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ASYNCHRONOUS TRUNCATED1

MULTIGRID-REDUCTION-IN-TIME (AT-MGRIT)∗2

JENS HAHNE† , BEN S. SOUTHWORTH ‡ , AND STEPHANIE FRIEDHOFF †3

Abstract. In this paper, we present the new “asynchronous truncated multigrid-reduction-in-4
time” (AT-MGRIT) algorithm for introducing time parallelism to the solution of discretized time-5
dependent problems. The new algorithm is based on the multigrid-reduction-in-time (MGRIT)6
approach, which, in certain settings, is equivalent to another common multilevel parallel-in-time7
method, Parareal. In contrast to Parareal and MGRIT that both consider a global temporal grid8
over the entire time interval on the coarsest level, the AT-MGRIT algorithm uses truncated local9
time grids on the coarsest level, each grid covering certain temporal subintervals. These local grids10
can be solved completely in an independent way from each other, which reduces the sequential part11
of the algorithm and, thus, increases parallelism in the method. Here, we study the effect of using12
truncated local coarse grids on the convergence of the algorithm, both theoretically and numerically,13
and show, using challenging nonlinear problems, that the new algorithm consistently outperforms14
classical Parareal/MGRIT in terms of time to solution.15

Key words. Parallel-in-time integration, Parareal, MGRIT, truncated coarsest grids16

AMS subject classifications. 65F10, 65M22, 65M5517

1. Introduction. Time-dependent problems are classically solved by a time-18

stepping procedure that propagates the solution stepwise forward in time. The method19

is optimal, i. e., of order O(Nt) for Nt time steps. However, this method quickly be-20

comes a parallel bottleneck when using modern computer architectures, which have21

an increasing number of processors, yet stagnating processor clock speed. Due to22

the sequential nature of classical time stepping, parallelization is limited to the spa-23

tial domain, and, as the number of processors grows, spatial parallelization becomes24

exhausted even if more resources are available. Parallel-in-time methods use these25

resources of modern computer architectures to compute multiple time steps simulta-26

neously, enabling spatial and temporal parallelization.27

The development of the first parallel-in-time method goes back over 50 years28

[30], and an overview of the field can be found in [13]. Two of the best known29

methods are the Parareal method [24] and the multigrid-reduction-in-time (MGRIT)30

algorithm [11], both of which are based on multigrid reduction principles [33] applied31

in the time dimension. Parareal can be interpreted as a two-level multigrid method,32

and MGRIT generalizes the approach to a multilevel setting. The ideas of both33

methods are similar, and both methods are equivalent in certain settings. On the34

“fine” level(s), time integration is simultaneously (i. e., in parallel) applied to non-35

overlapping temporal subdomains, and on the coarsest level, the entire time interval36

is solved with sequential time stepping. The choice of the number of levels and the37

choice of the coarsest grid is both critical and challenging. The typical choice of the38

coarse grid in the two-level setting is based on the number of processes, choosing as39

many points on the coarse grid as there are processes available [24]. With this strategy,40

the fine level can be perfectly parallelized, but for a large number of processes, the41
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2 J. HAHNE, B. S. SOUTHWORTH, AND S. FRIEDHOFF

serial work on the coarsest level dominates the runtime.42

Strategies to reduce the runtime of two-level schemes include variants of the43

Parareal algorithm, such as asynchronous Parareal [39, 26], a modified version en-44

hanced by the asynchronous iterative scheme [6], or an adaptive Parareal algorithm,45

which increases the accuracy of the fine solver over the Parareal iterations. Using46

more than two grid levels can significantly reduce the serial work by using a coarsest47

grid with only a few time points, but the resulting very large time steps can be very48

expensive, if not infeasible, to compute for some applications [4] and/or may affect49

the convergence of the algorithm [8].50

MGRIT and Parareal are primarily effective on parabolic-type problems [31, 37],51

which have a naturally dissipative behavior over long time intervals. Here, we make52

the observation that, due to the dissipative behavior inherent to these problems, the53

coarsest grid probably does not need to represent the full time domain. Indeed, the54

solution at time t = 0 will often have a negligible effect on the solution at much later55

times. Thus, in many cases we believe that computing a global coarse grid introduces56

an unnecessary sequential computational effort to an otherwise parallel algorithm.57

In this paper, we introduce a new way to define the coarsest level in Parareal and58

MGRIT, emphasizing reducing the serial work while avoiding large time steps. Instead59

of solving the entire time interval serially on the coarsest grid, we define multiple60

independent local coarse grids each consisting of k coarse-grid time points that can be61

propagated independently and simultaneously. This idea was originally motivated by62

similar processor-local multigrid hierarchies used in geometric and algebraic multigrid63

for elliptic problems [2, 27, 28]. Such an approach offers both improved parallelism64

and reduced computational cost compared with a global coarse-grid solve, while still65

providing sufficient coarse-level information to each processor for rapid convergence66

of the global problem. Due to the asynchronous nature of computing the truncated67

coarsest grids, we refer to the new algorithm as “asynchronous truncated MGRIT”68

(AT-MGRIT).69

Section 2 introduces the algorithm in a two-level and multilevel context, providing70

an FAS interpretation of the multilevel variant in Algorithm 2.2. In Section 3, we an-71

alyze the new algorithm theoretically, derive two-level error propagators, and present72

two-level convergence bounds in Subsection 3.2. We then describe various properties73

of the algorithm in Section 4, including describing the implementation with associ-74

ated communication scheme in Subsection 4.1 and performing a parameter study for75

a model problem in Subsection 4.3. Finally, we apply the new algorithm to two chal-76

lenging nonlinear problems, a chemical reaction in Subsection 5.1 and the simulation77

of a realistic model of an electrical machine in Subsection 5.2. AT-MGRIT consis-78

tently offers a 5–30% reduction in wallclock time compared with traditional MGRIT79

and Parareal, and we expect the speedup to be greater if the algorithms were applied80

on GPUs.81

2. An overlapping and asynchronous coarse grid. Consider an initial value82

problem of the form83

(2.1) u′(t) = f(t,u(t)), u(t0) = g0, t ∈ (t0, tf ].84

We discretize (2.1) on a uniformly-spaced temporal grid ti = i∆t, i = 0, 1, . . . , Nt,85

with constant step size ∆t = (tf − t0)/Nt, and let ui ≈ u(ti) for i = 0, . . . , Nt86

with u0 = u(0). A general form of a single step time integration method for the87

time-discrete initial value problem is88

(2.2) ui = Φi(ui−1) + gi, i = 1, 2, . . . , Nt,89
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15
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Fig. 1: Two-level temporal grid-hierarchy example for the AT-MGRIT algorithm
with Nt = 15, m = 2 and k = 4. The C-points (long markers) define the global coarse
grid. For each point p = 0, . . . , 7 on the global coarse grid, a local coarse grid T (p) is
created.

where Φi is a one-step time integrator, propagating a solution ui−1 from a time point90

ti−1 to time point ti, and gi contains forcing terms. Equation (2.2) can be written as91

a semi-linear matrix equation92

A(u) ≡


I

−Φ1(·) I
. . .

. . .

