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ABSTRACT

The Advanced Materials and Manufacturing Technologies program [1] aims to accelerate the development,
qualification, demonstration, and deployment of advanced materials and manufacturing technologies
to enable reliable and economical nuclear energy. However, the distinct characteristics of additive
manufacturing (AM) materials, stemming from their unique processing history, microstructure, and
properties, pose significant challenges for the qualification and certification of nuclear components.
These challenges primarily arise from component-scale variations in microstructure and properties
influenced by local process conditions and geometry, which affect thermal history, melt pool dynamics,
and microstructure evolution. Computational modeling tools can play a crucial role in predicting and
controlling this variability. This report presents preliminary results on process modeling tools designed
to predict microstructure variability in additively manufactured stainless steel 316 parts. It details the
software packages and physical modeling approaches employed to simulate an AM component within
an automated process modeling workflow. Initial results are demonstrated through comparisons between
predicted microstructures and experimental measurements across various representative processing
conditions. The report concludes by discussing the challenges inherent in process modeling of AM
components and outlines a plan for future development needs.

1. INTRODUCTION

Metal additive manufacturing (AM) processes enable the creation of complex geometries and offer unique
material properties that are beneficial for various applications, including in the nuclear energy sector. AM
components have the potential to deliver enhanced performance and reduced lead times and strengthen
domestic supply chains. Despite these benefits, the adoption of AM in nuclear energy applications faces
substantial challenges primarily because of qualification and certification barriers. Unlike conventional
wrought processes, in which material microstructure and properties are often assumed to be uniform
throughout a component, AM materials typically exhibit heterogeneous microstructures and properties
that vary by location [2, 3]. These variations arise from the localized nature of energy deposition during
the fusion of powder layers, which leads to a close relationship between the heat source path and a
component’s geometry on the resulting distribution of microstructure and properties. Consequently, the
origins of microstructure and property variation in AM components need to be better understood to predict
and control the effects of variation on component performance.

Modeling and simulation tools of AM processes offer insight into the physical relationships that control
microstructure and property variability in AM [4]. A recent report from the US Department of Energy
(DOE) Advanced Materials and Manufacturing Technologies (AMMT) program [1] provided an
assessment of process modeling tools required for this purpose and noted that a major challenge was
scaling their application to component-level length- and timescales [5]. The report identified the methods
best suited for scaling, which include (a) medium-fidelity process modeling codes that simulate the melt
pool evolution while considering real processing data, such as the laser scan path and part geometry, and
(b) grain-scale cellular automata (CA) codes that simulate the explicit, as-solidified grain structure and
crystallographic texture in a representative volume element (RVE) using the temperature history from a
medium-fidelity process modeling code. Additionally, the report identified the need for a digital thread [6]
to assimilate data from physical operations and computational modeling tools in a unified and autonomous
workflow. Ideally, this digital thread would be able to use metadata for manufactured parts (e.g., part
design and performance data) as well as simulation data in a format that can be communicated to and
interpreted by other tools within the digital ecosystem.

1



A particular area in which computational simulations can provide a tangible benefit to accelerate
qualification and certification of AM parts is the prediction of local grain morphology and crystallographic
texture. These microstructure features are currently impossible to measure in situ during manufacturing
on commercial laser powder bed fusion (L-PBF) systems and can be expensive and time-consuming to
characterize ex situ. This report presents an update on the current status of process modeling tools used
to predict variability for stainless steel 316 (SS316) components processed by L-PBF AM within the the
AMMT program [1]. The predicted microstructures in three RVEs located in parts produced with different
process parameters are shown as preliminary results, and the predicted physical trends are described.
Finally, a short discussion on future areas of modeling and simulation improvements for predicting
microstructure variability in AM are provided.
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2. METHODS

The software stack for modeling and simulating microstructure variation in additively manufactured
parts is shown in Fig. 1, where contributions to software development by Oak Ridge National Laboratory
(ORNL) are highlighted in green. The main components include the following:

• AdditiveFOAM (https://github.com/ORNL/AdditiveFOAM) is a multiphysics computational
fluid dynamics code built on the OpenFOAM finite volume library. AdditiveFOAM addresses
the challenge of disparate length scales between the melt pool and the simulated part through a
volumetric source term in the energy equation used to approximate computationally expensive
physics, adaptive mesh refinement, and the message passing interface (MPI) for parallel execution
on CPUs.

• ExaCA (https://github.com/LLNL/ExaCA) is a CA code used to predict explicit representations
of the grain structure in as-solidified alloys. ExaCA uses the Kokkos library [7] and (GPU-aware)
MPI for performance portability on both CPUs and GPUs to simulate some of the largest (in terms
of the number of cells) grain structures reported in the existing literature [8].

