MatRIS: Multilevel Math Library Abstraction for Heterogeneity
and Performance Portability using IRIS Runtime

Mohammad Alaul Haque Monil, Narasinga Rao Miniskar, Keita Teranishi, Jeffrey S. Vetter, and

Pedro Valero-Lara
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
{monilm, miniskarnr, teranishik, vetter, and valerolarap}@ornl.gov

ABSTRACT

Vendor libraries are tuned for a specific architecture and are not
portable to others. Moreover, they lack support for heterogene-
ity and multi-device orchestration, which is required for efficient
use of contemporary HPC and cloud resources. To address these
challenges, we introduce MatRIS—a multilevel math library abstrac-
tion for scalable and performance-portable sparse/dense BLAS/LA-
PACK operations using IRIS runtime. The MatRIS-IRIS co-design
introduces three levels of abstraction to make the implementation
completely architecture agnostic and provide highly productive
programming. We demonstrate that MatRIS is portable without
any change in source code and can fully utilize multi-device het-
erogeneous systems by achieving high performance and scalability
on Summit, Frontier, and a CADES cloud node equipped with four
NVIDIA A100 GPUs and four AMD MI100 GPUs. A detailed per-
formance study is presented in which MatRIS demonstrates multi-
device scalability. When compared, MatRIS provides competitive
and even better performance than libraries from vendors and other
third parties.

KEYWORDS

Performance portability; scalability; programming productivity;
extreme heterogeneity; GPUs; BLAS; LAPACK; LU factorization

1 INTRODUCTION

Although heterogeneous architectures are now ubiquitous in con-
temporary HPC and cloud facilities, they introduce significant chal-
lenges in scalability, scheduling/management, portability, and pro-
gramming productivity. In the extremely heterogeneous computing
paradigm, very different architectures coexist in the same system.
For example, a heterogeneous system may have GPUs from multi-
ple vendors (or even FPGAs). Hence, utilizing different computing
resources seamlessly and efficiently to extract meaningful perfor-
mance benefits is necessary. A wide range of software stacks offered
by vendors and open-source communities, including architecture-
specific tuned libraries, adds to the complexity of harnessing per-
formance. Moreover, making solutions that are portable to differ-
ent heterogeneous systems adds another dimension to the overall
challenges. Therefore, portable orchestration of the computation
through management of different hardware architectures and their
tuned libraries is becoming an active area of research.

In most cases, the current software and technology stacks lack
the capability to ensure portability and support for extreme hetero-
geneity. Although some solutions target portability [23] or hetero-
geneity [14], finding a solution that targets both is difficult. And
although math libraries for distributed systems is a well-researched
area, a portable solution for diverse heterogeneity is uncommon.

However, there are runtime systems [2, 4] and math libraries [14, 18]
that provide some functionalities, but they lack support for diverse
heterogeneity and often have architecture-dependent implemen-
tations that limit the development of math algorithms. All this
brings us to our research question: Can an extensible abstraction
layer be created so that the same algorithm—the same piece of
code with no information about the hardware/software layers (i.e.,
architecture- and software-agnostic)—be effectively deployed (i.e.,
perform well and achieve scalability) on different multi-device and
heterogeneous platforms (e.g., clusters and clouds)?

To address these challenges, we present MatRIS—a novel multi-
level abstraction for Math library on top of the IRIS runtime [5, 17].
Being coupled with IRIS, the MatRIS software stack exposes differ-
ent abstractions in each level. At the lowest-level, the IRIS runtime
layer abstracts the vendor runtime and architecture. At the mid-
level, the kernel layer provides an abstraction for different math
libraries and their kernels. Finally, at the top-level, the algorithm
layer provides an abstraction for architecture-agnostic BLAS/LA-
PACK algorithms. By doing so, MatRIS provides a means for the
seamless inclusion of new algorithms, libraries, architectures, and
devices without impacting the other layers.

MatRIS also enables the utilization of all devices for a single
program and seamless portability to different heterogeneous sys-
tems. Moreover, MatRIS provides automatic and transparent tiling
and orchestration capabilities. Overall, the MatRIS objectives are as
follows: (i) provide performance-portable math codes (dense/sparse
BLAS and LAPACK operations) on extremely heterogeneous sys-
tems, (ii) seamlessly include new libraries and architectures, (iii) ex-
ploit the computational capabilities of heterogeneous systems by
using tiled algorithms, and (iv) use transparent, algorithm-specific
performance models to guide scheduling in heterogeneous systems,
thereby providing a highly productive programming solution for
math libraries.

Using tiled sparse/dense LU factorization as test cases, the work
described here demonstrates that MatRIS is portable to various het-
erogeneous systems in HPC and cloud environments and provides
a highly productive programming solution that enables portability
and scalability without any changes to the source code. Moreover,
MatRIS can utilize all the processing components by orchestrating
tuned kernel tasks from different vendor-provided/open-source
math libraries.

This work extends a previously published paper [21] on the
LaRIS library. The main contributions of the present work are the
development of the following features of the MatRIS library:

o multilevel abstraction of heterogeneity for transparent, portable,

and highly productive programming for sparse and dense
BLAS/LAPACK operations;

e a transparent memory management strategy (for heteroge-
neous resources) that can identify and make decisions about
different characteristics of the hardware and connectivity,
thereby reducing the number of memory transfers and max-
imizing the use of high-bandwidth connections;

e complete separation of algorithm and architecture for im-
proved programmability, which can hide all details related to
data transformation during the decomposition/composition
of the matrices;

o a detailed performance analysis using dense/sparse LU fac-
torization as test cases on three heterogeneous systems with
different hardware and connectivity configurations; and

e a comparison with vendor and other library solutions that
shows MatRIS provides competitive and even better perfor-
mance in some cases.

The rest of the paper is organized as follows: Section 2 describes
the different optimizations, the algorithms used, and details about
the implementation. The performance study is described in Sec-
tion 3. Section 4 summarizes essential contributions from the liter-
ature. Finally, we conclude the paper with final remarks and future
directions in Section 5.

2 MATRIS

This section discusses the MatRIS software stack and its three layers.
It also describes the co-design effort with the IRIS runtime, which
makes the multilevel abstraction possible.

2.1 Enabling Programming Productivity and
Performance Portability

To make MatRIS portable, we separate the algorithm’s design from
the tuning. At the top layer, the algorithm design involves express-
ing the tiled algorithms by using tasks and dependencies. Tuning
consists of choosing the target kernels and processors for execut-
ing each task and is facilitated by the kernel and runtime layers,
which are completely transparent to the algorithm developers. The
bottom two levels of abstractions are facilitated by the IRIS run-
time [5, 17] and the unified kernel API, which enable the separation
(Figure 1). Tiled algorithms are expressed by using type-less Ma-
tRIS APIs, which do not include any architecture- or vendor-library
specific detail (Figure A1 in APPENDIX). Therefore, MatRIS codes
are completely agnostic of the architecture and vendor library. This
feature enables the implementation of different tiled algorithms for
math codes without having to worry about vendor libraries or the
underlying hardware.

Tuning occurs at run time. With the help of IRIS, MatRIS tasks
are scheduled on different processors in a heterogeneous system
on which vendor-specific kernels suitable for those processors are
executed. The IRIS runtime’s scheduler enables the full orchestra-
tions, during which the unified kernel layer dynamically provides
the vendor-specific tuned kernels. Thus, the tuning phase does not
require code modifications at the algorithm level, but the scheduler
conducts them internally and transparently for each task. Lever-
aging a dynamic scheduler, the set of tasks in a MatRIS algorithm
attempts to obtain the maximum performance on the target archi-
tecture by maximizing the use of all the computational resources
available in a heterogeneous system. This hierarchical design allows

the addition of a new algorithm, math library, or vendor runtime
without any interference from other layers.

Detailed descriptions of each layer and its essential components
are provided in the following sections as a bottom-up approach to
show how each layer provides a necessary abstraction to the upper
layer.

Applications
v

Algorithm Layer
Unified API for portable sparse and dense math algorithms

Graph and data | | Performance

Math functions, || Automatic Tiling
e.g. LU and dependency Maodels to guide
Factorization reconstruction creation scheduling
¥

Kernel Layer
Unified API for BLAS and LAPACK kernels

Kemel.cpu.c Kernel.cdua.c Kernel.cpencl.c
(OpenBLAS, MKL| | cuBLAS, cuSOLVER CLBlast

Kernelhip.c
hipBLAS, hipSolver

¥
Runtime Layer (IRIS)
Unified runtime API for different architectures

¥ ¥ ¥
OpenMP runtime ‘ Cuda runtime | ’-| OpenCL runtime ‘RDCm stack
¥ ¥ ¥
Intel / AMD / ARM NVIDIA Adrena AMD
CPU GPU GPU GPU

Figure 1: MatRIS software stack and design.

