence number ranges from 00 through 99. This means 100 maximum flights can be
recorded at one time.

The first record from Table 3-1 is identified by its individual components.

9511151459008 145925 +1.88e+04 +1.79e+04 0452 64

Column 1:2 - (95) Year

Column 3:4 - (11) Month

Column 5:6 - (15) Day

Column 7:8 - (14) Start hour of flight (GMT)

Column 9:10 - (59) Start minute of flight (GMT)

Column 11:12 - (00) Sequence number of flight

Column 13 - (S) Start of flight

Column 15:16 - (14) Time 1 recorded hour of data point (GMT)
Column 17:18 - (59) Time 1 recorded minute of data point (GMT)
Column 19:20 - (25) Time 1 recorded seconds of data point (GMT)
Column 22:30 - (+1.33e+04) X coordinate true north (in feet)

Column 32:40 - (+1.79e+04) Y coordinate true north (in feet)

Column 42:45 - (0452) Beacon ID or squawk code of aircraft
Column 47:49 - (64) Elevation * 100 = 6,400 ft.




3.2.2. Filtered Primary Radar Format

Usually all objects made o
implies slow moving vehicl

. The filtered primary radar file name use this

R951107.DAT), where R is the first character,
example of an unsorted, filtered primary radar fil

9511151459005 145925  +1.36e+04  +1.84e+04 0000 O
9511151459015 145925  +1.55e+04  -3.49e+04 0000 O
9511151459025 145925  -1.50e+04  -2.67e+04 0000 O
9511151459035 145925  -2.51e+04  +5.00e+03 0000 O
951115145900P 145929  +1.36e+04  +1.92e+04 0000 O
951115145901P 145929  +1.50e+04  -3.52e+04 0000 O
951115145902P 145929  -1.64e+04  -2.64e+04 0000 O
951115145903P 145929  -2.41e+04  +5.00e+03 0000 O
951115145900P 145934 +1.37e+04  +2.03e+04 0000 O
951115145901P 145934 +1.41e+04  -3.50e+04 0000 O
951115145902P 145934  -1.82e+04  -2.58e+04 0000 O
951115145903P 145934  -2.29e+04  +5.24e+03 0000 O
951115145904S 145934  -5.46e+04  +4.63e+04 0000 O
951115145900P 145938  +1.37e+04 +2.11e+04 0000 O
951115145901P 145938 +1.36e+04  -3.54e+04 0000 O

£ metal will be picked up by primary radar. Filtered radar data
es (e.g., trucks on a highway) are filtered from the raw data.

format: RYYMMDD.DAT (e.g.,
followed by the year, month, and day. An
e is shown is Table 3-2.

Table 3-2. Filtered Primary Radar Format

The format of the filtered primary radar file is the same as the Beacon format. Each
record is fixed length 49 bytes. This type of radar reflects off the skin of the aircraft; there
will not be a Beacon ID or elevation associated with the flight. These values are set to 0
by default.

3.2.3. Unfiltered Primary Radar Format

Unfiltered radar will capture all moving objects, flocks of birds, and additional noise (e.g.,
radar antennas). These unfiltered files become very large. Eleven megabytes per day in
Albuquerque is typical.

" The unfiltered primary radar file name use this format: PYYMMDD.DAT (e.g.,
P951107.DAT), where P is the first character, followed by the year, month, and day. An
example of an unfiltered primary radar file is shown is Table 3-3.




TIME=14:59:15

658 261
347 373
961 877
309 636
691 728
795 1012
795 1630
442 1635
309 2076
397 2180
398 2184
743 2475
625 2756
392 3084
606 3460
903 3911
TIME=14:59:20
660 273
361 356
946 571
309 636
697 726
807 1621
442 1648
309 2076
398 2216
397 2216
753 - 2497
623 2764
386 3089
903 3916

Table 3-3. Unfiltered Primary Radar Format

The format of this file is different from Beacon or filtered primary radar. Each flight
starts with a TIME=HH:MM:SS syntax. The points that follow are the x and y
coordinates of the flight path in screen pixels. The pixel values are converted within the
Zone4 program from true north coordinates to screen coordinates.




3.3. Zone 4 Compile Instructions

The Zone4 software is controlled from a batch file name ZONE4A BAT. Itis executed

- from the command line in DOS: ZONE4A

A listing of Z_ONE4A.BAT for the Albuquerque radar follows:

@echo off

:start

CALLRAMS

if errorlevel 1 SETDIG

if errorlevel 1 ZONEA

if errorlevel 1 goto bottom
SLEEP 180

rem ctlaltdl causes a warm reboot of the computer
goto start

CTLALTDL

:bottom

CTLALTDL

echo on

The words in capital letters are programs that are invoked from the batch file.
CALLRAMS dials up the digitizer at the local airport from a modem. SETDIG configures
the digitizer for Beacon and primary radar. ZONEA is the main program for data
collection. The SLEEP and CTLALTDL are programs that are used in case there is an
error in the previous programs. Errorlevel 1 represents success; the next program will run
only if the previous program finished successfully. If not, the computer will reboot.

ZONE4A is usually called from the autoexec.bat file. The software resides in a directory
name zoneda on the recording computer. At the bottom of the autoexec.bat file there
should be two entries:

cd zoneda

zoneda

The config.sys file in DOS should have the following entries:
files=30
buffer=30

Note: To prevent memory conflicts, there should be no memory managers (e.g., himem.sys)
or other memory resident software (i.e., TSR’s) loaded.

The Borland Turbo C++ 8.0 compiler for DOS was used to compile all of the programs
associated with Zone4. A project file was required for the zonea.exe file. The path to
\TC\BIN must be set before using the compiler.

The following procedure creates the Zonea executable file:

10




Typein: TC

Select the OPEN PROJECT menu option
Select the ZONEA.PRJ file

Select the COMPILE menu option

Select the BUILD ALL option

3.4. Additions/Modifications to Zone 4 Software

The Zone 4 software was modified from the original RAMS software for two specific
reasons. First, the original RAMS software was not set up to handle a continuous,
uninterrupted data stream. Zone 4 was created to handle user interrupts (i.e., disk
change) without losing any real time data. Zone 4 also handles real time backup to
multiple devices.

Second, the RAMS software was not set up to match the electronic data to the air traffic
flight strips (i.e., green strips). The green strips contain pertinent information for safety
analysts that is not contained in the electronic recorded data (e.g., aircraft type, aircraft
ID). The information contained on the flight strips is required for safety analysis.

3.4.1. Green Strip/Electronic File Time Correlation

By default, the green strips are computer generated with GMT (Greenwich Mean Time) or
UCT (Universal Coordinate Time). The local recorded data is adjusted to match the green
strips. A sample green strip is shown is Figure 8-2.

SWA702 422
A1615 IFR
T/B73S/A SIN
ABQ
463 LAVAN

Figure 3-2. Sample Flight Arrival Green Strip

In this example, the aircraft ID is SWA7 02, the aircraft type is T/B73S/A, the Beacon ID is
4222 and the arrival time is 16 hours 15 minutes GMT.

11




Table 3-4 shows the correlation between the local time, the PC clock, and GMT. For the
Albuquerque airport, green strips are picked up at 9 PM local time. In order to match this
time with GMT, the PC clock and the Zoned software is adjusted internally to match the

green strip.
ABQ Mtn. Std. Time (Fall)
G. S. Day 1 1 1 | e 1 1 1
Wall clock 9:00 pm | 10:00 pm 11:00 pm | eeeeeeenee 6:00 pm | 7:00 pm 8:00 pm
24hr. clock 21:00 pm | 22:00 pm 23:00pm [ ceeeeee. 18:00 pm | 19:00 pm 20:00 pm
GMT G.S. 4:00 am 5:00 am 6:00am |  ceeeees 1:00 am | 2:00 am 3:00 am
PC clock 00:00 am 1:00 am 2:00am | .eeeee- 21:00 pm | 22:00 pm 23:00 pm
Offset add 4 4 7% [ 4Mod24 | 4Mod24 | 4Mod24
4 hours
Final Time 4:00 am 5:00 am 6:00am | ceeeenes 1:00 am | 2:00 am 3:00 am
ABQ Daylight | Savings Time (Spring)
G. S.Day 1 1 1 N IO 1 1 1
Wall clock 9:00 pm | 10:00 pm 11:00pm | ceeeeene 6:00 pm | 7:00 pm 8:00 pm
24hr. clock 21:00 pm | 22:00 pm 23:00pm [ e 18:00 pm | 19:00 pm 20:00 pm
GMT G.S. 3:00 am 4:00 am 5:00am | .eeeeeees 00:00 am | 1:00 am. 2:00 am
PC clock 00:00 am 1:00 am 2:00am | eeeeeeeees 21:00 pm | 22:00 pm 23:00 pm
Offset add 3. 3 3| e 3Mod24 | 3Mod24 | 3Mod24
3 hours
Final Time 3:00 am 4:00 am 5:00am | aeeeeeens 00:00 am | 1:00 am 2:00 am

The objective in Table 3-4
green strip day ends on a
before it is saved to disk. For exam
clock is 9:00 PM, GMT time will be 6
scheduled pick up time for the green strips,
green strip day and op
of 8 hours is applied to

Table 3-4 Green Strip/Electronic File Correlation

en up the next day. The
the data before it is written to disk. The 9:00 PM loc

is to match the green strip time to the
different day than GMT, an adjustme
ple, if we are in Albuquerque
hours ahead at 3:00 AM. Since 9 PM is the
the Zone 4 program will close the current

PC clock is set to 00:00 AM, then an offset
al flight will

nt

final time. Since the
is made to the data
during DST and the wall




be recorded on disk as 3:00 AM GMT. This method will correlate the green strip time
(GMT) with the recorded flight.

3.4.2. Zone 4 Display Screen

The output screen shown in Figure 8-1 was modified to accommodate the disk change
utility. The menu choices are listed as follows:

r - start rain mode

S - stop rain mode

¢ - change backup disk
d - end change disk

q - quit program

The rain mode operation is useful if there is a rain or snow shower in progress. This will
cause the primary radar to return unwanted noise thus increasing the primary radar file
size. By pressing “r”, start rain mode, the computer will not process primary radar until
the “s”, stop rain mode key is pressed, or by default, an elapsed time of two hours. At the
end of two hours, the primary radar will begin to record.

The option for disk change is letter “c.” This will close the file on the recording cartridge
(typically a Bernoulli Lasersafe ) and prompt the user to change the cartridge. A
temporary file is created on the alternate backup device while the disk change occurs. The
temporary file is copied back to the new cartridge after it is put in the Lasersafe drive.
The “d” key is pressed after the cartridge is changed. This method prevents data loss
while allowing the user to capture the recorded data.

The configuration options for the backup device and time zone offsets are read at startup
from the configuration file SITE.CFG. It has the following format:

C:\ZONEDATA\ ;backup directory

;backup flag 0-disable 1-enable

;primary backup disk (E is Lasersafe Plus)
;alternate backup device (for temp files)
;Albuquerque offset hours DST=3 MST=4

Qe

The first line C:\ZONEDATA, specifies where the raw data files are stored. The second
line specifies that the data will record to a backup device. A value of 1 enables backup
while a value of 0 will record data on the C: drive only without a duplicate copy. The third
line shows the device name ifline 2 is enabled. In this example, the primary cartridge
backup is logical device E:. The fourth line shows where the alternate backup device is as
the disk change occurs. This is the device where temporary files are copied. The last line
show the offset hours from the PC clock. Ifthe PC clock is set to 6 am, the offset is applied
to the recorded time and saved as 10 am if the offset is 4.

13




. 3.5. Zone 4 Software Diagram

Figure 3-3 shows the logical flow of the Zone 4 software. The process stays in an
continuous loop once the connection is established to the digitizer.

Dial Modem

Set
Digitizer
Parameters

Display
Local Map

Process
Digitizer
Data

Write out
ASCII data

Figure 3-3. Zone 4 Software Diagram

3.6. Zone4 Module Description

The following list shows the entire module set for the Zone4 software. Two groups are
listed: the software for the batch file and the software for the zonea executable. A brief
description of each module is listed.




3.6.1. ZONE4A.BAT File

CALLRAMS.C - Callrams is a program that uses the Telebit T1000 modem to dial up the
digitizer. It reads site specific information (e.g., phone number, access password) from the
file PSMAP.CFG. The format of the PSMAP.CFG is listed:

0.00 ;xd=east/west coordinate in nautical miles from radar for program arb only
0.00 ;yd=north/south coordinate in nautical miles from radar

196.8 ;rcell=beacon range cell size in feet

196.8 ;rrcell=primary range cell size in feet

11.52 ;maxrg=coverage radius in statute miles

853.33 ;antrotrate=in azimuth ticks/sec=4096/period

1.0 ;tripradsq=radius of trip wire in miles

XXXX ;password=password for digitizer

2 ;mode O=primary only, 1=beacon only, 2=both

300 ;rgerr=beacon range error in range cells

-100  ;azerr=beacon azimuth error in azimuth ticks

245 ;ITgerr=primary range error in range cells

-100  ;razerr=primary azimuth error in azimuth ticks

ATDT2433178 ;modemd=digitizer telephone number as a command to the modem
10.73 ;pfactor=10.73
cft/in@5kfeet;9.25@0ﬂ;;9.52@1kfb;9.80@2kﬂ:;10.10@3kﬂ:;10.49@4k&

1 ;pressdefault. if 1 accept default pressure of 29.92 else stop and get pres.
867.0 ;maxtvel max threat speed in ft/sec. Faster than this is discounted.

