

Numerical modeling of plasma assisted deflagration to detonation transition in a microscale channel

Zhiyu Shi^a, Xingqian Mao^{a,*}, Andy Thawko^a, Yiguang Ju^{a,b}

^a Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

^b Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA

Abstract

This work numerically studies the plasma assisted deflagration to detonation transition (DDT) of H₂/O₂ mixtures in a microscale channel with detailed chemistry and transport. The results show that the DDT onset time is non-monotonically dependent on the discharge pulse number. The DDT is accelerated with small pulse numbers, whereas retarded with large ones. Two different DDT regimes, respectively at a small and large plasma discharge number, via acoustic choking of the burned gas and plasma-enhanced reactivity gradient without acoustic choking, are observed. Without plasma discharge, pronounced pressure and temperature gradients in front of the flame are generated by acoustic compression after the choking of the burned gas, triggering DDT via autoignition. With small plasma pulse numbers, the plasma-generated species enhance the ignition kinetics and lead to an increased reactivity in the boundary layer. After the choking of the burned gas, the plasma-enhanced reactivity advances the sequence of autoignition near the wall, strengthens ignition-shock wave coupling, and accelerates DDT. However, with a large discharge pulse number, a direct autoignition initiating DDT can occur without the acoustic choking of the burned gas due to the strongly accelerated reactivity and elevated temperature. In this case, DDT onset is retarded because the elevated temperature increases sonic velocity and the increased reactivity accelerated fuel oxidation in front of the flame, decelerating the formation of a leading shock and subsequent pressure buildup ahead of the flame. The present modeling reveals that no matter with or without plasma discharge, DDT is initiated by autoignition in thermal, pressure, and reactivity gradient fields via Zel'dovich gradient mechanism. The acoustic choking of the burned gas may not be the necessary condition of DDT with strong plasma-enhanced reactivity gradient. This work provides an answer to the experimentally observed non-monotonic DDT onset time by plasma, which provides guidance to control DDT in advanced detonation engines and fire safety of hydrogen-fueled catalytic reactors in microchannels by non-equilibrium plasma discharge.

Keywords: Non-equilibrium plasma; Deflagration to detonation transition; Zel'dovich gradient mechanism; Autoignition; Ignition-shock wave coupling

*Corresponding author.

1) Novelty and Significance Statement

The novelty of this research is the understanding of plasma assisted deflagration to detonation transition (DDT) mechanism. This work shows the DDT initiation can be accelerated and retarded non-monotonically by using a non-equilibrium plasma discharge. Two different DDT regimes, one via autoignition after acoustic choking of the burned gas and the other via plasma enhanced ignition without acoustic choking of the burned gas, are reported. The present finding is significant because DDT control is pivotal in advanced detonation engines and fire safety of industrial catalytic reactors in microchannels. This work provides a new insight and method to control DDT by using non-equilibrium plasma.

2) Author Contributions

- **Zhiyu Shi:** designed research, performed research, wrote the paper
- **Xingqian Mao:** performed research, wrote the paper, supervision
- **Andy Thawko:** review and editing
- **Yiguang Ju:** review and editing, supervision

3) Authors' Preference and Justification for Mode of Presentation at the Symposium

The authors prefer **OPP** presentation at the Symposium, for the following reasons:

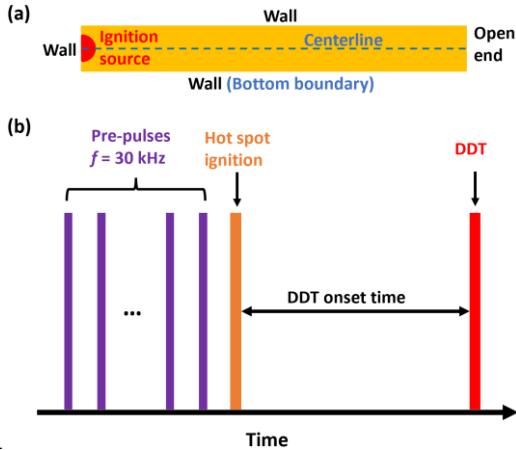
- A room-audience-level discussion with experts in multiple fields including plasma and detonation will be beneficial.
- Past research on detailed plasma-assisted DDT mechanisms is limited.
- This work independently explores acceleration and retardation effects on DDT by non-equilibrium plasma.
- This is the first time that the complete process from plasma, ignition, deflagration to detonation is conducted.
- This work provides a new method to control DDT in advanced engines and hydrogen-fueled catalytic reactors.

1. Introduction

2 Deflagration to detonation transition (DDT),
3 referring to the transition from subsonic to supersonic
4 combustion waves, has drawn great attention in
5 combustion science over the past decades. This
6 phenomenon is pivotal in the development of
7 advanced pressure-gain combustors such as Rotating
8 Detonation Engines (RDEs) and Pulsed Detonation
9 Engines (PDEs) [1, 2], which can thermodynamically
10 enhance the efficiency by up to 30%. In contrast, in
11 contexts such as engine knocking, chemical-catalytic
12 synthesis, and industrial fire safety [3], DDT poses
13 risks and must be prevented. Consequently, a
14 comprehensive understanding of the DDT mechanism
15 is crucial for both fundamental research and diverse
16 industrial applications.

17 Previous studies have provided a substantial
18 understanding of the DDT mechanism by different
19 approaches [4-8]. Several mechanisms such as the
20 hotspot mechanism, pressure gradient mechanism,
21 and turbulence driven DDT mechanism have been
22 proposed. Houim et al. [4] showed that the viscously
23 heated flame-wall boundary layer formed hot spots
24 and can be considered as a very long gradient in
25 reactivity. This reactivity gradient initiated detonation
26 across all geometrical configurations and dimensions
27 by simulations. Ivanov et al. [6] found that the
28 pressure peak at the flame front kept increasing due to
29 the positive feedback between the pressure pulse and
30 flame acceleration during deflagration. This pressure
31 peak finally steepened into a shock wave which was
32 strong enough for a detonation wave formation.
33 Poludnenko et al. [8] proposed that the turbulent
34 burning speed exceeding a Chapman-Jouguet (C-J)
35 deflagration velocity should be a critical condition for
36 turbulence-induced DDT. Under this condition, the
37 burned and unburned gases were both choked,
38 instigating a turbulent compressible flame runaway
39 and further DDT. With these previous studies, a
40 consensus has emerged regarding the coupling of
41 flame dynamics, shock waves, and autoignition in
42 DDT. Although many studies of DDT have been
43 conducted, there are still some debates about DDT
44 mechanisms.