2.2 Runtime Layer: IRIS Runtime

The bottom runtime layer of MatRIS (Figure 1) is facilitated by the
IRIS [5, 17] runtime, which is a task-based programming model and
runtime for heterogeneous computing systems that consist of mul-
ticore CPUs, GPUs (NVIDIA, AMD), DSPs (Qualcomm Hexagon),
and/or FPGAs (Xilinx, Intel). IRIS accepts kernels written in OpenMP,
OpenCL, CUDA, HIP, XilinxCL, IntelCL, Hexagon C++, and Ope-
nACC programming languages. However, mapping the program-
ming language to the compute device is constrained. For example,
NVIDIA GPUs can be used only through kernels written in OpenCL
and CUDA. The IRIS runtime has a task scheduler that maps the
application tasks to a compute device, and the task kernels are
executed using the compute device-specific runtime.

IRIS exposes a task-based programming model in which a task is
a scheduling unit. This task runs on a single device but is portable
across any processing element in a given system. A task can contain
zero or more commands, and there are four types of commands:
(1) Host-to-Device (H2D) memory copy, (2) Device-to-Host (D2H)
memory copy, (3) kernel launch, and (4) host. Because a task can
depend on other tasks, it cannot start until its prerequisite tasks are
executed. Therefore, writing an IRIS application means building
directed acyclic graphs (DAGs) of tasks. Each task has a target
device selection policy when it is submitted. The application written
using the IRIS task definition specifies the policy, which can be a

device number, device type (e.g., CPU, GPU, FPGA, DSP), or a built-
in policy provided by IRIS (e.g., greedy, random, locality-aware,
profile).

IRIS provides shared virtual device memory across multiple, dis-
jointed physical device memories to achieve application portability
and flexible task scheduling with effective data orchestration. IRIS
automatically transfers data across multiple devices to keep mem-
ory consistency across tasks. Therefore, all compute devices can
share memory objects in the shared virtual device memory and
see the same content in the memory objects. The IRIS scheduler
and memory management are further enhanced to make MatRIS
efficient. These enhancements are discussed below.

2.2.1 Scheduler. Effective workload distribution (tasks/tiles map-
ping) is vital to balancing computational effort between different
devices and achieving good scalability by keeping all resources
busy most of the time. To do so, we implemented an automatic task
policy in the IRIS runtime based on the 2D block-cyclic algorithm
(Figure 2). This algorithm is widely used to distribute the computa-
tional cost of linear algebra operations for MPI programs [13]. For
example, it is used for the High Performance Linpack (HPL) bench-
mark.! We adopted such an algorithm to be used in multi-device
and extremely heterogeneous systems. Moreover, MatRIS can also
benefit from the existing scheduling policies of IRIS.

Device Grid

A13 A15 A17

o [~ - I

A21 [A22 | A23 [A24| A25 A26 A27 A28 A33 A35 A37

A31 A33 . A35 . A37 . A53 A55 A57

A41 [A42 | A43 [Ad4| A45 [A46 A47 | A48 A73 A75 A77

A22 A24

=R - -~

A61 |AB2| A63 |AB4 A65 |ABB | A67 [AGS A43 A45 A4T

A71 . A73 . A75 . A77 . AB3 AB5 A67

A42 Ad4
A62 A64

A81 |AB2| A83 |AB4 A85 [AB6 A87 [AB8 A83
Tiled Matrix A

A85 A87 |A82||A84

Tiles Mapping

Figure 2: Task mapping according to the 2D block cyclic al-
gorithm on a 2 X 2 device grid.

2.2.2 Efficient Memory Management. Heterogeneous memory han-
dling plays an important role in application performance on het-
erogeneous computing resources. Accelerators such as GPUs have
self-controlled memories (e.g., DDR4, HBM2) to achieve higher-
performance kernel executions. If the data movement between tasks
and the reuse of data objects is not carefully orchestrated, then the
data transfer costs can dominate the kernel acceleration perfor-
mance on the devices. To make MatRIS efficient in heterogeneous
systems, IRIS leverages Distributed Data Memory Management
(DMEM), which enables transparent and efficient data communi-
cation (including Device-to-Device [D2D] communication) and
management for heterogeneous systems.

DMEM is a logical memory handler that holds the addresses of
host- and device-memory objects for an application’s data object.

Ihttps://netlib.org/benchmark/hpl/algorithm html

IRIS DMEM
mH A0 -

Dirty bit po D1 D2
—E A E

o | 1 1
®

Figure 3: IRIS-DMEM data handler and usage. A and B are
tiled matrices, and PS is a partial sum tiled matrix.

DMEM also maintains a dirty flag for each of these host- and device-
memory objects (as shown in Figure 3) and tracks whether the host
or device memory object has valid/most recent data. The DMEM
controller logic sets the dirty flags based on the data transfers and
task execution. It assumes that only one device executes a certain
task and gains control of the DMEM object at any point in time. In
the example shown in Figure 3, the A00 tile (A tile of the A matrix)
is an IRIS-DMEM memory object, which is shared to all tasks (X1,
X2, ..., XN tiled matrix multiplication kernels). Programmers do not
need to write H2D and D2H commands for the DMEM objects. The
DMEM controller in IRIS can call the H2D, D2D, and D2H data
transfers based on the workflow requirement at runtime.

The DMEM memory handler works as a write-back cache be-
cause it does not transfer the data to the host memory location by
default. Hence, the programmer must explicitly write the new IRIS
command DMEM_FLUSH_OUT_CMD (DMEM flush out command)
after the execution of all tasks/task graphs to ensure the output is
brought to the host memory object. The flush out command exe-
cution will check if the dirty host flag is empty; if it is dirty, then
it will bring the data from the device with the valid data by using
D2H data transfer.

Additionally, the host (CPU) data allocations are conducted using
pinned memory by default in MatRIS. Pinned memory is used as
a staging area for transfers from the device to the host, thereby
avoiding the cost of the transfer between pageable and pinned host
arrays.

In summary, the runtime layer abstracts the underlying runtimes
and their efficient orchestration, and in doing so, it exposes a unified
runtime environment to the upper layer.

int matris_task_dgemm(iris_task taske@, IRISBlasType major,
IRISBlasType a_trans, IRISBlasType b_trans,
int M, int N, int K,
float alpha, iris_mem IRIS_VAR(A), int lda,
iris_mem IRIS_VAR(B), int 1ldb,
float beta, iris_mem IRIS_VAR(C), int ldc) {
IRIS_TASK_NO_DT(taske, "iris_dgemm_kernel", 1,
NULL_OFFSET, GWS(M), NULL_LWS,
PARAM(IRISBlasType, major),
PARAM(IRISBlasType, a_trans), ...
IN_TASK(A, double*, double, A, sizeof(double)*MxN),
PARAM(int, 1lda), ...
IN_OUT_TASK(C, double*, double, C, sizeof(double)*M*K),
PARAM(int, 1ldc));
return IRIS_SUCCESS;

Figure 4: DGEMM API from the kernel layer.

https://netlib.org/benchmark/hpl/algorithm.html

2.3 Kernel Layer: Unified API for BLAS and
LAPACK Kernels

MatRIS’s middle/kernel layer sits on top of the runtime layer to
provide unified kernel APIs for BLAS and LAPACK kernels. The
IRIS-BLAS [19] library has been modified and adopted in MatRIS
to address the portability challenges of BLAS/LAPACK kernels for
different heterogeneous architectures. The kernel layer links multi-
ple vendor and open-source BLAS libraries (Figure 1) and supports
OpenBLAS [37], Intel MKL [16], NVIDIA cuBLAS/cuSolver [22],
and AMD hipBLAS/hipSolver [1]. In a heterogeneous system, the
kernel layer provides the appropriate BLAS/LAPACK library ker-
nels based on the task mapping decided by the runtime layer during
execution. Thus, the kernel layer’s API is portable across architec-
tures and BLAS/LAPACK libraries, thereby facilitating the imple-
mentation of portable algorithms that use BLAS/LAPACK kernels.
The effectiveness of the kernel layer has been demonstrated on
different CPUs (e.g., Intel Xeon Skylake, AMD 249 EPYC 7763, Qual-
comm Snapdragon ARM cores) and GPUs (e.g,. NVIDIA A100, AMD
MI100, Qualcomm Snapdragon Adreno) [19].

This kernel layer also provides a simple and standard API for
each BLAS/LAPACK operation (Figure 4). This API uses IRIS mem-
ory objects across different IRIS tasks to save the data transfers so
the library can better interoperate with other IRIS tasks or applica-
tions/libraries. It also handles IRIS task kernel creation by setting
the appropriate kernel parameters. By doing so, the kernel layer
exposes task-level abstraction to the upper layer of MatRIS so that
algorithms using those tasks can be developed. The upper layer
provides IRIS memory objects (e.g., DMEM objects) in place of host
pointers, and the kernel layer links those IRIS memory objects as
kernel parameters. The runtime layer handles data transfers.

The kernel layer leverages IRIS macros, which are used to easily
convert any function call to IRIS tasks. The macros (IRIS_TASK
_NO_DT in Figure 4) are used when creating the IRIS tasks with
host wrapper codes (i.e., boilerplate code required for calling the
device-specific kernel functions). These wrapper codes are needed
for the interoperability between the kernel layer API, kernel codes,
vendor/open-source BLAS/LAPACK libraries, and the IRIS runtime.
Other macros (e.g., IN_TASK, OUT_TASK, IN_OUT _TASK) are used
to indicate whether the memory parameters are input, output, or
both. Finally, the PARAM macro is used for scalar parameters.