• Myna (https://github.com/ORNL-MDF/Myna) is a data mediation and workflow management
tool for AM simulations implemented as a Python package. Myna leverages AM build data, such
as process parameters and part geometry, to automatically configure and launch various types of
simulations corresponding closely to as-built conditions.

Figure 1. Software stack for AMMT process variability project. ORNL developed tools are
displayed in green.

2.1 MELT POOL MODELING

Simulating AM parts starts with a process model linking the moving heat source—a laser in L-PBF—to
the temperature field evolution and phase transformations in the material. In fusion-based processes, the
key physical phenomena to consider are the interactions of the laser with the melt pool surface and the heat
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transport in and around the melt pool. The formation of a vapor cavity and strong surface tension–driven
forces at the vapor–liquid interface are known to significantly affect melt pool evolution [9], which can
dramatically influence the resulting grain structure development [10]. Although high-fidelity models
of the vapor–liquid interface have been applied to laser melting processes to accurately simulate these
physical effects—for example, the ALE3D model of Khairallah et al. [11]—the computational cost of
simulating the free surface and fluid flow in the melt pool prohibits their extension to the component
scale. Instead, the effect of these high-fidelity physics are often considered effectively through the use of
volumetric heat source models [12], which are applied as source terms in the energy conservation equation.
AdditiveFOAM adopts this methodology while using a dynamic implementation of the heat source model,
whose free parameters can be calibrated against experimental data to improve the accuracy of melt pool
shape predictions over conventional static models [13].

The model begins with the definition for conservation of energy:

ρcp

[
∂T
∂t
+ ∇ · (uT )

]
= ∇ · (k∇T ) + ρL f

∂ fs

∂t
+ Q̇(x, t), (1)

where ρ is density, cp is specific heat at constant pressure, u is velocity, T is temperature, t is time, k is
thermal conductivity, L f is latent heat of fusion, fs is the solid mass fraction, and Q̇(x, t) is a volumetric
heating rate, which is a function of position x and time.

The first source term in Eq. (1) accounts for the evolution of latent heat during the solid–liquid phase
change, applied as a linear temperature–solid fraction relationship across the alloy freezing range. The
second source term in Eq. (1) accounts for the heat input to the system by the moving laser, which is
modeled using the two-parameter, dynamic heat source model derived in Coleman et al. [13]:

Q̇(x, t) =
ηP
V0

exp

− [
∆x2 + ∆y2

r2

]k/2 , (2)

where η is the effective absorption, P is the laser power, ∆x and ∆y are the relative distances from the laser
center, and the coefficient k is the radial distribution parameter for a super-Gaussian profile. The radial
width of the volumetric heating profile is a function of depth such that:

r =
2σ

k√2

[
1 −

∣∣∣∣∣∆z
d

∣∣∣∣∣m]1/m

, (3)

where 2σ is half the International Organization for Standards (ISO) definition for beam width (D4σ), ∆z is
the relative distance from the laser center, d is the heat source depth, and m is the volumetric shape factor
that controls the final shape of heat input. Finally, the volume integral of the 3D distribution is

V0 = πΓ

(
1 +

2
k

) (
2σ

k√2

)2

d

Γ
(
1 + 1

m

)
Γ
(
1 + 2

m

)
Γ
(
1 + 3

m

)  , (4)

where Γ(x) is the gamma function, which can be numerically computed following DiDonato et al. [14]. A
schematic of the two-parameter heat source model is shown in Fig. 2 for different values of the distribution
parameter k and volumetric shape parameter m.
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Figure 2. Representative energy input field predicted by the two-parameter heat source model for
2σx, 2σy =

√
2/π, and d = 1. The horizontal white line shows the heat source depth d, and the

vertical white lines show the heat source diameter D4σ.

This volumetric source term accounts for the effects of changing melt pool shape on transient absorption of
the laser energy using the geometric expression for a conical cavity:

η(a) = η0
1 + (1 − η0)(G − F)
1 − (1 − η0)(1 −G)

, (5)

where η0 is the Fresnel absorption of the liquid metal, G = 1/(1 +
√

1 + a2) is the ratio between the area
of the cavity opening to the surface area of the cavity, F = sin2(θ) is the view factor, and a = d/(2σ) is
the aspect ratio of the cavity. The depth of the liquidus isotherm is used to calculate both the transient heat
source depth in Eq. (3) and the dynamic absorption in Eq. (5). A table of the thermophysical parameters
and the calibrated heat source model parameters used for SS316 are provided in Table 1.
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Table 1. Thermophysical properties and modeling parameters used in simulations of SS316

