LA-UR-21-26105

Accepted Manuscript

Asynchronous Truncated Multigrid-Reduction-in-Time

Hahne, Jens
Southworth, Benjamin Scott
Friedhoff, Stephanie

Provided by the author(s) and the Los Alamos National Laboratory (2024-09-16).
To be published in: SIAM Journal on Scientific Computing
DOl to publisher's version: 10.1137/21M1433149

Permalink to record:
https://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-21-26105

i Los Alamos NIYSH

NATIONAL LABORATORY National Nuclear Security Administration

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos
National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.



40
41

ASYNCHRONOUS TRUNCATED
MULTIGRID-REDUCTION-IN-TIME (AT-MGRIT)*

JENS HAHNE', BEN S. SOUTHWORTH *, AND STEPHANIE FRIEDHOFF

Abstract. In this paper, we present the new “asynchronous truncated multigrid-reduction-in-
time” (AT-MGRIT) algorithm for introducing time parallelism to the solution of discretized time-
dependent problems. The new algorithm is based on the multigrid-reduction-in-time (MGRIT)
approach, which, in certain settings, is equivalent to another common multilevel parallel-in-time
method, Parareal. In contrast to Parareal and MGRIT that both consider a global temporal grid
over the entire time interval on the coarsest level, the AT-MGRIT algorithm uses truncated local
time grids on the coarsest level, each grid covering certain temporal subintervals. These local grids
can be solved completely in an independent way from each other, which reduces the sequential part
of the algorithm and, thus, increases parallelism in the method. Here, we study the effect of using
truncated local coarse grids on the convergence of the algorithm, both theoretically and numerically,
and show, using challenging nonlinear problems, that the new algorithm consistently outperforms
classical Parareal/MGRIT in terms of time to solution.

Key words. Parallel-in-time integration, Parareal, MGRIT, truncated coarsest grids

AMS subject classifications. 65F10, 65M22, 656M55

1. Introduction. Time-dependent problems are classically solved by a time-
stepping procedure that propagates the solution stepwise forward in time. The method
is optimal, i.e., of order O(Ny) for Ny time steps. However, this method quickly be-
comes a parallel bottleneck when using modern computer architectures, which have
an increasing number of processors, yet stagnating processor clock speed. Due to
the sequential nature of classical time stepping, parallelization is limited to the spa-
tial domain, and, as the number of processors grows, spatial parallelization becomes
exhausted even if more resources are available. Parallel-in-time methods use these
resources of modern computer architectures to compute multiple time steps simulta-
neously, enabling spatial and temporal parallelization.

The development of the first parallel-in-time method goes back over 50 years
[30], and an overview of the field can be found in [13]. Two of the best known
methods are the Parareal method [24] and the multigrid-reduction-in-time (MGRIT)
algorithm [11], both of which are based on multigrid reduction principles [33] applied
in the time dimension. Parareal can be interpreted as a two-level multigrid method,
and MGRIT generalizes the approach to a multilevel setting. The ideas of both
methods are similar, and both methods are equivalent in certain settings. On the
“fine” level(s), time integration is simultaneously (i.e., in parallel) applied to non-
overlapping temporal subdomains, and on the coarsest level, the entire time interval
is solved with sequential time stepping. The choice of the number of levels and the
choice of the coarsest grid is both critical and challenging. The typical choice of the
coarse grid in the two-level setting is based on the number of processes, choosing as
many points on the coarse grid as there are processes available [24]. With this strategy,
the fine level can be perfectly parallelized, but for a large number of processes, the
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2 J. HAHNE, B. S. SOUTHWORTH, AND S. FRIEDHOFF

serial work on the coarsest level dominates the runtime.

Strategies to reduce the runtime of two-level schemes include variants of the
Parareal algorithm, such as asynchronous Parareal [39, 26], a modified version en-
hanced by the asynchronous iterative scheme [6], or an adaptive Parareal algorithm,
which increases the accuracy of the fine solver over the Parareal iterations. Using
more than two grid levels can significantly reduce the serial work by using a coarsest
grid with only a few time points, but the resulting very large time steps can be very
expensive, if not infeasible, to compute for some applications [4] and/or may affect
the convergence of the algorithm [8].

MGRIT and Parareal are primarily effective on parabolic-type problems [31, 37],
which have a naturally dissipative behavior over long time intervals. Here, we make
the observation that, due to the dissipative behavior inherent to these problems, the
coarsest grid probably does not need to represent the full time domain. Indeed, the
solution at time ¢ = 0 will often have a negligible effect on the solution at much later
times. Thus, in many cases we believe that computing a global coarse grid introduces
an unnecessary sequential computational effort to an otherwise parallel algorithm.

In this paper, we introduce a new way to define the coarsest level in Parareal and
MGRIT, emphasizing reducing the serial work while avoiding large time steps. Instead
of solving the entire time interval serially on the coarsest grid, we define multiple
independent local coarse grids each consisting of k coarse-grid time points that can be
propagated independently and simultaneously. This idea was originally motivated by
similar processor-local multigrid hierarchies used in geometric and algebraic multigrid
for elliptic problems [2, 27, 28]. Such an approach offers both improved parallelism
and reduced computational cost compared with a global coarse-grid solve, while still
providing sufficient coarse-level information to each processor for rapid convergence
of the global problem. Due to the asynchronous nature of computing the truncated
coarsest grids, we refer to the new algorithm as “asynchronous truncated MGRIT”
(AT-MGRIT).

Section 2 introduces the algorithm in a two-level and multilevel context, providing
an FAS interpretation of the multilevel variant in Algorithm 2.2. In Section 3, we an-
alyze the new algorithm theoretically, derive two-level error propagators, and present
two-level convergence bounds in Subsection 3.2. We then describe various properties
of the algorithm in Section 4, including describing the implementation with associ-
ated communication scheme in Subsection 4.1 and performing a parameter study for
a model problem in Subsection 4.3. Finally, we apply the new algorithm to two chal-
lenging nonlinear problems, a chemical reaction in Subsection 5.1 and the simulation
of a realistic model of an electrical machine in Subsection 5.2. AT-MGRIT consis-
tently offers a 5-30% reduction in wallclock time compared with traditional MGRIT
and Parareal, and we expect the speedup to be greater if the algorithms were applied
on GPUs.

2. An overlapping and asynchronous coarse grid. Consider an initial value
problem of the form

(2.1) w(t) =f(t,u(t)), u(to) =go, tE€ (to,ts]

We discretize (2.1) on a uniformly-spaced temporal grid t; = iAt, i = 0,1,..., Ny,
with constant step size At = (t; — to)/Ny, and let u; = u(¢;) for i = 0,..., N,
with up = u(0). A general form of a single step time integration method for the
time-discrete initial value problem is

(22) u; :<I>i(u¢_1)+g¢, i:1,2,...,Nt,
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ASYNCHRONOUS TRUNCATED MGRIT 3

Fig. 1: Two-level temporal grid-hierarchy example for the AT-MGRIT algorithm
with Ny = 15, m = 2 and k = 4. The C-points (long markers) define the global coarse
grid. For each point p = 0,...,7 on the global coarse grid, a local coarse grid 7 is
created.

where ®; is a one-step time integrator, propagating a solution u;_; from a time point
t;—1 to time point ¢;, and g; contains forcing terms. Equation (2.2) can be written as
a semi-linear matrix equation

I Ug 20
—®,() I u; g1

A(u) = ) . =1 | =8
—®nN, () I] |up, gN,

where ®;(-) indicates that ®; is nonlinearly evaluated at the corresponding (block)
vector entry. This system can be solved by a (linear) sequential block forward solve.

In contrast, the iterative AT-MGRIT algorithm solves the problem by updating
multiple time points simultaneously. In the following, we first introduce the idea of
the algorithm in Subsection 2.1 for the two-level case and explain how the algorithm
works. We then discuss how the two-level method can be extended to a multilevel
setting.