−ΦNt
(·) I




u0

u1

...
uNt

 =


g0

g1

...
gNt

 ≡ g,93

where Φi(·) indicates that Φi is nonlinearly evaluated at the corresponding (block)94

vector entry. This system can be solved by a (linear) sequential block forward solve.95

In contrast, the iterative AT-MGRIT algorithm solves the problem by updating96

multiple time points simultaneously. In the following, we first introduce the idea of97

the algorithm in Subsection 2.1 for the two-level case and explain how the algorithm98

works. We then discuss how the two-level method can be extended to a multilevel99

setting.100

2.1. Two-level AT-MGRIT algorithm. For a given time grid ti = i∆t, i =101

0, 1, ..., Nt, and a given coarsening factor m > 1, we define a splitting of all time-points102

into F - and C-points, such that every m-th point is a C-point (note, non-uniform103

coarsening is also possible; uniform coarsening is used here to simplify presentation).104

This defines a global coarse grid of C-points Ti = i∆T, i = 0, 1, ..., NT , with time step105

∆T = m∆t; all other non-C-points are F -points. Based on this global coarse grid,106

we define NT + 1 overlapping local coarse grids. Given local grid size k, the pth local107

coarse grid, T (p) for p = 0, ..., NT , is given by108

T (p) = {i∆T : i ∈ [max(0, p− k + 1), p]},109

with time step size ∆T = m∆t, as depicted in Figure 1.110111

The two-level AT-MGRIT algorithm uses this time-grid hierarchy to solve time-112

dependent problems of the form (2.2) and is based on the following procedure: Given113
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4 J. HAHNE, B. S. SOUTHWORTH, AND S. FRIEDHOFF

an initial solution u and the right-hand side g, the first step of the algorithm applies a114

block relaxation, the so-called F -relaxation, to the fine space-time system of equations115

Au = g. The F -relaxation propagates the solution from a C-point to all following116

F -points preceding the next C-point (analogously to standard MGRIT/Parareal [11]).117

The relaxation of each interval of F -points can be executed in parallel and consists118

of m − 1 sequential applications of the time integrator. In the next step, the global119

residual vector r is computed and restricted by injection (R
(p)
I ) to all local coarse grids.120

For each local coarse grid, the coarse system A
(p)
c u

(p)
c = r

(p)
c is solved, which consists121

of k − 1 sequential applications of the coarse time integrator. Since the coarse-grid122

problems are independent of each other, they can be solved simultaneously. Then,123

the global solution vector is corrected using “selective ideal” interpolation, P
(p)
S . The124

selective ideal interpolation is the transpose of an injection followed by an F -relaxation125

starting from exactly one point in time. More precisely, the approximation of the126

solution at the last time point of each local coarse grid is interpolated to the fine grid127

and then, an F -relaxation is performed using these interpolated points. The steps are128

applied iteratively until a desired quality of the solution is achieved. The two-level129

AT-MGRIT algorithm is summarized in Algorithm 2.1.130

Algorithm 2.1 AT-MGRIT (A,u,g)

1: repeat
2: Apply F -relaxation to Au = g
3: Compute residual r = g−Au
4: For p = 0 to NT :

5: Restrict residual, r
(p)
c = R

(p)
I r

6: Solve local system A
(p)
c u

(p)
c = r

(p)
c

7: Correct using u = u + P
(p)
S u

(p)
c

8: until stopping criterion is reached

We follow the typical MGRIT notation here and therefore specify the F -relaxation131

in line 2. From the second iteration on, this F -relaxation can be skipped, since the up-132

dates are already performed as part of the selective ideal interpolation of the previous133

iteration. Note, that the AT-MGRIT algorithm solves for the exact solution in NT134

iterations if k > 1. Furthermore, the algorithm is equivalent to the Parareal method if135

k = NT + 1, i. e., if all local coarse grids contain all C-points before in time. All com-136

ponents of the AT-MGRIT algorithm are highly parallel. The only communication137

needed is for the residual computation and the distribution of the residual (performed138

by the matrix-vector product r
(p)
c = R

(p)
I r in Algorithm 2.1). Moreover, the coarse-139

level solve is communication-free (except for any communication that arises in spatial140

parallelism). This is particularly relevant for emerging heterogeneous computing ar-141

chitectures, where communication to and from GPU nodes can be quite expensive,142

and high efficiency is obtained with a low communication to computation ratio. For143

the coarse time integrator Φic , here we choose a re-discretization of the problem with144

step size ∆T , but other choices such as coarsening in space [34, 25, 20] or order of145

discretization [29, 12] can also be used.146

2.2. Multilevel FAS AT-MGRIT algorithm. The two-level AT-MGRIT al-147

gorithm can easily be extended to the multilevel setting and the full approximation148

storage (FAS) framework [5] can be used to solve both linear and nonlinear problems.149

Analogously to MGRIT, a multilevel hierarchy of temporal grids is constructed recur-150
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Level 0

Level 1

Level 2

T (2,0)

T (2,1)

T (2,2)

T (2,3)

T (2,4)

T (2,5)

Fig. 2: Example of a three-level time grid hierarchy for the AT-MGRIT algorithm for
a fine grid with 21 time points, m = 2 and k = 4. At the coarsest level, a local coarse
grid is generated for each C-point of the global coarse grid (gray box). These local
grids (T (2,p), p = 0, . . . , 5) replace the global coarse grid used in the classical MGRIT
algorithm.

sively using a uniform or non-uniform coarsening strategy. AT-MGRIT uses the same151

levels, coarsening, relaxation, and transfer operators as MGRIT on all finer levels152

in the hierarchy, but the coarsest MGRIT grid is replaced by local grids. Figure 2153

shows an example grid hierarchy for three-level AT-MGRIT with Nt = 20, m = 2,154

and k = 4. While MGRIT utilizes the global coarse grid on level 2, AT-MGRIT uses155

local grids T (2,p), p = 0, . . . , 5.156

In the following, we assume that all problem-dependent forcing terms are in-157

cluded in the time integrator. Then, the multilevel FAS AT-MGRIT V -cycle algo-158

rithm is given in Algorithm 2.2, where N
(`)
t denotes the number of time points, and159

A(`)u(`) = g(`) and A(`,p)u(`,p) = g(`,p) specifies the space-time system of equations160

on levels ` = 0, 1, . . . , L − 1 and on the local coarse grids p = 0, 1, . . . , N
(`)
t , respec-161

tively. On all except for the coarsest level, we use restriction by injection (R
(`)
I ),162

“ideal” interpolation (P (`)), and F (CF )ν-relaxation. For more details on MGRIT163

(and thus AT-MGRIT on finer levels), see [11]. At the coarsest level, restriction and164

interpolation to and from the local coarse grids is done by injection, denoted by R
(`,p)
I165

and P
(`,p)
I , respectively. Note that at the coarsest level, the residual is first trans-166

ferred to the global coarse grid and then to the local coarse grids, allowing for a nicer167

notation of the algorithm. AT-MGRIT can also be used with other common MGRIT168

cycle types, such as F-cycles [38] or nested iterations [23, 22]. While F -cycles visit169

the coarsest level several times per iteration, nested iterations compute an improved170

initial guess by starting on the coarsest level and interpolating the solution to the171

finer levels, applying one V -cycle per level. For all cycle types, the standard MGRIT172

coarsest level can be replaced by local coarse grids. Analogous to the two-level setting,173

AT-MGRIT is equivalent to MGRIT if k = N
(L−1)
t + 1.174175

3. Theory. This section develops convergence theory for AT-MGRIT in the lin-176

ear two-level setting. The analysis is built on two-level MGRIT/Parareal theory devel-177

oped in [9, 36], and gives insight on the effects of truncating the coarse-grid time grid.178
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6 J. HAHNE, B. S. SOUTHWORTH, AND S. FRIEDHOFF

Algorithm 2.2 AT-MGRIT FAS(`)

1: repeat
2: if ` is the coarsest level:
3: For p = 0 to N

(`)
t :

4: Restrict to local grids

5: v(`,p) = R
(`,p)
I (v(`))

6: g(`,p) = R
(`,p)
I (g(`))

7: Solve local problem A(l,p)(u(`,p)) = A(`,p)(v(`,p)) + g(`,p)

8: Update u(`) = P
(`,p)
I u(`,p)

9: else
10: Apply F -relaxation to A(`)(u(`)) = g(`)

11: For 0 to ν:
12: Apply CF -relaxation to A(`)(u(`)) = g(`)

13: Inject the approximation and its residual to the coarse grid

14: u(l+1) = R
(`)
I (u(`))

15: v(l+1) = u(l+1)

16: g(l+1) = R
(`)
I (g(`) −A(`)u(`))

17: Solve on next level: AT-MGRIT (`+ 1)
18: Compute the error approximation: e = u(`+1) − v(`+1)

19: Correct using ideal interpolation: u(`) = u(`) + P (`)(e)
20: until stopping criterion is reached

We begin by introducing the error-propagation operator in the case of exact solves179

on a truncated coarse grid (Subsection 3.1.1) and inexact coarse-grid solves (Sub-180

section 3.1.2). Formal two-level convergence bounds are provided in Subsection 3.2.181

Because we are in the two-level setting, we drop ` superscripts from Subsection 2.2.182

3.1. Error propagation. Following from [11], the two-level error propagation183

operator for linear AT-MGRIT with an exact coarse-grid solve is given by:184

E :=

(
I −

NT∑
p=0

P
(p)
S (A(p)

c )−1R
(p)
I A

)
PRI ,(3.1)185

186

where A
(p)
c represents the local coarse grid systems, R

(p)
I is the restriction operator to187

the local coarse grids, and P
(p)
S defines the interpolation from the local coarse grids188

that updates the fine grid using selective ideal interpolation, i. e., for one specific C-189

point, this C-point and the following interval of F -points are updated. We see that190

(3.1) is analogous to that derived in [11, Eq. 2.12], but here we must sum over C-191

points, as each C-point is updated by a unique local coarse-grid. The operators P192

and RI , corresponding to ideal interpolation and restriction by injection, respectively,193

are given by194
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ASYNCHRONOUS TRUNCATED MGRIT 7

I

Φ

...