Property Value Unit
Density, ρ 7,955 kg/m3

Specific heat capacity (solid), cp,s 770.4 J/(kg·K)
Specific heat capacity (liquid), cp,l 770.4 J/(kg·K)
Thermal conductivity (solid), ks 4.957 + 0.01571T J/(m·s·K)
Thermal conductivity (liquid), kl 11.51 + 0.003279T J/(m·s·K)
Latent heat of fusion, L f 2.68 × 105 J/kg
Liquidus temperature, TL 1,730 K
Solidus temperature, TE 1,670 K
Emissivity, ε 0.4 —
Fresnel absorption (liquid), η0 0.3 —
Effective absorption, ηeff 0.35 —
Distribution parameter, k 7.95 —
Volumetric shape parameter, m 2.74 —

2.2 MICROSTRUCTURE MODELING

The grain structure in additively manufactured parts is complex and multiscale, including features such as
dislocations at the atomistic scale, solute microsegregation and morphologies such as cells and dendrites
at the micrometer length scale, and grain structures spanning the micrometer to even the millimeter
length scale. To model microstructure and microstructure heterogeneity at the scale of real parts, the CA
approach was used to bridge the part scale and the (sub)micrometer phenomena governing solidification of
grains. Using physics-informed cell state and transition rules, CA approaches balance computationally
tractability and accuracy and have been applied to predict the grain size, shape, and crystallographic
texture distribution observed in electron backscatter diffraction (EBSD) data from additively manufactured
parts [15, 16, 17, 18, 19, 20].

For modeling process–microstructure relationships as part of the AMMT project, the CA-based ExaCA
software is being used. Developed as part of the ExaAM initiative within the Exascale Computing Project,
ExaCA has the capability to leverage GPUs on supercomputers such as Summit and Frontier to perform
large-scale ensembles of explicit grain structure prediction [21]. ExaCA microstructure predictions as part
of the AMMT workflow are driven by time–temperature history data produced by AdditiveFOAM heat
transport simulations through an input file format described in Rolchigo et al. [22]. The local undercooling
of a CA cell containing the solid–liquid interface, ∆T , is linked to the ExaCA interface advance velocity
via an interfacial response function, V(∆T ), which in turn bridges the scales between the modeled
solidification of the grain and the approximate solute segregation, diffusion, and dendrite tip kinetics. The
most common interfacial response function forms used to model austenitic stainless steel are a power law,

V(∆T ) = A(∆T )B; (6)

and a cubic polynomial,

V(∆T ) =
∆t
∆x
· (A(∆T )3 + B(∆T )2 +C(∆T ) + D), (7)
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with various examples of each present in the CA modeling literature [23, 24, 25, 26]. To approximate the
stainless steel SS316, this project is currently using Equation 6 with A = 7.325 × 10−6 and B = 3.12
from Tan and Li [24]. Other CA model inputs used for AMMT program project simulations are given in 2.
As part of future work, unique forms of V(∆T ) will be reevaluated for SS316L and SS316H, with unique
functions for the ferrite and austenite phases.

ExaCA simulates the addition of new cells to existing grains by approximating the solid–liquid interface
as a series of overlapping octahedral grain envelopes, in which the ⟨1 0 0⟩ crystallographic directions are
represented by the center-to-vertex directions of a given envelope [27]. As the center-to-vertex lengths are
incremented using Eqs. 6 or 7 and the local undercooling to approximate dendritic solidification, a series
of simple, geometry-based rules enable mesh anisotropy-reduced computation of the crystallographic
orientation-dependent competition between solidifying grains. Additionally, ExaCA simulates the
nucleation of new grains in the undercooled liquid ahead of the existing grains using a nucleation density,
N0, to approximate the heterogeneity in the undercooled liquid. The undercooling needed to trigger a given
nucleation event is assigned from a Gaussian distribution described by

f (∆T ) =
N0

∆Tσ
√

2π
exp

−1
2

(
∆TN − ∆T
∆Tσ

)2 , (8)

where ∆TN is the mean nucleation undercooling, and ∆Tσ is the standard deviation of the distribution.