2.1. Two-level AT-MGRIT algorithm. For a given time grid t; = iAt,i =
0,1, ..., V¢, and a given coarsening factor m > 1, we define a splitting of all time-points
into F- and C-points, such that every m-th point is a C-point (note, non-uniform
coarsening is also possible; uniform coarsening is used here to simplify presentation).
This defines a global coarse grid of C-points T; = iAT,i = 0,1, ..., Np, with time step
AT = mAt; all other non-C-points are F-points. Based on this global coarse grid,
we define Nt + 1 overlapping local coarse grids. Given local grid size k, the pth local
coarse grid, 7® for p =0, ..., Ny, is given by

TP = {iAT :i € [max(0,p — k + 1), p]},

with time step size AT = mAt, as depicted in Figure 1.
The two-level AT-MGRIT algorithm uses this time-grid hierarchy to solve time-
dependent problems of the form (2.2) and is based on the following procedure: Given
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4 J. HAHNE, B. S. SOUTHWORTH, AND S. FRIEDHOFF

an initial solution u and the right-hand side g, the first step of the algorithm applies a
block relaxation, the so-called F-relaxation, to the fine space-time system of equations
Au = g. The F-relaxation propagates the solution from a C-point to all following
F-points preceding the next C-point (analogously to standard MGRIT /Parareal [11]).
The relaxation of each interval of F-points can be executed in parallel and consists
of m — 1 sequential applications of the time integrator. In the next step, the global
residual vector r is computed and restricted by injection (Rgp ))

For each local coarse grid, the coarse system Aﬁp )ugp ) — r&” ) is solved, which consists

of k — 1 sequential applications of the coarse time integrator. Since the coarse-grid
problems are independent of each other, they can be solved simultaneously. Then,

to all local coarse grids.

the global solution vector is corrected using “selective ideal” interpolation, Pép ). The
selective ideal interpolation is the transpose of an injection followed by an F-relaxation
starting from exactly one point in time. More precisely, the approximation of the
solution at the last time point of each local coarse grid is interpolated to the fine grid
and then, an F-relaxation is performed using these interpolated points. The steps are
applied iteratively until a desired quality of the solution is achieved. The two-level
AT-MGRIT algorithm is summarized in Algorithm 2.1.

Algorithm 2.1 AT-MGRIT (4, u,g)

1: repeat

2 Apply F-relaxation to Au=g

3 Compute residual r = g — Au

4 For p =0 to Np:

5: Restrict residual, ré” ) — Rgp )y
6

7

8:

) (»)

Solve local system AP ul? = ¢!
Correct using u = u + Pép)uép)

until stopping criterion is reached

We follow the typical MGRIT notation here and therefore specify the F-relaxation
in line 2. From the second iteration on, this F-relaxation can be skipped, since the up-
dates are already performed as part of the selective ideal interpolation of the previous
iteration. Note, that the AT-MGRIT algorithm solves for the exact solution in Np
iterations if £ > 1. Furthermore, the algorithm is equivalent to the Parareal method if
k= Np+1,1i.e., if all local coarse grids contain all C-points before in time. All com-
ponents of the AT-MGRIT algorithm are highly parallel. The only communication
needed is for the residual computation and the distribution of the residual (performed
by the matrix-vector product r'?) = Rgp )r in Algorithm 2.1). Moreover, the coarse-
level solve is communication-free (except for any communication that arises in spatial
parallelism). This is particularly relevant for emerging heterogeneous computing ar-
chitectures, where communication to and from GPU nodes can be quite expensive,
and high efficiency is obtained with a low communication to computation ratio. For
the coarse time integrator ®;,, here we choose a re-discretization of the problem with
step size AT, but other choices such as coarsening in space [34, 25, 20] or order of
discretization [29, 12] can also be used.

2.2. Multilevel FAS AT-MGRIT algorithm. The two-level AT-MGRIT al-
gorithm can easily be extended to the multilevel setting and the full approximation
storage (FAS) framework [5] can be used to solve both linear and nonlinear problems.
Analogously to MGRIT, a multilevel hierarchy of temporal grids is constructed recur-
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Fig. 2: Example of a three-level time grid hierarchy for the AT-MGRIT algorithm for
a fine grid with 21 time points, m = 2 and k = 4. At the coarsest level, a local coarse
grid is generated for each C-point of the global coarse grid (gray box). These local
grids (T(Q’p),p =0,...,5) replace the global coarse grid used in the classical MGRIT
algorithm.

sively using a uniform or non-uniform coarsening strategy. AT-MGRIT uses the same
levels, coarsening, relaxation, and transfer operators as MGRIT on all finer levels
in the hierarchy, but the coarsest MGRIT grid is replaced by local grids. Figure 2
shows an example grid hierarchy for three-level AT-MGRIT with N; = 20, m = 2,
and k = 4. While MGRIT utilizes the global coarse grid on level 2, AT-MGRIT uses
local grids 73 p=0,...,5.

In the following, we assume that all problem-dependent forcing terms are in-
cluded in the time integrator. Then, the multilevel FAS AT-MGRIT V-cycle algo-
rithm is given in Algorithm 2.2, where Nt(z) denotes the number of time points, and
AOu®) = g and AEPIuEP) = g(tr) gpecifies the space-time system of equations
on levels £ = 0,1,...,L — 1 and on the local coarse grids p = 0,1,..., Nt(g), respec-
tively. On all except for the coarsest level, we use restriction by injection (Rgz)),
“ideal” interpolation (P¥)), and F(CF)"-relaxation. For more details on MGRIT
(and thus AT-MGRIT on finer levels), see [11]. At the coarsest level, restriction and

interpolation to and from the local coarse grids is done by injection, denoted by Rg’p )

and Pl(e’p ), respectively. Note that at the coarsest level, the residual is first trans-
ferred to the global coarse grid and then to the local coarse grids, allowing for a nicer
notation of the algorithm. AT-MGRIT can also be used with other common MGRIT
cycle types, such as F-cycles [38] or nested iterations [23, 22]. While F-cycles visit
the coarsest level several times per iteration, nested iterations compute an improved
initial guess by starting on the coarsest level and interpolating the solution to the
finer levels, applying one V-cycle per level. For all cycle types, the standard MGRIT
coarsest level can be replaced by local coarse grids. Analogous to the two-level setting,

AT-MGRIT is equivalent to MGRIT if k = N/*™9 + 1.

3. Theory. This section develops convergence theory for AT-MGRIT in the lin-
ear two-level setting. The analysis is built on two-level MGRIT /Parareal theory devel-
oped in [9, 36], and gives insight on the effects of truncating the coarse-grid time grid.

This manuscript is for review purposes only.
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6 J. HAHNE, B. S. SOUTHWORTH, AND S. FRIEDHOFF

Algorithm 2.2 AT-MGRIT FAS(Y)

1: repeat

2 if £ is the coarsest level:

3 For p =0 to Nt(z):

4: Restrict to local grids

5 v(er) = R{EP) (v(0))

6 g(tr) = RETE’P) (g®)

7 Solve local problem A®P) (u@r)) = AEP) (v(Er)) 4 g(t:r)
8 Update ul®) = PI(Z’p)u(Z*p)

9

else
10: Apply F-relaxation to A (u®)) = g(®
11: For 0 to v:
12: Apply CF-relaxation to A® (u®)) = g(®)
13: Inject the approximation and its residual to the coarse grid
14: ul+D — R(é)(u(e))
15: v = i+
16: gt = R (g() — AOy®)
17: Solve on next level: AT-MGRIT (¢ + 1)
18: Compute the error approximation: e = u(“+? — y(¢+1)
19: Correct using ideal interpolation: u®) = u® + P (e)

20: until stopping criterion is reached

We begin by introducing the error-propagation operator in the case of exact solves
on a truncated coarse grid (Subsection 3.1.1) and inexact coarse-grid solves (Sub-
section 3.1.2). Formal two-level convergence bounds are provided in Subsection 3.2.
Because we are in the two-level setting, we drop £ superscripts from Subsection 2.2.