45 To accelerate DDT onset in microchannels, the
46 thermal and kinetic enhancements have been explored
47 in previous studies [9, 10]. The results showed that the
48 ozone addition significantly accelerated DDT onset
49 via kinetic enhancement. The O radical decomposed
50 by ozone overcomes the rate-limiting step $H + O_2 =$
51 $OH + O$, which reduces the induction length and
52 shortens the ignition delay time, further kinetically
53 enhancing DDT. Due to the efficacy of kinetic
54 enhancement in reducing ignition delay time,
55 lowering minimum ignition energy, extending
56 flammability limits, and promoting cool flame
57 chemistry [11-13], the application of non-equilibrium
58 plasma on DDT has drawn great attention [14, 15].
59 The volumetric chemically-active species generated
60 by plasma, such as vibrationally and electronically


61 excited species, radicals, ions, and electrons, can
62 induce pronounced ignition-shock wave coupling by
63 ignition enhancement. Meanwhile, the gas heating
64 and fuel oxidation acceleration by plasma discharge
65 can also affect reaction rates, acoustic speed, and flow
66 choking conditions. Vorenkamp et al. [16, 17]
67 experimentally studied the kinetic enhancement by
68 nanosecond dielectric barrier discharge (ns-DBD)
69 plasma on dimethyl ether/oxygen/argon DDT. The
70 results revealed that plasma discharge non-
71 monotonically affected the DDT onset time and
72 distance. A moderate number of plasma discharge
73 pulses before ignition accelerated low-temperature
74 fuel oxidation, shortened ignition delay, and reduced
75 DDT onset time. However, DDT was retarded by
76 applying excessive pulses due to a reduced heat
77 release rate after partial fuel oxidation before ignition.
78 Therefore, non-equilibrium plasma can be applied to
79 control DDT. Although these experimental studies
80 demonstrated the potential of non-equilibrium plasma
81 to control DDT, the underlying mechanism of plasma
82 assisted DDT and the role of plasma assisted ignition
83 have not been explored.

84 Motivated by the above discussions, in this work
85 the plasma assisted DDT mechanism is studied by
86 numerical modeling. Firstly, the effects of plasma on
87 DDT onset time are investigated. Secondly, the
88 mechanisms of plasma assisted DDT under varying
89 pulse numbers are discussed by examining the
90 interactions among reaction fronts, shock waves, and
91 boundary layers. Particular attention is focused on the
92 critical conditions leading to DDT. The key factors
93 contributing to DDT with different discharge pulse
94 numbers are studied. Lastly, a comprehensive DDT
95 mechanism applicable to all conditions is proposed
96 and discussed.

98 2. Numerical methods

99 Similar to the work of Vorenkamp et al. [16, 17],
101 the configurations for the numerical modeling of
102 plasma assisted DDT are shown in Figure 1. For
103 simplicity, the plasma discharge simulations and the
104 DDT simulations are conducted separately in this
105 work. It is assumed that plasma is uniformly
106 distributed across the channel. A zero-dimensional
(0-107 D) model is used with different number of
108 pulses generated by a repetitively-pulsed
109 nanosecond discharge in the plasma discharge
110 simulations. The 111 discharge simulations are
112 terminated before the 113 subsequent discharge to
allow the plasma chemistry 112 to proceed. Then,
the temperature and species 113 concentrations
obtained after the last discharge pulse 114 are used as
input for the DDT simulations. A spark 115 ignition is
applied on the left end of the channel to 116 generate
the initial ignition kernel.

117 In the plasma discharge simulations, the time
118 evolutions of species densities and temperature are
119 calculated by a 0-D hybrid ZDPlasKin-CHEMKIN
120 model [18, 19]. The detailed governing equations and
121 validations can be found in previous studies [18, 19].

1
2 Fig. 1. (a) Schematic of the configuration, and (b) timing
3 sequence of plasma discharge, hot spot ignition and DDT in
4 the numerical simulation.

5

6 The H_2/O_2 plasma-combustion kinetic model
7 validated by *in-situ* and *ex-situ* measurements from
8 [19] is used in this work. The plasma kinetic sub-
9 model consists of reactions involving vibrationally
10 excited species $\text{H}_2(v=1-3)$, $\text{O}_2(v=1-4)$; electronically
11 excited species $\text{O}_2(\text{a}^1\Delta_g)$, $\text{O}_2(\text{b}^1\Sigma_g^+)$, O_2^* , $\text{O}(\text{D})$,
12 $\text{O}(\text{S})$; ions H^+ , H_2^+ , H_3^+ , O^+ , O_2^+ , O_4^+ , OH^+ , H_2O^+ ,
13 H_3O^+ , H^- , O^- , O_2^- , O_3^- , O_4^- , OH^- ; and electrons. For the
14 combustion sub- mechanism, an updated H_2/O_2 HP-
15 mech [20] is used.

16 For DDT simulations, a two-dimensional (2-D)
17 multi-scale adaptive reduced chemistry solver
18 (MARCS) [21] developed at Princeton University is
19 used. MARCS is a parallelized solver with adaptive
20 mesh and has been applied for efficient modeling of
21 unsteady, multi-component and compressible reactive
22 flow with detailed chemistry and transport. The
23 TRANSPORT package [22] is utilized to obtain
24 mixture-averaged transport properties. To efficiently
25 handle these properties, the correlated dynamic
26 adaptive chemistry and transport (CO-DACT) method
27 [23] is coupled with the hybrid multi-timescale
28 (HMTS) method [24]. The finite volume method is
29 used to discretize the computational domain. The
30 convection term in the Navier-Stokes equations is
31 constructed using a third-order advection upstream
32 splitting method with pressure wiggles (AUSMPW+)
33 scheme [25] to accurately capture shock waves in
34 high-speed flows. The detailed governing equations
35 and numerical schemes are described in [21]. The
36 excited and charged species with concentrations
37 below 1 ppm after discharge pulses are neglected. The
38 reactions of $\text{H}_2(v=1)$, $\text{O}_2(v=1)$, $\text{O}_2(\text{a}^1\Delta_g)$, and O_3 are
39 incorporated in the HP-Mech for DDT modeling.