In summary, the kernel layer is a unified MatRIS interface for op-
timized kernels from different libraries. It also creates/defines tasks
and their parameters to be used by the runtime layer. By exposing
this API, the kernel layer makes architecture-agnostic algorithm
creation possible. While the runtime layer provides heterogeneous
functionalities, the kernel layer enables seamless kernel portability.

2.4 Algorithm Layer: Unified API for Portable
Dense and Sparse Algorithms

The top/algorithm layer of MatRIS provides the final level of abstrac-
tion by using the abstraction provided by the kernel and runtime
layers. The algorithm layer provides an API for different tiled algo-
rithms (e.g., GETRF, POTRF, GEMM, TRSM). At this level, a graph
of tasks for an algorithm is specified by using the API from the
kernel layer, thereby making MatRIS completely agnostic to ven-
dor libraries and the underlying architecture. For this reason, any

addition of a new architecture or library at the kernel or runtime
layer does not require modification at the algorithm level. This ag-
nosticism enables the abstraction for portability and heterogeneity.
Moreover, the algorithm layer provides the option for including
algorithm-aware device mapping derived from performance models
and analysis. A seemingly serial implementation of an algorithm
in the algorithm layer provides performance portability and het-
erogeneity with the option of introducing newer architectures or
libraries at different layers of the software stack. Using these capa-
bilities, MatRIS opens the door for future/diverse heterogeneous
architectures.

2.4.1 Transparent Tiling at the Algorithm Layer. Compared with
tiled algorithms for homogeneous compute units, the heteroge-
neous tiled algorithms require tiling specifications to manage het-
erogeneous device memories and task creation. The MatRIS al-
gorithm layer provides a tiling mechanism that binds a runtime-
specific heterogeneous device memory object handler to each
tile [20]. The tiling feature provides iterators and index access
support for writing tiled algorithms. It also alleviates the challenges
and burdens associated with writing tiled algorithms by handling
the heterogeneous tiled memory objects, which are then used to
invoke the API from the kernel layer. The tiling feature supports
1D (traditional flat-to-tile or tile-to-flat) or 2D data copy during
execution; therefore, an application only needs to provide the host
pointer of the matrix, and MatRIS does the tiling and heterogeneous
memory management (i.e., linking with DMEM objects) automati-
cally. Using the MatRIS tiling feature for the tiled LU factorization
algorithm is discussed below (also see Figure A1).

2.4.2 Example: Tiled Algorithms for LU Factorization. Although
tiled algorithms are a popular strategy for enhancing the locality of
data access to enable effective use of shared memory [35], MatRIS
uses tiling to decompose the matrices to utilize all the processors in
a heterogeneous system when processing large matrix sizes. Tiling
occurs before task and dependency creation in the algorithm layer.
While creating the graph, the algorithm layer associates memory
chunks for different tiles to different tasks.

Using LU factorization, we demonstrate the capability of the
MatRIS algorithm layer. LU factorization plays a key role in many
computational science applications and is computationally expen-
sive. Therefore, implementing an LU factorization by using MatRIS
could facilitate performance portability on modern heterogeneous
systems, and this is one of the goals of this research. Decomposing
a matrix A into lower- and upper-triangular matrices (i.e., the LU
factorization) is used to easily solve systems of linear equations:

Ax =LUx =B. (1)

Decomposing a matrix into tiles is a common strategy to parallelize
this operation. Defining kernels, memory tiles, and dependencies
by using task-level programming makes such an implementation
possible [11, 25, 26].

LU Factorization on Dense Matrices. The LU factorization
on a tiled dense matrix (Figure 5) consists of (i) factorizing the first
tile of the diagonal to obtain the L (dark-green) and U (light-green)
matrices of the tile, (ii) computing several TRSMs (light-blue) by
using the L matrix for the corresponding row and the U matrix

for the corresponding column, and (iii) computing the so-called
update step (dark-blue) by multiplying (i.e., GEMM) the result of
the set of TRSMs and updating the tiles in the rest of the matrix.
We compute the next tile of the diagonal and the next two steps
until the entire matrix is computed. A MatRIS-created DAG for a
4 X 4 decomposition for tiled LU is shown in Figure 6.

v

=~
b [

>,

Figure 5: Tiled LU decomposition scheme [26].

Figure 6: MatRIS-generated DAG for dense LU factoriza-
tion when using 4 X 4 tile decomposition. Green ellipses
are GETREF, blue ellipses are TRSM, and orange ellipses are
GEMM.

Although the state-of-the-art routine for LU factorization in-
volves pivoting, we considered a non-pivoting version for two
reasons: (i) the pivoting is not necessary on well-conditioned ma-
trices, and (ii) we want to analyze the performance of the proposed
optimizations without the influence of pivoting on the performance
analysis. Additionally, although using pivoting to solve systems of
linear equations is commonly accepted, we found multiple prob-
lems in which the matrices were well conditioned, which made
expensive operations such as pivoting unnecessary. For this reason,
multiple implementations in reference libraries do not use such
a technique. Examples include PLASMA (Parallel Linear Algebra
Software for Multicore Architectures) [11], LASs [26], Intel’s MKL,
NVIDIA’s cuSolver [30] and cuSparse [31], FISHPACK [33], and
SuperLU [9].

(b) (c)

Figure 7: Example and schema of the LU algorithm for tiled
sparse matrices [27].

LU Factorization on Sparse Matrices. The algorithm used
in MatRIS to compute the LU factorization on general sparse ma-
trices is based on the SparseLU library [27], a task-based library
implemented in OpenMP for multicore CPUs. Like the algorithm
for dense matrices, MatRIS divides the sparse matrices into tiles.
This algorithm has proven effective for scalability and high per-
formance at the cost of some zero-elements computation, and it
provides faster computation overall than other state-of-the-art ap-
proaches [27]. Unlike other solutions [9], this algorithm does not
need any preprocessing symbolic phase because memory manage-
ment is handled concurrently with computation. Furthermore, the
algorithm’s use of tasks is completely transparent and determined
by the runtime. This removes the burden of determining the target
and size of the tasks. Another important benefit of this algorithm is
that it only uses level-3 BLAS routines, which helps obtain higher
performance on parallel processors.

One important difference between sparse and dense algorithms
is how the memory is managed. When a tile contains only zeros, it
is stored as NULL in our algorithm. These tiles are represented as
the shaded squares in Figure 7 and are handled differently than the
dense LU steps. For example, for LU’s second step, in which TRSM is
calculated on the corresponding row and column, no computation
needs to be completed for null tiles, so they are left as-is. In LU’s
third step, it is possible for memory allocation to be required for a
null tile before GEMM is completed using the corresponding TRSM
set. For example, take tile (2,4) in Figure 7a. Here, this tile is null, but
its corresponding row TRSM at (1,4) and column TRSM at (2,1) are
not null. The multiplication (GEMM) of the corresponding row and
column TRSM tiles produces new information. The result of this
multiplication must be stored in tile (2,4) (Figure 7), so memory is
allocated for that tile. Such dynamic allocation is commonly known
as fill-in. This process repeats for each step of LU factorization along
the diagonal. The tiles for which memory is allocated are marked
with ? in Figure 7. When one or both tiles in the TRSM set are null,
the result of GEMM will produce no new information, so the tiles
are left as-is. Using the aforementioned strategy, memory for the
matrix data structure is only allocated as needed. Also, we can save
computation time by avoiding any unnecessarily preprocessing [9].

3 PERFORMANCE ANALYSIS

For this work, we used three heterogeneous systems with CPUs
and GPUs from different manufacturers located in different HPC
and cloud computing resources at Oak Ridge National Laboratory
(ORNL). Table 1 shows the hardware configurations, architectures,

Table 1: Heterogeneous systems used in this research.

System Summit Frontier CADES cloud node
Total 6 GPUs Total 4/8 GPUs/GCDs Total 8 GPUs
GPUs 6x NVIDIA V100 4x AMD MI250X 4x NVIDIA A100
(each contains two GCDs) 4x AMD MI100
CPU POWERSY, 42 cores AMD EPYC 7A53, 64 cores AMD EPYC 7763, 128 cores
Compiler GNU-9.4.0 GNU-8.5.0 GNU-8.5.0
CUDA and ROCm versions CUDA-11.7 CUDA-11.7 and ROCm-5.1.0 CUDA-11.7 and ROCm-5.1.2
Math libraries cuBLAS and cuSOLVER hipBLAS cuBLAS, cuSOLVER, and hipBLAS
compilers, software stacks, and LAPACK/BLAS libraries that were Summit 6
used. For profiling and tracing, the native capabilities of the IRIS R
runtime were used. We demonstrate three cases in this section: Y T 5 >
(i) portability and multi-device heterogeneity for dense LU factor- ‘qw'_,’ \\\\\\\\\\ %
ization with MatRIS, (ii) similar analysis for sparse LU factorization ‘_§ P e e 4=
with MatRIS, and (iii) a comparison of MatRIS with vendor and & . o %
open-source libraries. In these experiments, we demonstrate per- ST Tl 33
formance portability in the systems listed in Table 1. For both the £ L T o
HPC and cloud systems, MatRIS requires no changes in the soft- RS ey 2 &
ware stack, thereby demonstrating portability and multi-device ‘
. . o . 025 1

heterogeneity. Once built, the same MatRIS application can run in 1) 4 6
fiifferent hardware con.ﬁgurations a\.Iai.lable ina systel.n l?y select- MatRIS Speedup #GPUs MatRIS Scalability
ing an environment variable (cpu, nvidia-gpu, cpu-nvidiaGPU,or ~ ____. LaRIS Time e MatRIS Time

nvidiaGPU-amdGPU, cpu-nvidiaGPU-amdGPU, and other possible
combinations). MatRIS executes the application graph and selects
the appropriate kernel and their devices at runtime by respecting
the scheduler.