3.1. Error propagation. Following from [11], the two-level error propagation
operator for linear AT-MGRIT with an exact coarse-grid solve is given by:

Nt
(3.1) £ = <[ -3 ng)(Agm)—lR?)A) PRy,
p=0

where AE” ) represents the local coarse grid systems, Rgp ) is the restriction operator to

the local coarse grids, and Pé.p ) defines the interpolation from the local coarse grids
that updates the fine grid using selective ideal interpolation, i.e., for one specific C-
point, this C-point and the following interval of F-points are updated. We see that
(3.1) is analogous to that derived in [11, Eq. 2.12], but here we must sum over C-
points, as each C-point is updated by a unique local coarse-grid. The operators P
and Ry, corresponding to ideal interpolation and restriction by injection, respectively,
are given by

This manuscript is for review purposes only.
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min(p,k—1)

B T _’_& -
I
o L pm
P = I® m )
: I
(I)m—l
C ] PO LRI
g =
- ——— -
I }1 pm-1
R[ — 0 - 0 I R ¢ Ni+1—(p+1)m
Nt

Note, that the operator PR is equivalent to error propagation for F-relaxation [11].
Recall that the fine-grid operator has block dimension (V; + 1) x (N, + 1), with each
block being a square operator the size of ®. Letting Ny = mNp for coarse-grid points
0, ..., N7, the fine-grid size can be written as (mNp + 1) X (mNy + 1), which we will
use to express error propagation largely in terms of m X m coarse blocks. Each of
these blocks represents a block of one C-point and m — 1 following F-points. At the
end, there is a single block containing only one C-point. Note that the structure
for this block is always a submatrix of the m x m blocks, containing only the part
corresponding to the C-point.

3.1.1. Exact local coarse grid solve. First, we consider the effect of the local
coarse grids using exact solves on the coarse time steps. For this purpose, we define
the local coarse-grid problem as

Ag”) — Rgp)AP(p),

where P(®) and Rgp ) define the transfer between the fine grid and the local coarse
grids and are submatrices of P and R;. For P®) only columns of P associated to
points lying on this local coarse grid are considered. Equivalently, only the associated
rows are considered for the restriction. Then, the coarse-grid problems are given by

min(p+1,k)
I
o™ T
Rgp)Ap(p) — —pm T b min(p+1.k)

—om T

Here, it is important to note that all local coarse-grid systems Rgp )AP® have the
same structure, but consider different time intervals. In fact, the exact local coarse-
grid systems are principal submatrices of the Schur complement corresponding to a
standard Parareal/MGRIT coarse-grid with exact solves [11].

We can now examine the error-propagator £, using exact solves on the local coarse
grids. We refer to Appendix A for detailed algebraic derivations. In forming &, by
summing over p = 1, ..., N7, we obtain a block lower triangular matrix, whereby each

This manuscript is for review purposes only.
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p updates m rows of £, and the error-propagator using ideal local coarse grids can be
written in block form as

(3.2)
m m(Np—2) m+1 m
—~— ~ — r
o - 0 }m pkm
. @km—&-l 0
: L (k—1)m g = ) ) ) ) m
0 : Do
=G 0 --- 0 , pkm+m-1 0 ... 0
0 b (Np—k)m i i
—
0 G o _ I
_ G= |okm 0 o}
0 0 G 0 b i

where G is identical to the first row of G and represents the additional block con-
sisting of one C-point. Note that the error propagator &, is nonzero, so unlike
Parareal /two-level MGRIT, AT-MGRIT using exact local coarse-grid inverses is not
a direct method. For all p > k, we have some error perturbation that results from
truncating the exact (Schur-complement) coarse grid.

3.1.2. Approximate local coarse grid solve. As typical for multigrid reduc-
tion techniques, we do not invert Rgp ) Ap® exactly, but approximate Rgp JAP®) A
ng ) Specifically, we approximate the powers ®™, which correspond to m applica-
tions of the fine time integrator ®, with a coarse operator W. This results in the

approximation Aép ) given by
min(p+1,k)

A — min(p+1,k) .
c

v T

Using this approximation, we can formulate the error-propagation &, using the ap-
proximated local coarse-grid inverse. Again, we refer to Appendix B for derivations.
The error-propagation operator with approximate coarse grid, &,, is then given by

This manuscript is for review purposes only.
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m m(Np—1) 1
_ ~ —_—
0 0|}~
Zy 0 0
: . . 0 |} *k—1)m
Zk72 Zo 0 0
(3.3) &a :
W Zk2--- 29 0 0
o . . C | Nr—R)m
0 . W2Zk2 -+ Z0 0 0
0 0w Z_k72"'20 0 }1
with block matrices Z; and W given by
(3.4)
(I)O\Ijj(q)m,\p) 0 --- 0 dOPk—1pm 0 --- 0
Zi = : S : Lo
(I)m—l\llj(q)m _\Ij) 0O --- 0 (pmflqjkflq)m 0O --- 0

and W and Z’j are again identical to first row of YW and Z;, respectively.

3.2. Convergence bounds. To avoid multiple subscripts, we omit the subscript
a of &, from (3.3) in the sequel. Using f and ¢ subscripts to denote F- and C-points,
respectively, £ (3.3) can be reordered and partitioned into 2 x 2 block form. Moreover,
notice that F-points columns of Z; and W (3.4) (and therefore also of &, (3.3)) are all
zero. If we then consider powers of the matrix, which correspond to several iterations,
we get

¢ ¢ £—1
ot {gff ﬂ _ [0 gfc} _ [0 EroEls } |
Eer e 0 & 0 &L,

It follows from above that for multiple iterations, convergence is fully defined by
Eee € RNTHIXNTHL that is, £¢ will be convergent in some norm, that is, ||E¢] < 1,

if and only if £, is as well. To that end, we consider analyzing the C-C principle
submatrix of (3.3),

(35)  Eee =
. 0 -
(@™ — ) 0
: (@™ —v)
TE2 (@™ — ) : 0
yr-lgm Tr=2(o™ — @) e (™ — ) 0
| TE-lem  gR2(em —w) ... (@™ —-¥) 0]

This manuscript is for review purposes only.



266
267

268

269

279

280
281

283
284
285
286

287
288
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Now consider the case of ® and ¥ being simultaneously diagonalizable, as would
occur if the same (diagonalizable) spatial matrix is used on the fine and coarse grid.
Let U denote the shared eigenvector matrix of ® and ¥, with eigenvalues p € o (V)
and A € o(®), where o(¥) and o(®) denote the spectrum of ¥ and P, respectively.
Following the frameworks developed in [9, 36], let U denote a block-diagonal matrix,
with diagonal blocks given by eigenvectors U. Then,

Eeell(Ggey-1 = g s
| 4C||(UU) 1 g}i}i el

where || - || here corresponds to the £2-norm, and &, is defined as follows for a fixed
pair of eigenvalues {u, A}:

gcc =
‘ o ]
(A" =) 0
(A™ = p)
pEEO = ) : 0
pETINT O =) A" —p) 0
I prINT B TR =) (N =) 0

If the spatial matrix is normal, then ((7 17*)_1 = I. In general, bounding e in the
¢2-norm for each eigenvalue pair guarantees convergence of & in a certain eigenvector
induced norm, where “convergence” corresponds to a guaranteed reduction in error
every iteration (in contrast to, e. g., nilpotency, where convergence is eventually guar-
anteed, but error could in principle diverge significantly for many iterations before
sudden convergence to the exact solution).