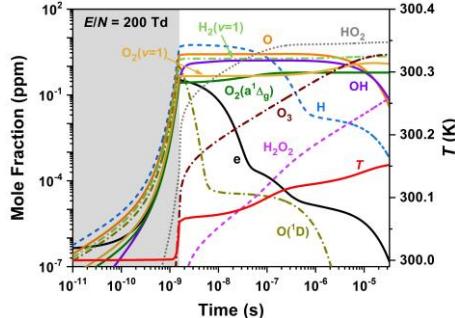
40 All the calculations are conducted in a
41 stoichiometric H_2/O_2 mixture (0.667 $\text{H}_2/0.333 \text{O}_2$) at
42 300 K and 1 atm. Simulations of plasma assisted DDT
43 with various pulse numbers ($n = 250, 500, 750, 1200$)
44 are compared with DDT in the absence of plasma. The
45 discharge frequency is 30 kHz, and the discharge

46 energy in each pulse is 0.2 mJ/cm³. The reduced
47 electric field E/N (where E is the electric field, N is
48 the gas number density) is 200 Td at which the
49 dissociation of H_2 and O_2 by electrons is efficient [19].
50 The discharge duration of each pulse is controlled by
51 maintaining a constant energy deposition in the
52 plasma across all simulations. For the DDT
53 simulations, the microscale channel is 1 mm in width
54 and 600 mm in length. The minimum mesh size is 2
55 μm , equating to 25 grid points over the flame
56 thickness, which suffices to capture key features of
57 flame acceleration and DDT. The initial mixture
58 composition for DDT and mesh size configuration
59 based on the grid refinement study are provided in the
60 Supplementary material. A semicircle hot spot with a
61 temperature of 3000 K at the left boundary is used to
62 initiate ignition and flame propagation. The right end
63 of the channel is set as a transparent boundary. The
64 rest of the boundaries are set as non-slip, reflective,
65 and adiabatic walls.

66

67 3. Results and discussion

68


69 3.1 Effects of plasma discharge on DDT onset 70 time

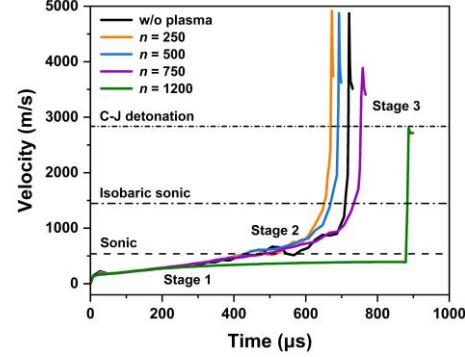
71

72 To understand the effects of plasma-enhanced
73 reactivity and discharge pulse number on the DDT,
74 the time evolutions of species concentrations and
75 temperature in a single nanosecond discharge by 0-D
76 modeling are presented in Figure 2. During the
77 nanosecond discharge, electrons increase
78 exponentially by electron impact ionization. The
79 excited species and radicals are produced through
80 electron impact excitation and dissociation reactions,
81 such as $\text{e} + \text{H}_2 \rightarrow \text{e} + \text{H}_2(v=1)$, $\text{e} + \text{H}_2 \rightarrow \text{e} + \text{H} + \text{H}$,
82 and $\text{e} + \text{O}_2 \rightarrow \text{e} + \text{O} + \text{O}/\text{O}(\text{D})$. At the same time, a
83 rapid temperature increase is observed in the
84 discharge mainly contributed by the Franck-Condon
85 effects in this uniform plasma modeling [26, 27]. The
86 Franck-Condon effects indicate the enthalpy change
87 caused by electron impact dissociations [26]. In the
88 early afterglow stage, the mole fraction of $\text{O}(\text{D})$
89 decreases within 10 ns via $\text{O}(\text{D}) + \text{H}_2 \rightarrow \text{O} + \text{OH}$.
90 This promotes the production of O and OH as well as
91 fast gas heating. In the later stage of afterglow, the
92 electron concentration decreases via recombination
93 with ions and attachment reactions. The O , H and OH
94 radicals are consumed through chain-branching and
95 chain-propagation reactions, accelerating the H_2
96 oxidation and increasing the temperature. Due to the
97 O and H production by plasma discharge, the
98 concentrations of O_3 and HO_2 increase via $\text{O} +$
99 $\text{O}_2(+\text{M}) = \text{O}_3(+\text{M})$ and $\text{H} + \text{O}_2(+\text{M}) = \text{HO}_2(+\text{M})$. The
100 production of HO_2 further contributes to H_2O_2
101 production via $\text{HO}_2 + \text{HO}_2 = \text{H}_2\text{O}_2 + \text{O}_2$. Fig. 2 also
102 shows that $\text{H}_2(v=1)$, $\text{O}_2(v=1)$ and $\text{O}_2(\text{a}^1\Delta_g)$ have
103 longer lifetimes due to slow quenching and relaxation,
104 which will accelerate ignition during DDT. Therefore,
105 by applying different discharge pulses, the plasma
106 will increase the reactivity and change the product

1 compositions and temperature of the H_2/O_2 mixture,
2 thus affecting the DDT.

3

4


5 Fig. 2. The time evolutions of species concentrations and
6 temperature in a nanosecond discharge pulse. The grey
7 region represents the discharge stage (~1.56 ns), and the
8 white region represents the afterglow stage.

9

10 Figure 3 shows the time histories of the flame
11 propagation velocity during DDT without plasma and
12 with plasma at different discharge pulse numbers. The
13 results show a non-monotonic dependence of the
14 DDT onset time on the discharge number, as
15 summarized in Table 1. With the increase of pulse
16 number, n , the DDT onset time first decreases and
17 reaches the lowest at $n = 250$, indicating the
18 acceleration of DDT by plasma discharge. The DDT
19 onset time is reduced by 44 μs at $n = 250$ compared to
20 the case without plasma. Further increase of n to 500
21 results in a slightly retarded DDT onset time, which is
22 still shorter than the condition without plasma.
23 However, the DDT onset time increases by 154 μs at
24 $n = 1200$. This non-monotonic relationship between
25 the DDT onset time and the pulse number agrees well
26 with the previous experiments of Vorenkamp et al.
27 [16, 17]. Therefore, the present modeling provides
28 evidence that this non-monotonic behavior is
29 universal for plasma assisted DDT regardless of the
30 fuel. As will be discussed later, the plasma assisted
31 kinetic enhancement by small pulse numbers
32 dominates the DDT acceleration. The plasma-
33 generated chemically active species such as $\text{H}_2(v=1)$,
34 O_3 , HO_2 and H_2O_2 facilitate autoignition before DDT.
35 Despite the strong enhancement of mixture reactivity
36 with a large pulse number, the large amount of fuel
37 consumption and the increase of the sonic speed due
38 to the increase of temperature increases sonic velocity
39 both decelerate the formation of a leading shock and
40 the necessary pressure buildup ahead of the flame,
41 thereby delaying DDT onset.
42 It is noted that the pulse number for decreasing
43 DDT onset time was reported as 30-50 in [16],
44 whereas it is 500-750 in the current simulation.
45 Additionally, the simulated DDT time is 600-800 μs ,
46 compared to around 100 μs in [16]. This discrepancy
47 arises from differences in discharge conditions, fuel,
48 and the limitations of 2-D modeling. For simplicity, a
49 constant reduced electric field and discharge energy
50 per pulse are used in the 0-D modeling. The discharge

51 energy is smaller than in the experiments due to the
52 difference in voltage waveform, resulting in different
53 optimal pulse numbers. Regarding fuel, H_2/O_2 is more
54 reactive than DME/ O_2/Ar used in [16, 17], leading to
55 a higher flame speed and shorter DDT onset time. 3-
56 D DDT simulations capture more realistic
57 autoignition due to complex interactions between the
58 flame front and shock waves [4, 6], making them
59 necessary for accurate comparison with experiments.
60 However, the 2-D simulations tend to severely over-
61 predict the onset time [4, 6], leading to the longer
62 DDT onset time in H_2/O_2 mixtures.