Φm−1



P := I⊗ ,m

I

0 ... 0 I

. . .

0 ... 0 I



RI := ,

m

1

NT

I

Φ

...

Φm−1





P
(p)
S := .

pm

m

Nt+1−(p+1)m

min(p,k−1)

195

Note, that the operator PRI is equivalent to error propagation for F -relaxation [11].196

Recall that the fine-grid operator has block dimension (Nt + 1)× (Nt + 1), with each197

block being a square operator the size of Φ. Letting Nt = mNT for coarse-grid points198

0, ..., NT , the fine-grid size can be written as (mNT + 1)× (mNT + 1), which we will199

use to express error propagation largely in terms of m × m coarse blocks. Each of200

these blocks represents a block of one C-point and m− 1 following F -points. At the201

end, there is a single block containing only one C-point. Note that the structure202

for this block is always a submatrix of the m × m blocks, containing only the part203

corresponding to the C-point.204

3.1.1. Exact local coarse grid solve. First, we consider the effect of the local205

coarse grids using exact solves on the coarse time steps. For this purpose, we define206

the local coarse-grid problem as207

A(p)
c := R

(p)
I AP (p),208209

where P (p) and R
(p)
I define the transfer between the fine grid and the local coarse210

grids and are submatrices of P and RI . For P (p), only columns of P associated to211

points lying on this local coarse grid are considered. Equivalently, only the associated212

rows are considered for the restriction. Then, the coarse-grid problems are given by213

I

−Φm I

−Φm I

. . .
. . .

−Φm I




R

(p)
I AP (p) = min(p+1,k)

min(p+1,k)

.214

Here, it is important to note that all local coarse-grid systems R
(p)
I AP (p) have the215

same structure, but consider different time intervals. In fact, the exact local coarse-216

grid systems are principal submatrices of the Schur complement corresponding to a217

standard Parareal/MGRIT coarse-grid with exact solves [11].218

We can now examine the error-propagator Ee using exact solves on the local coarse219

grids. We refer to Appendix A for detailed algebraic derivations. In forming Ee by220

summing over p = 1, . . . , NT , we obtain a block lower triangular matrix, whereby each221
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8 J. HAHNE, B. S. SOUTHWORTH, AND S. FRIEDHOFF

p updates m rows of E , and the error-propagator using ideal local coarse grids can be222

written in block form as223

(3.2)

0 . . . 0

...
. . . ...

0 . . . 0

G 0 . . . 0

0 . . .
. . .

...

0 0 G 0 . . . 0

0 0 0 Ḡ 0 . . . 0




Ee = ,

m

(k−1)m

(NT −k)m

1

m m(NT −2) m+1

Φkm 0 . . . 0

Φkm+1 0 . . . 0

...
...

...
...

Φkm+m−1 0 . . . 0



G = ,

m

m

Φkm 0 . . . 0

[ ]
Ḡ = ,

m

1

224

where Ḡ is identical to the first row of G and represents the additional block con-225

sisting of one C-point. Note that the error propagator Ee is nonzero, so unlike226

Parareal/two-level MGRIT, AT-MGRIT using exact local coarse-grid inverses is not227

a direct method. For all p > k, we have some error perturbation that results from228

truncating the exact (Schur-complement) coarse grid.229

3.1.2. Approximate local coarse grid solve. As typical for multigrid reduc-230

tion techniques, we do not invert R
(p)
I AP (p) exactly, but approximate R

(p)
I AP (p) ≈231

Ã
(p)
c . Specifically, we approximate the powers Φm, which correspond to m applica-232

tions of the fine time integrator Φ, with a coarse operator Ψ. This results in the233

approximation Ã
(p)
c given by234

I

−Ψ I

. . .
. . .

−Ψ I



Ãc
(p)

:= min(p+1,k)

min(p+1,k)

.235

Using this approximation, we can formulate the error-propagation Ea using the ap-236

proximated local coarse-grid inverse. Again, we refer to Appendix B for derivations.237

The error-propagation operator with approximate coarse grid, Ea, is then given by238
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ASYNCHRONOUS TRUNCATED MGRIT 9

(3.3)

0 . . . 0

Z0 0 . . . 0

...
. . .

. . .
. . . 0

Zk−2 . . . Z0 0 . . . 0

W Zk−2 . . . Z0 0 . . . 0

0 . . .
. . .

...
. . .

. . .
...

0 . . . W Zk−2 . . . Z0 0 0

0 . . . 0 W̄ Z̄k−2 . . . Z̄0 0





Ea = ,

m

(k−1)m

(NT −k)m

1

m(NT −1)m 1

239

with block matrices Zj and W given by240

(3.4)

Φ0Ψj(Φm −Ψ) 0 . . . 0

...
...

...
...

Φm−1Ψj(Φm −Ψ) 0 . . . 0


Zj =

m

m

Φ0Ψk−1Φm 0 . . . 0

...
...

...
...

Φm−1Ψk−1Φm 0 . . . 0


W = ,

m

m241

and W̄ and Z̄j are again identical to first row of W and Zj , respectively.242

3.2. Convergence bounds. To avoid multiple subscripts, we omit the subscript243

a of Ea from (3.3) in the sequel. Using f and c subscripts to denote F - and C-points,244

respectively, E (3.3) can be reordered and partitioned into 2×2 block form. Moreover,245

notice that F -points columns of Zj andW (3.4) (and therefore also of Ea (3.3)) are all246

zero. If we then consider powers of the matrix, which correspond to several iterations,247

we get248

E` :=

[
Eff Efc
Ecf Ecc

]`
=

[
0 Efc
0 Ecc

]`
=

[
0 EfcE`−1cc

0 E`cc

]
.249

250

It follows from above that for multiple iterations, convergence is fully defined by251

Ecc ∈ RNT+1×NT+1, that is, E` will be convergent in some norm, that is, ‖E`‖ < 1,252

if and only if E`cc is as well. To that end, we consider analyzing the C-C principle253

submatrix of (3.3),254

Ecc =(3.5)255 

0
(Φm −Ψ) 0

... (Φm −Ψ)
. . .

Ψk−2(Φm −Ψ)
...

. . . 0

Ψk−1Φm Ψk−2(Φm −Ψ) . . . (Φm −Ψ) 0

. . .
. . .

...
. . .

. . .

Ψk−1Φm Ψk−2(Φm −Ψ) . . . (Φm −Ψ) 0


.256
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257

258

Now consider the case of Φ and Ψ being simultaneously diagonalizable, as would259

occur if the same (diagonalizable) spatial matrix is used on the fine and coarse grid.260

Let U denote the shared eigenvector matrix of Φ and Ψ, with eigenvalues µ ∈ σ(Ψ)261

and λ ∈ σ(Φ), where σ(Ψ) and σ(Φ) denote the spectrum of Ψ and Φ, respectively.262

Following the frameworks developed in [9, 36], let Ũ denote a block-diagonal matrix,263

with diagonal blocks given by eigenvectors U . Then,264

‖Ecc‖(ŨŨ∗)−1 = max
{µ,λ}

‖Ẽcc‖,265

where ‖ · ‖ here corresponds to the `2-norm, and Ẽcc is defined as follows for a fixed266

pair of eigenvalues {µ, λ}:267

Ẽcc :=268 

0
(λm − µ) 0

... (λm − µ)
. . .