Recall the inequality ||§CCH2 < chc||1||§cc||oo. Given that &.. is Toeplitz, the
maximum row and column sums are equal, yielding the bound

k—2
[€eccll < N€cellx = [A™ = p Z | 4 Ak
£=0
A — | (1 — |1
56 sl B e

1 — |ul

Results are summarized in the following theorem.

THEOREM 3.1 (Two-level convergence). Let ® and U be simultaneously diag-
onalizable with eigenvectors U, and consider two-level AT-MGRIT with coarsening
factor m and local coarse-grid size k. For a given CF-splitting of time points, error
propagation takes the form

st & Ere Cfo gl
Eof e o & |
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Further, assume ® and ¥ are stable in an eigenvalue sense, that is, |u|,|\| < 1 for
al peo(¥), A€ o(®), and define

|A™ — p

(ptg(:u?/\) = 1— |,LL|

for eigenvalue pairs (with shared eigenvector) {p, A\}. Then,
BT el g+ < max (o ) + 61N = i1 V).

Proof. The proof follows from a simple expansion of (3.6). a0

COROLLARY 3.2. Under the same assumptions as Theorem 3.1,

(3.8) 1Eccll @)+ < max (ioeg e, A) + (L= eg (1, V) -

Proof. Note that

A" = pl (= u* ) A = pl (= [uf?) LA —
1 —|p L — |pl

In addition, we have |\ uF =1 = [P~ (N™ —p) +pF| < [P N — p|+ || Plugging
these two results into (3.6), yields an upper bound

AT — (L= [pl®)

An analogous expansion as used in Theorem 3.1 completes the proof. ]

Note that the first term, ¢yq, in (3.7) and (3.8), to O(1/Nr), provides necessary
and sufficient conditions for convergence of two-level Parareal and MGRIT |9, 36, 37],
while the second term introduces an error perturbation that results from truncating
the coarse grid. Although Corollary 3.2 is less tight than Theorem 3.1, it provides
a more intuitive description of convergence. Note that error modes which converge
fast for traditional Parareal/ MGRIT, ¢y4(p, A) = 0, lead to the largest perturbation
of convergence for AT-MGRIT , ~ |u*| (this also suggests convergence will be better
for a more “diffusive” coarse solver, that is, a coarse solver with generally smaller
eigenvalues). In contrast, there will be much less degradation in convergence for
modes that are relatively slow to converge for traditional Parareal/ MGRIT.

This leads to a further important observation on convergence of AT-MGRIT : with
some algebra,' one can show that the “error” subdiagonal, that is, the subdiagonal
of &.. that lacks a \™ — i scaling, is propagated out of the matrix after [(Np +1)/k]
iterations (i.e., all matrix entries then have at least one power of A™ — p). This
suggests a natural heuristic to choose k:

Choice of k: choose k at least large enough so that [(Np + 1)/k] approzimates the
number of iterations to converge for traditional two-level Parareal.

LThere are various ways to show this; perhaps the most formal is in noting that multiplication

of Toeplitz matrices such as Sfc corresponds to finite discrete convolutions. One can also simply
expand £, = (Ecc + pF~IA™I_;)P, where I_}, is a diagonal of ones on the kth subdiagonal.
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12 J. HAHNE, B. S. SOUTHWORTH, AND S. FRIEDHOFF

The number of iterations for Parareal convergence is defined by the slowest converg-
ing modes, which are in turn the least affected in convergence of AT-MGRIT by the
perturbation term in (3.7) and (3.8) (i.e., we expect these modes to converge in a
roughly similar number of iterations for AT-MGRIT). As mentioned previously, the
fastest-converging modes for Parareal/ MGRIT, however, can suffer significant degra-
dation of convergence in AT-MGRIT. Thus, we choose k so that the error perturbation
for these terms is eliminated via nilpotency at (approximately) the same number of
iterations as the slowest converging modes for standard Paraeal/ MGRIT will have
converged. After this nilpotency is achieved, these “fast” modes will rapidly converge
(if they have not already) due to ¢4(p, A) < 1. These observations can be seen in
practice in Figure 6(b), where at almost exactly [(Nr + 1)/k] iterations, the residual
drops precipitously, decreasing by as much as four orders of magnitude on the fol-
lowing iteration (see Figures 6(a) and 6(b) and surrounding text for a more detailed
discussion).

Last, it is important to remember that theory developed in this section is for two-
level AT-MGRIT applied to linear problems. The resulting heuristic for choosing &
provides a good starting point, but multilevel AT-MGRIT or application to nonlinear
problems as considered in Section 5 may require larger k (e.g., see Table 4).

4. Algorithmic properties. This section examines nuances of the AT-MGRIT
algorithm, including a communication scheme for distributing residuals on the coarsest
level (Subsection 4.1), the implicit propagation of initial conditions across the time
domain (Subsection 4.2), and a study on the new parameter k (Subsection 4.3).

4.1. Implementation. We have implemented Algorithm 2.2 in parallel as part
of the PyMGRIT package [19, 4] framework. When applying the algorithm in parallel,
we assume that at the coarsest level at most one C-point of the global grid lies on
one process. In principle this is not necessary, but ensures that the solves of the local
problems can be perfectly parallelized. To solve the local problems, the fine(r)-level
residuals must be distributed. Let po,p1,...,pn,, Where Np is equal to the number
of points on the coarsest global coarse grid, be all processes containing a C-point
on the coarsest grid. Then, we define two groups of MPI communicators. The first
decomposition divides all processes based on the local grid size k into [(Np + 1)/k]
groups, where the first group consists of processes pg, p1, ---, Px—1, the second consists
of processes pg,pPk+1, - P2k—1, and so on. The second decomposition divides the
processes px_1, ..., PN, into groups of size k, so that the first group consists of processes
Dk—1, -+, P2k—2, the next of processes pag_1, ..., P3x—1, and so on. Then, the distribution
of residuals is given by a communication within all groups of the first decomposition,
followed by a communication within all groups of the second decomposition. Note that
the groups of a decomposition do not overlap, allowing for parallel communication
within each group. Figure 3 shows an example of the residual communication for a
two-level AT-MGRIT algorithm with a global coarse grid with N = 5, along with a
description of the communication stages.

4.2. Propagation of the initial condition. A key feature of the AT-MGRIT
algorithm is the implicit propagation of the initial condition through the iterations
of the method, which allows for using local coarse grids that do not include the
initial time point. The idea of implicit propagation of the initial condition is best
explained in a two-level example with F-relaxation. Figure 4 shows an example of
the distribution of local coarse grids for Ny = 20, m = 7 and k = 3. Only the first
three local coarse grids have direct access to the initial condition and, thus, the initial
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Fine  HHHHHHHHHHH  HHHHHHHHH . B

Proc 0 I I |

Proc 1 _I I_I I_I

Proc 2 _I I_I_I 7 A

Proc 3 — H Y i

Proc 4 —l —-|—| 10000000000 —|—|
Proc 5 _I I_l_l I_I_I

Fig. 3: Illustration of the communication scheme for P = 6 processes and local grid
size k = 3. First (left), each process computes the residual of its rightmost C-point.
In a second step (middle), the residuals are distributed in parallel within the groups of
the first decomposition (gray boxes). Last (right), the residuals are distributed within
the groups of the second decomposition (shaded boxes), after which each process has
all the required residuals.