3.1 Dense LU Factorization

Figure 8 illustrates the time consumed by our reference library
(LaRIS [21]) and the MatRIS library. For Frontier and CADES, we
used a 32,678 X 32,678 matrix and a 2,048 X 2,048 tile size, with a total
of 1,496 tasks. For Summit, we used a 16,384 X 16,384 matrix and a
1,024 x 1,024 tile size, with a total of 1,496 tasks. We used a smaller
matrix size on Summit because of its GPU memory limitation. All
operations are computed in double precision. In Figure 8, the two
dotted lines represent the execution time of MatRIS and LaRIS. The
green-shaded area shows the speedup of MatRIS over LaRIS (LaRIS-
time/MatRIS-time), and the red-shaded area shows the scalability
of MatRIS (single-gpu-time-MatRIS/multiple-gpu-time-MatRIS). As
shown, MatRIS can achieve significant acceleration for the LaRIS
library by providing speedups close to 8x on Frontier, 7x on CADES,
and 5X on Summit.

Different features of the MatRIS software stack have different im-
pacts on performance depending on the system used. For example,
using an optimized memory management strategy (Section 2) has a
more substantial impact on Frontier, where it achieves a significant
reduction in time and better scalability. However, on CADES, al-
though the execution time is reduced considerably, we did not see
significant improvement in terms of scalability in the beginning
(not shown in the figure). However, after we applied our sched-
uler, we saw a more significant impact on CADES than on Frontier
(Figure 8). Also, on Summit, the benefit of the optimizations (i.e.,
speedup) provided by MatRIS over LaRIS is lower than for the other
two systems when increasing the number of GPUs. However, we
see the opposite trend on Frontier. This is caused by the differences
in the software stacks, hardware, and connectivity of each system.

16 8
7
z 8 z
o 65
© o
a4 58
; %)
Qb
o 4 8
T2 3
v]
IS 3 o
=1
, N
0.5 1
MatRIS Speedup MatRIS Scalability
----- LaRIS Time ~===-MatRIS Time
P CADES \
~~~~~~~ 7 >
Lo Tl £
& T 6B
© T .. ©
a 5 8
ap 4 %2
© 4 g
. - 3
o TTeeall 9]
€2 TTteeeel___ 3 9]
=TT &

(1,0) (2,0) (4,0) (4,2) (4,4)
(#NVIDIA,#AMD) GPUs
MatRIS Speedup
----- LaRIS Time

MatRIS Scalability
----- MatRIS Time

Figure 8: Strong scaling of LaRIS and MatRIS libraries for
dense LU factorization on different heterogeneous systems.



Summit
2 6

= )
[} SNl =
® 1! e ©
3' S 4 §
ap RN
= s =
o Tesel T~ =]

~~~~~~ ©
@05 Tl o T @
e _Teeall g
N 2 &

o
N
[
N
IS
[N

1 6
#GPUs
MatRIS Speedup MatRIS Scalability
————— LaRIS Time -===-MatRIS Time
Frontier
4 8
— . 7 s
= £
w s, 6 g
w 2 N ©
3 el 5 8
. ~< %
b SGcmmmmmcmmmmme 4
o a
n ‘3
1 TS
g .. 3 9
A L N =%
______________________ 2 (%]

s 2 — —_— N

1 2 4 6 8
#GCDs .
MatRIS Speedup MatRIS Scalability
----- LaRIS Time -=-=---MatRIS Time
CADES

4 8
e 7 >
L Ssel E]
@ SN cmmmemem 6 ©
© 2 o
a 5 8
. %)

Qb

o 48
‘1 == 3
[~ 3 O
E TS g
= R S 2 n

o
v
1
1
o

(1,0) (2,0) (4,0) (4,2) (4,4)
(#NVIDIA,#AMD) GPUs
MatRIS Speedup mmmm MatRIS Scalability
----- LaRIS Time -----MatRIS Time

Figure 9: Strong scaling of LaRIS and MatRIS libraries for
sparse LU factorization on different heterogeneous systems.

The main contributor of such a high acceleration is an important
reduction in the number of memory transfers (Table 2) thanks to

the efficient memory management strategy and scalable scheduler.

The numbers in Table 2 correspond to the tests using six GPUs on
Summit and eight GCDs/GPUs on the other two systems, Frontier
and CADES. The first row represents the memory transfer in LaRIS,
which is the same for all the systems even though the matrix size
for Summit is smaller. The same matrix decomposition is used for
all the systems, and this created the same number of tasks. However,
for MatRIS, an impressive reduction is observed. MatRIS not only
reduces the number of memory transfers by more than 4x, it also
uses faster connections (e.g., D2D communication) when possible.
The bandwidth between GPUs of the same type is usually faster than
the CPU-GPU bandwidth. For example, we found a bidirectional
GPU-GPU bandwidth of 50GB/s + 50GB/s on Frontier, whereas
the CPU-GPU bandwidth is 36GB/s + 36GB/s. This is different
on Summit, where the CPU-GPU and GPU-GPU bandwidths are
the same (50GB/s + 50GB/s). We observed ~25GB/s for CPU-GPU
(for both NVIDIA and AMD GPUs) and ~36GB/s for GPU-GPU
bandwidth for the CADES machine.

Notably, the number of D2D transfers is higher for CADES than
for Frontier, although both systems contain the same number of
accelerators. Once again this is due to the differences between the
systems. In Frontier, all the GPUs/GCDs are connected to each other,
whereas in CADES, we have two separate sets of GPUs (NVIDIA
and AMD GPUs). Each NVIDIA GPU has a direct connection with
the rest of the NVIDIA GPUs but is not directly connected to the
AMD GPUs. The same relationship applies for AMD GPUs. So, for
example, when one task executed on one NVIDIA GPU needs data
or a tile located in the memory of an AMD GPU, this data or tile
must be copied back to the host (CPU) memory and then sent to one
of the NVIDIA GPUs. Therefore, fewer D2D communications and
more H2D and D2H communications are observed on CADES than
on Frontier. This difference in memory transfer has consequences
for performance and/or scalability. As we can see in Figure 8, the
scalability on Frontier is about 1.3X higher. Unlike CADES and
Frontier, which both have eight accelerators each, Summit has only
six GPUs per node, which means fewer memory transfers.

3.2 Sparse LU Factorization

We conducted our analysis on a synthetically generated sparse
matrix (Figure 10). This approach enables us to perform fair, con-
sistent, and comprehensive testing by replicating the conditions
of real-world matrices. We used the SuiteSparse Matrix Collection
to obtain the appropriate parameters for generating the matrix.
The widely used SuiteSparse Matrix Collection contains over 2,800
sparse matrices collected from a variety of applications, includ-
ing fluid dynamics, structural problems, and circuit simulation [8].
In our testing, we used a 32,678 X 32,678 matrix for Frontier and
CADES and a 16,384 X 16,384 matrix for Summit. These are the same
matrix sizes used for the dense LU factorization analysis, and they
sufficiently represent real conditions without requiring unnecessar-
ily long computation times for testing [27]. For sparsity, we tried

Table 2: Number and types of memory transfers for LaRIS and MatRIS on Summit (6xX GPUs), Frontier (8Xx GCDs), and CADES
(8% GPUs) when computing LU factorization on a 32,678 X 32,678 dense matrix for Frontier and CADES, and a 16,384 X 16,384

dense matrix for Summit.

System Summit Frontier CADES
Transfer | H2D | D2H | D2D | total | H2D | D2H | D2D | total | H2D | D2H | D2D | total

LaRIS 4,219 | 1,497 0 5,716 | 4,219 | 1,497 0 5,716 | 4,219 | 1,497 0 5,716
MatRIS 259 257 734 | 1,250 259 257 854 | 1,370 567 395 426 | 1,388

Table 3: Number and types of memory transfers for LaRIS and MatRIS on Summit (6xX GPUs), Frontier (8Xx GCDs), and CADES
(8x GPUs) when computing LU factorization on a 32,678 x 32,678 sparse matrix with a density factor of ~ 3 x 10™# for Frontier
and CADES, and a 16,384 X 16,384 matrix with the same density for Summit.