µk−2(λm − µ)
...

. . . 0
µk−1λm µk−2(λm − µ) . . . (λm − µ) 0

. . .
. . .

...
. . .

. . .

µk−1λm µk−2(λm − µ) . . . (λm − µ) 0


.269

270

If the spatial matrix is normal, then (Ũ Ũ∗)−1 = I. In general, bounding Ẽcc in the271

`2-norm for each eigenvalue pair guarantees convergence of Ecc in a certain eigenvector272

induced norm, where “convergence” corresponds to a guaranteed reduction in error273

every iteration (in contrast to, e. g., nilpotency, where convergence is eventually guar-274

anteed, but error could in principle diverge significantly for many iterations before275

sudden convergence to the exact solution).276

Recall the inequality ‖Ẽcc‖2 ≤ ‖Ẽcc‖1‖Ẽcc‖∞. Given that Ẽcc is Toeplitz, the277

maximum row and column sums are equal, yielding the bound278

‖Ẽcc‖ ≤ ‖Ẽcc‖1 = |λm − µ|
k−2∑
`=0

|µ`|+ |λmµk−1|279

=
|λm − µ|(1− |µ|k−1)

1− |µ|
+ |λmµk−1|.(3.6)280

281

Results are summarized in the following theorem.282

Theorem 3.1 (Two-level convergence). Let Φ and Ψ be simultaneously diag-283

onalizable with eigenvectors U , and consider two-level AT-MGRIT with coarsening284

factor m and local coarse-grid size k. For a given CF-splitting of time points, error285

propagation takes the form286

E` :=

[
Eff Efc
Ecf Ecc

]`
=

[
0 EfcE`−1cc

0 E`cc

]
.287

288
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Further, assume Φ and Ψ are stable in an eigenvalue sense, that is, |µ|, |λ| < 1 for289

all µ ∈ σ(Ψ), λ ∈ σ(Φ), and define290

ϕtg(µ, λ) :=
|λm − µ|
1− |µ|

291

for eigenvalue pairs (with shared eigenvector) {µ, λ}. Then,292

‖Ecc‖(ŨŨ∗)−1 ≤ max
{µ,λ}

(
ϕtg(µ, λ) + |µk−1| (|λm| − ϕtg(µ, λ))

)
.(3.7)293

294

Proof. The proof follows from a simple expansion of (3.6).295

Corollary 3.2. Under the same assumptions as Theorem 3.1,296

‖Ecc‖(ŨŨ∗)−1 ≤ max
{µ,λ}

(
ϕtg(µ, λ) + |µk| (1− ϕtg(µ, λ))

)
.(3.8)297

298

Proof. Note that299

|λm − µ|(1− |µ|k−1)

1− |µ|
=
|λm − µ|(1− |µ|k)

1− |µ|
− |µk−1||λm − µ|300

301

In addition, we have |λmµk−1| = |µk−1(λm−µ)+µk| ≤ |µk−1||λm−µ|+|µk|. Plugging302

these two results into (3.6), yields an upper bound303

‖Ecc‖(ŨŨ∗)−1 ≤ max
{µ,λ}

(
|λm − µ|(1− |µ|k)

1− |µ|
+ |µk|

)
.304

An analogous expansion as used in Theorem 3.1 completes the proof.305

Note that the first term, ϕtg, in (3.7) and (3.8), to O(1/NT ), provides necessary306

and sufficient conditions for convergence of two-level Parareal and MGRIT [9, 36, 37],307

while the second term introduces an error perturbation that results from truncating308

the coarse grid. Although Corollary 3.2 is less tight than Theorem 3.1, it provides309

a more intuitive description of convergence. Note that error modes which converge310

fast for traditional Parareal/MGRIT, ϕtg(µ, λ) ≈ 0, lead to the largest perturbation311

of convergence for AT-MGRIT , ≈ |µk| (this also suggests convergence will be better312

for a more “diffusive” coarse solver, that is, a coarse solver with generally smaller313

eigenvalues). In contrast, there will be much less degradation in convergence for314

modes that are relatively slow to converge for traditional Parareal/MGRIT.315

This leads to a further important observation on convergence of AT-MGRIT : with316

some algebra,1 one can show that the “error” subdiagonal, that is, the subdiagonal317

of Ẽcc that lacks a λm−µ scaling, is propagated out of the matrix after d(NT + 1)/ke318

iterations (i. e., all matrix entries then have at least one power of λm − µ). This319

suggests a natural heuristic to choose k:320

Choice of k: choose k at least large enough so that d(NT + 1)/ke approximates the321

number of iterations to converge for traditional two-level Parareal.322

1There are various ways to show this; perhaps the most formal is in noting that multiplication
of Toeplitz matrices such as Ẽ`

cc corresponds to finite discrete convolutions. One can also simply

expand Ẽp
cc = (Êcc + µk−1λmI−k)p, where I−k is a diagonal of ones on the kth subdiagonal.
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The number of iterations for Parareal convergence is defined by the slowest converg-323

ing modes, which are in turn the least affected in convergence of AT-MGRIT by the324

perturbation term in (3.7) and (3.8) (i. e., we expect these modes to converge in a325

roughly similar number of iterations for AT-MGRIT). As mentioned previously, the326

fastest-converging modes for Parareal/MGRIT, however, can suffer significant degra-327

dation of convergence in AT-MGRIT. Thus, we choose k so that the error perturbation328

for these terms is eliminated via nilpotency at (approximately) the same number of329

iterations as the slowest converging modes for standard Paraeal/MGRIT will have330

converged. After this nilpotency is achieved, these “fast” modes will rapidly converge331

(if they have not already) due to ϕtg(µ, λ) � 1. These observations can be seen in332

practice in Figure 6(b), where at almost exactly d(NT + 1)/ke iterations, the residual333

drops precipitously, decreasing by as much as four orders of magnitude on the fol-334

lowing iteration (see Figures 6(a) and 6(b) and surrounding text for a more detailed335

discussion).336

Last, it is important to remember that theory developed in this section is for two-337

level AT-MGRIT applied to linear problems. The resulting heuristic for choosing k338

provides a good starting point, but multilevel AT-MGRIT or application to nonlinear339

problems as considered in Section 5 may require larger k (e. g., see Table 4).340

4. Algorithmic properties. This section examines nuances of the AT-MGRIT341

algorithm, including a communication scheme for distributing residuals on the coarsest342

level (Subsection 4.1), the implicit propagation of initial conditions across the time343

domain (Subsection 4.2), and a study on the new parameter k (Subsection 4.3).344

4.1. Implementation. We have implemented Algorithm 2.2 in parallel as part345

of the PyMGRIT package [19, 4] framework. When applying the algorithm in parallel,346

we assume that at the coarsest level at most one C-point of the global grid lies on347

one process. In principle this is not necessary, but ensures that the solves of the local348

problems can be perfectly parallelized. To solve the local problems, the fine(r)-level349

residuals must be distributed. Let p0, p1, ..., pNT
, where NT is equal to the number350

of points on the coarsest global coarse grid, be all processes containing a C-point351

on the coarsest grid. Then, we define two groups of MPI communicators. The first352

decomposition divides all processes based on the local grid size k into d(NT + 1)/ke353

groups, where the first group consists of processes p0, p1, ..., pk−1, the second consists354

of processes pk, pk+1, ..., p2k−1, and so on. The second decomposition divides the355

processes pk−1, ..., pNT
into groups of size k, so that the first group consists of processes356

pk−1, ..., p2k−2, the next of processes p2k−1, ..., p3k−1, and so on. Then, the distribution357

of residuals is given by a communication within all groups of the first decomposition,358

followed by a communication within all groups of the second decomposition. Note that359

the groups of a decomposition do not overlap, allowing for parallel communication360

within each group. Figure 3 shows an example of the residual communication for a361

two-level AT-MGRIT algorithm with a global coarse grid with NT = 5, along with a362

description of the communication stages.363

4.2. Propagation of the initial condition. A key feature of the AT-MGRIT364

algorithm is the implicit propagation of the initial condition through the iterations365

of the method, which allows for using local coarse grids that do not include the366

initial time point. The idea of implicit propagation of the initial condition is best367

explained in a two-level example with F -relaxation. Figure 4 shows an example of368

the distribution of local coarse grids for Nt = 20, m = 7 and k = 3. Only the first369

three local coarse grids have direct access to the initial condition and, thus, the initial370
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Fine

