CONF-9L0Y2D-1
CANODHS 2293 C-

Evolutionary Pattern Search Algorithms* S
S OEIVED
William E. Hart

i
Applied and Numerical Mathematics Department OCT 2 0 19%5
Sandia National Labs
P. O. Box 5800 - MS 1110 OoSTI
Albuquerque, NM 87185-1110

wehartQcs.sandia.gov

September 19, 1995

Abstract

This paper defines a class of evolutionary algorithms called evolutionary pattern
search algorithms (EPSAs) and analyzes their convergence properties. This class of
algorithms is closely related to evolutionary programming, evolutionary strategie and
real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step
size of the mutation operator in response to the success of previous optimization steps.
The rule used to adapt the step size can be used to provide a stationary point conver-
gence theory for EPSAs on any continuous function. This convergence theory is based
on an extension of the convergence theory for generalized pattern search methods. An
experimental analysis of the performance of EPSAs demonstrates that these algorithms
can perform a level of global search that is comparable to that of canonical EAs. We also
describe a stopping rule for EPSAs, which reliably terminated near stationary points in
our experiments. This is the first stopping rule for any class of EAs that can terminate
at a given distance from stationary points.
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1 Introduction

This paper concerns the application of evolutionary search algorithms to solve an un-
constrained minimization problem to find = € D such that

#(a™) = mig f(),

where D C R™ and f : D — R. In particular, this paper concerns the convergence
properties of a class of evolutionary algorithms (EAs) that is closely related to evolutionary
programing (EP), evolutionary strategie (ES) and real-coded genetic algorithms (GAs),
which use real-coded (floating-point) genes as opposed to binary-coded genes. The class
of evolutionary algorithms that I analyze encompasses EP, ES and GAs to the extent that
both mutation and crossover may be stochastically applied to generate new solutions. A
distinguishing feature of these EAs is their use of a mutation operator that generates a
discrete number of possible values at each allele. This discretization makes it is possible to
adapt the step size to guarantee convergence to a stationary point of the objective function,
where the derivative is zero, with probability one.

To prove this convergence result, I define a convergence theory for generalized stochastic
pattern search methods, which are an extension of the generalized pattern search methods
described by Torczon [31]. Like EAs, pattern search methods are optimization algorithms
that examine exploratory moves in search of solutions with lower functional values. In
stochastic pattern search methods the exploratory moves may be stochastically selected.
The class of EAs that I analyze, which I call evolutiorary pattern search algorithms (EP-
SAs), can be formulated as a stochastic pattern search method, so the convergence analysis
for stochastic pattern search methods applies to these algorithms.

The convergence analysis for EPSAs has a number of important implications. First,
EPSAs are guaranteed to converge on any continuous function. Thus EPSAs can optimize
nonsmooth functions, which is an advantage of EAs in general over gradient-based opti-
mization methods. Second, the fact that EPSAs converge to stationary points allows us
to define stopping rules that terminate when the EPSA is near the stationary point. To
my knowledge, the stopping rule described for EPSAs is the first stopping rule for any EA
that can successfully terminate near a stationary point. Finally, the effects of the relative
frequency of mutation and crossover can be used te provide a guideline for determining the
length of time EPSAs will need to terminate.

While EAs are typically described as methods for global optimization, this convergence
analysis does not guarantee that the global optimum is found. However, pattern search
algorithms have been successfully applied to global optimization problems. For example,
Meza and Martinez [17] have successfully applied a pattern search method, parallel directed
search, to the global optimization of the conformational energy of a simple chain molecule.
Their comparison of parallel directed search to GA and simulated annealing indicates that
parallel directed search is equally effective at performing global optimization for this prob-
lem. I present experimental results for EPSAs that confirms that their ability to perform
global optimization comparable to that of canonical EAs.

This paper is organized as follows. Section 2 provides some background on EP, ES
and GAs, and reviews convergence theories for these EAs. Section 3 defines generalized
pattern search methods -and reviews the convergence theorems from Torczon [31]. Section 4
defines generalized stochastic pattern search methods and proves generalizations of these
convergence theorems for this class of algorithms. Section 5 presents a class of EAs that
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fits within the framework of stochastic pattern search algorithms and analyzes the relative
complexity of EPSAs using different genetic operators. Section 6 presents some numerical
results that evaluate the performance of these EAs on global optimization problems. Finally,
I describe extensions of the basic formulation of EPSAs and discuss some implications of
these results.

Notation T will denote by R,Q and Z the sets of real, rational and integer numbers,
respectively. All norms will be Euclidean vector norms or the associated operator norm. I

also define L(zg) = {z | f(z) < f(z0)}-

2 Background

2.1 A Canonical Evolutionary Algorithm

We consider EAs that optimize a fitness function of the form f: D — R"™, D C R. We
assume that the function f is to be minimized. The population used by an EA consists of
a N-tuple of vectors z; € R". Each vector z;, called an individual of the population, is a
feasible solution to the problem, and the value f(z;) is said to be the fitness of the solution.
Let {z¢,..., 2%} be the N individuals in a population at time ¢.

The following pseudo-code describes the steps executed in a canonical EA that encom-
passes EP, ES and real-coded GAs:

1 Select an initial population {z%,...,2%}, 2? ¢ R®
2 Determine the fitness of each individual

3 Repeatt=1,2,...

4 Perform selection

5 Perform crossover with probability y

6 Perform mutation with probability u

7 Determine the fitness of each individual

8 o} =argminiey, v f(28) and g7 = f(z})

9 Perform replacement

10 Until some stopping criterion is satisfied

There are a number of details of EP, ES and real-coded GAs that distinguish them from these
EAs, but this algorithmic framework captures the principle features of these algorithms.
For further details of these algorithms see Fogel [8, 9] for descriptionss of EP, Bick and
Schwefel [3] and Béick, Hoffmeister and Schwefel {1] for descriptions of ES, and Goldberg [10]
and Davis [4] for descriptions of GAs. The principle feature distinguishing these EAs is
the selection of operators used perform the evolutionary search. EP utilizes mutation to
generate new solutions. ES and GAs utilize both mutation and crossover, although crossover
is applied with relatively greater frequency in GAs. For our purposes, I call a canonical EA
an EP if x =0, an ESif x > 0 and 4 >> 0. and a real-coded GA if x >> 0 and x =~ 0.

With high probability, the selection algorithm chooses the solutions from the current
population that minimize the error, ||fiz) — f(z™)||. Typically, the solutions with the
highest error are chosen with a low, non-zero probability. Consequently, an EA’s search
is concentrated in regions with near-optimal fifness, though regions with poor fitness are
still searched with low probability. Goldberg and Deb [12] review a variety of selection
algorithms commonly used in GAs.
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Crossover and mutation are operators used to construct new solutions from the individ-
uals chosen by the selection algorithm. Crossover generates one (or more) solutions using
two (or more) individuals. Crossover operators for real-coded GAs are qualitatively similar
to crossover operators defined for binary-coded GAs, though the non-discrete nature of the
search space can be used to define new varieties of operators [7, 34]. A precise description of
crossover operators is not needed for our analysis. However, I distinguish between discrete
crossover operators, which can generate 2 finite number of possible solutions from a given
pair of parent solutions, and indiscrete crossover operators, which can generate an infinite
number of solutions from a given pair of parent solutions. For example, the application of
uniform crossover to “swap ” the coordinates of the parent solutions can generate a finite
number of possible solutions. In contrast, the blend crossover described by Eshelman and
Shaffer (7] can generate an infinite number of possible solutions along the line connecting
the two parent solutions.