System Summit Frontier CADES
Transfer | H2D | D2H | D2D | total | H2D | D2H | D2D | total | H2D | D2H | D2D | total

LaRIS 1,055 | 397 0 1,452 | 1,064 | 402 0 1,466 | 1,064 | 402 0 1,466
MatRIS 154 121 173 448 201 127 240 568 292 155 149 596

to match the patterns found in matrices that are symmetric, square,
non-binary, have entries along the matrix diagonal, and are either
real-symmetric-assembled or integer-symmetric-assembled [8]. For
density (calculated as nnz/(M x M), where nnz means the number
of non-zeros), we used a relatively low density (= 3x10~%). Because
most of the sparse matrices fall into this range, these parameters
represent real-world conditions [8, 27]. We use the same tile size
that we use in the dense LU factorization analysis. Given the dis-
persity of the matrix used, 401 tasks were created for Frontier and
CADES, and 396 tasks were created for Summit.

2007

400 T e LT
B0 - T e

80 ", - -\,.

"

100

100 : . =t
20 40 60 80

Figure 10: Example of the synthetically generated matrix.

Figure 9 illustrates the performance in terms of time (in seconds
using a logarithmic scale) and speedup/scalability. Computing the
sparse LU factorization is more challenging and complex in terms
of scheduling and scalability. This is clear when looking at the
scalability of both libraries. In this case, MatRIS achieves consider-
able acceleration over LaRIS. Also, MatRIS provides scalability by
providing better performance on more GPUs. This is particularly
important given the low density of nnz used in this analysis.

As expected, we found fewer memory transfers for the sparse
LU factorization (Table 3), which minimizes the potential benefit of
having a more efficient memory management strategy and a scal-
able scheduler. Also, the reduction in memory transfers achieved by
the MatRIS library, although very important, is lower than the one
achieved in the dense LU case (Table 2). The reduction of memory
transfer is about 2.6X on Frontier and CADES and about 3.2X on
Summit when all GPUs are used. All of this impacts performance,
which means an acceleration of about 2x on Summit and Frontier
and close to 5xX on CADES. We observed a lower speedup compared
to the dense cases in all the heterogeneous systems. Especially on
Frontier and CADES, we see MatRIS’s time reaching a seemingly
flat line when using more than four GPUs. We correlate this behav-
ior with less parallelism because the sparse version only creates
~400 tasks compared to the 1,496 tasks created for the dense case.

Table 4: Comparison with state of the art on a Summit node.
LU factorization for a 16,384 x 16,384 matrix. The unit of
measure is GFLOPS, and the best performance for each GPU
configuration is in bold.

#GPUs | MatRIS | cuSolverMg | StarPU
1 3,240 3,714 3,856
2 4,580 4,884 4,067
4 5,901 5,101 2,874
6 6,224 4,526 X XXX

3.3 Comparison

Table 4 shows a performance comparison between MatRIS, NVIDIA’s
cuSolverMg library, and the StarPU runtime. This comparison used
a single Summit node for an LU factorization (non-pivoting). The
best-performing library for each configuration is listed in bold text.

We ensured the matrix was diagonally dominant, so pivoting was
not computed. We used the recently released cuSolverMg library,?
which is a novel NVIDIA library with support for multi-GPU hard-
ware. The algorithms implemented in this library use a 1D column
block-cyclic layout for matrix decomposition, which is different
from the one used in MatRIS. The code used for the performance
analysis is publicly accessible.> We also used the non-pivoting LU
factorization from StarPU, and the algorithm is similar to the one
used in MatRIS.

For Summit’s NVIDIA GPUs, MatRIS demonstrated competitive
performance versus the NVIDIA cuSolverMg library on one GPU
and two GPUs by reaching more than the 90% of the NVIDIA li-
brary’s performance. Moreover, the NVIDIA library did not provide
good scalability when using four GPUs, whereas MatRIS provided
better performance and scalability. The better scalability from Ma-
tRIS is more evident when using more than two GPUs, a scenario
in which the NVIDIA library provided flat scalability.

Unlike the cuSolverMg library, MatRIS continued reducing the
execution time (hence better GFLOPS) as the the number of GPUs
increased, until all available GPUs were used. Also, MatRIS pro-
vided better performance than the NVIDIA library when using four
(speedup of 1.15X) and six (speedup close to 1.4x) GPUs. StarPU
provided the best performance for a single GPU; however, perfor-
mance declined as the number of GPUs increased. We could not
generate the performance number with six GPUs using StarPU. We
also investigated the MAGMA (Matrix Algebra on GPU and Multi-
core Architectures) library, which has separate implementations
for CPU, GPU, and multi-GPU LU factorization. The multi-GPU
version did not achieve great performance on Summit (possibly
due to the differences in the algorithm); hence, we did not include
MAGMA in the comparison.

Zhttps://docs.nvidia.com/cuda/cusolver/index.html
Shttps://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/
MgGetrf

https://docs.nvidia.com/cuda/cusolver/index.html
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgGetrf
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgGetrf

Also, MatRIS provided similar performance to the AMD library
when using one AMD GPU on Frontier. For analysis of the AMD
GPUs, we used the hipBLAS library.Notably, AMD BLAS/LAPACK
libraries do not provide support for multi-GPU configurations.

Although the primary motivation of this work is not to provide
better or competitive performance compared to existing libraries
but rather to provide additional capabilities for mixed-GPU and
multi-GPU computing, the efficiency of MatRIS is remarkable when
compared with existing highly optimized vendor libraries.

4 RELATED WORK

Performance portability is becoming one of the most important
challenges in the exascale and extreme heterogeneity era. The grow-
ing importance of C++ template metaprogramming libraries is one
example [3, 23, 29]. These libraries can build different binaries from
a single source code to target different architectures. Notably, how-
ever, they cannot use more than one architecture at a time.

Since OpenMP 4.0, it is possible to use GPU offloading in OpenMP
codes. Valero-Lara et al. [28] used OpenMP 4.5 to implement a het-
erogeneous version of the TRSM level-3 BLAS routine and achieved
good performance on one node of ORNL’s Summit supercomputer,
using one CPU and one GPU.

Most vendor or open-source math libraries are optimized for
just one architecture. For example, PLASMA [12] is a dense linear
algebra reference library based on OpenMP. PLASMA parallelizes
BLAS and LAPACK level operations that target homogeneous mul-
ticore and multisocket CPU platforms. Like other libraries (e.g.,
Chameleon, which is based on the StarPU runtime, and LASs [7, 24—
26], which is based on the OmpSs runtime), PLASMA uses tiled
algorithms to distribute the workload among the cores in the plat-
form by using task-based programming. Other relevant linear alge-
bra libraries that implement dense, sparse, or both linear algebra
operations include libFLAME [15], Inte]l MKL, and OpenBLAS [34].

Another example in linear algebra is ATLAS [36], which provides
a complete collection of BLAS kernels and LAPACK operations and
delivers high performance thanks to its autotuning approach. AT-
LAS exploits low-level features (e.g., the size of the different memory
hierarchy levels) to customize required parameters (e.g., the block
size) and consequently makes better use of the resources to improve
performance on multicore CPU architectures. Other approaches
try to adapt the number of computations to the resources available
on the platform; however, this adaptation is not automatic and/or
its implementation requires major changes in the code [6, 10, 32].

Another example is the MAGMA [14] open-source math library
for BLAS and LAPACK operations on heterogeneous systems. It
includes some heterogeneous implementations based on tiled al-
gorithms that use NVIDIA’s cuBLAS and AMD’s hipBLAS math
libraries. These implementations statically run the LAPACK opera-
tions of the tiled algorithms on the CPU, while most of the BLAS
operations are run on one GPU.

All of the examples referenced above make improvements in
specific scenarios. However, they also exhibit at least one of four
drawbacks: (i) the support is very limited, only supporting one type
of architecture or one CPU + GPU (or one vendor’s GPU), (ii) the
solution is not often portable; (iii) the solution is not automatically
achieved (auto-tuning), or (iv) adding a new architecture requires

considerable change. In contrast, the present work presents a multi-
level abstraction for portability and multi-device heterogeneity that
alleviates these challenges.

5 CONCLUSIONS

We presented MatRIS, an extensible multilevel abstraction for a
productive and performance-portable programming solution that
enables BLAS/LAPACK codes with transparent tiling and task/tile
mapping and reaches good scalability on different multi-device and
heterogeneous systems found in contemporary HPC and cloud
computing environments. MatRIS accomplishes this as a fully
architecture-agnostic library that decouples algorithm definitions
from hardware-specific details, which makes MatRIS portable and
capable of using all available compute devices in heterogeneous
systems. MatRIS’s performance reports significant acceleration over
the LaRIS reference library thanks to an impressive reduction in
memory transfers, effective memory management, and a scalable
scheduler. MatRIS also reports better scalability and competitive or
better performance in our comparison with vendor libraries.

ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership Comput-
ing Facility at ORNL, which is supported by the US Department of
Energy’s (DOE’s) Office of Science under Contract No. DE-ACO05-
000R22725.This work is funded, in part, by Bluestone, a X-Stack
project in the DOE Advanced Scientific Computing Office with pro-
gram manager Hal Finkel. This manuscript has been authored by
UT-Battelle LLC under contract no. DE-AC05-000R22725 with the
US Department of Energy. The publisher, by accepting the article
for publication, acknowledges that the US government retains a
non-exclusive, paid up, irrevocable, world-wide license to publish
or reproduce the published form of the manuscript, or allow others
to do so, for US government purposes. The DOE will provide public
access to these results in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

http://energy.gov/downloads/doe-public-access-plan

=

[

REFERENCES

[1] AMD. 2022. hipBLAS, the Basic Linear Algebra Subroutine library. https:

//github.com/ROCmSoftwarePlatform/hipBLAS [Online; accessed 6-July-2022].
C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier. 2011. StarPU: a
unified platform for task scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and Experience 23, 2 (2011), 187-198.
David Beckingsale, Richard D. Hornung, Tom Scogland, and Arturo Vargas. 2019.
Performance portable C++ programming with RAJA. In Proceedings of the 24th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2019, Washington, DC, USA, February 16-20, 2019, Jeffrey K. Hollingsworth
and Idit Keidar (Eds.). ACM, 455-456. https://doi.org/10.1145/3293883.3302577
G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and J. J. Dongarra.
2013. Parsec: Exploiting heterogeneity to enhance scalability. Computing in
Science & Engineering 15, 6 (2013), 36-45.

Anthony M. Cabrera, Seth Hitefield, Jungwon Kim, Seyong Lee, Narasinga Rao
Miniskar, and Jeffrey S. Vetter. 2021. Toward Performance Portable Program-
ming for Heterogeneous Systems on a Chip: A Case Study with Qualcomm
Snapdragon SoC. In 2021 IEEE High Performance Extreme Computing Confer-
ence, HPEC 2021, Waltham, MA, USA, September 20-24, 2021. IEEE, 1-7. https:
//doi.org/10.1109/HPEC49654.2021.9622794

Sandra Catalan, José R. Herrero, Enrique S. Quintana-Orti, Rafael Rodriguez-
Sanchez, and Robert A. van de Geijn. 2016. A Case for Malleable Thread-Level
Linear Algebra Libraries: The LU Factorization with Partial Pivoting. CoRR
abs/1611.06365 (2016). arXiv:1611.06365 http://arxiv.org/abs/1611.06365
Sandra Catalan, Tetsuzo Usui, Leonel Toledo, Xavier Martorell, Jests Labarta, and
Pedro Valero-Lara. 2020. Towards an Auto-Tuned and Task-Based SpMV (LASs
Library). In OpenMP: Portable Multi-Level Parallelism on Modern Systems - 16th
International Workshop on OpenMP, IWOMP 2020, Austin, TX, USA, September
22-24, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12295), Kent F.
Milfeld, Bronis R. de Supinski, Lars Koesterke, and Jannis Klinkenberg (Eds.).
Springer, 115-129. https://doi.org/10.1007/978-3-030-58144-2_8

Timothy A. Davis and Yifan Hu. 2011. The university of Florida sparse matrix
collection. ACM Trans. Math. Softw. 38, 1 (2011), 1:1-1:25. https://doi.org/10.
1145/2049662.2049663

James Weldon Demmel, John R. Gilbert, and Xiaoye S. Li. 1999. An Asynchronous
Parallel Supernodal Algorithm for Sparse Gaussian Elimination. SIAM j. Matrix
Anal. Appl. 20, 4 (1999), 915-952. https://doi.org/10.1137/S0895479897317685

[10] Jack Dongarra, Sven Hammarling, Nicholas J. Higham, Samuel D. Relton, Pedro

Valero-Lara, and Mawussi Zounon. 2017. The Design and Performance of Batched
BLAS on Modern High-Performance Computing Systems. Procedia Computer
Science 108 (2017), 495 — 504. https://doi.org/10.1016/j.procs.2017.05.138 Interna-
tional Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich,
Switzerland.

[11] Jack J. Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek,

Panruo Wu, Ichitaro Yamazaki, Asim YarKhan, Maksims Abalenkovs, Negin
Bagherpour, Sven Hammarling, Jakub Sistek, David Stevens, Mawussi Zounon,
and Samuel D. Relton. 2019. PLASMA: Parallel Linear Algebra Software for
Multicore Using OpenMP. ACM Trans. Math. Softw. 45, 2 (2019), 16:1-16:35.
https://doi.org/10.1145/3264491

[12] Jack J. Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek,

Panruo Wu, Ichitaro Yamazaki, Asim YarKhan, Maksims Abalenkovs, Negin
Bagherpour, Sven Hammarling, Jakub Sistek, David Stevens, Mawussi Zounon,
and Samuel D. Relton. 2019. PLASMA: Parallel Linear Algebra Software for
Multicore Using OpenMP. ACM Trans. Math. Softw. 45, 2 (2019), 16:1-16:35.
https://doi.org/10.1145/3264491

[13] Jack J. Dongarra and Piotr Luszczek. 2011. ScaLAPACK. In Encyclopedia

of Parallel Computing, David A. Padua (Ed.). Springer, 1773-1775. https:
//doi.org/10.1007/978-0-387-09766-4_151

Mohammed A. Al Farhan, Ahmad Abdelfattah, Stanimire Tomov, Mark Gates,
Dalal Sukkari, Azzam Haidar, Robert Rosenberg, and Jack J. Dongarra. 2020.
MAGMA templates for scalable linear algebra on emerging architectures.
Int. J. High Perform. Comput. Appl. 34, 6 (2020). https://doi.org/10.1177/
1094342020938421

[15] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn.

2001. FLAME: Formal Linear Algebra Methods Environment. ACM Trans. Math.
Softw. 27, 4 (Dec. 2001), 422-455. https://doi.org/10.1145/504210.504213

Intel. 2022. The Intel Math Kernel Library. https://www.intel.com/content/www/
us/en/developer/tools/oneapi/onemkl-documentation. html?s=Newest [Online;
accessed 6-July-2022].

[17] Jungwon Kim, Seyong Lee, Beau Johnston, and Jeffrey S. Vetter. 2021. IRIS: A

Portable Runtime System Exploiting Multiple Heterogeneous Programming Sys-
tems. In 2021 IEEE High Performance Extreme Computing Conference, HPEC 2021,
Waltham, MA, USA, September 20-24, 2021. IEEE, 1-8. https://doi.org/10.1109/
HPEC49654.2021.9622873

Jannis Klinkenberg, Philipp Samfass, Michael Bader, C. Terboven, and Matthias S
Miiller. 2020. CHAMELEON: reactive load balancing for hybrid MPI+ OpenMP
task-parallel applications. J. Parallel and Distrib. Comput. 138 (2020), 55-64.
Narasinga Rao Miniskar, Alaul Haque Monil Mohammad, alero-Lara Pedro, Frank
Liu, and Jeffrey S Vetter. 2022. IRIS-BLAS: Towards a Performance Portable and

Heterogeneous BLAS Library. In 29th IEEE International Conference on High Per-
formance Computing, Data, and Analytics, HiPC 2022, Bengaluru, India, December
18-21, 2022. IEEE.

Narasinga Rao Miniskar, Mohammad Alaul Haque Monil, Pedro Valero-Lara,
Frank Liu, and Jeffrey S Vetter. 2023. Tiling Framework for Heterogeneous
Computing of Matrix-Based Tiled Algorithms. (2023).

Mohammad Alaul Haque Monil, Narasinga Rao Miniskar, Frank Y. Liu, Jeffrey S.
Vetter, and Pedro Valero-Lara. 2022. LaRIS: Targeting Portability and Produc-
tivity for LAPACK Codes on Extreme Heterogeneous Systems by Using IRIS.
In IEEE/ACM Redefining Scalability for Diversely Heterogeneous Architectures
Workshop, RSDHA@SC 2022, Dallas, TX, USA, November 13-18, 2022. IEEE, 12-21.
https://doi.org/10.1109/RSDHA56811.2022.00007

NVIDIA. 2022. cuBLAS, the CUDA Basic Linear Algebra Subroutine library.
https://docs.nvidia.com/cuda/cublas/index.html [Online; accessed 6-July-2022].
Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Q.
Dang, Nathan D. Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Holl-
man, Dan Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy
Powell, Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno
Turcksin, and Jeremiah Wilke. 2022. Kokkos 3: Programming Model Extensions
for the Exascale Era. IEEE Trans. Parallel Distributed Syst. 33, 4 (2022), 805-817.
https://doi.org/10.1109/TPDS.2021.3097283

Pedro Valero-Lara, Diego Andrade, Raiil Sirvent, Jests Labarta, Basilio B. Fraguela,
and Ramon Doallo. 2019. A Fast Solver for Large Tridiagonal Systems on Multi-
Core Processors (Lass Library). IEEE Access 7 (2019), 23365-23378. https:
//doi.org/10.1109/ACCESS.2019.2900122