Figure 3 shows previous ExaCA simulation results that have produced grain structure predictions on the
order of cubic millimeters, comparing favorably with EBSD data from the thin and thick leg supports
from the AMBench-2018-01 test artifact. Calibration of ExaCA’s nucleation parameters has been
performed previously as part of the ExaAM challenge problem simulations; however, as shown in Figure
4, calibrating to grain area using nucleation parameters alone will yield an underconstrained optimization
problem for a fixed V∆(T ). Improving this calibration procedure by either including additional outputs
(such as texture metrics) or considering additional cross sections will be a necessary step toward using
ExaCA to accurately predict grain size for AMMT program applications. Further refinement to the
nucleation algorithm, such as consideration of a nonuniform distribution of nucleation sites across the melt
pool or crystallographic orientation considerations during the nucleation process, may also be necessary
for improved model accuracy.
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Figure 3. ExaCA grain structure predictions using representative thermal data for the L4 leg
interior and the L5 leg of the AMBench-2018-01 test artifact [8, 10], alongside analogous EBSD data

from Stoudt et al. [28].

Figure 4. ExaCA mean grain area predictions produced as part of the ExaAM challenge problem
simulations of the AMBench-2018-01 L4 leg. Mean grain area predictions are plotted in nucleation
input parameter space as relative values compared with the EBSD data from Stoudt et al. [28]. Also

shown are four representative XY cross sections from which mean grain areas were extracted and
colored using the inverse pole figure map.
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Table 2. ExaCA model input parameters for SS316

Parameters Symbols Values Units
Cell size ∆x 2.5 µm
Time step ∆t 0.125 µs
Layer height H 50 µm
Average substrate grain size S 0 12.3 µm
IRF coefficient A 7.325 ×10−6 m/K · s
IRF power B 3.12 —
Heterogeneous nucleation
density

N0 2.5 ×1014 m−3

Mean nucleation undercooling ∆TN 21 K

2.3 SIMULATION USING THE DIGITAL THREAD

Research at the ORNL Manufacturing Demonstration Facility (MDF) has been developing the
infrastructure needed to demonstrate a digital factory concept that tracks data from various manufacturing
operations [29]. These data include in situ data from the manufacturing process, changes in sample
geometry from machining, and data from characterization operations. Peregrine [30] has been created
specifically for L-PBF to extract and process this in situ and characterization data to identify build
anomalies [31]. The structured data from each build provide a rich, machine-readable context.

Modeling and simulation work has begun to leverage the aforementioned digital factory resources at
the MDF to configure and run simulations, followed by registering the simulation data back to other
build data. Initial work used the scan path and laser configuration data stored by Peregrine to initialize
corresponding semianalytical heat transfer simulations that, combined with a machine learning clustering
algorithm, identified regions with dissimilar solidification conditions [32]. The general workflow of
configuring a simulation based on a database of relevant process data, launching the configured simulation,
and finally postprocessing and analyzing the results has been developed into a software package called
Myna under the MDF program.

The coupling of melt pool heat transfer simulations in AdditiveFOAM and solidification microstructure
simulations in ExaCA has been incorporated in Myna and leveraged for simulation builds manufactured
for the AMMT program. Using scan paths extracted from the L-PBF system, along with laser spot size,
material information, part geometry, layer thickness, and coordinates for a region of interest, Myna updates
AdditiveFOAM cases for each layer to be simulated. The completed AdditiveFOAM simulations are
used as input data for a corresponding ExaCA simulation, which is also configured by Myna using the
same build data. This workflow is shown in Figure 5, which highlights the class-based implementation
of simulation types within the Myna framework and describes the requirements for the steps to simulate
the as-built solidification microstructure.

9
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Figure 5. Schematic of the Myna class-based simulation workflow steps used for solidification
microstructure simulation and the corresponding simulation software for each step.
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3. PRELIMINARY RESULTS

Using the Myna framework supported by AdditiveFOAM and ExaCA, solidification microstructures
were predicted for several regions of interest within AM builds manufactured for the AMMT program
at the MDF. Two design-of-experiment builds on the Concept M2 L-PBF system were chosen for
demonstrating the modeling capabilities: "2023-04-11-AMMT_DOE_05" (AMMT DOE 05) and
"2023-04-18-AMMT_DOE_06" (AMMT DOE 06). These builds consisted of sample coupons with a
cylindrical bulk region in the lower layers of the part and smaller fin-like features at the top layers of the
part. Parts were manufactured with different process parameters to explore design space, and a selection of
parts with preliminary microstructure predictions are summarized in Table 3.