Mutation operates by independently perturbing each dimension of an individual prob-
abilistically. This can be modeled by either (a) adding the value of a random variable to
a dimension of an individual, called additive mutation, or (b) replacing a dimension of an
individual with the value of a random variable, called replacement mutation. For example,
Hart [13] describes the interval mutation operator, which replaces the value at a dimension
of an individual with a uniformly selected value over the domain of that dimension. Sim-
ilarly, Hart [13] describes a Cauchy mutation operator which adds the value of a Cauchy
random variable to a dimension of an individual. Again, I distinguish between discrete mu-
tation operators, which can generate a. finite number of possible solutions a given solution,
and indiscrete mutatior operators, which can generate an infinite number of solutions from
a given solution.

The replacement algorithm determines which members of the previous population are
replaced by the individuals generated by the genetic operators. Typically, the entire popu-
lation or a randomly selected subset of the population is replaced by the new individuals.
In elitist EAs, the replacement algorithm ensures that the best individual in the previous
population is kept in the current population if it is better than all of the newly constructed
individuals.

2.2 Analyses of Evolutionary Algorithms

In this section, I review literature related to the convergence of EP, ES and real-coded
GAs. These methods have been successfully applied to the optimization problems with
continuous objective functions over R™. Traditionally, researchers have used GAs with
binary-coded genes that are decoded into real values to solve this problem [5]. However,
special manipulation of this encoding is often necessary to increase the efficiency of the algo-
rithm [26, 33]. Recent research on real-coded GAs suggests that they can be more efficient,
provide increased precision, and allow for genetic operators that are more appropriate for
a continuous domain (7, 15, 34].

Convergence analyses of real-coded GAs have naturally focused on the role of crossover,
since crossover is typically the dominant mechanism of generating new solutions in GAs.
Wright [34], Goldberg [11], Eshelman and Schaffer [7], and Qi and Palmeri {20, 21] have
analyzed how different types of real-coded GAs process schemata. Wright [34] defines
connected schemata, which represent closed intervals along each dimension of the search
domain. An analysis of these schemata shows that the schema theorem applies to real-coded
GAs. Goldberg [11] uses one-dimensional slices of the search space to discuss the behavior
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of real-coded GAs that use standard, coordinate-wise crossover. He argues that a GA’s
convergence can be blocked when the population diversity is reduced such that crossover can
only generate solutions in a finite number of basins of attraction that do not contain near-
optimal solutions. A similar analysis by Qi and Palmeri [21] analyzes the diversification role
of coordinate-wise crossover of real-coded GAs with an infinite population size. Eshelman
and Schaffer [7] discuss crossover operators for real-coded GAs that may circumvent these
convergence problems by exploiting the gradualness of continuous functions. They define
interval schemata, which are closely related to Wright’s connected schemata, and provide a
theoretic and empirical analysis of the failure modes of a particular crossover operator, the
blend crossover operator.

Unfortunately, these types of schema analyses have not successfully provided provable
convergence guarantees for real-coded GAs.! In fact, Rudolph’s analysis of binary-coded
GAs makes it clear that “The schema theorem [14] does not imply that the Canonical GA
will converge to the global optimum in static optimization problems.” [25]

Convergence analyses of EP, ES and real-coded GAs that focus on the role of mutation
have been successful at providing provable convergence guarantees. Qi and Palmeri [20] pro-
vide convergence results for real-coded GAs with an infinite population size. Their results
show that the distribution of solutions generated by a real-coded GA with selection alone
converges in distribution to the distribution concentrated at the optimum, and that the
mean fitness of the populations of a real-coded GA with selection and mutation converges
to the fitness of the optimal solution. For EP, ES and real-coded GAs with finite popu-
Jations, a proof of convergence to soluticns with near-optimal fitness can be shown using
the Borei-Cantelli Lemma [1, 2, 25, 27]. This proof requires that the mutation operator be
applied with nonzero probability such that the joint distribution of possible new solutions
has nonzero probability everywhere. Unfortunately, this convergence proof is too weak to
provide information about the rate of convergence of these methods.

These convergence results can be improved when examined specific classes of functions.
Béck, Rudolph and Schwefel [2] have analyzed the rate of convergence of EP and ES in
special contexts. They note that these methods have a geometrical convergence rate on
strongly convex functions if the step size used by mutation is adapted. This result relies on
a more general analysis by Rappl [22, 23].

3 Generalized Pattern Search

3.1 Description

" Pattern search methods are a class of direct search methods - methods that neither
require nor explicitly approximate derivatives. Torczon [31] provides an abstract general-
ization of pattern search methods. This abstract formulation of pattern search methods
is used to establish a global first-order stationary point convergence theory that does not
use the gradient or directional derivative to guarantee convergence. Here, global refers to
the fact that this convergence theory guarantees convergence from any starting point. The
pseudo-code in Figure 1 describes the main elements of a pattern search method.

Pattern search methods proceed by conducting a series of exploratory moves about the
current iterate before identifying a new iterate. These moves can be viewed as a search
about the current iterate for a trial point with a lower function value. Exploratory moves

'Térn and Zilinskas [32, page 78] and Rinnooy Kan [24] review the convergence guarantees typically used
to define a converge theory for stochastic algorithms
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Let the initial solution 29 € R™ and step length Ay be given
For k=0,1,...
a) Compute f(zg)
b) Determine a step s using an ezploratory moves algorithm
c¢) Compute pi. = f(zx) — f(zk + sk)
d) If pr. > 0 then zy; = x5 + s Otherwise zpy; = 2.
e) Update the pattern matriz and Ay

N UL R W

Figure 1: Pattern Search

are generated by the exploratory moves algorithm using a pattern matriz. The pattern
maftrix is decomposed into a basis matrix B € R™ ™ and a generating matrix Cy € Z"*?,
p > 2n. Given a pattern matrix BC}, there are p possible exploratory moves A;BCy, where
Aj is a step-length parameter. Restrictions on C}, guarantee that the columns of BC} span
R"™. Conceptually, the generating matrix defines the directions that are searched, while the
basis matrix rotates and scales the search directions to determine the coordinate system
used during the search.

For pattern search methods, if among the p possible exploratory moves there exists a
move that provides a simple decrease in the function value, then the exploratory moves
algorithm must return some step s that provides a simple decrease. The update algorithm
reduces the step size if the exploratory moves zigerithm fails to produce a trial step that
gives a simple decrease. If the exploratory moves algorithm does produce a trial step that
gives a simple decrease, then this algorithm either increases the step size or preserves the
current step size.