59.0  ;mintvel min threat speed in ft/sec. Slower than this is discounted.

300.0 ;maxcrosstime in sec. Approach taking longer than this to cross are discounted

SETDIG.C

Setdig is a program used to configure the SRAMS digitizer.

It expects to find a disk file named PSMAP.DIG containing the information
to configure the digitizer. The file should appear as shown below.

2 ;smode O=primary only,1=beacon only,2=both

3 ;beacon threshold. must have a value even if beacon not used.

6 ;primary threshold. must have a value even if radar not used.

1 ;pedit option: 1=beacon shares edit signal, else 0. must have value.
0 ;begin an edit parameter set 0 for clear 1 for set to 1. or end file.
0 ;AZST IN HEX, top three and bottom three bits=0

0 ;AZSP IN HEX, DITTO

0 ;RGST IN HEX, TOP 4 BITS AND BOTTOM 2 BITS =0

0 ;RGSP IN HEX, DITTO

1 ;NEXT EDIT PARAMETER SET HERE FOR 6 MILE BLOCK
BF8 ;AZST

F20 ;AZSP

130 ;RGST

30C  ;RGSP This line and all others must end with a line feed.

15



ZONEA.C
Program to track Beacon and Primary radar flight tracks. The data is saved into

- individual files.

SLEEP.C .

If an error occurs with ZONEA, the program will put itself in suspend state with the sleep
fanction. The program sleep will put the computer in a wait state for the specified
number of seconds on the command line. For instance, the command sleep 180 will sleep
for three minutes.

CTLALTDL.C
This program will causes a warm reboot of the computer. It is the equivalent of pressing
the CTL-ALT-DEL keys. This function is used in case of a non-recoverable error.

3.6.2. Zonea Executable File

The following list shows the correlation between the PC filenames and the actual module
names listed in the project file ZONEA.PRJ. There is a total of 24 modules in zonea.

File Name Module Name
BTRKZONA.C rtrack
BTRMZONE.C btrimplt
CHGDISK.C chgdisk
CHKDFREE.C chkdfree
COMBINZ.C combine
COPYTMP.C copytmp
DELFILES.C delfiles
ELEVZ.C- initelev
FILECPY.C filecpy
GETDRLET.C getdrlet
INIBOXZ.C inibox
MONTHCVT.C monthevt
OPENBFIA.C  openbfil
OPENRFIA.C  openrfil
RCOMBINZ.C rcombine
RTRKZONA.C rtrack
RTRMZONE.C rtrimplt
SITECFG.C sitecfg
TBLINKZ.C tblink
UNPKBZ.C unpkb
UNPKRZ.C unpkr
XSTRZ.C xstr
ZONEA.C zonea
ZONESCRN.C safescrt




A brief description of each module is listed. More detail can be found in reference
[Skogmo]. The modules in bold text are either modified or new additions to the original
RAMS software.

BTRKZONA (module name: btrack) - This function provides tracking for the SRAMS
Beacon radar data. It operates on a list of plane positions derived by the function btrimplt
from Beacon radar data and converted x,y coordinates in feet from the site. The output of
btrack is a list of plane positions at the plotting instant and their velocities.

BTRMZONE.C (module name: btrimplt) - This function accepts an array of range and
azimuth Beacon radar reports and converts the array to Cartesian coordinates in feet from
the position xd, yd. It trims out any points outside of the sector of interest defined by
maxrg.

CHGDISK.C (module name: chgdisk) - This function swaps the primary and alternate
backup devices. It also changes the input filename extension from .dat to .tmp or .tmp to
.dat. For instance, if the primary disk is E: and the alternate is C:, the function will swap
these values from E: to C:. This function is required for a disk change.

CHKDFREE.C (module name: chkdfree) - This function will check the available disk
space on the selected drive. A warning beep will sound if the recording disk is more than
80% full.

COMBINZ.C (module name: combine) - This function combines multiple hits that are
from the same plane. If two hits are within +/- 1 of the same range, with a certain span of
azimuth, and don’t have dissimilar id’s, they are combined. This function is used for
Beacon tracks.

COPYTMP.C (module name: copytmp) - This function copies the input file to the
alternate backup device defined in SITE.CFG. This is required for a disk change. Calls
routines chgdisk and filecpy.

DELFILES.C (module name: delfiles) - Delete all files in the C:\ZONEDATA directory
that are older than 29 days. This prevents the C: drive from overloading. Calls routine
monthevt.

ELEVZ.C (module name: initelev) - This function initializes the constant arrays used by
the function elevation. The elevation function is included in the ELEVZ.C file.

FILECPY.C (module name: filecpy) - This function copies one file to another and
returns the number of bytes copied.

17



GETDRLET.C (module name: getdrlet) - This function returns the integer value for
the disk device (i.e., A returns 0, B returns 1, )

INIBOXZ.C (module name: inibox) - This function checks to see if a point falls within a
- group of 4-sided polygons.

MONTHCV;I‘.C (module name: monthevt ) - This function returns a two character
month representing the integer for that specific month @.e., JAN returns 01). Called from
function delfiles.

OPENBFIA.C (module name: openbfil) - This function creates a descriptor for a plane
based on the date, hour, and minute plus a two digit tag to allow for 100 concurrent
planes. It writes the opening record for the plane into the Beacon file. This routine was
modified to accommodate the offset hours to GMT. The following code segment shows the
algorithm:

temphours = hours + offsethours

hours = temphours mod 24

write outputfile hours

The mod function is used to adjust for times greater than 24 hours (e.g., 24=0, 25=1).

OPENRFIA.C (module name: openrfil) - This is the same function as openbfil except it
is used to open primary radar files (R files).

RCOMBINZ.C (module name: rcombine) - This function combines multiple hits that are
from the same plane. If two hits are within +/- 1 of the same range, with a certain span of
azimuth, they are combined. This function is used for primary radar tracks.

RTRKZONA.C (module name: rtrack) - This function provides tracking for the SRAMS
primary radar data. It operates on a list of plane positions derived form the primary radar
data and converted x,y coordinates in feet from the site. The output of rtrack is a list of
plane positions at the plotting instant and their velocities.

RTRMZONE.C (module name: rtrimpit) - This function trims out points outside the sector
of interest defined by maxrg. It operates on primary radar data.

SITECFG.C (module name: sitecfg) - This function réads site specific global variables
from the SITE.CFG file. The backup flag determines if a copy of the data is needed for the
alternate device.

TBLINKZ.C (module name: tblink) - This is a display function. It blinks the recent points
plotted from their plot color to yellow in exclusive or mode. The state of the flash color
(yellow or plot color) is given by the global variable flash, which is toggled by blink each
time.




UNPKBZ.C (module name: unpkb) - This function moves the Beacon data from the receive
buffer into the range, azimuth, id, and el buffers.

UNPKRZ.C (module name: unpkr) - This function moves the primary radar data fro the
receive buffer into the range and azimuth buffers.

XSTRZ.C (module name: xstr) - This function draws the character string at point %, y in
the passed color in exclusive or mode. This module contains the function xordot.

ZONEA.C (module name: zonea) - Zonea is the main program for data collection. It
writes all processed data into the respective files (Beacon, primary, and unfiltered).

ZONESCRN.C (module name: safescrt) - This function displays the local site map.

In addition to the modules, there are common include files used in the data collection
program.

COMNEWZ.C - This file contains the communications library for SRAMS.

GETCFG.C - Reads site specific information into global variables from the file
PSMAP.CFG

READLIN.C - Reads characters from the passed stream into the passed buffer until the \n
character is encountered. It terminates the buffer with a 0.

ZONEDEF.C - This file is the include file for all of the routines. It contains definitions
and function prototypes.



Intentionally Left Blank




4. Postprocessing Software

4.1. Sanitize Software Description

The SANITIZE program does basic sanity checks on the input radar file. All the records
in the file are 49 bytes long; if not, we print out the record number and the illegal string.
The input radar file can be raw (.DAT) or sorted (.SRT) format.

Column 13 is checked for a valid S, P, or E character. Ifthe character is missing or
invalid, we have bad data - a message and the line number is printed.

Filename: SANITIZE.FOR

Compiler: Fortran Powerstation Ver. 1.0a for DOS

Compile instructions: F1.32 SANITIZE.FOR

To execute: SANITIZE filename, e.g., SANITIZE B950112.DAT

The structure of the raw Beacon radar file is listed:
Each record is fixed length 49 bytes.

9402011010008 101017 +7.37e+08 +5.44e+04 1200 53
9402011010018 101017 +1.42e+04 +1.02e+04 0475 68
9402011010028 101017 +3.16e+04 +1.00e+04 0764 -20

The records are structured as follows:
Column (1:2) Year
Column (3:4) Month
Column (5:6) Day
Column (7:8) Start hour of flight
Column (9:10) Start min of flight
Column (11:12) Flight sequence number (00 thru 99)
Column (13:13) (S)tart, (P)rogressive, or (E)nd of flight
Column (15:16) Time 1 - hour of flight
Column (17:18) Time 1 - min of flight
Column (19:20) Time 1 - seconds of flight
Column (22:30) X coordinate - true north
Column (32:40) Y coordinate - true north
Column (42:45) Beacon ID or squawk code
Column (47:49) Elevation * 100

21




4.2. Sanitize Calling Sequence

Two subroutines are used in SANITIZE. A brief description of each subroutine follows:

" READ_FILE - open up input file
CHECK _SPE - checks SPE count

The routines are all called from the main program. The calling sequence follows:

Read the input file from the command line
CALL READ_FILE (IFILE)

Do sanity checks
CALL CHECK_SPE (TFILE)

IFILE is a character variable read in from the command line. If the filename is not
entered the following message will appear on the screen:

s+ PLEASE ENTER FILENAME ON COMMAND LINE Hk
SYNTAX: SANITIZE [radar_filename]
e.g., SANITIZE B950126.DAT

If the program completés successfully, the program will print out the number of records in
the file. For example:

OUTPUT FROM SANITIZE:
FILE B950112.DAT CONTAINS 11706 RECORDS.

4.3. Sanitize Subroutine Description

SUBROUTINE READ_FILE (IFILE)
CHARACTER*(*) IFILE

Tunction name: READ_FILE

Purpose: Open up input file and count characters and total records
Parameters: IFILE (input file name - character string)

Sample call: CALL READ_FILE (IFILE)

Calls routine: none

Called from: main program

Return value: none

Messages returned:




If the input file cannot be found, the following message will appear on the display:
FILE B950112.DAT NOT FOUND

If a record is not equal to 49 bytes, the next message will appear:
Invalid record # = 1170

SUBROUTINE CHECK_SPE (IFILE)
CHARACTER*(*) IFILE

Function name: CHECK_SPE

Purpose: This routine does some basic sanity checks. First it determines if character
position 13 of the input record has a S, P, or E in that column. At least 1 character (S, P,
or E) must be found in column 183; if not a error message will be displayed on the screen.

The S,P,E characters represent the following:
S - start of flight
P - continuation point of flight
E - end of flight

The routine will check for a valid numeric in column 49 (elevation) This will confirm that
the record is complete.

Parameters: IFILE (input file name - character string)
Sample call: CALL CHECK_SPE (IFILE)

Calls routine: none

Called from: main program

Return value: none

Messages returned:

If an invalid integer is found in column 49, the next error will appear:
Invalid integer in column 49 at line 1250

If an illegal character (other than S, P, or E) then the message will appear:
Illegal character in column 13 at line 1250

If there is not at least one record with an S, P, or E in column 13, then one of the following
messages will appear:

Starting records not found - DATA ERROR

No primary records found - DATA ERROR

No ending records found - DATA ERROR

23




4.4. Sortdata Software Description

Filename: SORTDATA.FOR

This program reads and sorts the Albuquerque and Amarillo aircraft
flight data. The program reads input from the Beacon radar file or
primary radar (DAT extension) and generates a sorted file
(.SRT extension). It is expected that the SANITIZE program is run
before this program is executed. SORTDATA uses an index array (INDX)
for sorting.