63

64

65 Fig. 3. Time evolutions of flame propagation velocity with
66 plasma at different discharge pulse numbers and without
67 plasma.

68

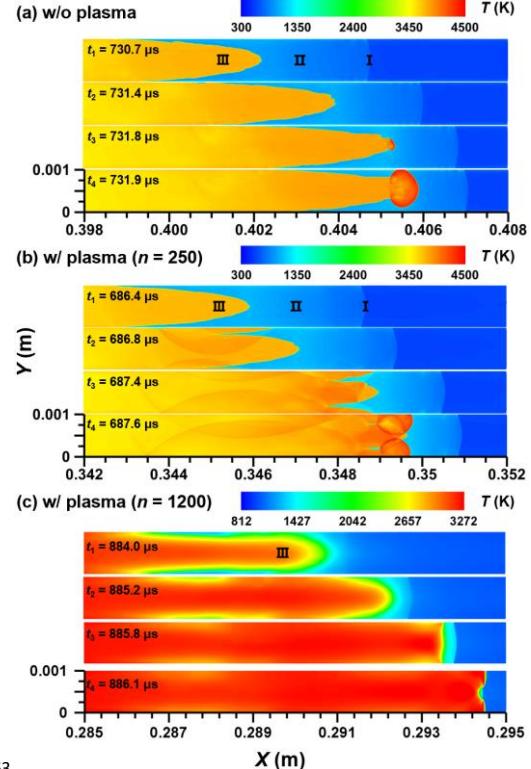
69 Table 1

70 Initial temperature and DDT onset time without plasma and
71 with plasma at different discharge pulse numbers.

Pulse number	Initial temperature (K)	DDT onset time (μs)
0	300	732
100	319	706
250	353	688
400	394	704
500	425	708
750	518	774
1200	810	886

72

73 Fig. 3 shows that except for $n = 1200$, the time
74 evolution of the velocity follows a similar trend,
75 which can be subdivided into three stages. It is noted
76 that the sonic velocity and isobaric sonic velocity are
77 calculated using the temperature, molecular weight,
78 and the heat capacity ratio of the unburnt gas and
79 burnt gas, respectively. These values differ from those
80 in [16] due to the use of different fuels and conditions.
81 In Stage 1, the flame propagation velocity increases
82 roughly linearly due to the flame area stretching in the
83 boundary layer [28]. In Stage 2, the acoustic choking
84 of the unburned gas occurs when the flame
85 propagation speed exceeds the sonic velocity. A
86 leading shock is then formed and increases the
87 pressure and temperature ahead of the flame, leading
88 to a further acceleration of the flame propagation.
89 However, the strengthening leading shock

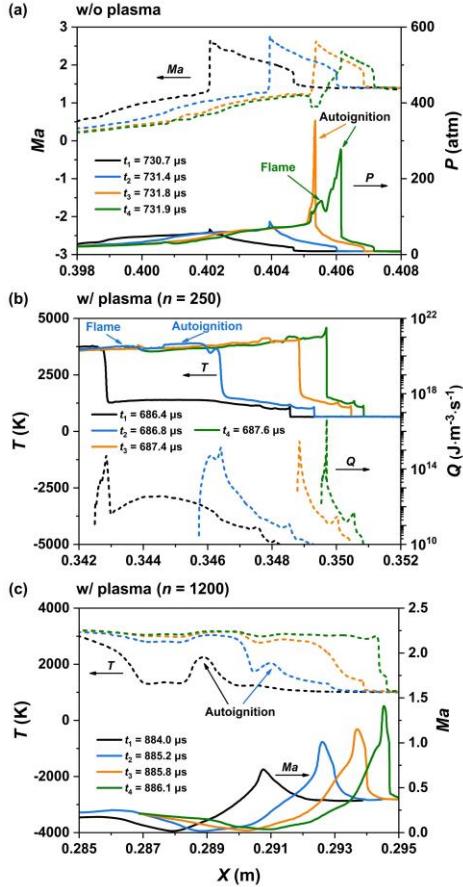

1 compresses the unburned gas in front of the flame and
 2 reduces flame propagation speed, leading to flame
 3 velocity oscillations and slowdown of flame
 4 acceleration. When the flame propagation velocity
 5 reaches the isobaric sonic velocity in Stage 3, the
 6 burned gas is choked, and flame acceleration
 7 generates continuous pressure waves. After that,
 8 autoignition occurs and the deflagration abruptly
 9 transits to detonation and results in an overdriven
 10 detonation speed higher than the C-J velocity.
 11 Interestingly, Fig. 3 shows that at $n = 1200$, flame
 12 propagation is significantly slower, and only Stages 1
 13 and 3 are observed. This occurs because the increased
 14 sonic velocity at a higher initial temperature inhibits
 15 leading shock formation. Consequently, both the
 16 leading shock wave and sonic choking in the burned
 17 gas are absent. The flame propagation transitions
 18 directly to detonation by autoignition (from Stage 1 to
 19 3) without reaching the burned gas choking condition.
 20 The detailed mechanism will be discussed in Section
 21 3.2.

23 3.2 Plasma assisted DDT mechanism 24

25 To study the mechanism of plasma discharge on
 26 DDT, three cases in Fig. 3 are compared, i.e., without
 27 plasma, DDT acceleration at $n = 250$, and DDT
 28 retardation at $n = 1200$. Figure 4 shows the time
 29 evolutions of temperature (T) during DDT. Figs. 4(a)
 30 and (b) both show the Zel'dovich-von Neumann-
 31 Döring (ZND) detonation wave structure for the cases
 32 without plasma and at $n = 250$, which has a precursor
 33 shock wave (I), an induction (II) zone and a reaction
 34 (III) zone with the burned gas at the acoustic choking
 35 condition. However, for $n = 1200$ (Fig. 4c), neither the
 36 burned gas choking condition nor a leading shock
 37 wave exists and only the plasma enhanced reaction
 38 zone with strong reactivity gradients is observed.