3.2 Convergence Analysis

Torczon [31] shows that this notion of an exploratory moves algorithm can be used to
prove weak first-order stationary point convergence by requiring only simple decrease on
f. In particular, this proof of convergence does not explicitly require a notion of sufficient
decrease on the iterates, like a fraction of Cauchy decrease or the Armijo-Goldstein-Wolfe
conditions. In this section I review the major theorems in the convergence analysis of
pattern search methods described in Torczon [31]. This analysis is closely related to the
analysis of multidimensional search {29, 30].

The first theorem uses the simple decrease condition of the generalized pattern search
algorithm, along with the algorithm for updating Ay, to describe the limiting behavior of

Ag.

Theorem 1 ([31], Theorem 3.3) Assume that L(zo) is compact, then lim inff_, o A =
0.

Torczon uses the following proposition to prove Theorem 2.

Proposition 1 ([31], Proposition 3.4) Assume that L(zg) is compact, that f is contin-
uously differentiable on L(zo), and that liminfy— .. [V f(zk)| # 0. Then there exists a
constant App > 0 such that for all k, A > Arp.
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Finally, the following theorem gives the result for weak first-order stationary point con-
vergence for any generalized pattern search method.

Theorem 2 ([31], Theorem 3.5) Assume that L(z¢) is compact and that f : R® — R
is continuously differentiable on L{z¢). Then for the sequence of iterates {z;.} produced by
the generalized pattern search method,

limnf |7 f(a)] = 0.

This convergence guarantee is weak, since it only implies that the gradient is sampled
often near a stationary point. Thus it is possible for lim sup_,, ., [V f(zx)| > 0. However,
this convergence result is sufficient to guarantee that img_, 4o, |Z* — z1| for some stationary
point Z*,

4 Generalized Stochastic Pattern Search

Randomness can be introduced into pattern search methods in several different ways.
A simple example would be to simply shuffle the order in which the exploratory moves
algorithm considers the exploratory moves. Since each move will be considered once and
since there are a bounded number of exploratory moves, this randomized exploratory moves
algorithm is guaranteed to return a decreasing step if one exists. Consequently, the conver-
gence theory for pattern search methods is immediately applicable to this class of stochastic
pattern search methods.

In this section, I define a different class of stochastic pattern search methods in which the
exploratory moves algorithm is only probablistically guaranteed to terminate. This class of
algorithms allows the generating matrix C} to vary with each iteration A of the exploratory
moves algorithm, provided a subset of 2n columns of the form [—M} My] remains fixed
during each call to the exploratory moves algorithm.>

Because the exploratory moves algorithm is only probablisticaliy guaranteed to termi-
nate, it is possible that an “unlucky” sequence of exploratory moves could fail to ever provide
a simple decrease. To ensure that the exploratory moves algorithm terminates with high
probability, the probability of selecting each of the 2r fixed coclumns must be greater than
or equal to some constant greater than zero. When all 2n of the search directions defined
by the fixed columns have been sampled, then the exploratory moves algorithm terminates.
With these restrictions, the probability is one that such an “unlucky” sequences do not
occur.

4.1 Description

This section introduces the abstraction of stochastic pattern search methods, which gen-
eralizes the abstract description of pattern search methods provided by Torczon [31]. The
definition of the pattern, the algorithm for generalized stochastic pattern search methods,
and the update algorithm follow almost directly from Torczon’s description. The definition
of the exploratory moves algorithm generalizes Torczon’s description to include stochasti-
cally selected exploratory moves. 7

%I use the notation X = [Y'Z] to denote that the matrix X :s partitioned into the matrices Y and Z.
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The Pattern To define a pattern we need two components, a basis matrix and a gen-
erating matrix. A basis matrix can be any nonsingular matrix B € R"*". A generating
matrix is a matrix Cf € Z"*?, where p > 2n and b > 1. We partition a generating matrix

into components
C;’c" =My —M; LZ] =[x Li"]

We call Ty, the base generating matrix. We require that My € M C Z™", where M is
a finite set of nonsingular matrices, and that L} € Z™*(P=27) and contains at least one
column, the column of zeros.

A pattern P} is then defined by the columns of the matrix P} = BC,':. Because both B
and C} have rank n, the columns of P} span R™.

Given Ag € R, Ap > 0, we define a trial step s? to be any vector of the form

st = ApBct,

where ¢} denotes a column of C}. Note that Bc} determines the direction of the step, while
Aj, serves as a step length parameter. At iteration k, I define a irial point as any point of
the form z} = zj + si, where z is the current iterate.

The Exploratory Moves Pattern search methods proceed by conducting a series of
ezploratory moves about the current iterate before identifying a new iterate. These moves
can be viewed as a search about the current iterate for a trial point with a lower function
value. Stochastic pattern search methods differ from non-stochastic methods in that the
exploratory moves algorithm is only probablistically guaranteed to terminate. Consequently,
there is no fixed number of iterations of the stochastic exploratory moves algorithm; the
algorithm terminates when a decreasing step has been found or after all 2n basic steps
have been examined. In addition, the stochastic nature of the exploratory moves algorithm
enables the generating matrix CP to vary with each iteration h of the algorithm.

The following three conditions are placed on the exploratory moves s generated by
an exploratory moves algorithm.® These three conditions constitute the Hypothesis on
Exploratory Moves.

1. sg =s;§ € AkP,?, h=1,2,...
2. Hmin{f(zr + y),y € AxBTL} < f(zr), then f(zi + sx) < f(zk)-

3. The exploratory moves algorithm terminates and returns s = 0 if each of the 2n basic
steps defined by AgBT'x have been (stochastically) examined without identifying a
decreasing step. At each iteration of the exploratory moves algorithm, the probability
of selecting each of the 2n basic steps is greater than or equal to a constant v > 0.

The addition of the last condition is the principal difference between this hypothesis on
exploratory moves and the hypothesis on exploratory moves defined by Torczon [31]. This
condition uses the observation that Torczon’s convergence theory relies solely on properties
of the base matrix I't. Since the trial steps in AkBLfc‘ are not critical to the convergence of
the pattern search method, it is safe to terminate the exploratory moves algorithm after all of
the basic steps have been examined. The requirement that the basic steps have probability
greater or equal to v is added to ensure that the sequence of calls to the exploratory moves
algorithm terminates almost surely (i.e. with probability one).

3Following Torczon, if y is a vector and A is a2 matrix, then y € A means that y is contained in the set
of columns of A.
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The Generalized Stochastic Pattern Search Method We now specify the general-
ized stochastic pattern search method for unconstrained minimization.

Algorithm 1 The Generalized Stochastic Pattern Search Method

Let 2o € R™ and Ag > 0 be given.
Fork=0,1,..
a) Compute f{zy).
b) Determine & step s; using an exploratory moves algorithm.
¢) Compute pi = f(zx) — f(zk + sx).
d) If pr > 0, then x4y = zf + sk. Otherwise zxy; = z1.
e) Update I'y and Ag.