Compiler: Fortran Powerstation Ver. 1.0a for DOS

Compile instructions: FL32 SORTDATA.FOR

To execute: SORTDATA filename, e.g., SORTDATA B950112.DAT
File dependencies: SORTDATA.INC is the required include file

The output file (SRT extension) is sorted on two keys: the date/time stamp is the primary
key(field 1, characters 1:13) and the secondary key is the start time of the flight (field 2,
characters 15:20). Sample output is listed below:

9402011010008 101017 +7.37e+03 +5.44e+04 1200 53
940201101000P 101021 +7.95e+03 +5.52e+04 1200 52
940201101000P 101026 +7.80e+03 +5.59e+04 1200 51
940201101000P 101031 +7.45e+03 +5.63e+04 1200 51
940201101000P 101036 +8.10e+03 +5.76e+04 1200 50
940201101000P 101040 +8.35e+03 +5.83e+04 1200 50
940201101000P 101045 +8.64e+03 +5.92e+04 1200 50
940201101000E 101049 +0.00e+00 +0.00e+00 0000 0

4.5. Sortdata Calling Sequence
Three subroutines are used in SORTDATA. A brief description of each routine follows:

READ_FILE - open up input file

SORT1 - perform modified shell sort

WRITE_FILE - write out sorted file

All routines are called from the main program. The calling sequence follows:

Read the input file from the command line
CALL READ_FILE

Sort the input file based on the date/time stamp




An index array is used for sorting.
CALL SORT1

Write out the sorted file
CALL WRITE_FILE

After the program finishes, the following message will print to the screen:
OUTPUT FROM SORTDATA:
A TOTAL OF 11706 RECORDS WRITTEN TO FILE B950112.SRT

All routines use a common include file named SORTDATA.IN C. This file contains
variables and arrays common for all routines. A listing follows: »

Filename: SORTDATA.INC - include file for SORTDATA.FOR
Global variable definitions:

MXRECS - maximum number of records in radar file
LINE - array of 49 byte character strings

IFILE -  input file string

OFILE - output file string (sorted file .srt)
NRECS - counter for number of records in file
INDX - index array (used for sort routines)

PARAMETER (MXRECS=300000)

CHARACTER LINE*49, IFILE*12, OFILE*12

INTEGER NRECS, INDX

COMMON NRECS, LINE(MXRECS), INDX(MXRECS), IFILE, OFILE

Two arrays are declared with a dimension of 300000. Currently, this value is large
enough to hold all data records in memory for sorting.

4.6. Sortdata Subroutine Description

SUBROUTINE READ_FILE

Function name: READ_FILE

Purpose:
This routine reads the filename from the command line and populates the LINE and
INDX global arrays.

Parameters: none

Calls routine: none

Called from: main program

Return value: none

Globals modified: NRECS, LINE, INDX

Messages returned:
25




The input file variable, IFILE, is declared as global and read in from the command line.
the filename is not entered, then the following message will appear:

##% PLEASE ENTER FILENAME ON COMMAND LINE Hk
SYNTAX: SORTDATA [filename]
e.g., SORTDATA B950112.DAT

If the input file, IFILE, does not exist then the next message will appear:
FILE B950112.DAT NOT FOUND

If the input file exceeds the MXRECS of 300000, then the next message will appear:
w4+ EXCEEDED 300000 RECORDS #**

SUBROUTINE SORT1
Function name: SORT1
Purpose:
This routine uses a modified shell sort using 2 keys:
the 1st is the date/time stamp (1:12)
the 2nd is the flight time column (15:20)
This routine was obtained from Bob Roginski, 12333
Parameters: none
Sample call: CALL SORT1
Calls routine: none
Called from: main program
Globals modified: INDX
Return value: none

Messages returned: none

SUBROUTINE WRITE_FILE

Function name: WRITE_FILE

Purpose: write out the sorted filename (.SRT extension)
Parameters: none

Sample call: CALL WRITE_FILE

Calls routine: none

Called from: main program

Globals modified: none

Return value: none

Messages returned: none




4.7. Sortflt Software Description

Filename: SORTFLT.FOR

This program separates the good flight data from the unresolved flight data. Three output
files are written: a .IDX file for the flight number, start, and end points for the good flight
paths; a .BID file sorted by Beacon ID and a .RPT file for flight summary information.
These files are required if there is a need to plot the flight paths. This program will
process both Beacon and Primary radar files.

The good data has a continuos flight path; this is determined by the 13th column of the
input file. The input file is assumed sorted (.SRT extension)

Compiler: Fortran Powerstation Ver. 1.0a for DOS
Compile instruction: FL32 SORTFLT.FOR
To execute: SORTFLT filename, e.g., SORTFLT B950112.SRT

Output files: Index files are required for viewing aircraft flight paths. The format of the
three output files (.IDX, .BID, and .RPT) is described below.

4.7.1. Flight Index File Description

This file is fixed length 138 byte ASCII records and is created with a .IDX extension (e.g.,
B950112.IDX). It contains summary information for every flight in a given day. Start
time, end time, start and end elevations and Beacon data is kept in the flight index file.
This scheme allows a quick search of the sorted radar file. Tt also contains the updated
information for the green strips. The index file is sorted by flight number (column 1). The
flight number is a sequential number, starting at 1, which represents the order in which
the flight appeared for a given day. The sequence pattern is 1, 2, 3, 4, ...,; each flight will
be assigned a unique, sequential flight number. A sample index file (sorted by flight
number) is shown in Table 4-1. The data is from Albuquerque on February 2, 1994.

27




1 i 8 940201101000 1200 101017 101045 53 500 1 3# SHHHEHHEHHAHE $HHHEHHARARHE # #HHE O #ift
2 9  68940201101001 0475 101017 101458 68 1910 1 1 SHEHHEHEEEE HEHRHAHEERAE § 0 HH
3 69  98940201101002 0764 101017 101226 51 650 1 14 tHHHEHHEEHHA HHEHEHEHHHE # $HHE O dHEE
4 99 130 940201101003 4240 101017 101235 791110 1 14 sHHHHEHEHEH HHRHEBHHERR # HAH 0 #HH
5 131 137 940201101004 7262 101017 101040 280280 0 1 1 # HHHARRRHIHE! HHHHHHERRRRA # HEHE O #H
6 138 163 940201101005 1200 101017 101208 G4 540 2 3 # HHHHHEHEHEH $HHHHHRRRAHA # HHHE O #HH
7 164 179 940201101006 0473 101017 101121 77 600 1 1 fHHHHHEHEHER HEHHEREHARA # $HHE O HHHE
8 180 193 940201101007 2667 101017 101113 111 1170 1  1# sHHHRHEAHENA $HHHEREHHERHE § 5 O HH
9 194 205 940201101008 4234 101017 101103 05 050 1 1#HHHHHHHEHEH HHHHHEHHHRRE # A 0 #HH
10 206 218 940201101009 0461 101036 101126 20 301 2 2 # HHHHREHHARA SHHHEHHHERRHE 3 #HHHE O
11 219 252 940201101010 0741 101054 101322 651340 1 1 #HHaHEHHEHEHE IHRHEBHAHARE # #HHEE O A
12 9253 264 940201101100 0510 101154 101240 2602600 1 2 # HHHEHHHEHHHE IHHEHERHEHAHE # $HHEE O $HEE
13 265 314 940201101300 1200 101312 101653 58 550 3 3 # HHHHHNHEHHH $HERHHRRHERA # $HHEE O $HHE
14 315 348 940201101301 3241 101335 101603 279260 0 1 1 # iHHEHHHRRHHH SEHHERHEHHARHE # 5 O
15 349 357 940201101302 0510 101340 101412260 260 0 2 2 # HHHHERHAHRER HHHEHEEHEHRHE # $HEHE O i
16 358 392 940201101303 2660 101349 101621 83 550 1 14 sHHHHHHHHHHHE HHEHEHAHEREE # $HHHE O #HH
17 442 482 940201101500 4206 101507 101808 70 562 1 2 #HHHHRHAHHEH SHHHHHHHERRHE # HEHE O
18 483 503 940201101501 4206 101507 101635 120 860 2 2 # iHHHHHHHHAR HHHHHRRHHRR # #HHHE O $HH
19 504 5238 940201101502 4250 101540 101703 49 490 1 1 # dHEHHHEHIHRN SHEHHHHHERHH # #HHE O
90 561 568 940201101600 1310 101635 101703 3883010 1 1 # #HaHEHHHEHHE IRHHHRHHEHEH # $HHHE 0 HH
21 569 585 940201101601 0461 101645 101755 50 600 2 2 sHHHHHHHHHEH HHEHEHAHIHR # #iHHE O #HHE

Table 4-1. B940201.IDX Flight Index Table
The individual fields are defined below. The first record is used for reference.

Field 1(1:8)  Flight number - this is the unique sequential number for the given
flight. In the file listed above, the flight number for the first record is 1.

Field 2(9:15) Start of flight record; this column identifies the specific record for the
start of flight in the corresponding radar file (.SRT file). In the first
record, flight number 1 is the first recorded flight on February 1.

_Field 3(16:24) End of flight record. The end record in B940201.SRT is 8.

Field 4(26:37) Unique ID for flight (e.g., 940201101000). This field matches the unique
ID in the sorted radar file. The 94 represents the year, 02 the month, 01
the day, 10 the start hour of the flight, 10 the start minute, and 00 the
sequence number for the flight. Iftwo or more aircraft are flying at the
same time, then the second flight will use a 01 suffix, the third a 02
suffix.

Field 5(39:42) Beacon ID or squawk code (e.g., 1200).

Field 6(44:49) Start time of the flight in HHMMSS (UCT or GMT) (e.g., 10:10:17)

Field 7(51:56) End time of flight in HHEMMSS (GMT) (e.g., 10:10:45)

Field 8(58:60) Start elevation of flight (z 100) (e.g., 53¥100=5,300 feet)

Field 9(62:64) End elevation of flight (x 100) (e.g., 50*100=5,000 feet)

Field 10(66:66) Flight indicator field. The indicator is defined as follows:
28




0 - good flight, no Beacon ID change

1 - Beacon ID changed from 1200 to another number

2 - Any Beacon Id number changed to any other number

3 - BID 1200 changed to another number, then changed again

In the sample flight, the flight indicator is 0 (no BID change). This information is
important for attaching green strips to electronic data.

Field 11(71:71) Sequence number of Beacon ID (e.g., 1 of 3 total BID 1200 flights).
Field 12(76:76) Total count of Beacon ID’s (e.g., 8 total BID 1200 flights).

The next group of columns are updated when the green strip and display program
(PLOTFLT) is run.

Fld. 13(78:78) VFR/IFR/Unknown indicator. Three choices are allowed in this field:;
U - Unknown, I - Instrument, V - Visual

Fld. 14(80:91)  Aircraft ID (e.g., AAR123)

Fld. 15(93:104)  Aircraft type (e.g., B747)

Fld. 16(106:106) Time prefix; E(fly over), P(departure), or A(arrival)

F1d. 17(108:111) Time 24 hour format (GMT); (e.g., 1017)

Fld. 18(118:113) Match indicator field; 0-not matched, 1-matched. If the green strip
;:ztfches the electronic data then set this field to 1, otherwise the default

Fld. 19(115:117) Initials of operator entering green strips (e.g., JL.T).

Fld. 20(119:138) Blank spaces (reserved for future use).

4.7.2. Beacon Index File Description

The Beacon index file has the same format as the flight index file (.IDX). The only
difference is the Beacon index file (.BID) is sorted and saved based on the Beacon ID (Field
5, values 0000 through 9999). Because of memory limitations on the PC, it was easier to
process the BID disk file, and plot by Beacon ID, in the PLOTFLT program. The flight
index file could have been used for plotting but this would require a sort inside of the
PLOTFLT program. Hence, plot speed would have decreased and memory requirements
increased. A sample Beacon ID index file from February 4 is shown in Table 4-2.

29



10 206 218 940201101009 0461 101036 101126 20 301 2 2 # sHHHEHEHRHRA HHHHRHERRHE # $HEHE O $HHF
21 569 585 940201101601 0461 101645 101755 50 600 2 2# HHHHHEHAHHHE HEHHHRRHIHA & $HHHE O 3R
7 164 179 940201101006 0473 101017 101121 77 600 1 14 HHHHHEHEHHHE HERHEHEHERHE § $HEH 0 #Ht
2 9  68940201101001 0475 101017 101458 68 1210 1 1 # SHHEEHHHEEHEE HEHARHAHERR § #3559 0 HH
12 9253 264 940201101100 0510 101154 101240 2602600 1 2 # HHHHHHHHHHEE $HHHHEHHEHER # #HHH 0 #HE#
15 349 357 940201101302 0510 101340 101412 2602600 2 2 # sHEHHHHHHEHA HHHHHRHARIN # $HHHE O -
11 219 252 940201101010 0741 101054 101322 651340 1 1 sHEHHRRHEHARE FHHHHEHHHARH # #HAHE O #Hi
3 69  98940201101002 0764 101017 101226 51 650 1 14 HeHeHEHEHHEE SHHAHEHEHRRH # #HH 0
i 1 8 940201101000 1200 101017 101045 53 500 1 3 # sHHHHHHEREHG $HHEEHHHERHA # $HHEE O #1H
6 138 163940201101005 1200 101017 101208 64 540 2 3 # HHHHHEHHHEHE HHHRHHEHEHH # #HAH 0 #Ht
13 265 314 940201101300 1200 101312 101653 58S 550 3 3 & HHHHHEHHHHEE HHEHEHAHHEHT # Ak 0 #HHt
20 561 568 940201101600 1310 101635 101703 3883010 1 1# sHHHHHEHHHA HHHEHAHIRAN: # HHHE O #HE
16 358 392 940201101308 2660 101349 101621 83 550 1 1 sHHHHHRHHHHHE HHHHEHHHEEHE # #H5H 0 #iH
8 180 193 940201101007 2667 101017 101113 1111170 1 1 # sHEHEHEHEHRR HHEHARAHARE # i O HHHE
14 315 348940201101301 3241 101335 101603 97992600 1 1 # sHHHHHHEHHHHEE IHHERARHHRRN # $HEHE O HHHE
17 442 482 940201101500 4206 101507 101808 70 562 1 2 # HEHHARHAHNER $HEHHHHERRHA 3 #HHEE O 1
18 483 503 940201101501 4206 101507 101635 190 860 2 2 # iHHHEHEHHHH HEHRHHHERAH # #HHH 0 #HH#
9 194 205940201101008 4234 101017 101103 95 950 1 1#HHHHHHHAHAHE HEHHHRRRANE & HHHE O #HH#
4 99 130940201101003 4240 101017 101235 7 01110 1 1 # SHHEHHHHEHNE HAHHEHEHEH # ##H 0 #HHE
19 504 523 940201101502 4250 101540 101703 . 49 490 1 1# HHHHHRRRRRH SHEHHHHERRHEE # $HHEE O #HH
5 131 137 940201101004 7262 101017 101040 9802800 1 1 # sHHEHHHAHAHE HHHHHRHIHAN: # $HHE O HE#

Table 4-2. B940201.BID Beacon Index File

4.7.3. Sortflt Report File Description

A report file is generated from the SORTFLT program. It has a .RPT extension.