HHHHHHHHHHH .

| I I
I — I
—— ] I
e e [
i o [
- - o
- - -
(a) Iteration 1 (b) Iteration 2 (c) Tteration 3

Fig. 4: Implicit propagation (gray box) of the initial condition for a two-level AT-
MGRIT variant with F-relaxation and N; = 20, m = 3 and k = 3.

condition is distributed over the first three local coarse grids in the first iteration. All
other local coarse grids do not have access to the initial condition at this point. In
the second iteration, again only the first three local coarse grids directly contain the
initial condition. However, the next two local coarse grids now contain C-points of
local coarse grids, which directly depend on the initial condition from the previous
iteration, making them implicitly depend on the initial condition as well. In the next
iteration, the next two local coarse grids implicitly depend on the initial condition,
and so on. In the end, the two-level AT-MGRIT algorithm with F-relaxation requires
[(Nr + 1)/k] iterations until all local coarse grids depend implicitly on the initial
condition. Note that in the two-level variant with F'C F-relaxation, the initial value
is also propagated to the next C-point on the fine grid due to the additional C'F-
relaxation and, thus, the initial condition is propagated faster. Also note that the
propagation in the multi-level case is even faster than in the two-level case, since the
initial condition is additionally propagated by the relaxations on the intermediate
level(s).
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14 J. HAHNE, B. S. SOUTHWORTH, AND S. FRIEDHOFF

4.3. Size of local coarse grids. The parameter k defines the size of the local
coarse grids and, thus, the number of sequential solves needed on the coarse grid.
In the following, we consider the influence of the parameter k& on the convergence of
AT-MGRIT applied to a standard model problem for parallel-in-time methods, the
one-dimensional heat equation,

(4.1) Up — gy = b(x,t) in [0,3] x [0, 7],

where a is the thermal conductivity, and subject to the initial condition u(x,0) =
sin(mz) and homogeneous Dirichlet boundary conditions in space. The forcing term
is choosen as b(x,t) = —sin(7z)(sin(t) — 72 cos(t)), such that the exact solution is
given by u(x,t) = sin(wz)cos(t) for a = 1. We first examine the behavior of k for
a =1 and a = 0.01, and then choose a = 1 for more detailed results.

We discretize (4.1) using second-order central finite differences with 1,025 degrees
of freedom in space and on an equidistant time grid with 16,384 time points using
backward Euler. We investigate the behavior of the AT-MGRIT algorithm for the
two-level case, and choose different coarsening factors m and local grid sizes k. We
restrict ourselves to the two-level case, since we want to study the effect of using local
coarse grids of various sizes k. For all simulations, the stopping tolerance is based on
the discrete 2-norm of the absolute space-time residual with a tolerance of 10~7 and a
random initial guess is chosen for all time points except for the initial condition. This
choice guarantees that no knowledge of the right-hand side is used that could affect
the convergence. Note that this is only a good choice for investigating the behavior
of the algorithm and is not recommended in practice.

Figure 5(a) shows the required number of iterations to reach the stopping criterion
for a two-level AT-MGRIT variant with F-relaxation and a coarsening factor of m =
128 as a function of size k for the two choices of the thermal conductivity. Note
that while the variant with k£ = 128, which is equivalent to Parareal, performs 127
sequential time steps on the coarse level, equivalent convergence can be obtained
with k = 12, 10x less coarse-grid solves. Note, that the behavior is similar for both
choices of a. Figure 5(b) presents iterations to convergence as a function of the ratio
of local to global coarse-grid points. For three different coarsening factors, we see
that convergence does not improve beyond the same ratio of k/(#C-points), in this
case about 0.08. Although this parameter is likely problem specific, Figure 5(b) does
suggest the choice of k is relatively agnostic to that of the coarsening factor by posing
it relative to the global coarse-grid size.

90-
45, —— a=1; 2-level, F, m=128 80- a=1; 2-level, F, m=64
40 —— a=0.01; 2-level, F, m=128 70/ —+— a=1; 2-level, F, m=128
" " —s— a=1; 2-level, F, m=256
u35 £60
o ]
%30 ®50
1~ b
§25, .}:’40
20! 30
20
15
0 20 40 60 80 100 120 0.05 0.10 0.15 0.20
k k/(#C-points)

(a) [[New image]] Iterations to convergence (b) [[New image]] Iterations to convergence
as a function of k. as a function of k divided by the number of
C-points.

Fig. 5: Required iterations for AT-MGRIT variants for the 1D heat equation.
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To better understand the convergence behavior described in Subsection 3.2, for
each spatial eigenvalue Figure 6(a) plots the theoretical convergence rate (3.8), the
(asymptotic in Nr) two-grid rate ¢4, and the corresponding eigenvalues for the
coarse- and fine-propagator for two-level AT-MGRIT with m = 128 and k& = 12.
Notice that on an eigenvector basis, theoretical convergence of AT-MGRIT almost
exactly matches that of Parareal, with (in this case) two exceptions, given by the
blue dots with convergence ~ 1. Each of these spatial eigenmodes correspond with
a coarse-propagator eigenvalue |u| ~ 1 and ¢;; < 1, which (see Corollary 3.2) leads
to a significant degradation in convergence (in a single-iteration sense). Figure 6(b)
plots observed convergence behavior for two-level AT-MGRIT with coarsening factor
m = 128 and various choices for k. The variant with & = 128 (i.e., Parareal) has
uniform convergence behavior, while convergence for smaller k is split into three parts.
Initially, convergence is much slower than for k£ = 128, due to the spatial eigenmodes
with [¢*| ~ 1 and ¢;, < 1 discussed above. The smaller k is chosen, the slower is
the convergence, since the convergence perturbation of [u*|(1 — ¢,) in Corollary 3.2
decreases with increased k. However, after almost exactly (Nr + 1)/k iterations (see
Theorem 3.1 and surrounding discussion), once the initial condition has been implic-
itly propagated over all local coarse grids, these problematic modes are eliminated
via nilpotency and a drastic improvement in convergence can be seen for all three
variants; e. g., for kK = 8, one iteration suddenly reduces the residual norm almost four
orders of magnitude. This rapid convergence lasts until the residual norm matches
that of Parareal, and convergence rates thereafter follow Parareal. Comparing the
theoretical and numerical results for m = 12, the theoretical bound (see Figure 6(a))
is given by 0.94987 and the maximum numerical convergence factor between two iter-
ations for the equivalent setting (see Figure 6(b)) is given by 0.7418. Note, observed
convergence is better than the theoretical bound due to many modes being rapidly
attenuated. Only a few modes are very slow to converge, with rates likely close to
the theoretical bound, but these modes degrade the average (across all error modes)
convergence rate.

k-]
c
0
_§ 10% o Two-level ARMGRIT (3.8)
0 1071 —o— @u(u, A)
v
€102
)
51073 g
E 1074 £
Y 100 — 3
g Fine level (1) P g E
1071 ..... I
T:; Coarse level (u) K o —a— 2-level, F, k=8
g0 P —— 2-level, F, k=12
S0 e 10-8 2-level, F, k=16
I SO URUY UPPPTITE LU —o— 2-level, F, k=128
T el
[\ 200 400 600 800 1000 0 3 6 9 12 15 18 21
eigenvalue index iterations

(a) Theoretical bound on convergence rate based (b) Residual norm as a function of
on (3.8), ¢tg, and eigenvalues sorted by ¢4, for iteration for two-level AT-MGRIT
m =128 and k = 12. with coarsening factor m = 128.