To define a stochastic pattern search method, it is necessary to specify the basis matrix B,
the initial values of T'o and LJ, the exploratory moves algorithm, and the algorithms for
updating 'y and Ag.

The Updates The update algorithm reduces the step size if the exploratory moves algo-
rithm fails to produce a trial step that gives a simple decrease. If the exploratory moves
algorithm does produce a trial step that gives a simple decrease, then this algorithm either
increases the step size or preserves the current step size.

Algorithm 2 Updating Ay.

Given 7€ Q,let § =70 and \; € A= {7*1,...,7“L}, where 7 > 1 and
{wo,wl,...,wL} CZ,L= lAI <oo,wg<0,andw; >0,1= 1,...,L.

a) If pr < 0 then Agyg = 0A%.

b) If pr > 0 then Apyy = XAL.

4.2 Convergence Theory

This section extends the theoretical analysis in Torczon [31] to provide convergence
results for the stochastic pattern search methods. The following lemma shows that the
set of sequences of trial steps for which each exploratory move terminates has probability
one. This lemma enables us to apply the theoretical analysis for generalized pattern search
methods to generalized stochastic pattern search methods with the confidence that the later
will converge almost surely.

Lemma 1 Let A; represent the set of sequences of trial steps generated by Algorithm 1
for which the (j 4 1)th application of the exploratory moves algorithm fails to terminate.
Then P (U?‘;o 4;) =0.

Proof. The exploratory moves algorithm terminates when either a trial step is generated
that gives a simple decrease on the function value or all 2n basic steps defined by AxBT
have been examined. For sequences in A;, no trial step generated in the (j+1)th application
of the exploratory moves algorithm provides a simple decrease, and all basic steps are never
examined.

Let Ai C Aj represent the subset of sequences in A; for which the ith basic step is
never examlned in the (j + 1)th application of the e\ploratory moves algorithm. Thus
Aj =k A‘ Let Az "™ be the subset of A‘ for which the i-th basic step is not examined in
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the first m trial steps of the (j + 1)th application of the exploratory moves algorithm. Since

each of the 2n basic steps has probability v of being selected, P (A;-’m) < (1-v)™. Now

%fl = Uptz1 45™ and A5™ € AY™ 50 P(43) = limn—co P(AT™) = limyp—co (1 — »)™ = 0.
us

P (G Aj-) <3 P(4;) < izznp (45) =0.
7=0 1=0 j=01i=1

Note that

G+

is the set of sequences for which each exploratory move terminates. Thus the following
corollary follows immediately from Lemma 1.

Corollary 1 The set of sequences for which each exploratory move terminates has measure
one.

Using Lemma. 1, the following theorem describes the limiting behavior of A that occurs
almost surely.

Theorem 3 Assume that L(zo) is compact. Then P (liminf,—eo Ag =0) = 1.

Proof. Iif each exploratory move terminates, ther we can apply Theorem 1 to show
that liminf;_,co Ar = 0. From Lemma 1 we know that the set of sequences for which each
exploratory move terminates has measure one, so P (liminf; .o, Af = 0) = 1. ]

The following theorem uses the limiting behavior of Ay to extend the first-order station-
ary point convergence to stochastic pattern search methods. This is a global convergence
theory since it is applicable for any initial point ¢ in the search domain, and not simply
for an initial point that is sufficiently close to the stationary point.

Theorem 4 Assume that L(zo) is compact and that f : R® — R is continuously dif-
ferentiable on L(zg). Then for the sequence of iterates {z;} produced by the stochastic
generalized pattern search method (Algorithm 1),

P (Iigninf IV F(z)]| = o) —1

Proof. The proof is by contradiction. Suppose that P (liminfx_o ||V f(z1)| = 0) < 1.
Then there exists a set of sequences of iterates {z;} with measure greater than zero for
which lim infy_,e0 ||V f(z£)|| # 0. For these sequences, we know from Proposition 1 that
there exists Arp > 0 such that Ay > Arpg. But this contradicts Theorem 3. u

5 Evolutionary Pattern Search Algorithms

Now I define a class of EAs that can be described as stochastic pattern search methods,
which I refer to as EPSAs. The following section describes a variation of the canonical EA
that uses discrete crossover and mutation operators. The next section examines the rate-
of convergence of EPSAs, and evaluates the effect of the rate of crossover on the rate of
convergence. The final section discusses stopping rules for EPSAs.
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5.1 Description

The crossover operator generates individuals using coordinate-wise swaps, and the mu-
tation operator adds a discrete random variable to a dimension of an individual, which may
assume values {01,...,0m}, 0;i € Q. Let ommin = mini=;, _m|o;]. Let ¢; be the standard
unit vector in the i-th dimension. Let 7 € {0,1}?" be a counter that indicates whether
the 2n basic vectors have been examined. The initial step length is Ag € R, and the
contraction factor § € Q, 0 < 6 < 1. Figure 2 shows the pseudo code describing EPSAs.

1 Initialize the population of individuals {z?,...,2%} such that e Q
2 Compute the fitness of each individual and reorder such that zf < z¥,Vs
3 Lett=0and p=0%"
4 Repeat k£ =0,1,..
5 Repeat A =1,2,...
6 Perform selection with a policy which guarantees that the
individual with the smallest fitness value is selected for processing
at each generation with a probability of at least # > 0
7 Perform crossover with probability x € [0, 1)
8 Perform mutation with probability x € (0, 1] of mutating each dimension; mutation adds
a vector of the form Ayw, w € {0,+04,...,20,}?, to an individual
9 If the mutation z} + Ak'yam,-ne,- is generated, then 7; = 1
Else, if the mutation z} — Apyomine; is generated, then 7;4, = 1
10 Compute the fitness of each individual and reorder such that z¢ < x¢,Vi
11 Perform replacement with an elitist replacement policy which guarantees that

the individual with the smallest fitness value among the previous population
and the newly generated individuals is included in the next generation.

12 t=1+1; o] = argmini=y,. .~ f(zF) and g7 = f(z7)

13 Until (3} < ;) or (X7 7 = 2n)

14 Iy =y, then Agyy = HA;,

15 p=0%"

16 Until some stopping criterion is satisfied

Figure 2: Pseudo Code for EPSAs

The inner loop in the EPSA is used to highlight the relationship between the EPSA
and generalized stochastic pattern search methods. This loop can easily be merged with
the outer loop to provide a formulation of the EPSA that more closely resembles canonical
EAs. The restriction on the replacement strategy ensures that the best individual found is
kept for further processing. Together, these restrictions enable the EPSA to be viewed as
a pattern search method with respect to the best individual in the each generation.

Note that EPSAs manipulate solutions that are vectorsin Q™. This is necessary in order
to describe the EA as a generalized pattern search method. In principle, this distinguishes
EPSAs from the canonical EAs, since these EAs manipulate vectors in R™. However, this
distinction is not of practical importance. The experimental evidence in Section 6 confirms
that the use of rational vectors does not impede an EPSA’s ability to optimize functions
defined over R™.