Pertinent information such as percentage of good flights, duplicate Beacon ID’s, and flight

1200 count are saved. Flight 1200 is usually a anknown or default Beacon ID if the plane

does not have a transponder. In Albuquerque, flight 1200 is also used by small planes and
student pilots. A sample printout is shown below (B940201.RPT).

Input file = b940201.srt

Record count = 600
Scount= 25

Pcount = 554

Ecount= 21

Othent= O .
Total flight count= 21

Percent good records = 83.17%

Max distance = 5852.35 Feet
Max velocity = 831.30 MPH
Max distance flight num = 20

Number of flights which change Beacon IDs during flight= 1

..... T ke

TOTAL FLIGHT COUNT: 21

Number of flights (unique BID =1): 12
Number of flights (non-unig. BID >1): 9
Percent of file with unique Beacon IDs: 57.14%
Percent of file with duplicate Beacon IDs: 42.86%
S e L

feoteskskseokokskskkskeskhokokskskkesk ek kod kg

TOTAL FLIGHT COUNT = 21

30




Number of flights with flight count =1 :
Number of flights with flight count = 2 :
Number of flights with flight count = 3 :
Number of flights with flight count = 4 :
Number of flights with flight count = 5 :
Number of flights with flight count = 6 :
Number of flights with flight count = 7 :
Number of flights with flight count = 8 :
Number of flights with flight count =9 :
Number of flights with flight count = 10 :
Number of flights with flight count > 10 :

-t
COO0OOCOOODODWMLNY

ssteskeskeoeokesiesksfeskskeskskokskokokokoiokokoksdeokok ks sk sk sk skoteskokoke sk ket sk e sk s ok sk sk ke e feskeokeokesiokskskeskokskokstok sk skokskeskokskoskskoskeskokok ok

TOTAL COUNT OF 400 AND 1200 FLIGHT NUMBERS AND PERCENT:-
Total count of 400 flight numbers and percent: 4 19.05%

Total count of unique 400 flights (unique or = 1): 2

Total count of duplicate 400 flights (duplicate or >1): 2

Total count of 1200 ﬂlghts and percent 3 14.29%

7 33.33%

TOTAL COUNT OF FLIGHTS W/O 400/1200 AND PERCENT: 14 66.67%
Number of flights with flight count=1: 10

Number of flights with flight count =2 :
Number of flights with flight count = 3 :
Number of flights with flight count = 4 :
Number of flights with flight count = 5 :
Number of flights with flight count = 6 :
Number of flights with flight count = 7 :
Number of flights with flight count = 8 :
Number of flights with flight count =9 :
Number of flights with flight count = 10 :
Number of ﬂJghts W1th ﬂlght count > 10

OO0 OCO0O0CO0OCO I

Duplicate Beacon IDs
Beacon ID Count
461 2
510 2
1200 3
4206 2

*#%  Records and flight numbers > MACH 3 ***
Record Flight number

31




4.8. Sortflt Include File

All subroutines in SORTFLT (except HIGHLOW) use an include file named
SORTFLT.INC. This file defines global parameters, arrays, and record structures. A

_ listing of the include file follows:

Tilename: SORTFLT.INC - include file for SORTFLT.FOR

Global variable definitions:

MXRECS - Max number of records in radar
MAXFLT - Max number of Beacon flights

file

MAXBID - Max number of unique Beacon ID's (0..9999)

LINE - Array of 49 byte character strings

RADARTYPE - Flag for (B)eacon or (P)rimary radar

IFILE - Input filename

NRECS - counter for number of records in file

FLIGHT - Array of start/end record structures

FLTCNT - Flight counter (S,P..P .. P, E sequence)

FLTIDX - Integer array (0-unresolved 1-good flight 2-exceeds MACHS3)
FLTNUM - Int array which correlates record numbers and flight numbers
TOTFLTCHG - Number of flights which chg Beacon ID within the flight

XVAL - X value array
YVAL - Y value array

BID - Beacon ID array of all records (MXRECS)
BIDARR - Cumulative counter of individual Beacon ID's
DIST - Distance array (dist between X, Y points)

VEL - Velocity array

MAXVEL - Maximum velocity of VEL array
MAXDIST - Maximum distance of DIST array

SCOUNT - Column 13 S counter
PCOUNT - Column 13 P counter
ECOUNT - Column 13 E counter
OTHCNT - Column 13 other counter

FLIGHT - Record structure of flight number, start and end recs.
MAXDISREC - Record number of max flight distance
MAXDISFLTNUM - Flight number of max flight distance
SWEEPTIME - 1 revolution of radar (4.8 secs)

MACHSDIST - Distance (ft.) traveled at mach 3 (740mph = mach 1)

PARAMETER (SWEEPTIME = 4.8)
PARAMETER (SECPERHR = 3600)
PARAMETER (FTPERMILE = 5280)
PARAMETER (MACHSDIST = 15645.145)

PARAMETER (MXRECS=300000, MAXFLT=20000, MAXBID=9999)

32



CHARACTER LINE*49(MXRECS), RADARTYPE*1, IFILE*12
INTEGER NRECS, FLTCNT, MAXDISREC, MAXDISFLTNUM
INTEGER SCOUNT PCOUNT ECOUNT, OTHCNT, TOTFLTCHG

INTEGER*1 FLTIDX(MXRECS)
INTEGER FLTNUM(MXRECS)
INTEGER BIDARR(0:MAXBID)

INTEGER BID(MXRECS)

REAL XVAL(MXRECS), YVAL(MXRECS), DIST(MXRECS), VEL(MXRECS)

REAL MAXVEL, MAXDIST

Record structure

STRUCTURE /IDX_FILE/
INTEGER FLTNUM
INTEGER SREC
INTEGER EREC
CHARACTER PRIKEY*12
CHARACTER BEACON*4
CHARACTER STHR*2
CHARACTER STMIN*2
CHARACTER STSEC*2
CHARACTER ENDHR*2
CHARACTER ENDMIN#2
CHARACTER ENDSEC*2
CHARACTER STELEV*3
CHARACTER ENDELEV*3
INTEGER*1 FLTIND
INTEGER BIDSEQ
INTEGER BIDCNT

END STRUCTURE

! Flight number (sequential)
! Start of flight record number
! End of flight record number
! Primary key LINE(1:12)

! Beacon ID

! Start hour

! Start minute

! Start second

! End hour

! End minute

! End second

! Start elevation

! End elevation

! Flight indicator field

! Beacon ID sequence

! Beacon ID count

Declare an array of flight structures
RECORD /IDX_FILE/ FLIGHT(MAXFLT)

Common

COMMON /ZONE4/ NRECS, FLTCNT, SCOUNT, PCOUNT, ECOUNT, OTHCNT,
TOTFLTCHG

COMMON FLTIDX, FLTNUM, LINE, RADARTYPE, IFILE, XVAL, YVAL, DIST,

* VEL, MAXVEL, MAXDIST FLIGHT, MAXDISREC

* MAXDISFLTNUM BIDARR, BID

33




4.9. Sortfit Calling Sequence

Seven subroutines are called in SORTFLT. A brief description of each routine follows:

READ_FILE - Read input file from command line; populate global arrays
SPE_COUNT - Sum all S, P ,E characters in column 13
SORT FLIGHT - Separated good data from incomplete data
DIST VEL - Calculate max distance and max velocity between data points
WRITE_FLTNDX - Write flight index file (.IDX)
GEN _REPORT - Generate report file (.RPT)
SORT? - Sort and generate Beacon ID index file (.BID)

All routines are called from the main program. The calling sequence follows:

Read input file
CALL READ_FILE

Do sanity checks
CALL COUNT_SPE

Separate the good flights from the unresolved flights
CALL SORT_FLIGHT

Calculate distance and velocity between points
CALL DIST_VEL

Write out start and end pts. of complete flights (IDX)
CALL WRITE_FLTNDX

Generate report file (RPT)
CALL GEN_REPORT

Sort data based on Beacon ID and write .BID file
CALL SORT2

Upon completion of the program, the following confirmation message will appear:
OUTPUT FROM SORTFLT:
WRITING FLIGHT INDEX FILE: B940201.IDX
WRITING REPORT FILE: B940201.RPT
WRITING INDEX FILE: B940201.BID




4.10. Sortflt Subroutine Description

SUBROUTINE READ_FILE
Function name: READ_FILE
Purpose:
This routine reads the input file from the command line
and populates the global arrays.
Parameters: none
Sample call: CALL READ_FILE
Calls routine: none
Called from: main program
Return value: none
Globals modified: RADARTYPE, IFILE, LINE, XVAL, YVAL, BID
FLTIDX, FLTNUM, DIST, VEL, NRECS, BIDARR

Messages returned:

If the input file, IFILE, is not present on the command Iine, then the following message
will appear:

*#* PLEASE ENTER FILENAME ON COMMAND LINE ##*
SYNTAX: SORTFLT [filename]
e.g., SORTFLT B950112.SRT

The first character in the input file must be an R, v, B, or . If not, the next message
will appear:

First character in B940201.SRT must be B or R
If the input file does not exist, or if an invalid name is entered, then the next message will
appear:

File B940201.SRT not found

If the read statement find invalid values for XVAL or YVAL , the next message will
appear:

Invalid record found -> record # 1016

35



SUBROUTINE COUNT_SPE

Function name: COUNT_SPE

Purpose: Counts the S, P, and E characters in column 13
Parameters: none

Sample call: CALL COUNT_SPE

Calls routine: none

Called from: main program

Return value: none

Globals modified: SCOUNT, PCOUNT, ECOUNT, OTHCNT

S - start of flight
P - continuation point of flight
E - end of flight

If an illegal character or missing character is found in column 13, then the following
message will appear:

Bogus data found at line 1227

SUBROUTINE SORT_FLIGHT

Function name: SORT_FLIGHT

Purpose:
This routine checks for the sequence of S, P..P..P, E for
a complete flight. The flight counter FLTCNT is incremented
if we complete a sequence.

Parameters: none

Sample call: CALL SORT_FLIGHT

Calls routine: none

Called from: main program

Return value: none
Globals modified: FLIGHT, FLTIDX, FLTNUM, BIDARR

Messages returned: none

36




SUBROUTINE DIST VEL

Function name: DIST VEL

Purpose:
This routine calculates the maximum distance and the maximum
velocity between points.

Parameters: none

Sample call: CALL DIST VEL

Calls routine: none

Called from: main program

Return value: none

Globals modified: MAXDIST, MAXDISTREC, MAXVEL

SUBROUTINE WRITE_FLTNDX

Function name: WRITE_FLTNDX

Purpose:
This routine writes out the flight number, start, and end
records for the valid flights. The output index file is
created with a .IDX extension

Parameters: none

Sample call: CALL WRITE_FLTNDX

Calls routine: none

Called from: main program

Return value: none

Globals modified: MAXDISFLTNUM

Messages returned:

OUTPUT FROM SORTFLT:
WRITING FLIGHT INDEX FILE: B940201.IDX

37




SUBROUTINE GEN_REPORT

Function name: GEN_REPORT

Purpose:
This routine writes out important parameters including:
record count, S, P, and E count and the flight count
The output file is created with a .RPT extension.