Table 3. Summary of processing parameters used for SS316 parametric study

Build Name Sample Power
(W)

Speed (m
s−1)

Spot Size
(D4σ, µ

m)

Linear Energy
Density (J m−1)

AMMT_DOE_05 P7 380 0.75 125 506
AMMT_DOE_05 P35 200 0.78 125 256
AMMT_DOE_06 P24 290 1.5 125 193

Figure 6 shows the location of several regions of interest within the part geometries. At each location, an
RVE was simulated to avoid the computational barriers associated with simulating the entire part. Figure
6(a) shows the locations within the AMMT DOE 05 build, with the RVEs located in the bulk region of
the part (RVE0 and RVE1). Figure 6(b) shows the locations within the AMMT DOE 06 build, which
contains additional RVEs in the fin regions (RVE2 and RVE3). Myna extracted the necessary build data
that had been stored by Peregrine on the digital factory platform, and the corresponding AdditiveFOAM
and ExaCA simulations were configured and executed. Figure 6(c) shows the solidification start time data
associated with the AdditiveFOAM-simulated melt pools, which was provided to ExaCA along with the
associated melting times and cooling rates during solidification (see ref. [33] for details). ExaCA then used
this time–temperature history data to simulate grain morphology and crystallographic texture, as shown in
Figure 6(d).
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Figure 6. (a) RVE locations for samples in the AMMT DOE 05 build and (b) RVE locations in the
AMMT DOE 06 build. (c) Example AdditiveFOAM solidification data for the AMMT DOE 05 P7
RVE0 location, and (d) the corresponding ExaCA prediction of the solidification microstructure.
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The total wall-clock time to simulate each RVE was about 2 h on a single node of the ORNL Frontier
supercomputer, consisting of one 64-core AMD EPYC-3 CPU and four AMD MI250X GPUs, each
with two Graphics Compute Dies (GCDs), for a total of eight GCDs per node. AdditiveFOAM meshing
and simulation took approximately 1–1.25 h/RVE where the finest mesh elements were 10 µm. ExaCA
simulation took approximately 0.75–1 h/RVE with a cell size of 2.5 µm, which was chosen to limit the
wall-clock time to below 2 h. Work is ongoing to validate the selection of an appropriately converged CA
cell size for AM conditions.

Figure 7 shows 2D cross sections of the predicted microstructures for three RVEs located in parts produced
with different process parameters, as indicated in 3. AMMT DOE 05 P7 had the highest linear energy
density (power divided by velocity), and Figure 7(a) shows that the simulated microstructure consists
of large columnar grains with ⟨1 0 0⟩ and similar crystallographic directions preferentially aligned with
the build direction (i.e., more red, orange, and yellow coloring is present). AMMT DOE 05 P35 had an
intermediate linear energy density, and Figure 7(b) shows that the simulated microstructure contains some
lack of fusion regions where the melt pools did not fully overlap between tracks, which are annotated with
black arrows. AMMT DOE 06 P24 had the lowest linear energy density, and Figure 7(c) shows that the
simulated microstructure contains a significant lack of fusion because the melt pool depths were shallower
than the layer thickness.

Although AMMT DOE 05 P35 and AMMT DOE 06 P24 may actually contain lack of fusion porosity in
the physical specimens, its effect on the simulated microstructure is clearly nonphysical. In regions where
the thermal data do not overlap between passes or layers, the existing CA rules lack the logic to nucleate or
grow grains through the corresponding unmelted regions of the powder layer. Consequently, the simulated
microstructure contains epitaxial grains that tend to be interrupted in a nonphysical manner. This issue is
further compounded by the assumptions of a flat melt pool top surface and fixed layer spacing, leading
to grains that are often interrupted along horizontal lines. To enhance the fidelity of these simulations,
future research must refine the models to better account for the consolidation of powder particles and
the curvature of free surfaces, which result in nonuniform layer heights in both the melt pool model
(AdditiveFOAM) and the microstructure model (ExaCA).
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Figure 7. Microstructure from select regions within the part, as specified in Figure 6. (a–c)
correspond to the regions labels in the figures, showing an XZ slice through the center of the

simulated volumes, colored by the grains’ crystallographic orientations using an inverse pole figure
color map.
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4. CONCLUSIONS

This report summarizes the current status of process modeling tools used to predict variability for SS316
components processed by L-PBF AM within the AMMT program [1]. Currently, the simulations for the
melt pool dynamics (AdditiveFOAM) and microstructure evolution (ExaCA) have been applied within a
digital thread through the development of the Myna framework. The predicted microstructures in three
RVEs located in parts produced with different process parameters are shown as preliminary results. The
predicted microstructures reveal a densification of the part through the removal of lack of fusion defects
as the linear energy density is increased. In the fully dense part, the microstructure consists of columnar
grains that grow epitaxially along the build direction with ⟨1 0 0⟩ and similar crystallographic directions.
Future work will focus on comparing these microstructure predictions against experimental observations to
assess model accuracy and identify potential paths for modeling and simulation improvements.
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