Fig. 6: Results of AT-MGRIT variants in terms of theoretical error bound (3.8) and
residual norm for the heat equation with a = 1.
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5. Parallel results. In this section, we present numerical results for AT-MGRIT
applied to two challenging, nonlinear time-dependent problems: the 2D Gray Scott
example of a chemical reaction of two substances, and a realistic model of an electrical
machine. In addition, we apply different two- and three-level variants of AT-MGRIT
and compare runtimes and iteration counts with the corresponding variants of Parareal
and MGRIT, respectively. For the two-level variants, we apply F-relaxation and we
choose the coarsening factor such that the number of coarse-grid points is equal to the
number of processes used for the simulation enabling perfect parallelization on the
fine level. For the three-level algorithms, we apply non-uniform coarsening strategies
with a coarsening factor of my = 64 between the fine and the intermediate level,
and different factors between the intermediate and the coarse level. All simulations
were performed on an Intel Xeon Phi Cluster consisting of four 1.4 GHz Intel Xeon
Phi processors. The code for all experiments can be found in the PyMGRIT repository
[18], and this package is also used for simulations with Parareal and MGRIT. For all
experiments, we use all possible resources for temporal parallelization, i.e., we do not
use spatial parallelization (largely due to limited resources). For a brief discussion on
the effect of spatial parallelism for the different algorithms, see Appendix C.

5.1. Gray Scott. We consider the 2D Gray-Scott problem [32] of a chemical
reaction of two components I/ and V, given by

g = DyAu — uv® + F(1 —u),
vy = DyAv +uv? — (K + F)u,

where u = u(z,y,t) and v = v(z,y,t) are the concentration of U and V, respectively,
D, and D, are the diffusion rates, F' is the feed rate, and K is the removal rate. For our
simulations, we choose the spatial domain [0, 2.5] with periodic boundary conditions,
and the time interval [0, 256]. Further, we choose the parameters F' = 0.024, K = 0.06,
D, =8x107% and D, =4 x 10~°, and we consider the initial value

u(z,y,0) = 1 — 2(0.25 sin(4mz)? sin(47y)?), (z,y) € [1,1.5)?
v(z,y,0) = 0.25sin(4rx)? sin(47ry)?, (z,y) € [1,1.5]?,

and u(z,y,0) = 1 and v(z,y,0) = 0 otherwise. The problem is discretized using
central finite differences with 1282 points in space and on an equidistant time grid
with 16,384 points using backward Euler. We solve the resulting nonlinear problem
using Newton’s method of PETSc [1] with a relative and absolute tolerance of 1071°.

We apply two-level and three-level AT-MGRIT variants, and compare the two-
level variants with Parareal variants and the three-level variants with MGRIT. Fur-
thermore, we use nested iterations to compute an improved initial guess. In the nested
iteration strategy, Parareal and MGRIT solve the global coarse-grid problem at the
coarsest level, while AT-MGRIT uses the local coarse grids instead of the global grid.
The stopping criterion for all variants is based on the discrete 2-norm of the space-time
residual with a tolerance of 1077,

Table 1 shows the number of iterations and runtimes of the setup and solve phases
of two-level AT-MGRIT and Parareal variants. The setup time consists of comput-
ing an improved initial guess and the solve time consists of applying the algorithm.
The results show that iteration counts of AT-MGRIT are equal to iteration counts of
Parareal with the same coarsening strategy. Furthermore, a finer coarse grid signifi-
cantly reduces the number of iterations required. While 12 iterations are needed for
the two-level variants with a coarse grid of only 32 points, this number is reduced to
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Speedup
Method m k # Procs | # Iters Se'ztup 891ve w.r.t
time time
Parareal
512 - 32 12 1,338 s 172,068 s -
256 - 64 10 2,308 s 89,288 s -
Parareal
128 - 128 9 3,958 s 66,485 s -
64 - 256 7 7,646 s 66,272 s -
512 | 16 32 12 701 s 165,351 s 1.04
Two-level 256 | 32 64 10 1,167 s 78,230 s 1.15
AT-MGRIT | 128 | 64 128 9 2,022 s | 48,675 s 1.39
64 | 128 256 7 3,812 s 39,895 s 1.69

Table 1: Tteration counts, setup times (for computing an improved initial guess), and
runtimes of the solve phase of two-level AT-MGRIT and Parareal variants applied to
the 2D Gray-Scott problem for various numbers of processes.

seven iterations for the variants with 256 coarse-grid points. However, this reduction
in iterations is accompanied by significantly more expensive sequential coarse-grid
solves, reflected in increasing setup times with increasing points on the coarse grid.
However, if the number of points on the coarse grid doubles, the setup time does not
double. This is because a smaller time step requires fewer Newton iterations and,
thus, affects the duration of the application of each time integration. The setup time
of each AT-MGRIT variant is about half as long as that of the corresponding Parareal
variant due to the choice of k. Looking at the runtimes of the solve phase, we see
that AT-MGRIT is always faster than the corresponding Parareal variant, achieving
a speedup of up to a factor of 1.69 compared to Parareal. Furthermore, we see that
while the Parareal algorithm does not scale for more than 128 processes, since the se-
rial part of the algorithm dominates the benefit of the additional parallelization of the
fine level, the AT-MGRIT algorithm shows good parallel scaling up to 256 processes.

Table 2 presents similar results to Table 1 for four different three-level variants
of AT-MGRIT and MGRIT with FC F-relaxation on 256 processes. The number of
iterations here does not depend as much on the coarsest grid as in the two-level case,
but we still see that the MGRIT variant with the coarsening strategy (64, 2), i.e., the
variant with the most points on the second level, requires the fewest iterations. The
corresponding AT-MGRIT variant needs one additional iteration, but after the sixth
iteration the stopping criterion is slightly missed. A minimal increase in k& would likely
eliminate this extra iteration. In terms of solve times, we see that all variants of the
AT-MGRIT algorithm are faster than the corresponding MGRIT variants, even the
variant that requires an additional iteration. Again, the more points on the coarsest
level, the higher the speedup of AT-MGRIT over MGRIT. Note that for this problem,
adding a coarser level to the three-level MGRIT variants does not guarantee further
reduction of the runtime. Rather, adding a level may increase the runtime. For
example, the four-level MGRIT with the coarsening strategy (64,8,2), which adds
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Method m k| # Tters Setup Solve Speedup w.r.t
time time MGRIT
(64,16) | - 7 3,525 s 43,604 s -
64,8 - 7 3,498 38,420 -
MGRIT (64,8) s e
(64,4) - 7 4,980 s 42,285 s -
(64,2) - 6 8,075 s 45131 s -
(64,16) | 8 7 2,864 s 41,054 s 1.07
4 1 2,174 s 3 1.1
AT-MGRIT (64,8) 6 7 174 s 33,688 s 7
(64,4) | 32 7 2,713 s 34,063 s 1.29
(64,2) | 64 7 4,247 s 38,571 s 1.24

Table 2: Iteration counts and runtimes of the setup and solve phase on 256 processes
of three-level AT-MGRIT and MGRIT variants with F'C F-relaxation and different
non-uniform coarsening strategies applied to the 2D Gray-Scott problem.

Method m k| # Tters S«Tﬁtup SQIVG Speedup w.r.t
time time MGRIT

(64,8) | 4 10 1,140 s 42,063 s 0.97
(64,8) 9 1,357 s 38,978 s 1.04
(64,8) 8 1,543 s 35,767 s 1.12

AT-MGRIT | (64,8) | 10 8 1,716 s 36,509 s 1.10
(64,8) | 12 8 1,877 s 37,060 s 1.08
(64,8) | 14 8 2,047 s 37,786 s 1.05
(64,8) | 16 7 2,174 s 33,688 s 1.17

Table 3: ITteration counts and runtimes of the setup and solve phase on 256 processes of
three-level AT-MGRIT with F'C F-relaxation, coarsening factor (64, 8), and different
choices of k applied to the 2D Gray-Scott problem.

another level with a coarsening factor of two to the variant with the coarsening factor
(64, 8) from Table 2, requires eight iterations and the overall runtime (setup and solve)
is 52,370 s.

Table 3 extends the results from Table 2 and shows the effect of different choices
of k for the three-level AT-MGRIT with coarsening factor (64,8). We see that the
number of iterations increases slightly as k decreases. Despite the increasing number
of iterations, the runtime for all £ > 6 is smaller than the runtime of the corresponding
MGRIT variant from Table 2. For smaller k, the runtime is larger compared to the
MGRIT variant because the cost of the additional iterations is more expensive than
the cost reduction due to the local coarse grids.