Parameters:.none

Sample call: CALL GEN_REPORT

Calls routine: none

Called from: main program

Return value: none

Globals modified: none

Messages returned:
WRITING REPORT FILE: B940201.RPT

SUBROUTINE SORT2
Function name: SORT2
Purpose:
This routine does a modified shell sort using 3 keys:
The primary key is the Beacon ID (42:45)
the 2nd is the date/time stamp (1:12) and
the 3rd is the flight time column (15:20)
A index array (INDX) is used for sorting.
Once sorted, the output file is written with a .BID extension
The sorting algorithm was obtained from Bob Roginski, 12333
Parameters: none
Sample call: CALL SORT2
Calls routine: none
Called from: main program
Return value: none
Globals modified: none

This routine uses the flight index file for sorting (.IDX) and writes out a new Beacon index
file (BID). Ifthe .IDX is deleted or missing, then the following message will appear:

File B940201.IDX not found
After the sort is finished, the following message will appear:

WRITING INDEX FILE: B940201.BID

,,,,,,,,




SUBROUTINE HIGHLOW (ARRAY, START, END, HIGH, LOW, AVG)
Function name: HIGHLOW
Purpose:
This routine does basic statistics given an real array.
The routine calculates the high, low and average values
of a given range in a array. This routine was obtained
from the Numerical Recipes book.
Parameters: ARRAY - real array
START - start point in array
END - end point of array
HIGH - highest value (returned)
LOW - lowest value (returned)
AVG - average value of range (returned).
Sample call:
CALL HIGHLOW (DIST, SREC, EREC, MAX, MIN, AVG)
Calls routine: none
Called from: WRITE_FLTNDX
Return value: none
Globals modified: none

Messages returned:

If the starting record in the array is 0, the following message will be displayed:
Start value = 0 in HIGHLOW routine

39




Intentionally Left Blank




5. Aircraft Viewing Software

5.1. Plotflt Software Description
Filename: PLOTFLT.C

Function:
Plotflt is a DOS based plot program that allows analysts to replay recorded air traffic.
This program permits replay of daily flights sequentially, by range, or by Beacon ID.

The plotflt program also allows users to attach green strips (from the local air traffic
center) to the recorded electronic flight data.

Compile instructions: comp.bat (uses Turbo C++ 3.0 compiler)
Manual compile: tee -ml plotflt.c graphics.lib
note: the tc\bin directory must be in the path

File dependencies: The PLOTFLT.H include file is required.
Command line execution instructions: plotflt filename (e.g. plotflt B940429.SRT)

Background:
This program was adapted from the RAMS program chektrak which was written by David
Skogmo, 12/5/93.

Required input files:

PSMAP.CFG - Contains maximum radius for display
PSMAP.MAP - Graphics file for local airport and streets
PSMAP.TXT - Text file for labels

EGAVGA.BGI - Borland graphics driver

ABQPTX.CFG - Configuration file for data input mode
BYYMMDD.SRT - Sorted radar file

BYYMMDD.IDX - Flight index file

BYYMMDD.BID - Beacon index file

41

G U - e ——



5.2. Main Program Description

The plotflt program consists of one main program and forty functions. The main program
reads parameters (e.g. map coordinates) from configuration files and opens the radar files
~ for viewing. The main program controls selection of both display and data input modes.

Figure 5-1 shows the process.

Read configuration
files, read sorted
radar file

Select option:
Plot review
Plot composite
Data entry

Populate Beacon
array

If plot review, If composite mode, If data input,
open index files ) open display open index files
display plot plot all data points enter green strips

Finish

Figure 5-1. Main Program Diagram




5.3. Main Program Calling Sequence

The main program controls calling sequence for entire program. First, the abgptxcfg
function is called to set up site specific parameters for Albuquerque and Amarillo. Next
the open_radar_file is called; a valid .SRT file is expected. Select_mode is called next: the
user selects plot display, plot composite, or data input mode. If plot display or data input
mode are selected, then the user can change default plot options (i.e., plot speed). Next,
the bid array, G_bid, is populated with Beacon ID integers from the Beacon ID file. This
array is used to check if valid Beacon ID's are entered during plotting or data entry. A
check is made to make sure we don't exceed the maximum number of flights per file. A
limit was set because of memory concerns in DOS. Finally, depending on the mode
selected, main will branch to display_plot, safescrt, or the input_data function. A diagram
showing the calling sequence and pseudo code follows.

abgptxefg(); ! Get Albuquerque and Amarillo data input parameters
open_radar_file(); ! Open sorted radar file
select_mode(); ! Review, composite, or data input mode

If mode = review or data input then

select_plot_opt(); ! Select plot options
end if
pop_bid_arr(); ! Populate the bid array and calculate filesize

If mode = review then
open_idx_files("rb"); ! Open index files read only
display_plot();

else if mode = composite then

safescrt(); ! Display screen
trkplot(); - ! Plot all flight paths
closegraph(); ! Close graphics screen

else if mode = data input then
open_idx_files("r+b"); ! Open files for update
input_data(); ! Input green strip parameters
end if

end of main

Messages Returned:
If the maximum number of flights for a given day is exceeded, the following message will
appear on the screen:

Max flights 2005 is greater than 2000.

Contact system personnel.




The maximum number of flights is currently set to 2000. This value is named MAXFLT
and is defined in the include file PLOTFLT.H. This value has never been exceeded after
processing two years of data at the Albuquerque airport.

5.4. Plot Display Mode

5.4.1. Overview

Plot display mode permits a user to view aircraft trajectories for a given day. The flights
can be viewed sequentially (as they occurred during the day) or by Beacon ID. The flights
are plotted on a VGA compatible screen as a series of dots. The plot speed is controlled by
the user upon startup. Multiple flights can be displayed on the same screen. An sample
plot is shown in Figure 5-2.

I.25 Tranuauff_B luvd

BS40201 .SRT

*ENTER’ FOR NEXT. P
> q * TO QUIT. Doubl

Flight #: 14
840201 18:16:03
BEARCON DATA 3241/260

_PLANE DETECTED
940201 10:13:35

| awydEiE

COUERAGE LOST k) &
940201 10:16:21 F i)

Figure 5-2. Sample Plot Using Display Mode.

This is a fly-over flight in Albuquerque on February 1st, 1994. The flight direction is from
east to west. In Figure 5-2, the text in the left column represents the following
information: B940201.SRT is the name of the radar file; ‘Enter’ for next will allow the
user to view the next sequential flight in the file; ‘q’ will exit display mode; Flight #: 14
shows that this flight was the 14th flight of February 1st; 940201 10:16:03 represents the
YYMMDD and the HH:MM:SS of the last plotted point of the flight; BEACON DATA
3241/260, 3241 is the squawk code or Beacon ID of the transponder and 260 is the




elevation times 100 (e.g. 26000 feet) of the latest plotted point; PLANE DETECTED
940201 10:18:85 is the YYMMDD and HH:MM:SS of the start of the flight; COVERAGE
LOST 940201 10:16:21 is the YYMMDD and HH:MM:SS of the last point in the flight
data. The trkplot function is used to plot the data points and the background display.

5.4.2. Plot Display Process

Figure 5-3 shows process flow and pseudo code for plot display mode. The function names
are listed in ().

Start of
program
(main)

Select display
mode
(display_plot)

Select plot If Beacon Search BID
options JID selected table
(select_plot) (table_search)
Display Get site Read
background configuration parameters
(safescrt) (getefg) (readlin)
g'l:jt:tory Draw character Plot a dot
(trkplot) string (xstrz) (xordot)

Figure 5-3. Display Mode Process Diagram

In Figure 5-3, the display_plot function is called from the main program. The select_plot
function is called next. This option determines whether the user will select the flight
based on Beacon ID, by a specific flight number, or sequentially. If the mode selected is
Beacon ID, the BID array is searched for the entered BID. Ifa match is found, an offset is
calculated for the radar file and the corresponding record is read from the radar file
(.SRT). A pointer is positioned at the specific flight number and the points are plotted on



the screen. All Beacon numbers are plotted for the given flight. For example, if the user
enters BID 4333, and if four flights are tagged with Beacon 43338 in the data file, then all
four trajectories will plot on the screen sequentially. If the Beacon number is not found,
the user is given another opportunity to enter a valid integer or quit.

If the mode selected is flight number or sequential, then the index file is positioned at the
proper flight number. The record number, start, and end points of the flight is contained
in the first three fields of the flight index file (IDX). These fields are used as an index
into the sorted radar file. The flight is plotted from the radar file beginning at the start
point.

5.5. Data Input Mode

5.5.1. Overview

Data input mode permits users to attach air traffic control strips (see Figure 3-2) to
electronic radar data. The green strips contain information (e.g., aircraft type and id) that
is not captured or not available in clectronic form. The aircraft type and related
information is required for the current models used in aircraft crash analysis. Further
information is contained in [Ref. 2].

Figure 5-4 shows the data input process. The functions are listed with (). The functions
get_vfr_ifr and get_acft_id are bypassed if the switches are turned off in the ABQPTX.CFG
file. This file is read upon startup; it is used to configure the data input environment. It
was determined that the VFR/IFR and aircraft ID were not as important as the other
variables listed on the green strips.

The process begins by asking the user a series of questions related to the flight strip. The
time of flight, Beacon ID, and aircraft type are all captured. The entered Beacon ID is
checked against the BID array to see if there is a match. If a match is not found, the
entered data is saved to an unresolved file. Ifa mateh is found, all of the BIDS are plotted
on the screen. At this point, the user is prompted to select which flight matches closely to
the electronic data. At this time, this processis a visual comparison. If a selection is
made, then the BID index file is updated with the green strip information. If the user
chooses not to attach the flight strip to the data, the data is saved to an unresolved file.

46




5.5.2. Data Input Process

(main)

Start of program

”

BID, time, type
(input_data)
(setupgs)
(get_vir_ifr)
(get_int)
(get_acft_id)
(get_acft_type)

Enter data fields:

(get_hhmm)

BID found? No Is BID and data No Write data to

(read_bid_file) correct? Ylunresolved file

(table_search) (display_indata) Yes |(write_unr_data)

Yes

Is green strip

already Yes CqmtIiJnare data w/ Is data different? | No

entered? exisung green >

B strip data, print
No msg. (upd_bid_file) Yos

Display all BID !

w/ trajectories, Update BID file

elev., time, (RAN_WRITE)

flight numbers

(plotbids)

Want to attach Write g.s. data to

green strip to No Junresolved file

[flight numbers? (write_unr_data)

Yes

Print msg., enter flight Enter flight Write green strip
numbers to match with numbers, QA chk info to BID file
green strip data (chk_plt_num) (RAN_WRITE)
(get_flt_num)

Figure 5-4. Data Input Process Diagram

47




5.6. Plotflt Include File

The plotflt program uses one include file named plotflt.h. This file contains the global
variables, definitions, and function prototypes for the plotflt program. A listing follows:

© /% plotflt.h - include file for plotflt.c ¥/

/% include files ¥/
#include <dos.h>
#include <graphics.h>
#include <math.h>
#include <stdio.h>
#include <bios.h>
#include <time.h>
#include <stdlib.h>
#include <io.h>
#include <string.h>
#include <conio.h>
#include <dir.h>
#include <ctype.h>
#include <malloc.h>
#include <sys\stat.h>

/* defines ¥/

#define fpm 5280. /* feet per mile */

#define bkgd BLACK /* color for map background */

#define btc YELLOW /* color for beacon track ¥/

#define rtc WHITE /* color for radar track */

#define btx bte/ bkgd J* zor mode color to yield btc over bkgd. color */
#define rtx rtc bkgd /* xor mode color to yield rtc over bkgd. color */
#define MAXFLT 2000 /% max number of recorded flights per day */
#define TRUE 1

#define FALSE 0

#define ON 1

#define OFF 0

#define IDXBYTES 140L /* length of .JDX file in bytes */

#define BIDBYTES 140L /* length of .BID file in bytes */

#define RADBYTES 51L /* length of raw radar file in bytes */

#define MAXBYTES 256

#define STARS "iakactickt

#define BELL 7

#define EMPTY_STRING ™

#define MAXPLTNUM 100 /* max number of plots viewed on screen */
#define MAXENTRIES 30 /% max number of attached flight numbers */
#define BLANK "'

#define PTX_RADAR_ELEV 3500L /¥ Amarillo radar elevation in feet */

#define ABQ_RADAR_ELEV 5000L /¥ Albuquerque radar elevation in feet */

48




/* plot speed codes in milliseconds */
#define DELAY_FAST 0L

#define DELAY_MED 50L

#define DELAY_SLOW 100L
#define SLEEP_FAST OL

#define SLEEP_MED 11,

#define SLEEP_SLOW 2L

/* return error codes */

#define ZERO_LENGTH_STR -1
#define NO_ERROR 0

#define NO_RADAR _FILE 1
#define BID_NAME_ERROR 2
#define SCANFERR 3

5.7. Plotflt Function Descriptions

The plotflt program contains forty functions. They can be logically grouped into five
categories. These are:

MAIN - functions called exclusively from the main program

PLOT DISPLAY - display mode only functions

DATA INPUT - data input functions

PLOT DISPLAY and DATA INPUT - functions contained in both plot and data input
GENERAL PURPOSE - functions that can be used in other programs

The functions are categorized below. The functions prototypes and a brief description of
each routine is listed.