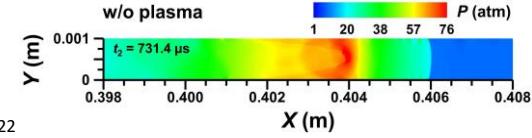
39 Without plasma, the accelerating flame acts like a
 40 piston which compresses and preheats the unburned
 41 mixture between the flame and the precursor shock.
 42 The pressure distribution at the centerline in Figure
 43 5(a) shows that the pressure gradient near the flame
 44 front increases with time (from $t_1 = 730.7 \mu s$ to $t_2 =$
 45 $731.4 \mu s$). This continuous compression results in a
 46 significantly higher pressure and temperature as well
 47 as their gradients ahead the flame front. Therefore, the
 48 flame is further accelerated, and the induction zone
 49 length reduces, leading to the generation of more
 50 intense pressure waves, which is also evident from the
 51 pressure profile in Figure 6. This positive feedback
 52 enhances the pressure exponentially. At $t_3 = 731.8 \mu s$,
 53 an ignition is initiated in the region with elevated
 54 temperature and pressure gradients after the choking
 55 of the burned gas, as shown in Figs. 4(a) and 5(a). The
 56 autoignition kernel at the flame front propagates in
 57 both forward and backward directions at a supersonic
 58 speed with a Mach number of 2.6 and initiates a strong
 59 shock wave. The generated shock wave then couples
 60 with the ignition and transits into detonation at $t_4 =$

61 $731.9 \mu s$. Two pressure peaks are observed at t_4 . The
 62 first small peak indicates the flame front, and the



63 Fig. 4. Time evolutions of temperature (T) during DDT of
 64 the cases (a) without plasma, (b) with pulse numbers $n = 250$,
 65 and (c) $n = 1200$ (I: shock wave zone; II: induction zone; III:
 66 reaction zone).

67 second one indicates the autoignition and ignition-
 68 induced shock. The time evolution of Mach number
 69 also shows that the DDT initiation occurs when the
 70 reaction front propagates with a Mach number larger
 71 than 1. It is noted that the Mach number decreases at
 72 the flame front and then increases with autoignition
 73 occurrence at $t_4 = 731.9 \mu s$ in Fig. 5(a). This is caused
 74 by the backward propagation of the ignition-induced
 75 shock.

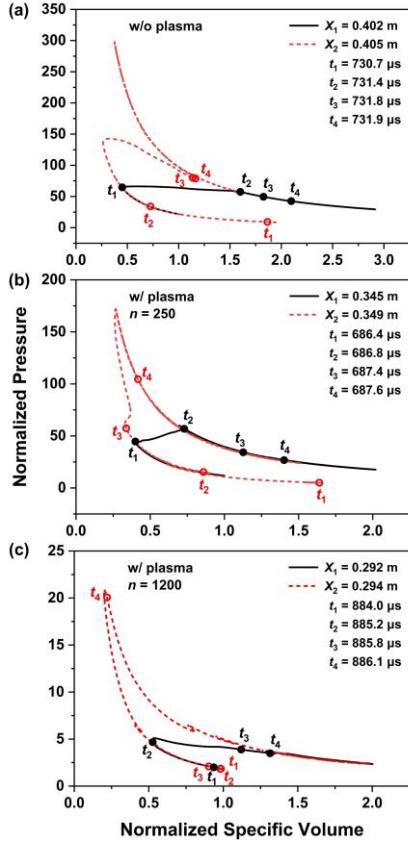

76 For the DDT acceleration with the pulse number of
 77 250, Fig. 4(b) shows that the DDT is initiated at the
 78 boundary layer which is formed due to the plasma-
 79 enhanced reactivity and the viscous effects between
 80 the precursor shock and the wall. To explain this, the
 81 time evolution of temperature at the bottom boundary
 82 is presented. Fig. 5(b) shows that the temperature in
 83 the boundary layer ahead of the flame is over 1000 K.
 84 At $t_1 = 686.4 \mu s$, similar to the no plasma case, a
 85 temperature gradient with increased reactivity (heat
 86 release rate) by plasma is generated in front of the
 87 flame at the boundary layer and the burned gas flow
 88 is choked. Although the plasma-enhanced reactivity is
 89 uniform across the channel, the interaction with
 90 viscous heating enhances the reactivity further at the

1 boundary layer. The plasma-generated species such as
2 H_2O_2 , O_3 , $\text{H}_2(v=1)$ induce new reaction pathways via

3 Fig. 5. Time evolutions of (a) Mach number (Ma) and
4 pressure (P) at the centerline of the channel without plasma;
5 (b) temperature (T) and heat release (Q) at the bottom
6 boundary with $n = 250$; and (c) temperature at the bottom
7 boundary and Mach number at the centerline with $n = 1200$.
8 The centerline and the bottom boundary are marked in Fig.
9 1(a). Because DDT occurs at the centerline without plasma
10 and at the boundaries with pulse number $n = 250$ and 1200,
11 variables are plotted at the centerline without plasma and at
12 the bottom boundary with $n = 250$ and 1200. The horizontal
13 axis represents the coordinates at these locations. An
14 exception is the Mach number for $n = 1200$, as the flow speed
15 is zero at the non-slip boundary. The Mach number at the
16 centerline for $n = 1200$ clearly demonstrates that the flow
17 speed did not exceed the sound speed before DDT. (More
18 information about Ma , P , T , and Q is provided in the
19 Supplementary material)