In what follows I describe how the three central components of stochastic pattern search
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Figure 3: Illustration of pattern vectors that are offsets from the best individual, z;.

- updating step length, the generating matrix, and the exploratory moves algorithm - are
implemented by the EPSA.

Updating the Step Length Step 14 of the EPSA performs the update to the step length
Ag. This update is exactly as given in Algorithm 2. When the inner loop fails to generate
a simple decrease on f, the step length is decreased by a multiple of §. The settings that
are defined by the EPSA are 6§ = 1/2 and A = {1}. Thus 7 = 2, wp = —1 and w; = 0.

The Matrices Pattern search methods are designed to generated test patterns from a
single solution. To cast the EPSA within this framework, the individuals generated at each
generation are viewed as patterns with respect to the best individual in the population.
Figure 3 illustrates the pattern vectors generated by individuals created by crossover and
mutation. Points A and B represent individuals created by mutation from the best indi-
vidual, z;. Point C represents an individual created by crossover from z; and z;. Point
D represents an individual created by mutation of z;. The arrows represent the pattern
vectors, which are implicitly scaled by the basis matrix to lie in Z".

The generating matrix C} is constructed using all possible individuals that can be
generated in the current generation ¢ (as indexed by k and k). Let f(z}) < f(z%), 5 =
2,...,N, for all . The columns of C} are generated by taking each individual Z that
can be generated by the EPSA and constructing the vector Agy(£ — 2%)/Ag, where v =
gcd(:cgj,a,-).‘* The basis matrix implicitly used by the EPSA is B = ﬁ;I , where I is the
identity matrix, so the trial steps are

ArBel = A BAgy(E — b))/ A = (& — 28),

h

It remains to prove that the patterns vectors ci are in Z". To prove this, we recall the

following theorem.

Theorem 5 ([31], Theorem 3.2) Any iterate 2y produced by a generalized search method

*The function gcd(qo, ..., gx) returns the greatest common divisor from among the quotients g,.
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can be expressed in the following form:

N-1
en = 2o+ (B8 TUB) AgB Y =1,
=0
where

e 20 is the initial iterate

¢ Bla = 1, with @, € Z* and relatively prime, and 7 is as defined in the algorithm
for updating Ak

* 7B = Ming<k<N Tk and Ty = MaXo<k<N Tk, Where Ay = 775 Aq

o 2 €2, k=0,...,N—1.

The following corollary is a straightforward generalization of this theorem for the EPSA.
The fact that rpp < ryp < 0 is derived from the fact that Ay is a nonincreasing sequence.

Corollary 2 Suppose the pattern matrices C’,’: fort =0,....,7T—1 are such that C’,{f € Z"Xp,
Then any individual rz:,T produced by an EPSA can be expressed in the following form:

T-1
:Z:ZT = x? + (ﬂrLBa_TUB) AgB Z k.
k=0

where 7 < ryp < 0.

Using this corollary, the following lemma proves that the pattern vectors we have defined
are in Z". The corollary requires that the pattern matrices used to generate zf be in Z"*?.
Since this is what we are trying to prove, the proof of this lemma is by induction on %.

Lemma 2 C} € Zforall h=0,1,...and k=0, 1,....
Proof. The proof is by induction on the time step 7. If T = 0, then a pattern has the

form
Aoy(3 — 2T)/As = 7(3 — 2T) € Z".

Now suppose that C,’: € Z"fort=0,...,T—1. We consider the case when an individual
T is generated by the crossover; a similar argument follows for mutation without crossover.
The new individual can be expressed as

T-1 T-1
Z=2z]+ (B+2a7U5) AoB (Z Lz + > Izzk> ;
k=0 £=0

where I; and I, are matrices that account for the mapping performed by crossover. An
individual generated by crossover and mutation can be expressed as £ + ArBw. Thus the
pattern at time T has the form

Aov(E —28)/Ar = Aoy(E+ ApBw — 13)/A

A ¢
Yw + (ﬁTLBa—TUE) =0
A;.‘ b2

1
A
“k

=0
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for some vectors z;, € Z". From the definition of 7, we know that yw € Z". New Ap =
(B8/a) ™ Ag, rr < 0. Thus

t-1 t—1
(BTLBQTUB) _A_E Z 2}, = (BTEB TR QTR TTUR) Z 2.
¥ k=0 k=0

Since the exponents for § and «a are positive, this term is also in Z™.
=

Finally, note that the base generating matrix is I'y = yomin{I —I], which is constant
for all generations of the EPSA.

Exploratory Moves The exploratory moves algorithm used by the EPSA is contained
within the inner loop on steps 5 through 13. As required by the exploratory moves hypoth-
esis, this loop only terminates if a solution is found that generates a simple increase, or if
all 2n basic steps defined by A BT have been examined.

All possible individuals that can be generated by the EPSA are captured in patterns
in CF. Suppose that the discrete random variable used to perform mutation generates
a values to; with probability 7 each. The base generating matrix represents the single-
coordinate mutations for which mutation occurs with values 0.,,;;. The restriction on the
selection strategy ensures that each of these single-coordinate mutations can occur on z}
with probability greater than or equal to § = wu(l — p)*~!. Thus, the exploratory moves
algorithm implicitly defined by the EPSA satisfies the hypothesis on exploratory moves.

5.2 Convergence Analysis

The previous section demonstrated that EPSAs can be described as stochastic pattern
search methods. Consequently, from Theorem 1 we know that

P (ngiogf V(D) = o) =1

This analysis guarantees that convergence exists, but does not indicate the rate at which
stochastic pattern search algorithms converge. However, it has long been recognized that
pattern search methods do not enjoy fast local convergence properties [31]. We defer a
discussion of the rate of convergence of EPSAs (and pattern search algorithms in general)
until Section 8. In this section, we examine the relative computational costs of EPSAs with
different genetic operators.

The following lemma quantifies the expected length of time spent by the exploratory
moves algorithm. Recall from our definition of stochastic pattern search, the probability
of selecting each of the 2n trial steps is greater than or equal to a constant v > 0. The
following lemma provides an upper bound on the expected time spent in the stochastic
exploratory moves algorithm.

Lemma 3 Let Y}, be the number of iterations spent in the stochastic exploratory moves

algorithm. Then
1231 1
< - - = .
E(Y,) < ” E 3 O(logn)

k=1 v
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Proof. Consider each iteration of the exploratory moves algorithm as a sample with
replacement from a set of exploratory moves. In the worst case, the exploratory moves
algorithm termimates when all of the basice steps have been sampled.

Let Sk 2, be the number of samples until £ of the 2n elements are sampled, and let
Xka2n = Skan = Sk—1,2n- Xk,2n —1 is the number of elements sampled between the (k—1)th
new basic step and the kth new basic step. The value X o, — 1 is geometrically distributed
with parameter p > v(2n — k + 1). Thus

1-p 1 1
E(Xkon) = 1+T= 5 < m
Now S95,2n is the number of samples required to ensure that all 2n trial steps have been
sampled. Since
Sonon = Xonon + .o+ X120,

we have

E(Y,) = E(S2n2n) < = E < (2n - k +1)

Now note that
2n 1 1
—_— = < 2
DD Zk tog(2n + 1).