Main functions _

void abgptxefg(void); /* Read Albuquerque, Amarillo config file */
int open_radar_file(int numargs); /* Open radar file ¥/

void open_idx_files(char fmode[]); /* Open idx file */

long pop_bid_arr(void); /* Populate the Beacon ID array */

int select_mode(void); /* Select plot mode */

void select_plot_opt(void); /* Select plot options */

Plot display functions
void display_plot(void); /* Main function for plot display mode */

int select_plot(void); /* Select plot options */

49




Data input functions
void input_data(void);

/* Main function for data input mode */
/* Check for valid plot number */

. int chk_plt_num(int pltseqll, int intbufl], int recarr(l, int bidrecsave);

int display_indata(void);

void get_acﬁ_id(void);

void get_acft_type(void);

void get_hhmm(void);

int get_vfr_ifr(void);

int get_flt_num(int bidrec);
void plotbids(int bidrec);

void read_bid_file(long bidloc);
int readinpfile(void);

int setupgs(void);

int upd_bid_file(int recarrl], int scanfent);
void write_unr_data(void);

Plot display and data input functions

/* Display input data */

/¥ Get aircraft id */

/* Get aircraft type */

/* Get time */

/¥ Get vir or ifr response */
/* Get flight number */

/* Plot by Beacon ID */

/* Read Beacon file */

/* Read input file */

/* Setup green strip entry */
/* Update BID file */

/* Write data to unresolved file */

/* Adjust slant range of Abq data */

void abgadjust(double xf, double yf, double *newxf, double *newyf, long elev);

void getcfg(void);

/* Read global params from psmap.cfg */
/* Adjust slant range of Pantex data */

void ptxadjust(double xf, double yf, double *newxf, double *newyf, long elev);

void safescrt(void);
void trkplot (int fltnum);

/* Prepare screen and get run parameters */
/* Plot a radar track */

void xstrz (char *strg, int %, int y, int color); /* Low level plot routine */

void xordot (int xx, int Xy, int xcol);

General purpose functions

/* Low level plot routine */

/* Update a string */

int STRUPD(char source(l, char replacef], int start);

/* Direct access read */

int RAN_ READ(FILE *stream, long recnum, long bytes, char stringfl);

int RAN WRITE(FILE *stream, long recnum, long bytes, char stringfl);

int readlin (char buffl, FILE *strm);
long filesize (FILE *stream);
int table_search(int all, int n, int target);

int get_int(char *prompt, int min, int max)

int get_reply(char *prompt);

int mid_extract(char *src, char *dest, int st

int char_count(char *string, char letter);
void squeeze(char sll, int c);

/¥ Direct access write */

/* Read a line into a buffer */
/¥ Get file size in bytes */
/* Search BID array */

s /* Get integer */

/* General purpose reply function */
/* Extract middle of string */

art, int num_chars);

/¥ Character counter */
/* Squeeze ¢ from string s */

50




5.7.1. Main Function Headers

/*Fq?****************'ZZ' feakskokdeokookdolskokskokok ok skskok sk ok sk skokskosk skt sk ok ke sk sk feokkok

Function name: abqptxzcfg

Purpose:
Get the Albuquerque and Amarillo site configuration. This routine opens up the

ABQPTX.CFG file and checks if the global flags for VFR/IFR and ACFT ID are set - if set
to 1 the question(s) the user is prompted for a response if set to 0, the questions are
bypassed.

The global variables G_vfrifr, G_acid, and G_miles are set in this routine. G_miles is an
integer which is used to eliminate flights outside this radius. This assumes that this
option is enabled in SORTFLT.FOR.

Called from: main

Calls routines: None

Sample call: abgptxcfg();

Return value: None

Messages returned:

If the ABQPTX.CFG cannot be opened, the following message will appear:
Cannot open ABQPTX.CFG file.

Fskeokefeokeskesfeokesfeokeskesiesdeokesbeskeok sk sk sk skeskoke ke sk ke sk sk sk sk sk ok feskestesksfes) feafeokokokokseskeskeskeok sk sk sk sk ok ..I%*******/

/*Fﬂ?******l:..'.%':l..: seskokseskokskokokeokokokoksk ek fesfeskoy fesfeoke sk fekgckoksiokskokskeoskokokokokskosk

Function name: open_radar_file

Purpose:
Make sure we have a valid Beacon input file. The file name must start with a "b" or a "B"
and the file extension should be .SRT

Called from: main

Calls routines: None

Sample call: rtnerr = open_radar_file(numargs);

Return value: integer representing one of the following conditions:
NO_RADAR FILE ->no radar file present or invalid extension

BID_NAME_ERROR -> file cannot be opened; 1st character must be B
NO_ERROR -> successful open

51




Messages returned:
If an invalid extension is used for a filename (other than .SRT) the
following message will appear:
Please use .SRT extension for filename.
Enter name of the radar file for plotting (e.g., B940508N.SRT):

If the input file name does not exist or cannot be opened, the next

message will appear on the screen:
FILE NAME = B940521.SRT
CANNOT OPEN FILE.

If the first character in the filename is not a b or a B, then next
message will appear:

File name W940521.SRT must be a Beacon file.

The first character in the filename must be b or B.

seckeskokskeskok fostesksieskesksoksokeksekskstoksteokskeokek ook fookskeskske skl foskteskeskskskskskokok foskkok ..%i+***/

/*Fj?%¥¥' feskeskskeske ok ok feskk feskskesksksksskokseokskeskeksk ok sk okd fskskoksksekekkskokoksksekokkdoksksgeokokck ok

Function name: open_idx_files

Purpose:
Open the .JDX and BID files. The filenames are constructed from the G_trkname

filename.

Called from: main

Calls routines: None

Sample cail: open_idx_files("rb");
Return value: None

Messages returned:
If an error occurs opening the flight index file, the following
message will appear:
Inside open_idx_files module.
Error opening flight index file: B950521.IDX

If an error occurs opening the BID file, the following message will
appear:

Inside open_idx_files module.

Error opening BID index file: B950521.BID

skakskesfesk ¥ Rakeskeskokek foskeskesieskok ok feskskok festeskeskoiesteskeoke ok foskeskokok feskeskestesteskokok keskeokskedeokeksk f

52




R e L L L S S S SR A
Function name: pop_bid_arr

gﬁ::és the global Beacon ID array, G_bid. The .BID file is read sequentially and the
5th field is saved into the array. The .BID file is assumed sorted. This function also
calculates the byte count of the .BID file

Called from: main

Calls routines: filesize

Definitions: MAXBYTES

Sample call: bytecnt = pop_bid_arr();

Return value: Long value which is the byte count of the BID file.

Messages returned:

Inside pop_bid_arr module.
Error opening sorted index file: B950521.BID

Sesfesieseskeokesfeskeskesieokoskskeokskeskeoke sk steakesfesesteseskeskeske sk sk sk sk ek sk sk sfeskesfe st K ¥ feokokskeskesteskeskeskeskook ook skeske ok Kk f

R R L A R R S
Function name: select_mode

Purpose:
Select plot review, composite, or data input mode.

Called from: main

Calls routines: None

Sample call: choice = select_mode();

Return value: Integer value representing the following values:
0 -> Quit program
1 -> Plot Review mode
2 -> Plot Composite mode

3 -> Data Input mode

Messages returned: None

53




/*Eq?*****$¥i'.l. ¥ '*'.Z..%i**********.ll***.*.'.Z.'****.. feskesieskcksdok ok koo

Tunction name: select_plot_opt

Purpose:

. Routine which allows user to change plot parameters and set up plot defaults for text,

streets, and radii. If erase mode is turned on, the plot will erase the previous flight before
it plots the next one. If erase mode is off, all flights will plot on the screen one at time.

Called from: main

Calls routines: None

Sample call: select_plot_opt();
Return value: None

Messages returned: None

seskesisksieskskshksksksskskkeksdokskestekok ok festestese stk sk ks sksksfeskokok e skkeskskeskk s kskeokoh feskokesk Z'Z*/

5.7.2. Plot Display Function Headers

SR sk skt sk sk stk ok skt ks elekk ok
Tunction name: display_plot

Purpose:

Allow the user to select a flight number(s) or BID to plot; select_plot is called first. Ifa
flight number is input, the start point of the flight is computed for the index file (.IDX).
The start point is used to fseek into the index file at the correct position. The index file is
read and the record number for the specific flight (flight number, start and end pts.) are
read into memory. These values are used to locate the proper flight to plot from the radar
file. If a BID plot is chosen, then table_search is called to make sure the BID number is
found. If found, then the start point is computed and the BID file (.BID) is used to locate
the flight. A replay option is available after the points are plotted. The trkplot function is
called to plot the points.

Called from: main

Calls routines:

select_plot trkplot
table_search safescrt
Sample call: display_plot();

Return value: None




Messages returned: None

sadeskskokskesdeokoholokskokok ok okokoskosiekesdesdeskoskoskok sk sk skokokok sk sk sk stk sk e e sk sk sk ok Feokeckoeokokskeokokokokok o} X********/

Function name: select_plot

Purpose:
Select the flight numbers or Beacon ID for plotting.

Called from: display_plot

Calls routines: None

Sample call: choice = select_plot();

Return value: Integer value representing the following:
0 -> Quit program
1 -> Plot all flights sequentially
2 -> Plot a specific flight

3 -> Plot a range of flights
4 -> Plot by Beacon ID

Messages returned: None

Function name: input_data

Purpose:
This is the main routine for green strip input. The 1st routine called is setupgs which
captures the initials of the user. A welcome message is printed and the following routines
are called in sequence:

get_vfr_ifr - determine VFR or IFR flight

get_int - get Beacon ID

A check is made to see if the flight is within the radius specified in the abqptx.cfg. This

global variable is named G_miles. Flights outside this range are ignored. This value is
currently set to 0, which means no flights are ignored.

55




Next the aircraft id, aircraft type, and the time is captured from the green strip. These
routines are named:

get_acft_id - get aircraft id

get_acft_type - get aircraft type

get_hhmm - get hours and minutes of flight

The table_search function is called next. If the Beacon number is found a plot is initiated
(plotbids). If not found, the user has the option of changing the green strip information or
saving the information to the unresolved file. In this case, the unresolved path is set to 1.

Batch mode is available but should not be used because it has been superseded with a
electronic regional strip match utility. This new program negates the use of batch mode.

Called from: main

Calls routines:

setupgs readlin
readinpfile table_search
get_vir_ifr get_int
read_bid_file RAN _READ
mid_extract get_flt num
get_acft_id get_acft_type
get_hhmm plotbids

write_unr_data display_indata
Sample call: input_data();
Return value: None

Messages returned:
If the Beacon ID is not found in the file, the following message
will appear:
BEACON ID 3271 NOT FOUND. Press return:

If the maximum number of flights that can be displayed on the
screen is exceeded, the following message will appear:
A total of 120 BIDs found. This exceeds the maximum
number of flights for plotting. No more than 100
flights can be viewed at one time.

seekskeskeskskokk fesk stk kst skoskokseskeskesdeolekskoksksckestek sk ok




R R T B IS A
Function name: chk_plt_num

Purpose:

This routine checks for valid flight numbers. Positive numbers are allowed. Plot number
0 is illegal. The entries must match the displayed flight numbers. The number of entries
is returned. .

Called from: get_flt num
Calls routines: char_count

Sample call: scanfent = chk_plt_num(pltseq, intbuf, recarr, bidrecsave);
Return value: Integer value which is number of entries read.

Messages returned:
If the number of entries is not between 1 and 30, the next
message will appear:
You must enter between 1 and 30 digits.

If an invalid digit is typed in, the following message will appear:
Error reading input: enter digits only.

If the number of entries exceed the BID count, the next message
will appear:
You entered more plot numbers than expected. Try again.

If negative numbers are entered, the following message will appear:
Enter positive numbers only. Please try again.

If plot number 0 is entered, the next message will appear:
You cannot enter plot number 0. Try again.

If the entered number does not match the flight numbers, the
next message will appear:
Your selection(s) do not match the plot numbers. Try again.

JRFRHsskesksesesesoiesofotoofofo otk skokoootooktokskskok ootk ok ok s oo ok ook ko
Function name: display_indata

Purpose:

Prints a confirmation screen after green strip information is entered; allows user to
change all the data or none.

57



Called from: input_data
Calls routines: getreply
Sample call: rtnval = display_indata();
Return value: Integer value
0->No
1->Yes

Messages returned: None

LS X feskeskeskeskskok gefeskeotskokskskoked keokskokskekekok gtttk skkokskstekseskskokskokskskokokk ok

/*Fj?%.:.: ¥ feskskeskokek gestesestesesteosksfeskoksk sk keokokokod feskskskoksksk sk skekededokskskefedokskskdokeoloksk ko k

Function name: get_acft_id
Purpose:
Prompt for the aircraft ID (e.g., N321FM). This prompt can be bypassed by setting the
aircraft id variable to 0 in the ABQPTX.CFG file. Enter 12 characters maximum.
Called from: input_data
Calls routines: None
Sample call: get_acft_id();
Return value: None
Messages returned:

If the aircraft ID is left blank, the following message will appear:

You must enter the aircraft ID. Please re-enter.
If the length of the aircraft ID exceeds 12 characters, the following

message will appear:
You have exceeded 12 characters. Please re-enter.

sepskstesteoksepkskekoskokkokskokeskkokdokkokd ¥ kokskskokd ¥esksgeskkok foskkeskskesksieskok feskesfeokoteokokeksekskk gk [

HFR s ek stk koo
Function name: get_acft_type

Purpose:
Get the aircraft type (e.g. T/B73S/A). Enter 12 characters max.