Pedro Valero-Lara, Sandra Catalan, Xavier Martorell, and Jestus Labarta. 2019.
BLAS-3 Optimized by OmpSs Regions (LASs Library). In 27th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based Processing, PDP 2019,
Pavia, Italy, February 13-15, 2019. IEEE, 25-32. https://doi.org/10.1109/EMPDP.
2019.8671545

Pedro Valero-Lara, Sandra Catalan, Xavier Martorell, Tetsuzo Usui, and Jesus
Labarta. 2020. sLASs: A fully automatic auto-tuned linear algebra library based on
OpenMP extensions implemented in OmpSs (LASs Library). J. Parallel Distributed
Comput. 138 (2020), 153-171. https://doi.org/10.1016/].jpdc.2019.12.002

Pedro Valero-Lara, Cameron Greenwalt, and Jeffrey S. Vetter. 2022. SparseLU,
A Novel Algorithm and Math Library for Sparse LU Factorization. In 12th
IEEE/ACM Workshop on Irregular Applications: Architectures and Algorithms,
IA3@SC 2022, Dallas, TX, USA, November 13-18, 2022. IEEE, 25-31. https:
//doi.org/10.1109/IA356718.2022.00010

Pedro Valero-Lara, Jungwon Kim, Oscar Hernandez, and Jeffrey S. Vetter. 2021.
OpenMP Target Task: Tasking and Target Offloading on Heterogeneous Sys-
tems. In Euro-Par 2021: Parallel Processing Workshops - Euro-Par 2021 International
Workshops, Lisbon, Portugal, August 30-31, 2021, Revised Selected Papers (Lecture
Notes in Computer Science, Vol. 13098), Ricardo Chaves, Dora B. Heras, Aleksan-
dar Ilic, Didem Unat, Rosa M. Badia, Andrea Bracciali, Patrick Diehl, Anshu
Dubey, Oh Sangyoon, Stephen L. Scott, and Laura Ricci (Eds.). Springer, 445-455.
https://doi.org/10.1007/978-3-031-06156-1_35

Pedro Valero-Lara, Seyong Lee, Marc Gonzalez Tallada, Joel E. Denny, and Jef-
frey S. Vetter. 2022. KokkACC: Enhancing Kokkos with OpenACC. In 9th Work-
shop on Accelerator Programming Using Directives, WACCPD@SC 2022, Dallas,
TX, USA, November 13-18, 2022. IEEE, 32-42.

Pedro Valero-Lara, Ivan Martinez-Perez, Raul Sirvent, Xavier Martorell, and Anto-
nio J. Pefia. 2017. NVIDIA GPUs Scalability to Solve Multiple (Batch) Tridiagonal
Systems Implementation of cuThomasBatch. In Parallel Processing and Applied
Mathematics - 12th International Conference, PPAM 2017, Lublin, Poland, September
10-13, 2017, Revised Selected Papers, Part I. 243-253.

Pedro Valero-Lara, Ivan Martinez-Pérez, Ratl Sirvent, Xavier Martorell, and An-
tonio J. Pefa. 2018. cuThomasBatch and cuThomasVBatch, CUDA Routines
to compute batch of tridiagonal systems on NVIDIA GPUs. Concurrency and
Computation: Practice and Experience 30, 24 (2018).

P. Valero-Lara, I. Martinez-Pérez, S. Mateo, R. Sirvent, V. Beltran, X. Martorell, and
J. Labarta. 2018. Variable Batched DGEMM. In 2018 26th Euromicro International
Conference on Parallel, Distributed and Network-based Processing (PDP). 363-367.
https://doi.org/10.1109/PDP2018.2018.00065

Pedro Valero-Lara, Alfredo Pinelli, and Manuel Prieto-Matias. 2014. Fast finite
difference Poisson solvers on heterogeneous architectures. Computer Physics Com-
munications 185, 4 (2014), 1265 — 1272. https://doi.org/10.1016/j.cpc.2013.12.026
Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. 2013. AUGEM: auto-
matically generate high performance dense linear algebra kernels on x86 CPUs.
In International Conference for High Performance Computing, Networking, Storage
and Analysis, SC’13, Denver, CO, USA - November 17 - 21, 2013, William Gropp
and Satoshi Matsuoka (Eds.). ACM, 25:1-25:12.

R. Clint Whaley. 2011. ATLAS (Automatically Tuned Linear Algebra Software).
In Encyclopedia of Parallel Computing, David A. Padua (Ed.). Springer, 95-101.
R. Clinton Whaley and Jack J. Dongarra. 1998. Automatically Tuned Linear
Algebra Software. In Proceedings of the ACM/IEEE Conference on Supercomputing,
SC 1998, November 7-13, 1998, Orlando, FL, USA. IEEE Computer Society, 38.
Martin Kroeker Zhang Xianyi. 2022. OpenBLAS. https://www.openblas.net/
[Online; accessed 6-July-2022].

https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://doi.org/10.1145/3293883.3302577
https://doi.org/10.1109/HPEC49654.2021.9622794
https://doi.org/10.1109/HPEC49654.2021.9622794
https://arxiv.org/abs/1611.06365
http://arxiv.org/abs/1611.06365
https://doi.org/10.1007/978-3-030-58144-2_8
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/S0895479897317685
https://doi.org/10.1016/j.procs.2017.05.138
https://doi.org/10.1145/3264491
https://doi.org/10.1145/3264491
https://doi.org/10.1007/978-0-387-09766-4_151
https://doi.org/10.1007/978-0-387-09766-4_151
https://doi.org/10.1177/1094342020938421
https://doi.org/10.1177/1094342020938421
https://doi.org/10.1145/504210.504213
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-documentation.html?s=Newest
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-documentation.html?s=Newest
https://doi.org/10.1109/HPEC49654.2021.9622873
https://doi.org/10.1109/HPEC49654.2021.9622873
https://doi.org/10.1109/RSDHA56811.2022.00007
https://docs.nvidia.com/cuda/cublas/index.html
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/ACCESS.2019.2900122
https://doi.org/10.1109/ACCESS.2019.2900122
https://doi.org/10.1109/EMPDP.2019.8671545
https://doi.org/10.1109/EMPDP.2019.8671545
https://doi.org/10.1016/j.jpdc.2019.12.002
https://doi.org/10.1109/IA356718.2022.00010
https://doi.org/10.1109/IA356718.2022.00010
https://doi.org/10.1007/978-3-031-06156-1_35
https://doi.org/10.1109/PDP2018.2018.00065
https://doi.org/10.1016/j.cpc.2013.12.026
https://www.openblas.net/

A APPENDIX
The pseudocode for MatRIS’s tiled LU factorization is provided below.

int matris_dgetrf(int target, double *A, int SIZE, int tile_size) {
Tiling2D<DTYPE> A_tiling(A, SIZE, SIZE, tile_size, tile_size);
size_t n_row_tiles = A_tiling.row_tiles_count(), n_col_tiles = A_tiling.col_tiles_count();
iris_task dgetrf_tasks[n_row_tiles];
iris_task top_dtrsm_tasks[n_col_tiles];
iris_task left_dtrsm_tasks[n_row_tiles];
iris_task dgemm_tasks[n_row_tiles][n_col_tiles];

size_t step = 0;
for(auto & a_tile : A_tiling.items(TILE2D_RIGHT_DOWN_TREE_WISE)) {
if (a_tile.row_tile_index() == a_tile.col_tile_index()) {
// Do DGEMM
step = a_tile.row_tile_index();
if (step '=0) {
for(auto & gemm_tile : A_tiling.items(step, step)) {
size_t tile_jj = dgemm_tile.row_tile_index();
size_t tile_ii = dgemm_tile.col_tile_index();
Tile2D<DTYPE> & left_dtrsm_tile = A_tiling.getAt(step-1, tile_ii);
Tile2D<DTYPE> & top_dtrsm_tile = A_tiling.getAt(tile_jj, step-1);
if (step-1 == 0) {
iris_task dgemm_depend_tasks[] = { left_dtrsm_tasks[tile_ii], top_dtrsm_tasks[tile_jj] };
iris_task_depend(task, 2, dgemm_depend_tasks);

}

else {
iris_task dgemm_depend_tasks[] = { left_dtrsm_tasks[tile_ii], top_dtrsm_tasks[tile_jj], dgemm_tasks[tile_jjl[tile_iil };
iris_task_depend(task, 3, dgemm_depend_tasks);

}

iris_task dgemm_task;
iris_task_create(&dgemm_task);
dgemm_tasks[tile_jjl[tile_ii] = task;
matris_task_dgemm(graph, dgemm_task, target, MATRIS_NO_TRANS, MATRIS_NO_TRANS,
-1.0, left_trsm_tile.IRISMem(), tile_size top_trsm_tile.IRISMem(), tile_size, 1.0, gemm_tile.IRISMem(), tile_size);
}

3}

// Do DGETRF

iris_task_create(&dgetrf_tasks[step]);

if (step !=0) {
iris_task dgetrf_depend_tasks[] = { dgemm_tasks[stepl[step] };
iris_task_depend(dgetrf_tasks[step], 1, dgetrf_depend_tasks);

matris_task_dgetrf(graph, dgetrf_tasks[step], target,
tile_size,
a_tile.IRISMem(), tile_size);

else if (a_tile.row_tile_index() == step) {

// Do LEFT DTRSM

size_t tile_ii = a_tile.col_tile_index();