Thus E(Y,) < L0(logn). n

Since EPSAs generate a fixed number of possible offspring at each generation, this
lemma is applicable. In general, it is not possible to determine the value of v, even if the
mutation and crossover rates are provided. The reason is that selection can greatly influence
the probability that the best individual in the population is selected. However, for rank
selection the value of v is easily computed.

Let »; be the rank of the ¢th individual in the population, such that the best rank is
0 and the worst rank is P — 1, where P is the size of the population. Linear ranking [12]
assigns a probability of selection to an individual z; according to the equation

p(xi) — C- 2(0 "';)Ti/(P - 1),

where 1 < C < 2. It follows that the prebatility of selecting the best individual in a
population is at least C/P (it could be greater if multiple copies of the best individual
exist).

I consider the effects of two types of discrete mutation operators. The binomial mutation
operator is the analogue of the mutation operator commonly used in binary GAs. The
probability of mutation a given dimension of z; by o; is #/(2m). Similarly, the probability
of mutation a given dimension of z; by —o; is also p/(2m). The multinomial mutation
operator mutates a single dimension of z; with probability g. Multinomial mutation is
introduced here because it has a much higher probability of generating singleton mutations
that are used by EPSAs to control the step length parameter. Given that mutation occurs,
the probability of mutating by o; is 1/(2m).

For EPSAs using binomial mutation, the probability of generating each of the basic
steps is C/P times the probability that mutation generates a basic step and crossover is
not applied. The probability that binomial mutation generates a basic step is

p(1 =) /(2m).




1
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Thus the probability that EPSAs using binomial mutation generate a basic step is

> CA=xpd -yt
- 2mP

The probability that multinomial mutation generates a basic step is

pf(2nm).

Thus the probability that EPSAs using multinomial mutation generate each of the basic

steps is
5 CA-xe
= 2nmP

The following corollary applies Lemma 3 to bound the length of the exploratory moves
for EPSAs that use linear rank selection with binomial or multinomial mutation.

Corollary 3 Let an EPSA use linear rank selection with parameter C. If binomial muta-
tion is used, then

2mP 1 2mP
E(Y,) < - = O(logn).
O) < SR =@ & F = o= o~ O e
If multinomial mutation is used, then
onmP 21 2mP
EY,) < =———— ) —=—=——0(nlogn).
(%) < ET=—0n 2 F = G = 00108

Let py be the mutation rate used for binomial mutation, and let y,, be the mutation
rate used for multinomial mutation. The length of the exploratory moves algorithm to be
shorter for EPSAs using binomial mutation if

1 < n
so(1 = g™t 7 g
If pp = pm, this implies that
fom = < 1 — 7Y/ 0=1),

Even for moderately large n, the expected length of the exploratory moves algorithm for
EPSAs using binomial mutation will be shorter. Intuitively, the reason for this is that the
expected number of mutations per individual is gyn for binomial mutation but only i,
for multinomial mutation. If we equalize the expected number of mutations, by setting
Km = npp, then the expected length of the exploratory moves algorithm will always be
shorter for EPSAs using multinomial mutation.

5.3 Stopping Rules

The proof of convergence for EPSAs relies soley on the properties of the mutation
operator. However, the constrained nature of the exploratory moves should make stopping
rules for EPSAs applicable in practice. Torczon [29] discusses a number of stopping rules
for direct search methods that might be applicable to EPSAs. These stopping rules cannot




Evolutionary Pattern Search... 17

guarantee that the algorithm is terminated at a stationary point because the gradient is
not available and is not explicitly estimated. Instead, these stopping rules measure whether
the algorithm has “ground to a halt,” either because it has stalled or converged.

The stopping rules discussed by Torczon [29] are applied to direct search methods for
which all points in the simplex of possible new points are examined. In generalized pattern
search methods, the stopping rule is checked when the exploratory moves algorithm fails to
find an improving search direction. At this point, we are only guaranteed to have examined
the basic steps. Consequently, the simplex used to evaluate the stopping rule for pattern
search methods is simply the simplex of basic steps.

Let vf,..., v}, be the 2n basic steps in a pattern search algorithm at time ¢, such that
f(v}) < f(v}) for i = 1,...,2n. The stopping rule recommended by Torczon [29] terminates

the algorithm when
1

5,225, —od| <
where § = max(§, [v]). The division by § makes this stopping rule terminate based on the
relative change the step, lengths [6]. This type of stopping rule may be satisfactory if the
change in step lengths is greater than £, but will be unsatisfactory if the change in step
lengths is always much smaller than £. Dennis and Schnabel [6] suggest that a reasonable
guideline for choosing the value of the step tolerance e: if p significant digits are desired,
then set € to 1077.

For EPSAs, the structure of the set of basic steps makes this stopping rule equivalent

to

20 <e
max(, |vf[) =

which is essentially a stopping rule based on the value the step length Ay.

6 Experimental Evaluation

The experiments described in this section evaluate the performance of EPSAs. These
exepriments address a number of practical questions concerning EPSA.

¢ How important is an adaptive step size? If EAs using fixed step lengths perform as
well as EPSAs, then there may be little practical need for the machinery needed to
adapt the step length.

o What is the effect of the rate of crossover on the total cost of EPSAs? Our analysis in
Section 5.2 enables us to predict the relative cost of each iteration of EPSAs, which is
one factor of the total cost. Other factors such as the rate of convergence are related
to the role of crossover in EAs. This question also addresses the ability of the stopping
rule to terminate in the presence of crossover steps. Since the stopping rule depends
upon the fitness landscape with respect to mutation steps, it is not clear whether or
not the stopping rule would become less useful for EPSAs using crossover.

¢ How does the performance of EPSAs compare with that of canonical EAs? Specifically
what is the effect of using a discretized mutation operator in EAs?

¢ How well do the stopping rules work? Do they terminate EPSAs near critical points
of the search space?
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Two functions were used in these experiments. The first function is the modified Ras-
trigin function described by Miihlenbein, Schomisch and Born [18]. This function has the
form .

f(z)=10n+) (:c,z - 10 cos(2m:,-)) )
=1

which generalizes Rastrigin’s function to an arbitrary number of dimensions. Following
Miihlenbein et al., we optimize this function in 20 dimensions, over the domain [~5.12,5.12]%,
The local minima of this function are approximately located on the integer coordinates, and
the global minimum is at the origin. In the experiments minimizing this function, the search
is terminated if a solution with a value below 10~ is found, since these solutions are known
to lie in the basin of attraction of the global minimum [18).