Called from: input_data

58




Calls routines: None
Sample call: get_acft_type();
Return value: None

Messages refurned:
If the aircraft type is left blank, the following message will appear:
You must enter the aircraft type. Please re-enter.

If the length of the aircraft type exceeds 12 characters, the following
message will appear:
You have exceeded 12 characters. Please re-enter.,

skeokskeiesksieoksiskokskokohoksokstekskesksskok kot sk ek sk st s Rkskskskokkorsetok ok ks sk sk sk sotekdeodeokok sk sk ek koo

] e L A A
Function name: get_hhmm

Purpose:

Get the hours and minutes from the green strip. Time must be in HHMM format. A
minimum of four digits are required. If a leading prefix is used it must be "A" for arrival;
"P" for departure; or "E" for fly over. HH must be in the range 00->23; MM must be in the
range 00->59.

Called from: input_data
Calls routines: None
Sample call: get_hhmm();
Return value: None
Messages returned:
If the flight time is left blank, the following message will appear:
You must enter the aircraft flight time. Please re-enter.

If the time is less than 4 digits, the following message will appear:
Time too short; Use 4 digits minimum. Please re-enter.

If more than 5 digits are entered, the next message will appear:
Time too long; Use 5 characters max. Please re-enter.

If an invalid prefix is entered, the next message will appear:
Prefix must be A, E, or P. Please reenter.

59



If a negative number is entered, the next message will appear:
Please use valid positive digits for time. Please re-enter.

If the hour is not between 00 and 23, the next message will appear:
Hour is invalid: Use 00 to 23 for hour.

If the minﬁte is not between 00 and 59, the next message will appear:
Minute is invalid: Use 00 to 59 for minute.

sepckseskokskeskekkskseskokd stk sk ke kst sk sksksksdeokok kesoksksteok sk deokokekk ok feskskeskskekskeskeokskokskok kb i%/

/*Fj?#*' Feskeok X X kskskok kRt ¥ % ¥ gesfeskoskskoksksfeskokokokeksteskokskokokd goskeokeskesteske ks okok

Function name: get_vfr_ifr

Purpose:
Determine if this is a VFR, IFR, or unknown flight strip.

Called from: input_data
Calls routines: None
Sample call: rtnval = get_vir_ifr();
Return value: Integer value 0, 1, 2, or 3
0 -> Quit data entry
1->IFR
2->VFR
8 -> UNKNOWN

Messages returned: None

sespesteseskeskesteskeskeskokok feskeskskeskeseskek wespesfeskstokekksksokksekskoksokkokok kekskskeskkoked ¥k sk kakspskoksk

R sk skl Rk kol
Function name: get_flt_ num

Purpose:
The is a text mode version of plotbids without the graphics. The user is given options for
attaching the green strips to the electronic flight data. The options are:

1. Quit

9. Attach green strip to flight numbers - the flight
pumbers are check and the Beacon file is updated
chk_plt_num and upd_bid_file are called

3. Write green strip info to unresolved file

60




the unresolved file is updated with path=2
write_unr_data is called
4. Replay the plot

Like the plotbids function, if the BID changes during flight or if the flight is already
attached the flight will display in yellow.

Called from:' input_data

Calls routines:
RAN_READ mid_extract
chk_plt_num upd_bid_file
write_unr_data

Sample call: rtnval = get_flt_num(found);

Return value: Integer
0 -> Quit, restart green strip input
1 -> Attach green strips to plot numbers
2 -> Write green strip information to unresolved file
3 -> Replay plot

Messages returned: None

Aedkeskedeoesieoskesiestesteokeokeskeskeskokoke ke stestesfe sk skl sk s skoke stk skt sk sk sk ke sk ok e sk sk e sk sesfesksieskeskeskesk X ¥*********/

R N R L L 2 S T A A
Function name: plotbids

Purpose:

Plot a flight track from the Beacon radar file. This routine Calls routines safescrt which
toggles the text screen to graphics mode and sets up the screen colors. The scale factor for
the plot is calculated from the global variable

G_maxrg. This variable is site specific.

A nested loop is started to plot the actual track. The G bident variable contains the total
number of Beacon tracks found. This sets the limit on the number of flights plotted. The
Beacon index file for the Beacon ID specified and the flight number, start and end times,
start and end elevations are printed on the plot. If the flight is already attached to a
green strip, the color is displayed as yellow for that flight. If the fltind variable is 2 or
greater, then a * will be plotted next to the flight. This shows that the Beacon ID changed
during flight or it may have changed multiple times.

The inner loop plots a data point from the radar file. The px and py are calculated in
pixels and plotted. Adjustments are made to the x and y coordinates to account for the

61




slant range of the track. The abgadjust and ptxadjust routines convert slant range to
projected ground coordinates.

Called from: input_data

Calls routines:

safesert . RAN_READ
ptxadjust abgadjust
mid_extract

Sample call: plotbids(bidrec);
Return value: None

Messages returned: None

Sekeskkk et Rk kR sk Rk sk sk sk ok

SRR s sk skatstkk sk ek ook
Function name: readinpfile

Purpose:

This routine is used exclusively for batch mode only. The response file is read and the
global variables for Beacon 1D, aircraft ID, aircraft type, and time are populated. Five
fields must be present or an error message will print out.

Called from: input_data

Calls routines: readlin

Sample call: rtnval = readinpfile();
Return value: Integer value

SCANFERR -> invalid field count
1 -> success

Messages returned:
If an invalid field is found in the response file, the following
message will appear:
Tllegal record found in batch file B950521.RES

62




/*Fﬂ?*********************************************Z'Z%%Z'IZ.Z festeste sk s sk skeskeckskeokok

Function name: setupgs

Purpose:
Setup routine for green strip input; capture the initials for the data entry person. The
initials are used to update the BID index file. This routine is called only once upon start

up.

The bulk of this routine is programmed for batch mode which is obsolete. Batch mode will
use a response file which contains data like aircraft type and time. The sequence file is
used as an integer counter to keep track of which records in the response file have been
plotted. This permits Called from to stop and start the program gracefully.

Called from: input_data
Calls routines: None
Sample call: rtnval = setupgs();

Return value: Integer value
1-> Data from keyboard
2 -> Data from batch file

Messages returned:
If the response file (RES) cannot be opened, the following message
will appear:
Inside setupgs module.
Error opening input file B950521.RES

If there is an error creating the sequence file, the following
message will appear:

Inside setupgs module.

Error creating sequence file B950521.SEQ

If there is an error opening the sequence file, the following
message will appear:

Inside setupgs module.

Error opening sequence file B950521.SEQ

skskoksdeoksdeoiokkokoksiokokokok skl feskeseokok sk ke sk sk sk sk e sl ste ko etk sfeskek ¥ feokskesksk kot skeok ok %..¥%/




JHER s e sk Rk ek sk sk ik tek ek ek sk skseksd kR
Function name: read_bid_file

- Purpose:

Read a line from the BID file; input the location and update the BID count for the given
flight.

Called from: input_data

Calls routines:
RAN _READ mid_extract

Sample call: read_bid_file(loc);
Return value: None

Messages returned: None

/*FF etttk kR i.: . .:' kR ok ok
Function name: upd_bid_file

Purpose:

Update the Beacon ID file with the green strip green strip information. The existing
information is read from the BID file. Ifthe record has not been updated (matchind = 0),
then update the VFR/IFR, aircraft id, aircraft type, and time for the current record. If the
record has been updated already then compare the aircraft id, type, and time from the old
to the new. If there are differences then allow the user to save the old stuff or overwrite it
with the new information. If the user decides not to overwrite, then an option is available
to save the green strip information to the unresolved file with path=3.

Called from: get_ﬂt_ﬁum

Calls routines:
RAN_READ mid_extract
squeeze STRUPD

RAN_WRITE write_unr_data
Sample call: rtnval = upd_bid_file(recarr, scanfent);
Return value: Integer value

0 -> success

1 -> Replay plot and re-enter flight numbers

Messages returned: None




Aesteskeoeokeskeokoskstesdeskskesfeokeokskeokeokesteke sk skestesfesfeokskeskskok st sk sk e sk skske ek sk ke ekt s ok sk e sk sk ok eaesiedesieskeske stk sk oksk ok sk Kk /

Function name: write_unr_data

Purpose:
Writes green strip information to unresolved file.
Called from:
input_data get_flt_num
upd_bid_file
Calls routines: None

Sample call: write_unr_data();
Return value: None

Messages returned:
If the unresolved file cannot be opened, the following message
will appear:
Error opening unresolved file : B950521.UNR

5.7.4. Plot Display and Data Input Function Headers

/*FFXX ....... sdeseskeoksfeskeokeske sk ok sk ok ok feskskskok s} skeskecksfeskskokesk feskeskokskeske sk skeokokskesesk sk
Function name: abqadjust

Purpose:

Plot adjust routine for Albuquerque data; convert the x and ¥y slant range back to projected
ground coordinates. No offset is necessary because the radar antenna is the 0,0 reference
point for all the raw data.

Called from:
trkplot plotbids

Calls routines: None
Sample call: abqadjust(xf, yf, &newxf, &newyf, elev);
Return value: None

Messages returned: None

65




Resteskestesksksteskskekskateskestokshokskskskeskestekskokok geoksieskeskskokkokoskokoksekokok

e E——————
Function name: getefg

Purpose:
Written by David Skogmo 4/5/91
adapted to read both Pantex and Albuquerque PSMAP.CFG files: J. Tenney 2/14/95

getcfg reads the file PSMAP.CFG and loads the site specific data into the SARS program
global variables. The first five lines of the PSMAP.CFG file should look as shown below.

It is essential that the items be in exactly this order and that all data entries be separated
from any annotation by whitespace. All lines should terminate in \n. This is certainly true
also of the last line.

0.00 -xd=east/west coordinate in statute miles from radar
0.00 -yd=north/south coordinate in statute miles from radar
196.8 ;rcell=beacon range cell size in feet

196.8 :rreell=primary range cell size in feet

1152 ;G _maxrg=coverage radius in miles

Called from: safescrt
Calls routines: None
Sample call: getcfg();
Return value: None
Messages ;'eturned:

If the PSMAP.CFG file does not exist, the next message will appear:
Trouble with PSMAP.CFG file. Fatal error. Press any key.

R s A O L L L
Function name: ptxadjust

Purpose:

Plot adjust routine for Pantex site. This routine converts the recorded slant range back to

ground coordinates. The offset of x=38280 feet, y=38174 feet is used because these offsets
are embedded in the recorded data. The radar antenna location is different from the Zone

4 recording site. The raw data is tracked from the Zone 4 coordinate. Therefore the offset

must be applied to the data in order to calculate the correct position of the flight projection
to the surface.

66




Called from: trkplot plotbids

Calls routines: None

Sample call: ptxadjust(xf,yf,&newxf,&newyf,elev);
Return value: None

Messages returned: None

Function name:; safescrt

Purpose:
Written by David Skogmo 3/20/91; adapted from autoscrn for zone4 program

safescrt prepares screen for RAMS display. It reads the site specific parameters from a file
called PSMAP.CFG. It displays a map and its associated text file. The map file is expected
to be a list of points (one point per line). Each line gives the x and y coordinates and the
color. These numbers are separated by spaces. To make a black dot at 230,335; enter 230
335 0 ete. The text file should give the x and y coordinates then the color. This is followed
by the text string to be placed at x,y. Since we use the function sscanf to read this string,
it should contain no spaces. If you need a space, use the underline _char. The map file
should be named PSMAP.MAP and the text file should be named PSMAP.TXT.

Called from: main display_plot plotbids
Calls routines: getcfg
Definitions: bkgd
Sample call: safescrt();
Return value: None
Messages returned:
If the PSMAP.MAP file does not exist in the local directory, the
following message will appear on the screen:
Cannot open PSMAP.MAP file. Press any key.
If the PSMAP.TXT file does not exist in the local directory, the
following message will appear on the screen:

Cannot open PAMAP.TXT file. Press any key.

shskeskofokskok kst skofeskokoskeok ok shesfeste skeskeske sk skeok ook o sesfesksk feodedkeskesk ook sk skesk ke ok kokeskokeskesie sk %?’r/

67




JEER s sk ks ook sk
Function name: trkplot

Purpose:

- Plots a flight of data points one point at a time. The data is read from the Beacon radar
file, G_trkfile. The Borland graphics library routines are used throughout this routine.

Composite mode is supported also; this mode plots every data point in the file while review
mode plots an individual track.