21

22 Fig. 6. Pressure during DDT without plasma at $t = 731.4 \mu\text{s}$.
23

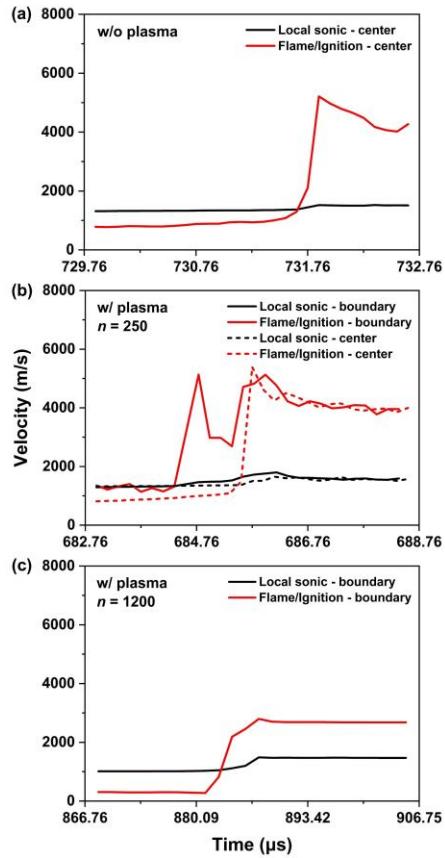

24

25 $\text{H}_2\text{O}_2(+\text{M}) = 2\text{OH}(+\text{M})$, $\text{O}_3(+\text{M}) = \text{O} + \text{O}_2(+\text{M})$, $\text{O} +$
26 $\text{H}_2(v=1) \rightarrow \text{H} + \text{OH}$ and $\text{H}_2(v=1) + \text{OH} \rightarrow \text{H}_2\text{O} + \text{H}$.
27 The radical production accelerates the fuel oxidation
28 and heat release rate at the boundary (see Fig. 5(b)),
29 promoting localized autoignition. Therefore, the
30 autoignition first occurs at the top and bottom
31 boundaries instead of the flame front, as shown at $t_2 =$
32 $686.8 \mu\text{s}$ in Fig. 4(b). Then, the ignition propagates
33 downstream by spontaneous ignition sequences and
34 forms an ignition wave ($t_3 = 687.4 \mu\text{s}$). This ignition
35 propagation results in more heat release in the
36 boundary layer, which further increases the
37 temperature ahead of the ignition front and enhances
38 the reactivity gradient. Therefore, the ignition front
39 accelerates and approaches the precursor shock.
40 Meanwhile, the compression waves are generated
41 continuously and increase the pressure
42 correspondingly. At $t_4 = 687.6 \mu\text{s}$, Fig. 4(b) shows that
43 the ignition front with a strong reactivity gradient
44 develops into a strong shock wave. The heat release,
45 temperature, and pressure increase significantly at the
46 shock front. The two shock waves at the top and
47 bottom boundaries merge and initiate detonation.

48 At $n = 1200$, the DDT also occurs at the boundary
49 layer initiated by autoignition, however, without a
50 leading shock wave and acoustic choking of the
51 burned gas (see the Mach number in Fig. 5(c)). Fig.
52 5(c) shows that the autoignition occurs ahead of the
53 flame at the boundary at $t_1 = 884.0 \mu\text{s}$, which takes a
54 longer time compared with the DDT without plasma
55 and with a pulse number of 250. Table 1 shows that
56 an initial temperature of 810 K is achieved at $n =$
57 1200. Different from the heat release rate acceleration
58 with plasma discharge number $n = 250$, the
59 autoignition at $n = 1200$ is mainly caused by the
60 elevated temperature and reactivity by a large number
61 of plasma pulses and wall friction. Then the
62 temperature and reactivity gradients are formed at the
63 boundary layer, and the ignition wave is generated.
64 The elevated temperature increases sonic velocity and
65 the large amount of fuel consumption with more
66 plasma pulse reduces the heat release rate of the
67 mixture, making it more difficult for the leading shock
68 to form and ignition-shock coupling. Without a
69 leading shock, the pressure ahead of the flame fails to
70 rise, and acoustic choking does not occur. It can be
71 seen in Fig. 5(c) that a second autoignition occurs at
72 $t_2 = 885.2 \mu\text{s}$. This supersonic ignition wave directly
73 initiates DDT at $t_3 = 885.8 \mu\text{s}$ when the Mach number
74 is larger than 1 (Fig. 5c).

75 Figure 7 shows the pressure-specific volume (P/V)
76 phase diagram at different locations during DDT.
77 The black solid and red dashed lines indicate the
78 locations before DDT and at DDT, respectively. For
79 location X_1 , all three cases show similar trends. At the
80 starting time, the normalized specific volume is unity
81 for all cases. The mixture is first compressed by the
82 compression waves produced by the flame
83 acceleration, as shown by black curves from the unity
84 volume to the turning point t_1 in Figs. 7(a) and (b) and
85 t_2 in Fig. 7(c). This follows the shock Hugoniot curve

1 in which the specific volume decreases with the
2 pressure increase. The first turning point indicates the
3 arrival of flame at this location. Then, Figs. 7(a) and
4 (c) show that the specific volume increases at a nearly
5 constant pressure with flame propagation. After that,
6 the pressure decreases due to thermal expansion in the


7
8 Fig. 7. Pressure-specific volume (P - V) phase diagram at the
9 locations before DDT (solid black line) and at DDT (dashed
10 red line) (a) at the centerline without plasma, and at the
11 bottom boundary with (b) $n = 250$ and (c) $n = 1200$.

12
13 reaction zone. Note that there is a pressure increase
14 between t_1 and t_2 at $n = 250$ in Fig. 7(b). This is caused
15 by the faster ignition wave propagation at the
16 boundary shown in Fig. 4(b) due to plasma enhanced
17 reactivity. For location X_2 without plasma, Fig. 7(a)
18 shows that the pressure first increases to higher values
19 due to the continuous compression between the flame
20 and the precursor shock. After the flame front passes
21 this location, the pressure decreases, as shown by the
22 dashed red line between t_2 and t_3 . Once the DDT
23 occurs ahead of X_2 at t_4 , the stronger shock wave
24 propagates back to X_2 , leading to the detonation. At n
25 = 250, a stronger coupling between autoignition and
26 shock wave is observed. The first turning point at t_3 in
27 Fig. 7(b) indicates the autoignition occurrence. As a
28 result, the specific volume and pressure increase
29 simultaneously. After the ignition wave passes the X_2 ,
30 a strong shock wave generated by the autoignition

31 front arrives and results in the second turning point.
32 At this point, the ignition wave begins to couple with
33 the shock wave. This coupling is accelerated by the
34 reactivity enhancement from plasma. Therefore, the
35 peak shock wave pressure increases abruptly and
36 results in faster DDT. In Fig. 7(c), with a pulse
37 number of 1200, the first and second turning points
38 shown in Fig. 7(b) disappear. This is because DDT is
39 directly initiated by autoignition due to strongly
40 accelerated reactivity and elevated temperature
41 without burned gas choking. However, the absence of
42 acoustic choking leads to a lower pressure rise and
43 longer DDT onset time.

44 Figure 8 shows the comparison between
45 flame/ignition velocity and local sonic velocity. The
46 probe location is the same as the flame (or ignition)
47 position and changes over time. The local sonic speed
48 is calculated based on the local temperature (shown in
49 Fig. S7 in the Supplementary material) and mixture
50 compositions at the probe location. The results show
51 that DDT only occurs when the ignition velocity (u_{ig})
52 exceeds the local sonic velocity (a) in all the cases.
53 The gas pressure rise does not have enough time to
54 equalize. The shock wave forms after transient
55 evolution and transits to detonation. The numerical
56 results clearly show that the occurrence of DDT
57 follows by the Zel'dovich gradient mechanism [29].
58 Fig. 8(b) also shows that the ignition velocity first
59 exceeds local sonic speed on the boundary, verifying
60 that the DDT is initiated at the wall at $n = 250$.