The second function is the two-dimensional molecular conformation problem described
by Judson et al. [16]. This problem concerns a molecule composed of a chain of identical
atoms that are connected with rigid rods of length one. The energy of the molecule is
modeled van der Walls forces. The energy equation used by Judson et al. is

-5 5 (3 ()]
i=0 j=i+1 | \'¥ H

, Where 75 = \/(x,'—:cj)z + (%i — y;)?. The angles a represent the bond angles for a
molecule, which can be used to calculate the cocrdinates z; and y; (see Hart [13]). A
molecule with 19 atoms was used in our experiments, which requires 17 bond angles to
specify its conformational space. The optimal conformation has an energy of approximately
—45.3.

The canonical EAs used in the experiments are equivalent to the real-coded GAs de-
scribed by Hart {13]. A binomial additive mutation operator is used that adds a normally
distributed random deviate to the dimensions of an individual that are mutated.

The EPSA used in the experiments initializes individuals by discretizing the range of
each dimension into 100 values. The mutation operator adds a value of Ag or —Ag to a
dimension of an individual. Note that the greatest common divisor 7 does not need to be
explicitly computed to execute the EPSA. This value is included in the formalism to clarify
the relationship between EPSAs and stochastic pattern search methods. The initial step
length used in the experiments is Ag = 1. The contraction factor is 8 = 1/2. The value
£ = 1078 is used by the stopping rule. and the threshold is € = 10~

In all experiments, the EPSA and EAs use a population size of 100 and results are
averaged over 20 different seeds for the random number generator. Linear rank selection is
used to select individuals for recombination and mutation. Elitist replacement is used to
ensure that the best individual seen is kept in subsequent populations. Efforts were made
to reduce the total number of function evaluations by keeping track of individuals that
were generated from identical parents and individuals that were simply copied to the next
population (e.g. the elitist individual).

6.1 Effects of Adaptive Step Sizes

This experiment compares the performance of the EPSA to the performance of EAs that
use a fixed step size. Step sizes of 1.0.0.1,0.01,and 0.001 were used. Table 1 summarizes the
final performance of the EPSA and EAs. The EPSA was terminated using the stopping rule.
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L A l Best I Mean | Worst 1
Rastrigin

EPSA 0.0009 3.4327 7.9597

le-0 02.8243 | 142.8100 | 182.3980

le-1 64.3360 | 124.3140 | 175.9030

le-2 60.7176 | 121.7640 | 174.1580

le-3 93.8594 | 143.0180 | 186.1240

Judson
EPSA 0.0009 3.4327 7.9597
le-0 -35.6240 | -33.3723 | -30.8315
le-1 -42.1881 | 340.6510 | 1526.1300
le-2 -43.2082 | 397.8890 | 2245.0900
le-3 -39.5729 | 463.4200 | 2745.2500

Table 1: Comparison of performance for the EPSA with adaptive step length against EPSAs
with fixed step length A.

The EAs were terminated after 400,000 and 650,000 function evaluations for the Rastrigin
and Judson functions respectively, which is an upper bound on the maximum number of
function evaluations required by the EPSA for these problems. These results indicate that
there is a best fixed step size for the EAs. However, it is clear that the adaptation of step
sizes by the EPSA allows it to find much better solutions.

6.2 Effects of Crossover

Our analysis in Section 5.2 enables us to predict the relative cost of each iteration of
EPSAs, which is one factor of the total cost. Specifically, this analysis predicts that in the
worst case, a crossover rate of y will multiply the number of generations used by the EPSA
by a factor of 1/(1 — x). This analysis does not incorporate the effects that crossover may
have on the convergence rate of the EPSA, since it is a worst case analysis.

Table 2 compares the performance of the EPSA when crossover is not used xy = 0.0,
and when crossover is used frequently, x = 0.8. For this experiment, the analysis predicts
that the EPSA using crossover will require on average five times as many generations (calls
to the exploratory moves algorithm) as the EPSA that does not use crossover. For the
Rastrigin function, the ratio between the average number of function evaluations used by
the EPSAs is remarkably close to this prediction, which suggests that introducing crossover
does not significant affect the rate of convergence of EPSAs for this problem. For the Judson
function, the ratio is smaller, which suggests that crossover does somehow increase the rate
of convergence. In both cases, the use of crossover improves the average performance of
the EPSAs. The use of a stopping rule to terminate the EPSAs clarifies the relationship
between the time spent searching and the quality of the solution found. The EPSAs using
crossover find better solutions at the expense of additional function evaluations.

6.3 EPSAs vs canonical EAs

This experiment compares the performance of the EPSA with and without crossover
to the performance of the canonical EA, with and without crossover. The EPSAs and
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{x | Best | Mean | Worst | Avg Neval |
Rastrigin
0.0 0.0009 3.4327 7.9597 342641
0.8 0.0009 0.7964 { 3.9798 1479460
Judson
0.0 | -44.2142 | -42.1958 | -39.6232 646571
0.8 | -43.2465 | -42.2229 | -40.0735 2199190

Table 2: Comparison of performance for EPSAs when x = 0.0 and = 0.8.

| [ x | Best | Mean | Worst |
Rastrigin

EPSA | 0.0 0.0009 3.4327 7.9597

0.8 1.0513 5.8319 | 23.2171

EA 0.0 0.0627 0.2213 0.3945

0.8 0.1090 0.2335 0.4073
Judson

EPSA | 0.0 | -44.2142 | -42.1958 | -39.6232

0.8 | -43.0146 | -41.3107 | -39.3882

EA 0.0 | -44.2740 | -39.8110 | -36.4797

0.8 | -42.5970 | -40.5651 | -38.6333

Table 3: Comparison of performance for EPSAs with EAs.

EAs were terminated after 400,000 and 650,000 function evaluations for the Rastrigin and
Judson functions respectively. Table 3 summarizes the results of this experiment.

These results indicate that the relative performance of EAs and EPSAs depends upon
the objective function that is minimized. The EAs outperform the EPSAs on the Rastrigin
function, but the opposite is true for the Judson function. To understand rhis difference,
consider the following difference in the iwo functions. The Judson function has narrow
local minima with steep sides, so local refinement is necessary to determine the whether a
particular solution in this problem is close to a near-optimal minima [16]. The Rastrigin
function has much broader local minima, so the relative fitnesses of solutions provide a
reasonable measure of their relative distances to near-optimal solutions.

Thus it appears that EPSAs and EAs will prove best at solving different classes of
functions. The local refinement performed by EPSAs should be useful on functions for
which the measures of the sets of near-optimal solutions around the local minima are small.
The broad mutation operator used by EAS should be useful on functions for which the
mutation operator can improve the solution by moving to better local minima.

6.4 Efficacy of the Stopping Rule

To evaluate the efficacy the stopping rules, I refined the final solutions from the op-
timization trials in the experiment from Section 6.2. The final solutions were minimized
using conjugate gradient [19], a gradient-based optimization method. The refined solutions
were compared to the final solutions generated by the EPSA. In all cases. the final solutions
generated by the EPSA were within the epsilon tolerance (10~*) of the refined solutions.
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This result confirms that the stopping rule can effectively terminate EPSAs near stationary
points.