Figure 7 shows the overall runtime for one AT-MGRIT variant (blue line) and the
corresponding MGRIT variant (orange line) as a function of the number of processes
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219
217
g1
[}
E
=R LT
52130 e
LT R Y S
----- Perfect scaling
211 —=: Time-stepping on one process Tt
—4— 3-level AT-MGRIT, m=(64,8), k=16 = "Treeen]
3-level MGRIT, m=(64,8)
29

32 64 128 256
# processes

Fig. 7: Strong scaling results for one three-level AT-MGRIT variant, the correspond-
ing MGRIT variant, and sequential time-stepping on one process applied to the 2D
Gray-Scott problem. The red dotted line indicates the perfect scaling based on the
runtime of time-stepping.

537 and the runtime of time-stepping using only one process (black dashed line) which is
538 about four days. For reference, the red dotted line indicates the behavior of perfect
539 scaling based on the runtime of time-stepping. While the runtime almost halves when
540 using 32 and 64 processes, the scaling curve starts to flatten slightly with a higher
541 number of processes. This is mainly because only the fine level computations have an
542 additional benefit from more processes due to the chosen coarsening strategy, and the
543 runtime of the coarser levels becomes more and more dominant. However, compared
544 to the corresponding MGRIT variant, the AT-MGRIT variant scales better due to its
545 reduced work at the coarsest level.

546 5.2. Induction machine. The standard approach for the simulation of elec-
547 trical machines is based on neglecting the displacement current in Maxwell’s equa-
548 tions [21]. The resulting magnetoquasistatic approximation, the so-called eddy cur-
549 rent problem, is defined in terms of the unknown magnetic vector potential A :
550 Q x (to,ty] — R? as

551 oA+ V x (V()V x A) =T, in Q X (to, tf],

553 nx A=0 ondf,

with initial value A (x,t9) = Ag(x), spatial domain €2, consisting of the rotor, stator,
and the air gap in between, and where (o, tf] is the time interval. The magnetic flux
B = V x A vanishes at the boundaries 9f) of the spatial domain (Dirichlet boundary
condition). Three (n, = 3) distributed stranded conductors are modeled by the source
current density J; = > 07, Xsis, with winding functions x, : @ — R® and currents
is : (to,ts] — R3. An attached electrical network provides a connection between the
so-called flux-linkage, i.e., the spatially integrated time derivative of the magnetic
vector potential, and the voltage. The scalar electrical conductivity o(x) > 0 and the
(nonlinear) magnetic reluctivity v(x, |V x A|) > 0 encode the geometry. To consider
the rotation of the rotor, the problem is extended by an additional equation of motion;
we refer to [4] for more details.
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In the following, we consider a cross-section in the z, y-plane to reduce the spatial
domain to a two-dimensional (2D) domain Qp C RZ?. Discretizing in space using
finite elements with n, degrees of freedom yields a system of differential-algebraic
equations of the form

(5.4a) MU' (t) + K(u(t)u(t) = £(t), t€ (to,ty]
(5.4b) u(to) = uo,

with unknownu’ = [a”,i",0,w] : (to, ;] — R™. At each point in time ¢ € (o, ty], the
solution u(t) € R™ consists of the magnetic vector potentials a (¢t) € R™, the currents
of the three phases i (t) € R3, the rotor angle # (t) € R, and the angular velocity of the
rotor w () € R. The given voltages v(t) € R? and the mechanical excitation define
the right-hand side f(t). Note, that (5.4) is a differential-algebraic equation of index-1
[3, 7] due to the presence of non-conducting materials, i.e., regions with ¢ = 0, in
the domain, which can be treated by standard techniques in a parallel-in-time setting
[35].

The multi-slice finite element model “im_3 kw” [17] of a four-pole squirrel cage
induction machine is used for modeling the semi-discrete problem (5.4). A mesh
representation with n, = 4449 degrees of freedom is generated using Gmsh [15, 16].
Further, we choose top = 0, ty = 0.2 and a time grid with N; = 16,384 points, which
corresponds to a time-step size of 6t ~ 107°. Note that this time interval is required
approximately to reach the steady-state of the machine. For the simulations, only a
quarter of the machine is considered with periodic boundary conditions and the GetDP
library [10, 14], which implements the time integration using backward Euler, is used
for the computations. At each time step, the GetDP library is called and a nonlinear
problem is solved by applying Newton’s method with damping. For the stopping
criterion of the Newton solver, we choose a relative error of 1076. The machine is
supplied by a three-phase sinusoidal voltage source, and, as proposed in [17], an initial
ramp-up of the applied voltage is used for reducing the transient behavior of the motor
for the time interval [0, 0.04].

In the following, we present results for one Parareal variant and several two-level
AT-MGRIT variants. For all experiments, we use an improved initial guess given by
a global coarse-grid solve. Unfortunately, the use of too large time steps on the coarse
level in the simulation of the electrical machine in the time-parallel setting causes
at least one nonlinear solve within GetDP to fail to converge. Note that this also
prevents the use of another, even coarser level. To overcome this problem, we apply
subcycling at the coarse level, i.e., we apply three smaller steps per time step at the
coarse level, reducing the time step size and improving the accuracy of the solution.
For all algorithms, we use a convergence criterion based on the relative change in
Joule losses, an important quantity of an electrical machine, at all C-points of two
successive iterations; see [4] for details. The algorithm terminates when the maximum
norm of the relative difference of two successive iterations is less than 1%. Note that
this criterion does not guarantee convergence to the discrete time-stepping solution,
but for each variant it has been verified that it does indeed iterate to the discrete
time-stepping solution.

Table 4 shows the number of iterations, total runtimes, and the speedup com-
pared to sequential time-stepping on one process for different AT-MGRIT variants
and Parareal. Furthermore, the speedup compared to Parareal is shown for all AT-
MGRIT variants. Comparing the number of iterations, the Parareal algorithm and
AT-MGRIT with & = 24 both require five iterations to convergence. For 16 > k > 22,
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. Speedup Speedup w.r.t
Method k | Iterations Total time w.I.t time-stepping
(Setup + Solve)
Parareal on one process
Parareal | - | 5 | 405445 | - 4.64
12 8 39,480 s 1.03 4.77
14 7 36,188 s 1.12 5.2
16 6 32,710 s 1.24 5.75
Two-level
AT-MCRIT 18 6 33,337 s 1.22 5.64
20 6 33,996 s 1.19 5.53
22 6 34,626 s 1.17 5.43
24 5 30,582 s 1.33 6.15

Table 4: Iteration counts and total runtimes on 64 processes of Parareal and various
two-level AT-MGRIT variants with a coarsening factor of 256 for the simulation of
the induction machine.

six iterations are needed to reach the stopping criterion, and for £k = 14 and k£ = 16,
seven and eight iterations, respectively. Despite the increased number of iterations
for some variants, the total runtime of all AT-MGRIT variants is smaller than that
of Parareal, with the largest speedup of a factor of approximately 1.33. For this non-
linear problem, a slightly larger choice of k£ than the minimum choice proposed in
Subsection 3.2 gives the best results in terms of runtime. Note that the time for the
setup phase is the same for all variants and is about 2,891 s. Note also that both
algorithms treat the fine level identically, and the improvement comes only from using
local coarse grids instead of one global coarse grid. For comparison, the simulation
time using serial time-stepping on one process is 188,123 s, which is more than two
days. The fastest AT-MGRIT variant needs less than nine hours, which corresponds
to a speedup of a factor of 6.15.