61

1
2 Fig. 8. Comparison between local sonic and flame/ignition
3 velocity at the center and the bottom boundary (a) without
4 plasma, (b) with 250 pulses, and (c) with 1200 pulses.

5 The plasma assisted DDT mechanism can be
6 summarized in Figure 9. Without plasma discharge,
7 the pressure and temperature gradients in front of the
8 flame front are generated by acoustic compression.
9 After the choking of the burned gas, the elevated
10 pressure and temperature gradients initiate DDT via
11 autoignition. With plasma discharge, there exist two
12 different regimes, i.e., DDT initiation via acoustic
13 choking of the burned gas at a small discharge pulse
14 number and plasma-enhanced reactivity gradient
15 without acoustic choking at a large discharge pulse
16 number. With small pulse numbers, the plasma-
17 generated species enhance the ignition kinetics.
18 Coupled with non-uniformity created by viscous
19 effects, a strong reactivity gradient is formed in the
20 boundary layer. This advances the ignition wave
21 propagation, ignition-shock wave coupling, and
22 accelerates DDT after the acoustic choking of burned
23 gas. With more plasma pulse numbers applied, the
24 significant increase of mixture reactivity and elevated
25 temperature by the excessive plasma assisted
26 hydrogen oxidation trigger DDT via autoignition
27 directly. DDT can occur without acoustic choking of
28 the burned gas. Meanwhile, the DDT onset time is
29 retarded because of the increased sonic velocity and

30 lower heat release rate. As summarized by the
31 discussion above, the DDT is initiated by autoignition
32 in thermal, pressure, and reactivity gradients via
33 Zel'dovich gradient mechanism both with and without
34 plasma discharges.

35

36
37 Fig. 9. Schematic of plasma assisted DDT mechanism.

38

39 4. Conclusions

40

41 The plasma assisted H_2/O_2 deflagration to
42 detonation transition in a microscale channel is
43 studied by numerical modeling with detailed
44 chemistry and transport. The effects of nanosecond
45 pulsed discharges on fuel oxidation and DDT
46 dynamics are investigated. The results show that there
47 exists a non-monotonic dependence between DDT
48 onset time and discharge pulse number. The DDT is
49 accelerated by a small discharge pulse number and the
50 onset time is reduced by 44 μ s. However, a large
51 discharge pulse number retards the DDT onset by 154
52 μ s. Two DDT regimes are observed with different
53 discharge pulse numbers. One regime is that the DDT
54 is initiated via acoustic choking of the burned gas at a
55 small discharge pulse number. The other one is via
56 plasma-enhanced reactivity gradient without acoustic
57 choking at large pulse numbers. Without plasma
58 discharge, the acoustic compression after the choking
59 of the burned gas generates pronounced pressure and
60 temperature gradients in front of the flame. DDT is
61 triggered by these gradients via autoignition. For the
62 DDT acceleration with small discharge pulse
63 numbers, the DDT is accelerated due to the
64 enhancement of autoignition sequences near the wall
65 and ignition-shock wave coupling by the plasma-
66 enhanced reactivity after the choking of the burned
67 gas. The enhancement of ignition kinetics and
68 increased reactivity in the boundary is contributed by
69 the plasma-generated species such as H_2O_2 , O_3 , $H_2(v)$
70 via $H_2O_2(+M) = 2OH(+M)$, $O_3(+M) = O + O_2(+M)$,
71 $O + H_2(v=1) \rightarrow H + OH$ and $H_2(v=1) + OH \rightarrow H_2O +$
72 H . With a large discharge pulse number, the results
73 show that DDT is initiated by a direct autoignition
74 without the acoustic choking of the burned gas. This
75 is attributed to the strongly accelerated reactivity and
76 the resulting elevated temperatures by plasma
77 discharges. However, the DDT onset is retarded

1 because the increased sonic velocity and the decrease
2 of heat release rate prevent the formation of a leading
3 shock and subsequent pressure buildup ahead of the
4 flame. The modeling results also show that DDT is
5 initiated by autoignition in thermal, pressure,
6 reactivity field via Zel'dovich gradient mechanism
7 both with and without plasma discharges. It is found
8 that with strong plasma activation of a mixture, the
9 acoustic choking of the burned gas is not a necessary
10 condition for DDT with plasma-enhanced reactivity
11 gradient. For future research, it is interesting to couple
12 the plasma discharge and DDT processes together and
13 investigate the effect of non-uniform plasma
14 distribution across the channel on the DDT initiation
15 [30].

16 Declaration of competing interest

18 The authors declare that they have no known
19 competing financial interests or personal relationships
20 that could have appeared to influence the work
21 reported in this paper.

23 Acknowledgements

25 This project is supported by the DOE grant DE-
27 SC0020233 of Plasma Science Center and NSF grant
28 CBET 1903362. AT gratefully acknowledges the
29 financial support of the Israeli Council for Higher
30 Education - Planning and Budgeting Committee.

32 Supplementary material

33 The Supplementary material is submitted along
35 with the manuscript.

36 References

39 [1] G.D. Roy, S.M. Frolov, A.A. Borisov, D.W. Netzer,
40 Pulse detonation propulsion: challenges, current status,
41 and future perspective, *Prog. Energy Combust. Sci.* 30
42 (2004) 545-672.

43 [2] G. Ciccarelli, S. Dorofeev, Flame acceleration and
44 transition to detonation in ducts, *Prog. Energy Combust.*
45 *Sci.* 34 (2008) 499-550.

46 [3] R. Zipf Jr, V. Gamezo, M. Sapko, W. Marchewka, K.
47 Mohamed, E. Oran, D. Kessler, E. Weiss, J. Addis, F.
48 Karnack, Methane-air detonation experiments at NIOSH
49 Lake Lynn Laboratory, *J. Loss Prevent. Proc.* 26 (2013)
50 295-301.

51 [4] R.W. Houim, A. Ozgen, E.S. Oran, The role of
52 spontaneous waves in the deflagration-to-detonation
53 transition in submillimetre channels, *Combust. Theor.
54 Model.* 20 (2016) 1068-1087.

55 [5] M.-H. Wu, W.-C. Kuo, Accelerative expansion and DDT
56 of stoichiometric ethylene/oxygen flame rings in micro-
57 gaps, *Proc. Combust. Inst.* 34 (2013) 2017-2024.

58 [6] M. Ivanov, A. Kiverin, I. Yakovenko, M.A. Liberman,
59 Hydrogen-oxygen flame acceleration and deflagration-
60 to-detonation transition in three-dimensional rectangular

61 channels with no-slip walls, *Int. J. Hydrogen Energ.* 38
62 (2013) 16427-16440.