Proc 0

Proc 1

Proc 2

Proc 3

Proc 4

Proc 5

Fig. 3: Illustration of the communication scheme for P = 6 processes and local grid
size k = 3. First (left), each process computes the residual of its rightmost C-point.
In a second step (middle), the residuals are distributed in parallel within the groups of
the first decomposition (gray boxes). Last (right), the residuals are distributed within
the groups of the second decomposition (shaded boxes), after which each process has
all the required residuals.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Fig. 4: Implicit propagation (gray box) of the initial condition for a two-level AT-
MGRIT variant with F -relaxation and Nt = 20, m = 3 and k = 3.

condition is distributed over the first three local coarse grids in the first iteration. All371

other local coarse grids do not have access to the initial condition at this point. In372

the second iteration, again only the first three local coarse grids directly contain the373

initial condition. However, the next two local coarse grids now contain C-points of374

local coarse grids, which directly depend on the initial condition from the previous375

iteration, making them implicitly depend on the initial condition as well. In the next376

iteration, the next two local coarse grids implicitly depend on the initial condition,377

and so on. In the end, the two-level AT-MGRIT algorithm with F -relaxation requires378

d(NT + 1)/ke iterations until all local coarse grids depend implicitly on the initial379

condition. Note that in the two-level variant with FCF -relaxation, the initial value380

is also propagated to the next C-point on the fine grid due to the additional CF -381

relaxation and, thus, the initial condition is propagated faster. Also note that the382

propagation in the multi-level case is even faster than in the two-level case, since the383

initial condition is additionally propagated by the relaxations on the intermediate384

level(s).385
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4.3. Size of local coarse grids. The parameter k defines the size of the local386

coarse grids and, thus, the number of sequential solves needed on the coarse grid.387

In the following, we consider the influence of the parameter k on the convergence of388

AT-MGRIT applied to a standard model problem for parallel-in-time methods, the389

one-dimensional heat equation,390

(4.1) ut − auxx = b(x, t) in [0, 3]× [0, π],391

where a is the thermal conductivity, and subject to the initial condition u(x, 0) =392

sin(πx) and homogeneous Dirichlet boundary conditions in space. The forcing term393

is choosen as b(x, t) = − sin(πx)(sin(t) − π2 cos(t)), such that the exact solution is394

given by u(x, t) = sin(πx) cos(t) for a = 1. We first examine the behavior of k for395

a = 1 and a = 0.01, and then choose a = 1 for more detailed results.396

We discretize (4.1) using second-order central finite differences with 1,025 degrees397

of freedom in space and on an equidistant time grid with 16,384 time points using398

backward Euler. We investigate the behavior of the AT-MGRIT algorithm for the399

two-level case, and choose different coarsening factors m and local grid sizes k. We400

restrict ourselves to the two-level case, since we want to study the effect of using local401

coarse grids of various sizes k. For all simulations, the stopping tolerance is based on402

the discrete 2-norm of the absolute space-time residual with a tolerance of 10−7 and a403

random initial guess is chosen for all time points except for the initial condition. This404

choice guarantees that no knowledge of the right-hand side is used that could affect405

the convergence. Note that this is only a good choice for investigating the behavior406

of the algorithm and is not recommended in practice.407

Figure 5(a) shows the required number of iterations to reach the stopping criterion408

for a two-level AT-MGRIT variant with F -relaxation and a coarsening factor of m =409

128 as a function of size k for the two choices of the thermal conductivity. Note410

that while the variant with k = 128, which is equivalent to Parareal, performs 127411

sequential time steps on the coarse level, equivalent convergence can be obtained412

with k = 12, 10× less coarse-grid solves. Note, that the behavior is similar for both413

choices of a. Figure 5(b) presents iterations to convergence as a function of the ratio414

of local to global coarse-grid points. For three different coarsening factors, we see415

that convergence does not improve beyond the same ratio of k/(#C-points), in this416

case about 0.08. Although this parameter is likely problem specific, Figure 5(b) does417

suggest the choice of k is relatively agnostic to that of the coarsening factor by posing418

it relative to the global coarse-grid size.419

(a) [[New image]] Iterations to convergence
as a function of k.

(b) [[New image]] Iterations to convergence
as a function of k divided by the number of
C-points.

Fig. 5: Required iterations for AT-MGRIT variants for the 1D heat equation.

This manuscript is for review purposes only.



ASYNCHRONOUS TRUNCATED MGRIT 15

To better understand the convergence behavior described in Subsection 3.2, for420

each spatial eigenvalue Figure 6(a) plots the theoretical convergence rate (3.8), the421

(asymptotic in NT ) two-grid rate ϕtg, and the corresponding eigenvalues for the422

coarse- and fine-propagator for two-level AT-MGRIT with m = 128 and k = 12.423

Notice that on an eigenvector basis, theoretical convergence of AT-MGRIT almost424

exactly matches that of Parareal, with (in this case) two exceptions, given by the425

blue dots with convergence ≈ 1. Each of these spatial eigenmodes correspond with426

a coarse-propagator eigenvalue |µ| ≈ 1 and ϕtg � 1, which (see Corollary 3.2) leads427

to a significant degradation in convergence (in a single-iteration sense). Figure 6(b)428

plots observed convergence behavior for two-level AT-MGRIT with coarsening factor429

m = 128 and various choices for k. The variant with k = 128 (i. e., Parareal) has430

uniform convergence behavior, while convergence for smaller k is split into three parts.431

Initially, convergence is much slower than for k = 128, due to the spatial eigenmodes432

with |µk| ≈ 1 and ϕtg � 1 discussed above. The smaller k is chosen, the slower is433

the convergence, since the convergence perturbation of |µk|(1− ϕtg) in Corollary 3.2434

decreases with increased k. However, after almost exactly (NT + 1)/k iterations (see435

Theorem 3.1 and surrounding discussion), once the initial condition has been implic-436

itly propagated over all local coarse grids, these problematic modes are eliminated437

via nilpotency and a drastic improvement in convergence can be seen for all three438

variants; e. g., for k = 8, one iteration suddenly reduces the residual norm almost four439

orders of magnitude. This rapid convergence lasts until the residual norm matches440

that of Parareal, and convergence rates thereafter follow Parareal. Comparing the441

theoretical and numerical results for m = 12, the theoretical bound (see Figure 6(a))442

is given by 0.94987 and the maximum numerical convergence factor between two iter-443

ations for the equivalent setting (see Figure 6(b)) is given by 0.7418. Note, observed444

convergence is better than the theoretical bound due to many modes being rapidly445

attenuated. Only a few modes are very slow to converge, with rates likely close to446

the theoretical bound, but these modes degrade the average (across all error modes)447

convergence rate.448

(a) Theoretical bound on convergence rate based
on (3.8), ϕtg, and eigenvalues sorted by ϕtg, for
m = 128 and k = 12.

(b) Residual norm as a function of
iteration for two-level AT-MGRIT
with coarsening factor m = 128.