Called from: _
main display_plot

Calls routines:
ptxadjust  abqadjust

Sample call: trkplot(1);
Return value: None

Messages returned: None

seseskeskskokskokskskeskesk ks ok Feapesketesk ¥ fesk ok westeskesteosksieokstesksioksokstoksiskesdeok ok fesksfeskosteskokskeeokskok ksl f

Function name: xstrz

Purpose:

<str draws the character string at point X,y in the passed color in xor mode. The point x,y
is taken as the bottom left corner of the string space. xstrz written by David Skogmo
11/26/93

Called from: trkplot '

Calls routines: xordot

Sample call: xstrz(bufid, px+2, py-2, WHITE);

Return value: None

Messages returned: None

skeskokkeok ek foskokakokeskskokskd feskeskeskeskeck skekokokokeskskskekadek X feskeokokeskeokkk f

68




*buf¥2 osfesk sk ok sk skesfeoke sk e e e ok sesfesfeseskok skeskesk sk ok ok sk ke s o ke skooke sk ok ¥ X ¥k sk sk sk ok ok ¥eskokskokskokkkesk
Function name: xordot

Purpose:
xordot: plots a dot in xor mode at xx, xy

Called from: xstrz

Calls routines:
getpixel putpixel

Sample call: xordot(xdot,ydot,color);
Return value: None

Messages returned: None

Seskesfekespesteokskeodokstesfokskskokokokokskokskosk ok sk sfeskoke sk sksk sk skt seskskske e sk skoke e sk skeoke o feskeskeskskskoskeskeskeok ek ok sk k Zf#/

5.7.5. General Purpose Function Headers

/*Fﬂ?********************Z'.IZ.Z Fekkkkkeskesdedekokekokskotkodedoleskeskesskok ke deokokok sk skt s sk skok ke s s

Function name: STRUPD

Purpose:
Replace the source string with the replacement string. Length of replacement string must
not exceed source string.

Called from: upd_bid_file
Calls routines: None
Sample call: STRUPD(string, vfrifr, 77);
Return value: Integer value
0 -> success
-1 -> failure
Messages returned:
If the source string is zero length, the next message will appear:

Source string is zero length.

If the replacement string is zero length, the next message will appear:
Replacement string is zero length.

69



If the replacement string is longer than the source string, the
next message will appear:
Replacement string is longer than source string.

If the starting position is greater than the source string, the
next message will appear:
Starting location is greater than length of source string.

sesteskseskeskeskeskstesk skodesksksok ikt skskeokokeskskeodk ki xsfesksksteksesksksokkokskoksdek koot fesksfeoksksksdeokokckokseksk kil /

SRRk Pk R R R skt seskskkosk ok ook
Function name: RAN_READ

Purpose:
Do a random read of selected file; calculate the offset into the file; the file is assumed fixed
length.

Called from:

read_bid_file input_data
plotbids get_flt_num
upd_bid_file

Calls routines:

Sample call: RAN _READ(G_bidfile, bidloc, BIDBYTES, string);
Return value: Integer which contains number of characters read

Messages returned: None

SRRk B S 2 2 2L L L L S
Function name: RAN_WRITE

Purpose:
Do a random write into the selected file; the file is
assumed fixed length.
Called from: upd_bid_file
Calls routines: None
Sample call: RAN WRITE(G._bidfile, recarrlil, BIDBYTES, string);

Return value: Integer value which is numbers of characters written
70




Messages returned: None
sokddakakskokook skl kR bk Rk sk sk sk s s e

Function name: readlin

Purpose:

readlin reads characters from the passed stream into the passed buffer until the \n char is
encountered. It terminates the buffer with a 0. It returns the number of chars read. If the
end of file is encountered, it returns 0. Written by David Skogmo 4/5/91

Called from:

trkplot safescrt
getcfg display_plot
pop_bid_arr input data
plotbids setupgs
readinpfile

Calls routines: None
Sample call: i = readlin (string, G_bidfile);
Return value: Integer value: number of bytes read in

Messages returned: Non,
Fkskskskskadokooleokeelolok ok ok ek ok ook ok ko kbR R

Function name: filesize

Purpose:

This routine computes the file size in bytes - copied from the Borland library reference
manual.

Called from: pop_bid_arr

Calls routines: None

Sample call: bytecnt = filesize(G_bidfile);

Return value: long value representing the byte count of the input file.

Messages returned: None

seokskokokskstesteskeskesteskoskokskokokeskeskosk ok e skskeske stk sk sk ok feskesk sk sk skeok skeogeskeok feoeseskskskoskokokskske ok stk e ke sk o Z*?if/

71




/*'F:F*****Z feskokeokskeskesk ok yeskskesesteskekokeksksk ek ko e seksieskokeksgskskskskokskokokskfekskskokokskesdeckesk ok ok ke

Function name: table_search

Purpose:
. Do a linear search for the integer in the BID array.

Called from:.
display_plot input_data

Sample call: loc = table search(G_bid, G_maxflt, G _bid_choice);

Return value: Integer value: location of match in integer array
-1 is returned if no match is found

Messages returned: None

s, 0 L) 1o atoadeal
kk * B3 skeskeskeske
ol g g 0 Rl 3

[Tk et e e Rk Rk ek okl
Function name: get_int

Purpose: -
Checks the input string for a valid integer value within min/max range.

Called ﬁ'om: input_data

Calls routines: None

Sample call: choice = get_int("Enter integer: ", 0, 4)

Return value: Integer value returned between min and max range

Messages returned: None

L fefeteofkdedeh etk ko
Function name: getreply

Purpose:
Get a Yes or No response.

Called from: display_indata

Calls routines: None

72




Sample call: response = getreply(prompt);
Return value: Integer value

1 for Yes

0 for No

Messages returned: None

ekeakestesdoskslesieskestokokshoskdoksdok etk sk stk sk ok ok skl sk sk sk skkeskok feokeogskeokskeskokokoksksfokoskokefesk sk stk

SRR R skeskskoksk otk skt ododokskskoksskok otk ok ook sekedeesk sk sk ok
Function name: mid_extract

Purpose:
Returns middle portion of string; like Quick BASIC's MID$ function

Called from:
read_bid_file  input_data
plotbids get_flt_num
upd_bid_file

Calls routines: None

Sample call: mid_extract(instring, outstring, start_loc, num_of chars)
num_of chars should start at 0 for counting

Return value: Integer -> number of characters copied or
ZERO_LENGTH_STR if input string is null

Messages returned: None

shfeskeskeskoksieoksiosksieokskskeokskskokokstekok ook ok skssksioskok sk kol ek st sk okl sk sk sfe o Fesdesdeskokokokokokokookkokoksksk sk sk of

Function name: char count

Purpose: Count the number of letters in a string and return the count.
Called from: chk_plt_num

Sample call: spacecnt = char_count(dest, BLANK);

Return value: Integer value returns number of occurrences of match.

Messages returned: None

seskokeskskeoksieskstesie sk sksteseok ok seosksk sk seskskesk sk lesk ok ek sheske st sk sk s ok e sk e o feskskeokeskeseokok kgt

k ?*/



/*FF fesfe ek sieskskskeoR sk sk ok seoksksek deokdokkekksrsk kR feskestesteskeokskskshskeskeokeod feskeskskeskesksfesk ok

Function name: squeeze

Purpose: Delete all character ¢ from string s
Called from: upd_bid_file
Sample ca]l:‘ squeeze("This is a test", BLANK);
Return value: None

Messages returned: None

E2 ke feskok geseskskskeokokokeskskok ok ke X kekskokkok f

74




5.8. Pantex Plot Projection

One of the purposes of the plotflt program is to provide a visual representation of the
ground projections of aircraft for areas of interest. Three data values are provided to this
code in the radar input file (e.g., B950211.DAT). These reported data represent the x and
y components of the translated slant range and the altimeter reading from the aircraft.

To plot the actual ground projections, the aircraft altitude must be accounted for. This
requires several steps. First, the translated components must be translated back into the
radar coordinate system. This is done to insure stability in the solutions to the equations
when solving for the true ground projections. Figure 5-5 shows the reported datum in the
X, Y rectangular coordinate system (zloc, yloc). This coordinate system for the Pantex site
is located 7.23 miles north and 7.25 miles east of the actual radar system (these values are
contained in the PSMAP.CFG configuration file). The datum is first translated to the X,
Y’ coordinate system.

Y Y
0,0
S
Slant Range
7.23 miled
Radar Site 7.25 miles_.l X

Figure 5-5. Radar Source and Recording Coordinate Systems

Once the datum is translated into the radar coordinate system, the following equations
are solved to calculate the actual ground projections before plotting.

x’ loc = xloc - (-38280 feet)

75



vy loc = yloc - (-38174 feet)

Slant Range = \/ % loc2 + ¥y loc?

The airport elevation of
elevation from the groun

3500 feet must be subtracted from the altitude to get the actual
d to the aircraft. (h =h - 3500). Figure 5-6 shows the three

Jdimensional coordinate system and the projected values.

The curvature of the earth is insignificant for the recorded distance;
in the calculation.

7 &

Slant Range

therefore it is ignored

/o
yd

y loc

Figure 5-6. Pantex Slant Range Diagram

The X and Y coordinates represent the sl

ant range vectors of the flight. % and y’ represent
the actual ground projections of the aircraft.
reading to sea level; r is the projected ground distance.

Solving for r, 6, X', and y*:

Slant Range = \/; loc2 + y'loc?

p—1

0, is the azimuth angle; h is the altimeter

f r2+he

76




Solving for r:
r= \/x’ loc? + y'loc2 - h2

Solving for 6:

tan 0 =y loc/x loc

0 =tan!(y loc/x loc)
Solving for y:

yY=rsin0
Solving for x*;

X =rcos@

To obtain the true projection, the equations x - (-38280) and y - (-88174) are used. These
reduce to x + 38280 and y + 38174. Next, the r value, azimuth angle, projected x and
projected y values are computed and plotted.

The corresponding Fortran code to solve these equations is listed:
h = elev - 3500

if(h.1t.0)h=0

rl = (x+38280.)2 + (y+38174.)2 - h2

r = sqrt(rl)

angle = atan2 (y+38174., x+38280.)

X =r * cos(angle) - 38280.

¥y =r * sin(angle) - 38174.

77




5.9. VGA Pixel Coordinate System

The safesert function displays the streets, labels, and radii around the local airport. The
VGA screen is divided into pixels (640 in x, and 480 in y). At Pantex, two targets were

~ gelected (Zone 4 and Zone 12) and plotted on the screen in pixels. The calculations for
these points are shown below. The data is recorded from coordinate 38280 east (7.25mi),
38174 north (7.23mi)(400x, 240y in pixels). This is the center of the screen in Figure 3-1.

The distance from the radar source at Pantex (0,0 coordinate) to the two targets [Ref. 8] is
shown in Figure 5-5. Distance from radar source to Zone 4 is 37187 feet north (7.04
miles), 41915 feet east (7.94 miles); distance from radar source to Zone 12 is 29103 feet
north (5.51 miles), 44912 feet east (8.51miles).

Centﬁ_(400, 240)
Z;I;e 4 (417, 245)
North "l- Zonel2 (431, 282)
(pixels)
Radar src
0,0 East (pixels)

Figure 5-7. Pantex Pixel Coordinates

The coverage radius for the Amarillo radar data is 9.82 statute miles. This value is
obtained from the PSMAP.CFG configuration file. The scale factor for the data can be
calculated as follows:

scale factor = 240./max coverage radius

scale factor = 240./9.82 = 24.44 pixels/mile

Zone 4 distance from source is '7.94 mi. east, 7.04 mi. north
Offset from center point is:

7.94 - 7.25 = .69 x 24.44 pixels = 17 pixels east

793 - 7.04 = .19 x 24.44 pixels = 5 pixels south

Zone 4 coordinate is 400 + 17 east = 417 east (pixels)

Zone 4 coordinate is 240 + 5 south = 245 north (pixels)

78




Zone 12 distance from source is 8.51 mi east, 5.51 mi. north

Offset from center point is:

8.51 - 7.25 = 1.26 x 24.44 pixels = 31 pixels east

7.23 - 5.51 = 1.72 x 24.44 pixels = 42 pixels south

Zone 12 coordinate is 400 + 31 east = 431 east (pixels)
Zone 12 coordinate is 240 + 42 south = 282 north (pixels)

The target coordinates (417,245 and 431,282) are plotted in the safescrt function if the
Pantex data is plotted.

The Albuquerque data is centered around the radar source at 0,0; therefore an offset
calculation is not required. However, since the Albuquerque data is given in slant range
coordinates, it is also projected to ground level coordinates. The abgadjust routine adjusts
the data before the points are displayed.

79



Intentionally Left Blank

80




6. References

1. David Skogmo, Sandia National Laboratories, Radar Airspace Monitoring System,
November, 1991.

2. John Tenney, Sandia National Laboratories, Plot-Flight User’s Manual Ver 1.0,
SAND95-1819, August, 1995

3. Tetra-Tech, Distance from Radar Source to the Zone 4 and Zone 12 Points, Internal
Memorandum, March, 1995

81




Intentionally Left Blank

82




Distribution:

o e e e e e

N = Ot =

MS0405
MS0405
MS0405
MS0491
MS0491
MS0491
MS0491
MS0491
MS0491
MS0491
MS0491

MS9018
MS0899
MS0619
MS0100

P. Bohn, 12333

D. Ca.rlson 12333
R. Jones, 12333

A, Dvorack, 12333
R. Grandjean, 12333
A. Kalumba, 12333
C. Krawczyk 12333
T.
J.

Rogmskl 12333
E. Smith, 12302
J. L. Tenney, 12333

M.
D.
T.

M.
N.
S.

M.
Y.
R.
R.

Central Technical Files, 8523-2
Technical Library, 4414

Print Media, 12615

Document Processing, 7613-2
for DOE/OSTI

83