Tile2D<DTYPE> & dgetrf_tile = A_tiling.getAt(step, step);

iris_task_create(&left_dtrsm_tasks[tile_ii]);

iris_task parent_dgemm_task=NULL;

if (step != 0)

parent_dgemm_task = dgemm_tasks[step][tile_ii];

iris_task dtrsm_depend_tasks[] = { dgetrf_tasks[step], parent_dgemm_task };

iris_task_depend(left_dtrsm_tasks[tile_ii], 2, dtrsm_depend_tasks);

matris_task_dtrsm(graph, left_dtrsm_tasks[tile_ii], target, MATRIS_RIGHT, MATRIS_UPPER,
MATRIS_NO_TRANS, MATRIS_NON_UNIT, tile_size, tile_size,
1.0, dgetrf_tile.IRISMem(), tile_size, a_tile.IRISMem(), tile_size);

else if (a_tile.col_tile_index() == step) {
// Do TOP DTRSM
size_t tile_jj = a_tile.row_tile_index();
Tile2D<DTYPE> & dgetrf_tile = A_tiling.getAt(step, step);
iris_task_create(&top_dtrsm_tasks[tile_jjl);
iris_task parent_dgemm_task = NULL;
if (step !'=0)
parent_dgemm_task = dgemm_tasks[tile_jj][step];
iris_task trsm_depend_tasks[] = { dgetrf_tasks[step], parent_dgemm_task };
iris_task_depend(top_dtrsm_tasks[tile_jjJ, 2, dtrsm_depend_tasks);
matris_task_dtrsm(graph, top_trsm_tasks[tile_jj], target, MATRIS_LEFT, MATRIS_LOWER,
MATRIS_NO_TRANS, MATRIS_UNIT, tile_size, tile_size,
1.0, dgetrf_tile.IRISMem(), tile_size, a_tile.IRISMem(), tile_size);
3
3
iris_graph_submit(graph);

Figure A1: LU factorization in MatRIS.

A.1 Artifact Identification

(1) Contribution and role of the computational artifact(s):

This paper presents MatRIS, a scalable and portable math li-

brary abstraction for performance portability and heterogeneity.

MatRIS is built on top of the IRIS runtime.

Description of the computational artifact(s): The MatRIS

software stack includes the IRIS runtime, which is used to imple-

ment the IRIS programming model and provide math library-
specific functionalities. The MatRIS software stack has three
layers of abstraction (see Figure 1 in the manuscript). The bot-
tom layer is the IRIS runtime, which abstracts vendor runtime
systems and their APIs. The middle layer (kernel layer) pro-
vides optimized kernels, including wrappers for different math
libraries optimized for different architectures. This kernel layer
also abstracts the calls for different vendor libraries and pro-
vides a unified API for BLAS and LAPACK kernels. The top layer
of MatRIS provides architecture- and vendor library—agnostic

APIs for tiled BLAS and LAPACK functionalities for dense and

sparse linear algebra algorithms.

(3) Contribution of the artifacts toward reproducibility: All
experiments and results were produced with the aforemen-
tioned artifacts (MatRIS) and by using the scripts that build IRIS
and MatRIS, run MatRIS executables, and collect the results.

(4) Systems used: Three systems were used for the experiments:
(1) the Summit supercomputer, (2) the Frontier supercomputer,
and (3) a node from the CADES cloud environment. All three
systems are housed at Oak Ridge National Laboratory. Table 1 in
the manuscript provides more information about each system.

—
\S)
~

A.2 Reproducibility of Experiments

There are three kinds of results presented in the paper: (1) the
scalability graphs for dense and sparse LU factorization in Fig-
ures 8 and 9, (2) a comparison with NVIDIA’s cuSolverMG in Ta-
ble 4, and (3) a memory transfer comparison in Tables 2 and 3.
To better explain the process, please refer to our Google Drive
folder, https://drive.google.com/drive/folders/1tXFBOBtyNsUZXq
00Smj_TjDbm3gCEVA?usp=sharing, which contains the following:

e Snapshots of the MatRIS and IRIS repositories. The IRIS folder
is inside the 1.matris folder. This folder also contains source
files and scripts for each system mentioned in Table 1.

e The 2.graphs_sc.x1sx file contains all graph templates given
in Figures 8 and 9. These graphs can be recreated by inserting
the data generated from the script.

e The cusolver_MgGetrf_example.cu file generates NVIDIA’s
multiGPU result.

Initial Setup: For every system, there are source files in the
source.X folder within the 1.matris folder, where X stands in
for Summit, Frontier, or CADES. First, the source.modules. sh file
must be sourced for each machine. Doing so loads the appropriate
library to build IRIS and MatRIS.

Initial Building: Before running the scripts, run the
build.X.sh script located inside the 1.matris folder (X stands
in for Summit, Frontier, or CADES). This script will build,
install, and source the IRIS and MatRIS library. Using export
IRIS_ARCHS=cuda (for Summit), export IRIS_ARCHS=hip
(for Frontier), or export IRIS_ARCHS=cuda:hip defines

the IRIS architecture. Now, one can test by running the
./install/bin/dgetrf_dominant.x 32768 1 16 command
from the 1.matris folder. Note that each build.X. sh script has
several options for both dense and sparse matrices. The first cmake
command is for the LaRIS result, and the second cmake command
is for the MatRIS result, both of which are reported in Figures 8
and 9 for dense and sparse, respectively.

Generating Figures 8 and 9: The generation process for Fig-
ures 8 and 9 is described below.

Workflow: After the initial set up and building described above,
one can easily use the scripts located in the script. X folders within
the 1.matris folder, where X stands in for Summit, Frontier, or
CADES. Each folder has two scripts: dense.sh and sparse. sh.
These scripts build MatRIS for the LaRIS option (option 1) and Ma-
tRIS option (option 2) and run scalable experiments for multiGPU
environments.

Estimation of the Execution Time: Execution time could vary
because of the warm-up period for each processor. However, one
script should not take more than 2.5 hours.

Expected Results: Running one file creates an output file named
out, which is then grepped using grep -i "MATRIX_SIZE" out.
The output of the grep command provides scalability results for
execution time for different options (LaRIS and MatRIS) along with
a different number of GPUs.

How Graphs are Prepared: The resulting file from the grep com-
mand is used to prepare the graphs provided in 2. graphs_sc. x1sx.
For that, use a pivot table in the given Excel file, where the rows are
the options, columns are the number of GPUs, and values are the
execution time averaged for multiple runs. The result can then be
put in dense and sparse sheets in the Excel file. Notably, the option
one result is for LaRIS, and option two is for MatRIS. Once the data
is input, the graphs are immediately updated. This can be done for
all graphs in Figures 8 and 9.

Generating Tables 2 and 3: Tables 2 and 3 are generated by
the traces from the IRIS runtime, which provides total memory
transfer. For each system, the build.X.sh file has two options:
dense and sparse, which also provide LaRIS and MatRIS results.
Building IRIS and MatRIS by using those scripts would allow the
following command: . /install/bin/dgetrf_dominant.x 32768
1 16. After running, the summary trace is shown at the end, where
memory transfer for the total kernel is visible. We took the D2H,
H2D, and D2D numbers from that summary and constructed both
tables. Generating these should take 30 minutes at most.

Generating Table 4: To generate NVIDIA’s multiGPU num-
ber reported in Table 4, one must download NVIDIA’s exam-
ple from https://github.com/NVIDIA/CUDALjbrarySamples/tree/
master/cuSOLVER/MgGetrf. To capture the timing information,
please replace the cusolver_MgGetrf_example.cu file with the
file provided in Google Drive. One must change the number of
GPUs to generate the scalability result, which we did manually
in the source file. Generating these results should not take more
than 30 minutes. For StarPU, one must build StarPU with NVIDIA
GPU support. The command STARPU_NCPUS=0 STARPU_NCUDA=4
STARPU_SCHED=dmdas ./lu_example_double -size 16384
-nblocks 16 provides non-pivoting LU factorization for four GPUs.

https://drive.google.com/drive/folders/1tXFBOBtyNsUZXq_O0Smj_TjDbm3gCEVA?usp=sharing
https://drive.google.com/drive/folders/1tXFBOBtyNsUZXq_O0Smj_TjDbm3gCEVA?usp=sharing
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgGetrf
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgGetrf

	Abstract
	1 Introduction
	2 MatRIS
	2.1 Enabling Programming Productivity and Performance Portability
	2.2 Runtime Layer: IRIS Runtime
	2.3 Kernel Layer: Unified API for BLAS and LAPACK Kernels
	2.4 Algorithm Layer: Unified API for Portable Dense and Sparse Algorithms

	3 Performance Analysis
	3.1 Dense LU Factorization
	3.2 Sparse LU Factorization
	3.3 Comparison

	4 Related Work
	5 Conclusions
	Acknowledgments
	References
	A APPENDIX
	A.1 Artifact Identification
	A.2 Reproducibility of Experiments