Fig. 6: Results of AT-MGRIT variants in terms of theoretical error bound (3.8) and
residual norm for the heat equation with a = 1.
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5. Parallel results. In this section, we present numerical results for AT-MGRIT449

applied to two challenging, nonlinear time-dependent problems: the 2D Gray Scott450

example of a chemical reaction of two substances, and a realistic model of an electrical451

machine. In addition, we apply different two- and three-level variants of AT-MGRIT452

and compare runtimes and iteration counts with the corresponding variants of Parareal453

and MGRIT, respectively. For the two-level variants, we apply F -relaxation and we454

choose the coarsening factor such that the number of coarse-grid points is equal to the455

number of processes used for the simulation enabling perfect parallelization on the456

fine level. For the three-level algorithms, we apply non-uniform coarsening strategies457

with a coarsening factor of m0 = 64 between the fine and the intermediate level,458

and different factors between the intermediate and the coarse level. All simulations459

were performed on an Intel Xeon Phi Cluster consisting of four 1.4 GHz Intel Xeon460

Phi processors. The code for all experiments can be found in the PyMGRIT repository461

[18], and this package is also used for simulations with Parareal and MGRIT. For all462

experiments, we use all possible resources for temporal parallelization, i. e., we do not463

use spatial parallelization (largely due to limited resources). For a brief discussion on464

the effect of spatial parallelism for the different algorithms, see Appendix C.465

5.1. Gray Scott. We consider the 2D Gray-Scott problem [32] of a chemical466

reaction of two components U and V, given by467

ut = Du∆u− uv2 + F (1− u),468

vt = Dv∆v + uv2 − (K + F )u,469470

where u = u(x, y, t) and v = v(x, y, t) are the concentration of U and V, respectively,471

Du andDv are the diffusion rates, F is the feed rate, andK is the removal rate. For our472

simulations, we choose the spatial domain [0, 2.5]2 with periodic boundary conditions,473

and the time interval [0, 256]. Further, we choose the parameters F = 0.024, K = 0.06,474

Du = 8× 10−5, and Dv = 4× 10−5, and we consider the initial value475

u(x, y, 0) = 1− 2(0.25 sin(4πx)2 sin(4πy)2), (x, y) ∈ [1, 1.5]2476

v(x, y, 0) = 0.25 sin(4πx)2 sin(4πy)2, (x, y) ∈ [1, 1.5]2,477478

and u(x, y, 0) = 1 and v(x, y, 0) = 0 otherwise. The problem is discretized using479

central finite differences with 1282 points in space and on an equidistant time grid480

with 16,384 points using backward Euler. We solve the resulting nonlinear problem481

using Newton’s method of PETSc [1] with a relative and absolute tolerance of 10−10.482

We apply two-level and three-level AT-MGRIT variants, and compare the two-483

level variants with Parareal variants and the three-level variants with MGRIT. Fur-484

thermore, we use nested iterations to compute an improved initial guess. In the nested485

iteration strategy, Parareal and MGRIT solve the global coarse-grid problem at the486

coarsest level, while AT-MGRIT uses the local coarse grids instead of the global grid.487

The stopping criterion for all variants is based on the discrete 2-norm of the space-time488

residual with a tolerance of 10−7.489

Table 1 shows the number of iterations and runtimes of the setup and solve phases490

of two-level AT-MGRIT and Parareal variants. The setup time consists of comput-491

ing an improved initial guess and the solve time consists of applying the algorithm.492

The results show that iteration counts of AT-MGRIT are equal to iteration counts of493

Parareal with the same coarsening strategy. Furthermore, a finer coarse grid signifi-494

cantly reduces the number of iterations required. While 12 iterations are needed for495

the two-level variants with a coarse grid of only 32 points, this number is reduced to496
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Method m k # Procs # Iters Setup
time

Solve
time

Speedup
w.r.t

Parareal

Parareal

512 - 32 12 1,338 s 172,068 s -

256 - 64 10 2,308 s 89,288 s -

128 - 128 9 3,958 s 66,485 s -

64 - 256 7 7,646 s 66,272 s -

Two-level
AT-MGRIT

512 16 32 12 701 s 165,351 s 1.04

256 32 64 10 1,167 s 78,230 s 1.15

128 64 128 9 2,022 s 48,675 s 1.39

64 128 256 7 3,812 s 39,895 s 1.69

Table 1: Iteration counts, setup times (for computing an improved initial guess), and
runtimes of the solve phase of two-level AT-MGRIT and Parareal variants applied to
the 2D Gray-Scott problem for various numbers of processes.

seven iterations for the variants with 256 coarse-grid points. However, this reduction497

in iterations is accompanied by significantly more expensive sequential coarse-grid498

solves, reflected in increasing setup times with increasing points on the coarse grid.499

However, if the number of points on the coarse grid doubles, the setup time does not500

double. This is because a smaller time step requires fewer Newton iterations and,501

thus, affects the duration of the application of each time integration. The setup time502

of each AT-MGRIT variant is about half as long as that of the corresponding Parareal503

variant due to the choice of k. Looking at the runtimes of the solve phase, we see504

that AT-MGRIT is always faster than the corresponding Parareal variant, achieving505

a speedup of up to a factor of 1.69 compared to Parareal. Furthermore, we see that506

while the Parareal algorithm does not scale for more than 128 processes, since the se-507

rial part of the algorithm dominates the benefit of the additional parallelization of the508

fine level, the AT-MGRIT algorithm shows good parallel scaling up to 256 processes.509

510

Table 2 presents similar results to Table 1 for four different three-level variants511

of AT-MGRIT and MGRIT with FCF -relaxation on 256 processes. The number of512

iterations here does not depend as much on the coarsest grid as in the two-level case,513

but we still see that the MGRIT variant with the coarsening strategy (64, 2), i. e., the514

variant with the most points on the second level, requires the fewest iterations. The515

corresponding AT-MGRIT variant needs one additional iteration, but after the sixth516

iteration the stopping criterion is slightly missed. A minimal increase in k would likely517

eliminate this extra iteration. In terms of solve times, we see that all variants of the518

AT-MGRIT algorithm are faster than the corresponding MGRIT variants, even the519

variant that requires an additional iteration. Again, the more points on the coarsest520

level, the higher the speedup of AT-MGRIT over MGRIT. Note that for this problem,521

adding a coarser level to the three-level MGRIT variants does not guarantee further522

reduction of the runtime. Rather, adding a level may increase the runtime. For523

example, the four-level MGRIT with the coarsening strategy (64, 8, 2), which adds524
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Method m k # Iters Setup
time

Solve
time

Speedup w.r.t
MGRIT

MGRIT

(64,16) - 7 3,525 s 43,604 s -

(64,8) - 7 3,498 s 38,420 s -

(64,4) - 7 4,980 s 42,285 s -

(64,2) - 6 8,075 s 45,131 s -

AT-MGRIT

(64,16) 8 7 2,864 s 41,054 s 1.07

(64,8) 16 7 2,174 s 33,688 s 1.17

(64,4) 32 7 2,713 s 34,063 s 1.29

(64,2) 64 7 4,247 s 38,571 s 1.24

Table 2: Iteration counts and runtimes of the setup and solve phase on 256 processes
of three-level AT-MGRIT and MGRIT variants with FCF -relaxation and different
non-uniform coarsening strategies applied to the 2D Gray-Scott problem.

Method m k # Iters Setup
time

Solve
time

Speedup w.r.t
MGRIT

AT-MGRIT

(64,8) 4 10 1,140 s 42,063 s 0.97

(64,8) 6 9 1,357 s 38,978 s 1.04

(64,8) 8 8 1,543 s 35,767 s 1.12

(64,8) 10 8 1,716 s 36,509 s 1.10

(64,8) 12 8 1,877 s 37,060 s 1.08

(64,8) 14 8 2,047 s 37,786 s 1.05

(64,8) 16 7 2,174 s 33,688 s 1.17

Table 3: Iteration counts and runtimes of the setup and solve phase on 256 processes of
three-level AT-MGRIT with FCF -relaxation, coarsening factor (64, 8), and different
choices of k applied to the 2D Gray-Scott problem.

another level with a coarsening factor of two to the variant with the coarsening factor525

(64, 8) from Table 2, requires eight iterations and the overall runtime (setup and solve)526

is 52,370 s.527

Table 3 extends the results from Table 2 and shows the effect of different choices528

of k for the three-level AT-MGRIT with coarsening factor (64, 8). We see that the529

number of iterations increases slightly as k decreases. Despite the increasing number530

of iterations, the runtime for all k ≥ 6 is smaller than the runtime of the corresponding531

MGRIT variant from Table 2. For smaller k, the runtime is larger compared to the532

