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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
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Project Introduction

Designing modern combustion systems now relies on computer models that predict how changes in design will
affect performance. These models have replaced older methods that relied on the designer’s intuition or costly
and time-consuming physical testing. By using improved models, design cycles can be shortened and cleaner
and more efficient combustion devices can be created. This project aims to improve computer simulations of
low-life-cycle carbon fuels (LLCFs) with the goal of making these simulations faster and more accurate for
predicting combustion in vehicles.

Objectives

Overall Objectives
e Advance state of the art in LLCF combustion simulation through the development of fast and accurate
models.

o  Work with industry partners to prove the capability and impact of combustion software.

Fiscal Year 2023 Objectives

e Create surrogates for renewable diesel and conventional aviation fuels to be utilized by partners in the
Decarbonization of Off-road, Rail, Marine, and Aviation (DORMA) program.

e Develop Heterogeneous-compute Interface for Portability (HIP) version of Zero-RK graphics
processing unit (GPU) solvers to enable fast solution of chemical source terms on Advanced Micro
Devices, Inc. (AMD)-based compute platforms such as Frontier at Oak Ridge National Laboratory
(ORNL) and El Capitan at Lawrence Livermore National Laboratory (LLNL).

Approach

Computational models are critical for the transition of U.S. transportation networks of off-road, rail, marine,
and aviation away from carbon-intensive fuels (e.g., diesel and Jet-A/A1) to LLCFs. These models rely on
detailed chemical kinetics to capture ignition, propagation, extinction, and emissions behavior as a function of
fuel composition. Implementation of these models requires fuel models that mimic the physical and chemical
properties of market fuels (which, in general, are too complex to match component-by-component in models)
and efficient methods of incorporating the detailed reaction kinetics into relevant simulations. The current
effort in this project has closed gaps in these areas by (1) creating new fuel surrogates for two fuels relevant to
off-road, marine, and aviation combustion and (2) extending the current capability to utilize GPU hardware for
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fast solution of chemical source terms in computational fluid dynamics (CFD) simulations to new architectures
being fielded in U.S. Department of Energy (DOE) supercomputers as well as industry high-performance
computing (HPC) centers.

Results

Fuel Surrogates for DORMA Research

Petroleum-derived market fuels used in transportation (e.g., diesel and jet fuels) contain thousands of
components that can vary seasonally and from region to region. The complexity of these fuels necessitates the
use of surrogate blends that match the physical and chemical qualities of a targeted fuel with a limited mixture
of well-characterized fuel components. LLNL has developed tools for generating such blends that have
previously yielded surrogates proven to match real fuel characteristics and performance with high fidelity [1].
In the current performance period, these tools have been applied to the generation of two novel surrogates, one
for a renewable diesel blend and another for a research jet fuel.
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Table V.1.1 Target and Surrogate Properties for Renewable Diesel Fuel

Property Target
DCN
Density [kg/m3]

n-alkane volume %

The aviation fuel surrogate was produced as a
starting point for high-fidelity reaction modeling
of conventional and sustainable aviation fuels.
The target fuel is designated as POSF 10325, a
well-characterized, experimental fuel created as
part of the National Jet Fuel Combustion Program
with the intent of being representative of typical
properties of current petroleum-derived jet fuels.
While many previous surrogates have been
proposed for this fuel, none have been able to take
advantage of advances in recent reaction models
to be able to simultaneously match volatility,
ignition, and emissions behavior of the fuel. The
fuel properties of DCN, molecular weight,
density, hydrogen-to-carbon ratio, and detailed
compositional data were reported by Edwards [2],
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Figure V.1.3 Measured and predicted distillation curve for
conventional jet fuel and proposed surrogate, respectively

the advanced distillation curve by Saggese et al. [3], and the yield sooting index (YSI) by Das et al. [4].
Leveraging the comprehensive reaction model developed at LLNL under a sister project [5], 32 fuel components
were selected as the initial palette to match these targets. This broad palette provides great flexibility in matching
the targeted properties, but a 32-component surrogate is unattractive from both a modeling and experimental
perspective and so a sparsity enhancing target was also included during the surrogate optimization process. The
result of the optimization is a nine-component surrogate fuel that provides good agreement with all of the targeted

properties (see Table V.1.2 and Figure V.1.3).

Table V.1.2 Target and Surrogate Properties for POSF 10325 Jet Fuel

Property Target
DCN
Density [kg/m3]
Hydrogen:Carbon Ratio
Molecular Weight
YSI
n-alkane vol%
iso-alkane vol%
monocyclo-alkane vol%
Dicyclo-alkane vol%
Total aromatic vol%
Diaromatic vol%

Cyclo-aromatic vol%

Target Value
48.3
0.803
1.94
159
70.3
0.212
0.315
0.246
0.06
0.165
0.018
0.028

Surrogate Value
48.29
0.795

1.92
158.8
70.27
0.218
0.321
0.239
0.051
0.159

0.0118
0.0126
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Heterogeneous-Compute Interface for Portability Version of Zero-RK GPU

State-of-the-art combustion research utilizing detailed CFD continues to be constrained by available
computational resources. The computing hardware landscape has evolved in recent years to be highly
dependent on GPU technology at the leading edge of performance in terms of total floating point operations
(FLOPs) and FLOPs per watt as cataloged in the TOP500 list of supercomputer performance [6]. In past
reports, this project has detailed work done to enable acceleration of combustion simulations on GPU hardware
developed by the NVIDIA Corporation, which has historically been the majority hardware vendor, especially
at DOE facilities. In recent years, GPUs produced by AMD have become more relevant and have prompted the
development of a new version of the Zero-RK solver that can run on these systems.

In the current performance period, a new version of the Zero-RK solvers has been developed for AMD GPUs.
The work started by leveraging tools provided by AMD to semi-automatically convert the existing Compute
Unified Device Architecture code to the HIP code. Development was performed on the El Capitan early access
platforms at LLNL. After the initial conversion process, significant effort was required to ensure that the code
could be built reliably on the relevant platforms. Finally, work is continuing to improve performance for
industry-relevant simulation conditions.

Conclusions

e Two novel fuel surrogates relevant to current and future LLCF research have been developed and are
being used by DORMA projects.

e A new implementation of GPU-accelerated chemical kinetics solvers targeting AMD hardware has
been created and will be deployed at DOE and industry HPC sites.
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