7 Extensions

This section discusses a number of extensions of the basic formulation and analysis of
EPSAs described in Section 5.

7.1 Nondifferentiable Objective Functions

A strength of EAs is their ability to minimize nondifferentiable functions on which stan-
dard optimization methods are not effective. The convergence theory for EPSAs appears
to sacrifice this advantage, since it is applicable to differentiable functions. In fact, the
convergence theory for pattern search algorithms can be generalized to continuous func-
tions [31, 30]. This generalized convergence theory guarantees that EPSAs converge almost
surely to stationary points, as well as points where the function is nondifferentiable or where
the gradient exists but is not continuous. For example, for the function

f(@) = 21+ |21] Y 23,

=1

EPSAs will converge to some solution for which z; = 0.

7.2 Increasing the Step Length

Direct search methods that adapt a step length typically include rules for both reducing
and increasing the step length. While this is true for pattern search methods as well, the
EPSA defined in Section 5.1 only reduces the step length. The analysis in Section 5.1 that
demonstrates that EPSAs are stochastic pattern search methods only applies when the step
length is nonincreasing. If the crossover rate is zero, then it is possible to show that EPSAs
that reduce and increase the step length also converge. The proof of this result is similar
to the presentation in Section 5.1, and simply uses a different generating matrix.

I examined an EPSA using a nonzero crossover rate that doubled the step length every
time an improving step is made to evaluate the effects of using increasing step lengths
with crossover. This rule is similar to that used by a number of other pattern search
methods. Unfortunately, this rule quickly led to very large step lengths. The reason is that
during early generations, the crossover operator is the principal means by which EPSAs
generate improved solutions. Consequently, the increases in step length bear little relation
to the improvement exhibited by an EPSA. This is problematic because when crossover
begins to produce improvements less frequently, the step length is so large that the EPSA
spends a great deal of effort simply reducing its step length to something reasonable. This
phenomenon was less dramatic in experiments for which a smaller expansion factor was
used, which suggests that it may be possible to develop EPSAs that using increasing step
lengths with crossover.

7.3 Constraints

While Torczon [31] addresses convergence for unconstrained optimization problems, [
expect that these methods will be applicable to constrained optimization problems as well.
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The convergence theory can be easily adapted to handle constraints by ignoring solutions
that violate the constraints. Thus the exploratory moves algorithm is guaranteed to return
an improving step if and only if the set of feasible basic steps includes an improving solution.
Sophisticated methods of constrained optimization will certainly be needed ensure that the
number of infeasible solutions generateed by EPSAs is not excessive, but the basic analysis
of the convergence theory should be adequate to guarantee the convergence of methods for
constrained optimization.

7.4 Alternate Basis Matrices

The definition of (stochastic) pattern search methods includes the selection of a basis
matrix B. The basis matrix tailors the pattern search algorithm to particular problems by
modifying the coordinate system that the algorithm searches. For example, if variables are
known to differ by several orders of magnitude, then this can be taken into account by the
appropriate choice of the basis matrix. The EPSA described in Section 5.1 implicitly uses
the basis matrix B = 1/(7A¢). If an alternate basis matrix is chosen, then all trial steps
are modified, including steps from individuals generated by crossover.

The use of a different basis matrix, especially a nondiagonal matrix, modifies the pro-
cessing of the EPSA in a manner unlike that of any other type of EA. This transformation
of the EPSAs search is a novel generalization of the search performed by EAs that can be
investigated independent of the EPSA itself. The notion of a basis matrix combines the
effects of the scale of each dimension as well as the rotation of the search space. Previously.
researchers have examined problems for which these transformations were shown to provide
measurable changes in the performances of GAs []. The notion of a basis matrix provides a
unifying formalism for incorporating prior knowledge of a problem into the EA used to for
optimization.

7.5 DParallel EPSAs

The convergence theory for sequential EPSAs can be extended to related parallel EAs.
For example, consider an island model EA for which each processor maintains an indepen-
dent population that is evolved as an EPSA and individuals are migrated between processors
on occasion [18, 28]. This is a natural generalization of the sequential model of EPSAs. The
convergence theory for stochastic pattern search algorithms is not immediately applicable to
this algorithm because each population can independently adapt their step sizes. However,
if we assume that each population begins with the same step size and reduces the step size
by the same fraction, then the combined populations can be shown to lie on a common
translated integer lattice. This is an important property of pattern search methods, and it
enables us to conclude that the convergence theory applies to this island model EA.

8 Conclusions

The central contribution of this work is the development of a convergence theory for
EAs that guarantees convergence almost surely to a critical point for any differentiable
function. This convergence result is qualitatively different from proofs of convergence to a
global optimum. The difference stems from the fact that the problem of finding a solution
z™ for which f(z*) is the global optimum is ill-conditioned [32]. Consequently. these proofs
of convergence to the global optimum only guarantee that the estimate of the fitness at
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the optimum, f* converges to f(z*). Because the convergence theory for EPSAs only
guarantees convergence to some critical point Z*, it can guarantee that the sequence of
improving solutions z* converges to 7*.

One potential advantage of this type of convergence theory is that reasonable rates of
convergence can be guaranteed. Rates of converegence have been difficult to establish for
EAs, except for certain classes of convex functions [2]. Unfortunately, it has been difficult
to establish convergence rates for EPSAs. The reason is that the convergence theory only
requires a simple decrease in the objective function. In general, this is not sufficient to
guarantee even a geometric rate of convergence, which is one of the weakest convergence
rates typically analyzed. It may be possible to determine rates of convergence for EPSAs for
specific classes of functions, like the strongly convex functions examined by Rappl (22, 23].

Torczon [31] describes a stronger convergence theory that guarantees that pattern search
methods converge such that

kﬂg_lw [Vf(zk)] = 0.

I expect that convergence rates will be easier to determine for algorithms that satisfy the
conditions of this convergence theory, since these conditions tie the decrease to the norm
of the gradient. Among these restrictions is a bound on the norm of the pattern matrix
C}. For EAs, this implies that solutions would need to be culled from the population if
they are too far away from the best solution in the population. The experiments for EPSAs
indicate that the amount of global search they perform is reasonably close to the search
performed by canonical EAs, but I expect that this type of culling would limit the global
search performed by EPSAs.

Two other contributions of this work are also noteworthy. First, the convergence the-
ory provides a method of adapting the step length of the mutation operator. Previously,
methods for adapting the mutation operator have been analyzed for specific classes of func-
tions (e.g. see Rappl [23]). However, the method of adapting the mutation operator used
in EPSAs is the first such method that can be tied to the convergence of an EA for any
continuous function. ,

The second other contribution is the definition of a stopping rule for EPSAs. To my
knowledge, this is the first stopping rule for any EAs that can successfully terminate near
a stationary point. While this rule does not guarantee that a stationary point is acheived
(since it does not utilize gradient information), the experimental evidence that I have pre-
sented confirms that this stopping rule can effectively terminate EPSAs close to a stationary
point.
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