MGRIT variant because the cost of the additional iterations is more expensive than533

the cost reduction due to the local coarse grids.534

Figure 7 shows the overall runtime for one AT-MGRIT variant (blue line) and the535

corresponding MGRIT variant (orange line) as a function of the number of processes536
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Fig. 7: Strong scaling results for one three-level AT-MGRIT variant, the correspond-
ing MGRIT variant, and sequential time-stepping on one process applied to the 2D
Gray-Scott problem. The red dotted line indicates the perfect scaling based on the
runtime of time-stepping.

and the runtime of time-stepping using only one process (black dashed line) which is537

about four days. For reference, the red dotted line indicates the behavior of perfect538

scaling based on the runtime of time-stepping. While the runtime almost halves when539

using 32 and 64 processes, the scaling curve starts to flatten slightly with a higher540

number of processes. This is mainly because only the fine level computations have an541

additional benefit from more processes due to the chosen coarsening strategy, and the542

runtime of the coarser levels becomes more and more dominant. However, compared543

to the corresponding MGRIT variant, the AT-MGRIT variant scales better due to its544

reduced work at the coarsest level.545

5.2. Induction machine. The standard approach for the simulation of elec-546

trical machines is based on neglecting the displacement current in Maxwell’s equa-547

tions [21]. The resulting magnetoquasistatic approximation, the so-called eddy cur-548

rent problem, is defined in terms of the unknown magnetic vector potential A :549

Ω× (t0, tf ]→ R3 as550

σ∂tA +∇× (ν(·)∇×A) = Js in Ω× (t0, tf ],551

n×A = 0 on ∂Ω,552553

with initial value A (x, t0) = A0(x), spatial domain Ω, consisting of the rotor, stator,554

and the air gap in between, and where (t0, tf ] is the time interval. The magnetic flux555

B = ∇×A vanishes at the boundaries ∂Ω of the spatial domain (Dirichlet boundary556

condition). Three (ns = 3) distributed stranded conductors are modeled by the source557

current density Js =
∑ns

s=1 χsis, with winding functions χs : Ω → R3 and currents558

is : (t0, tf ] → R3. An attached electrical network provides a connection between the559

so-called flux-linkage, i. e., the spatially integrated time derivative of the magnetic560

vector potential, and the voltage. The scalar electrical conductivity σ(x) ≥ 0 and the561

(nonlinear) magnetic reluctivity ν(x, |∇ ×A|) > 0 encode the geometry. To consider562

the rotation of the rotor, the problem is extended by an additional equation of motion;563

we refer to [4] for more details.564
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In the following, we consider a cross-section in the x, y-plane to reduce the spatial565

domain to a two-dimensional (2D) domain Ω2D ⊂ R2. Discretizing in space using566

finite elements with na degrees of freedom yields a system of differential-algebraic567

equations of the form568

Mu′(t) +K(u(t))u(t) = f(t), t ∈ (t0, tf ](5.4a)569

u(t0) = u0,(5.4b)570571

with unknown u> = [a>, i>, θ, ω] : (t0, tf ]→ Rn. At each point in time t ∈ (t0, tf ], the572

solution u(t) ∈ Rn consists of the magnetic vector potentials a (t) ∈ Rna , the currents573

of the three phases i (t) ∈ R3, the rotor angle θ (t) ∈ R, and the angular velocity of the574

rotor ω (t) ∈ R. The given voltages v(t) ∈ R3 and the mechanical excitation define575

the right-hand side f(t). Note, that (5.4) is a differential-algebraic equation of index-1576

[3, 7] due to the presence of non-conducting materials, i. e., regions with σ = 0, in577

the domain, which can be treated by standard techniques in a parallel-in-time setting578

[35].579

The multi-slice finite element model “im 3 kw” [17] of a four-pole squirrel cage580

induction machine is used for modeling the semi-discrete problem (5.4). A mesh581

representation with na = 4449 degrees of freedom is generated using Gmsh [15, 16].582

Further, we choose t0 = 0, tf = 0.2 and a time grid with Nt = 16,384 points, which583

corresponds to a time-step size of δt ≈ 10−5. Note that this time interval is required584

approximately to reach the steady-state of the machine. For the simulations, only a585

quarter of the machine is considered with periodic boundary conditions and the GetDP586

library [10, 14], which implements the time integration using backward Euler, is used587

for the computations. At each time step, the GetDP library is called and a nonlinear588

problem is solved by applying Newton’s method with damping. For the stopping589

criterion of the Newton solver, we choose a relative error of 10−6. The machine is590

supplied by a three-phase sinusoidal voltage source, and, as proposed in [17], an initial591

ramp-up of the applied voltage is used for reducing the transient behavior of the motor592

for the time interval [0, 0.04].593

In the following, we present results for one Parareal variant and several two-level594

AT-MGRIT variants. For all experiments, we use an improved initial guess given by595

a global coarse-grid solve. Unfortunately, the use of too large time steps on the coarse596

level in the simulation of the electrical machine in the time-parallel setting causes597

at least one nonlinear solve within GetDP to fail to converge. Note that this also598

prevents the use of another, even coarser level. To overcome this problem, we apply599

subcycling at the coarse level, i. e., we apply three smaller steps per time step at the600

coarse level, reducing the time step size and improving the accuracy of the solution.601

For all algorithms, we use a convergence criterion based on the relative change in602

Joule losses, an important quantity of an electrical machine, at all C-points of two603

successive iterations; see [4] for details. The algorithm terminates when the maximum604

norm of the relative difference of two successive iterations is less than 1%. Note that605

this criterion does not guarantee convergence to the discrete time-stepping solution,606

but for each variant it has been verified that it does indeed iterate to the discrete607

time-stepping solution.608

Table 4 shows the number of iterations, total runtimes, and the speedup com-609

pared to sequential time-stepping on one process for different AT-MGRIT variants610

and Parareal. Furthermore, the speedup compared to Parareal is shown for all AT-611

MGRIT variants. Comparing the number of iterations, the Parareal algorithm and612

AT-MGRIT with k = 24 both require five iterations to convergence. For 16 ≥ k ≥ 22,613
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Method k Iterations
Total time

(Setup + Solve)

Speedup
w.r.t

Parareal

Speedup w.r.t
time-stepping
on one process

Parareal - 5 40,544 s - 4.64

Two-level
AT-MGRIT

12 8 39,480 s 1.03 4.77

14 7 36,188 s 1.12 5.2

16 6 32,710 s 1.24 5.75

18 6 33,337 s 1.22 5.64

20 6 33,996 s 1.19 5.53

22 6 34,626 s 1.17 5.43

24 5 30,582 s 1.33 6.15

Table 4: Iteration counts and total runtimes on 64 processes of Parareal and various
two-level AT-MGRIT variants with a coarsening factor of 256 for the simulation of
the induction machine.

six iterations are needed to reach the stopping criterion, and for k = 14 and k = 16,614

seven and eight iterations, respectively. Despite the increased number of iterations615

for some variants, the total runtime of all AT-MGRIT variants is smaller than that616

of Parareal, with the largest speedup of a factor of approximately 1.33. For this non-617

linear problem, a slightly larger choice of k than the minimum choice proposed in618