63 [7] E.S. Oran, V.N. Gamezo, Origins of the deflagration-to-
64 detonation transition in gas-phase combustion, *Combust.
65 Flame* 148 (2007) 4-47.

66 [8] A.Y. Poludnenko, J. Chambers, K. Ahmed, V.N.
67 Gamezo, B.D. Taylor, A unified mechanism for
68 unconfined deflagration-to-detonation transition in
69 terrestrial chemical systems and type Ia supernovae,
70 *Science* 366 (2019) eaau7365.

71 [9] J. Sepulveda, A. Rousso, H. Ha, T. Chen, V. Cheng, W.
72 Kong, Y. Ju, Kinetic enhancement of microchannel
73 detonation transition by ozone addition to acetylene
74 mixtures, *AIAA J.* 57 (2019) 476-481.

75 [10] J. Crane, X. Shi, A.V. Singh, Y. Tao, H. Wang, Isolating
76 the effect of induction length on detonation structure:
77 Hydrogen-oxygen detonation promoted by ozone,
78 *Combust. Flame* 200 (2019) 44-52.

79 [11] Y. Ju, W. Sun, Plasma assisted combustion: Dynamics
80 and chemistry, *Prog. Energy Combust. Sci.* 48 (2015) 21-
81 83.

82 [12] A. Starikovskiy, N. Aleksandrov, Plasma-assisted
83 ignition and combustion, *Prog. Energy Combust. Sci.* 39
84 (2013) 61-110.

85 [13] X. Mao, H. Zhong, Z. Wang, T. Ombrello, Y. Ju, Effects
86 of inter-pulse coupling on nanosecond pulsed high
87 frequency discharge ignition in a flowing mixture, *Proc.
88 Combust. Inst.* 39 (2023) 5457-5464.

89 [14] A. Starikovskiy, N. Aleksandrov, A. Rakitin, Plasma-
90 assisted ignition and deflagration-to-detonation
91 transition, *Philos. Trans. R. Soc. A* 370 (2012) 740-773.

92 [15] A.A. Tropina, R. Mahamud, Effect of plasma on the
93 deflagration to detonation transition, *Combust. Sci.
94 Technol.* 194 (2022) 2752-2770.

95 [16] M. Vorenkamp, S.A. Steinmetz, T.Y. Chen, X. Mao, A.
96 Starikovskiy, C. Kliewer, Y. Ju, Plasma-assisted
97 deflagration to detonation transition in a microchannel
98 with fast-frame imaging and hybrid fs/ps coherent anti-
99 Stokes Raman scattering measurements, *Proc. Combust.
100 Inst.* 39 (2023) 5561-5569.

101 [17] M. Vorenkamp, S. Steinmetz, X. Mao, Z. Shi, A.
102 Starikovskiy, Y. Ju, C. Kliewer, Effect of Plasma-
103 Enhanced Low-Temperature Chemistry on Deflagration-
104 to-Detonation Transition in a Microchannel, *AIAA J.* 61
105 (2023) 4821-4827.

106 [18] X. Mao, A. Rousso, Q. Chen, Y. Ju, Numerical
107 modeling of ignition enhancement of CH₄/O₂/He
108 mixtures using a hybrid repetitive nanosecond and DC
109 discharge, *Proc. Combust. Inst.* 37 (2019) 5545-5552.

110 [19] X. Mao, Q. Chen, A.C. Rousso, T.Y. Chen, Y. Ju,
111 Effects of controlled non-equilibrium excitation on
112 H₂/O₂/He ignition using a hybrid repetitive nanosecond
113 and DC discharge, *Combust. Flame* 206 (2019) 522-535.

114 [20] Z. Wang, H. Zhao, C. Yan, Y. Lin, A.D. Lele, W. Xu,
115 B. Rotavera, A.W. Jasper, S.J. Klippenstein, Y. Ju,
116 Methanol oxidation up to 100 atm in a supercritical
117 pressure jet-stirred reactor, *Proc. Combust. Inst.* 39
118 (2023) 445-453.

119 [21] W. Sun, Developments of Efficient Numerical Methods
120 for Combustion Modeling with Detailed Chemical

1 Kinetics, Princeton University, Princeton, NJ, 2020
2 Ph.D. Dissertation.

3 [22] R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J.
4 A. Miller, A Fortran Computer Code Package for the
5 Evaluation of Gas-Phase Multicomponent Transport
6 Properties, SAND-86-8246, Sandia National Labs.,
7 Livermore, CA, 1986.

8 [23] W. Sun, Y. Ju, A Multi-Timescale and Correlated
9 Dynamic Adaptive Chemistry and Transport (CO-DACT)
10 Method for Computationally Efficient Modeling of Jet
11 Fuel Combustion with Detailed Chemistry and Transport,
12 Combust. Flame 184 (2017) 297–311.

13 [24] X. Gou, W. Sun, Z. Chen, Y. Ju, A Dynamic Multi
14 Timescale Method for Combustion Modeling with
15 Detailed and Reduced Chemical Kinetic Mechanisms,
16 Combust. Flame 157.6 (2010) 1111–21.

17 [25] K. H. Kim, C. Kim, O. Rho, Methods for the accurate
18 computations of hypersonic flows: I. AUSMPW+
19 scheme, J. Comput. Phys. 174.1 (2001) 38-80.

20 [26] Farouk T, Farouk B, Staack D, Gutsol A, Fridman A,
21 Modeling of direct current micro-plasma discharges in
22 atmospheric pressure hydrogen, Plasma Sour. Sci.
23 Technol. 16.3 (2007) 619.

24 [27] X. Mao, H. Zhong, N. Liu, Z. Wang, Y. Ju, Ignition
25 enhancement and NO_x formation of NH₃/air mixtures by
26 non-equilibrium plasma discharge, Combust. Flame 259
27 (2024) 113140.

28 [28] D. Valiev, V. Bychkov, V. Akkerman, L. Eriksson,
29 Different stages of flame acceleration from slow burning
30 to Chapman-Jouguet deflagration, Phys. Rev. E 80.3
31 (2009) 036317.

32 [29] Y.B. Zeldovich, Regime classification of an exothermic
33 reaction with nonuniform initial conditions, Combust.
34 Flame 39 (1980) 211-214.

35 [30] S. Nagaraja, V. Yang, I. Adamovich, Multi-scale
36 modelling of pulsed nanosecond dielectric barrier plasma
37 discharges in plane-to-plane geometry, J. Phys. D: Appl.
38 Phys. 46.15 (2013) 155205.