6. Conclusion. In this paper, we introduce the new AT-MGRIT algorithm, an
iterative parallel-in-time algorithm for solving time-dependent problems. While the
fine level(s) are treated as in the Parareal/ MGRIT algorithm, the AT-MGRIT algo-
rithm modifies the coarsest level computations. Instead of considering one global time
grid that covers the entire time interval and is solved sequentially at the coarsest level,
the AT-MGRIT algorithm uses a number of truncated, overlapping local coarse grids,
one for each point on the global coarse grid. Each of these time grids is independent
and covers only a fraction of the global time interval, allowing each problem to be
solved simultaneously and reducing the serial work of the algorithm at the coarsest
level.

Theoretical and numerical investigations of the algorithm show that the use of
local coarse grids, which are not all connected to the initial value of the problem, in-
troduces an additional error term compared to classical Parareal/ MGRIT, which may
affect the convergence at the beginning of the algorithm. However, the AT-MGRIT
algorithm takes advantage of its iterative nature and eliminates this additional error
term during several iterations, achieving convergence in the same number of iterations
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as with Parareal/ MGRIT while significantly reducing the serial cost on the coarse
level. Simulation of challenging nonlinear problems shows that the MGRIT algorithm
can provide significant speedup compared to Parareal/ MGRIT. Future work involves
implementing and studying AT-MGRIT on GPUs and emerging shared-memory com-
puting architectures, where the local and asynchronous aspect of coarse grid solves is
likely to be particularly advantageous.

Appendix A. Error propagation for ideal local coarse problems. We
consider error-propagation &, for one C-point p = 0,..., Ny using the ideal local
coarse-grid problem (i.e., exact coarse grid and inverses). The structure of the ma-
trices differs for the first & C-points from all other C-points, since the local coarse
grids corresponding to the first & C-points contain all C-points prior in time. Here,
we want to study the effect of local coarse grids that do not extend back to t = 0.
Therefore, we start by considering all local coarse grids Np > p > k and subsequently
discuss the structure for p < k. Note that the structure of the matrices of p = Np
is always a submatrix of Np > p > k (see Section 3.1) and therefore is not explicitly

stated. For Ny > p > k the matrix R;p)A is given by

(p—k)m m km Ni+1—(p+1)m
N . N

1
1
1

----- e [ L [ S PN
1 1

1

1

1

1

1

1 . 1 .
_____ L2 e

1

1

1

1015 (m—1) =®1 I O1x(m—1)

which initially contains (p — k)m +m columns corresponding to the omitted points on
the local coarse grid. The following km columns correspond to the C-points present
on the local coarse grid and their corresponding following interval of F-points. Next,
we consider

k
o
(b(k—l)m PH2m pm I
(I)(kfl)m+1 . (1)27n+1 (I)m+1 P
Pép)(Agp))—l _ ' ' ' . m
(I)km—l . @37.71—1 @27'71—1 (1)77.1—1
}Nt+1—(P+1)’m

with AP as in (3.1.1), which defines the effect of selective ideal interpolation multi-
plied by the inverse of the coarse-grid problem. Due to the selective ideal interpolation
operator, exactly m points are considered, namely the C-point to be updated and the
following F-interval consisting of m — 1 points. All other points are not changed by
the update of one p and the corresponding rows are therefore zero. As a consequence,
the product Pép )(Aﬁp ))_lep ) A also has only m nonzero rows. Furthermore, we have
exactly k + 1 blocks of m x m matrices which are not equal to zero. The matrix
Pép) (AP)=1R) A in block form is given by
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(A.2)
(p—k)m m (k=1)m m  Ng+l—(p+1)m
PR a “ “ ~
1 1 1 1 1 1
1 1 1 1 1 1 }pm
1 1 1 1 1 1
————— U U U T
1 1 1 1 1 1
_ 1 1 1 1 1 1
672 1 D v Vo e 1 VO 1 S 1 }ma
1 1 1 1 1 1
_____ O T S S SO TR
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 }Nt+17(p+1)m

673  with block m x m inner matrices

I 0 --- 0 0 -+ 0 —pk-1m+1
) : . 0 -+ 0 —p—1)m+2
674 (A.3) S = : o D= )
(I)mfl 0o --- 0 0o --- 0 7(pkm
(I)(jJrl)m 0O --- 0 _q)jerl
q)(j+1)m+1 0 --- 0 _(I)jm+2
V; =
pU+2)m-1 0 --- 0 —pl+hm
675 Here, D comes from the truncated coarse-grid points, Vi _o, ...,V represent the first

676  k — 1 local coarse-grid points, and S corresponds to the last point of the local coarse
677 grid. Note, the S-block is the diagonal block of the larger matrix. Now, we consider
678 the operator PR, which is equivalent to an F-relaxation, and globally given by

S
679 PR; =
S

680 We can now calculate the error-propagation (I — Z;V:TO Pép ) (A&p ))_IR(IP )A)PRI by ex-
681 ploiting the structure of the matrices Pép J(APY-1R¥) A and PR;. Instead of comput-
682 ing the complete matrix, we can compute the blocks —DS,-V;S for j =k —-2,...,0,
683 and (I —S)S. Note that the identity term is added to —S because S is the diago-
684 mal block of Pé“(AE”))—lep)A. Working through the algebra yields —V;S = 0 for
685 j=k—2,...,0, I —8)S = 8? — S =0, and the block m x m matrix

(I)km 0o --- 0
q)karl 0o --- 0

686 —DS = R
(I)km-.&-m—l 0 . . 0
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which is equivalent to the definition of G in (3.2). Note that for the case p < k in
matrix (A.2) the operator D is omitted, since for these C-points all previous C-points
are contained in the local coarse grid.

Appendix B. Error propagation for approximate local coarse problems.
The definition Rgp ) A is the same as in (A.1), but now

_________________________ } pm
(»)

PPA" = ; ; : : m

} Ni+1—(p+1)m

As aresult, we get a block matrix equivalent to (A.2), but this time with m x m block
matrices V; and D given by

PO U+1) 0 --- 0 — 0PI P 0 - 0 —Ppopk-19p
V= : : : : D= |: : :
(I)m—lqj(j+1) 0 -+ 0 —pm1yip 0 -+ 0 —pm1yrk-1¢p
Note, that S is the same as given in (A.3). Again, we use the structure of the matrices

and calculate m x m block submatrices of Pép )(l(p))*lep )APR; given by

(I)Olllj(@m,\p) 0 --- 0 POgE-1em 0 --- 0
Vi8S = : L1 -Ds=

eI (®™ — W) 0 --- 0 m-lgk-1em 0 --- 0
where —/];;S is equivalent to Z; from (3.4) and —DS is equivalent to W from (3.4).

Appendix C. Discussion spatial parallelism. Here we demonstrate that the
use of spatial parallelism has comparable effects on sequential time-stepping (before
saturation) as it does on AT-MGRIT . In particular, we emphasize that when spatial
parallelism saturates, the observed near-perfect speedup obtained by spatial parallel-
ism before saturation will extend to AT-MGRIT. Table 5 presents overall runtimes for
using one and four processes in space for time-stepping, Parareal, and two-level AT-
MGRIT, the last two using 64 processes in time (same variants as in Table 1). We see
that for all algorithms we get a speedup of about 3.8 by using four spatial processes
compared to one process. Note that this problem scales well with spatial paralleliza-
tion, and spatial parallelism (as in most cases) should be the first choice. However,
spatial parallelization is exhausted at some point and temporal parallelization can
then provide additional speedups.
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Space Time-stepping Parareal Two-level AT-MGRIT
processes one time process | 64 time processes 64 time processes
1 347,666 s 91,596 s 79,397 s
4 92,473 s 23,708 s 20,411 s

Table 5: Total runtimes using one and four processes in space for time-stepping,
Parareal, and AT-MGRIT with & = 32, the latter two using a coarsening factor of
256 and 64 processes in time.
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