Subsection 3.2 gives the best results in terms of runtime. Note that the time for the619

setup phase is the same for all variants and is about 2,891 s. Note also that both620

algorithms treat the fine level identically, and the improvement comes only from using621

local coarse grids instead of one global coarse grid. For comparison, the simulation622

time using serial time-stepping on one process is 188,123 s, which is more than two623

days. The fastest AT-MGRIT variant needs less than nine hours, which corresponds624

to a speedup of a factor of 6.15.625

6. Conclusion. In this paper, we introduce the new AT-MGRIT algorithm, an626

iterative parallel-in-time algorithm for solving time-dependent problems. While the627

fine level(s) are treated as in the Parareal/MGRIT algorithm, the AT-MGRIT algo-628

rithm modifies the coarsest level computations. Instead of considering one global time629

grid that covers the entire time interval and is solved sequentially at the coarsest level,630

the AT-MGRIT algorithm uses a number of truncated, overlapping local coarse grids,631

one for each point on the global coarse grid. Each of these time grids is independent632

and covers only a fraction of the global time interval, allowing each problem to be633

solved simultaneously and reducing the serial work of the algorithm at the coarsest634

level.635

Theoretical and numerical investigations of the algorithm show that the use of636

local coarse grids, which are not all connected to the initial value of the problem, in-637

troduces an additional error term compared to classical Parareal/MGRIT, which may638

affect the convergence at the beginning of the algorithm. However, the AT-MGRIT639

algorithm takes advantage of its iterative nature and eliminates this additional error640

term during several iterations, achieving convergence in the same number of iterations641
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as with Parareal/MGRIT while significantly reducing the serial cost on the coarse642

level. Simulation of challenging nonlinear problems shows that the MGRIT algorithm643

can provide significant speedup compared to Parareal/MGRIT. Future work involves644

implementing and studying AT-MGRIT on GPUs and emerging shared-memory com-645

puting architectures, where the local and asynchronous aspect of coarse grid solves is646

likely to be particularly advantageous.647

Appendix A. Error propagation for ideal local coarse problems. We648

consider error-propagation Ee for one C-point p = 0, . . . , NT using the ideal local649

coarse-grid problem (i. e., exact coarse grid and inverses). The structure of the ma-650

trices differs for the first k C-points from all other C-points, since the local coarse651

grids corresponding to the first k C-points contain all C-points prior in time. Here,652

we want to study the effect of local coarse grids that do not extend back to t = 0.653

Therefore, we start by considering all local coarse grids NT > p ≥ k and subsequently654

discuss the structure for p < k. Note that the structure of the matrices of p = NT655

is always a submatrix of NT > p ≥ k (see Section 3.1) and therefore is not explicitly656

stated. For NT > p ≥ k the matrix R
(p)
I A is given by657

(A.1)

01×(m−1) −Φ I 01×(m−1)

. . .
. . .

01×(m−1) −Φ I 01×(m−1)




,k

(p−k)m m km Nt+1−(p+1)m

658

which initially contains (p−k)m+m columns corresponding to the omitted points on659

the local coarse grid. The following km columns correspond to the C-points present660

on the local coarse grid and their corresponding following interval of F -points. Next,661

we consider662

Φ(k−1)m . . . Φ2m Φm I

Φ(k−1)m+1 . . . Φ2m+1 Φm+1 Φ

...
...

...
...

Φkm−1 . . . Φ3m−1 Φ2m−1 Φm−1




P

(p)
S (A

(p)
c )−1 = ,

pm

m

Nt+1−(p+1)m

k

663

with A
(p)
c as in (3.1.1), which defines the effect of selective ideal interpolation multi-664

plied by the inverse of the coarse-grid problem. Due to the selective ideal interpolation665

operator, exactly m points are considered, namely the C-point to be updated and the666

following F -interval consisting of m − 1 points. All other points are not changed by667

the update of one p and the corresponding rows are therefore zero. As a consequence,668

the product P
(p)
S (A

(p)
c )−1R

(p)
I A also has only m nonzero rows. Furthermore, we have669

exactly k + 1 blocks of m × m matrices which are not equal to zero. The matrix670

P
(p)
S (A

(p)
c )−1R

(p)
I A in block form is given by671
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(A.2)

D Vk−2 . . . V0 S




,

pm

m

Nt+1−(p+1)m

(p−k)m m (k−1)m m Nt+1−(p+1)m

672

with block m×m inner matrices673

(A.3)

I 0 . . . 0

Φ ...
...

...
...

...

Φm−1 0 . . . 0



S = ,

0 . . . 0 −Φ(k−1)m+1

0 . . . 0 −Φ(k−1)m+2

...
...

...

0 . . . 0 −Φkm



D = ,

Φ(j+1)m 0 . . . 0 −Φjm+1

Φ(j+1)m+1 0 . . . 0 −Φjm+2

...
...

...
...

Φ(j+2)m−1 0 . . . 0 −Φ(j+1)m




Vj = .

674

Here, D comes from the truncated coarse-grid points, Vk−2, . . . ,V0 represent the first675

k − 1 local coarse-grid points, and S corresponds to the last point of the local coarse676

grid. Note, the S-block is the diagonal block of the larger matrix. Now, we consider677

the operator PRI , which is equivalent to an F -relaxation, and globally given by678

PRI =

S . . .

S

 .679

We can now calculate the error-propagation (I−
∑NT

p=0 P
(p)
S (A

(p)
c )−1R

(p)
I A)PRI by ex-680

ploiting the structure of the matrices P
(p)
S (A

(p)
c )−1R

(p)
I A and PRI . Instead of comput-681

ing the complete matrix, we can compute the blocks −DS,−VjS for j = k− 2, . . . , 0,682

and (I − S)S. Note that the identity term is added to −S because S is the diago-683

nal block of P
(p)
S (A

(p)
c )−1R

(p)
I A. Working through the algebra yields −VjS = 0 for684

j = k − 2, . . . , 0, (I − S)S = S2 − S = 0, and the block m×m matrix685

Φkm 0 . . . 0

Φkm+1 0 . . . 0

...
...

...
...

Φkm+m−1 0 . . . 0



−DS = ,686
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which is equivalent to the definition of G in (3.2). Note that for the case p < k in687

matrix (A.2) the operator D is omitted, since for these C-points all previous C-points688

are contained in the local coarse grid.689

Appendix B. Error propagation for approximate local coarse problems.690

The definition R
(p)
I A is the same as in (A.1), but now691

Φ0Ψk−1 . . . Φ0Ψ2 Φ0Ψ Φ0

...
...

...
...

Φm−1Ψk−1 . . . Φm−1Ψ2 Φm−1Ψ Φm−1




P

(p)
S Ãc

(p)
=

pm

m

Nt+1−(p+1)m

k

.692

As a result, we get a block matrix equivalent to (A.2), but this time with m×m block693

matrices Ṽj and D̃ given by694

Φ0Ψ(j+1) 0 . . . 0 −Φ0ΨjΦ

...
...

...
...

Φm−1Ψ(j+1) 0 . . . 0 −Φm−1ΨjΦ


Ṽj =

0 . . . 0 −Φ0Ψk−1Φ

...
...

...

0 . . . 0 −Φm−1Ψk−1Φ


D̃ =695

Note, that S is the same as given in (A.3). Again, we use the structure of the matrices696

and calculate m×m block submatrices of P
(p)
S (Ãc

(p)
)−1R

(p)
I APRI given by697

Φ0Ψj(Φm −Ψ) 0 . . . 0

...
...

...
...

Φm−1Ψj(Φm −Ψ) 0 . . . 0


−ṼjS =

Φ0Ψk−1Φm 0 . . . 0

...
...

...
...

Φm−1Ψk−1Φm 0 . . . 0


−D̃S =698

where −ṼjS is equivalent to Zj from (3.4) and −D̃S is equivalent to W from (3.4).699

Appendix C. Discussion spatial parallelism. Here we demonstrate that the700

use of spatial parallelism has comparable effects on sequential time-stepping (before701

saturation) as it does on AT-MGRIT . In particular, we emphasize that when spatial702

parallelism saturates, the observed near-perfect speedup obtained by spatial parallel-703

ism before saturation will extend to AT-MGRIT. Table 5 presents overall runtimes for704

using one and four processes in space for time-stepping, Parareal, and two-level AT-705

MGRIT, the last two using 64 processes in time (same variants as in Table 1). We see706

that for all algorithms we get a speedup of about 3.8 by using four spatial processes707

compared to one process. Note that this problem scales well with spatial paralleliza-708

tion, and spatial parallelism (as in most cases) should be the first choice. However,709

spatial parallelization is exhausted at some point and temporal parallelization can710

then provide additional speedups.711
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Space
processes

Time-stepping
one time process

Parareal
64 time processes

Two-level AT-MGRIT
64 time processes

1 347,666 s 91,596 s 79,397 s

4 92,473 s 23,708 s 20,411 s

Table 5: Total runtimes using one and four processes in space for time-stepping,
Parareal, and AT-MGRIT with k = 32, the latter two using a coarsening factor of
256 and 64 processes in time.
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