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ABSTRACT

Various nondestructive diagnostic techniques have been proposed for in situ process monitoring of laser powder bed fusion (LPBF),
including melt pool pyrometry, whole-layer optical imaging, acoustic emission, atomic emission spectroscopy, high speed melt pool imaging,
and thermionic emission. Correlations between these in situ monitoring signals and defect formation have been demonstrated with acoustic
signals having been shown to predict pore formation with especially high confidence in recent machine learning studies. In this work, time-
resolved acoustic data are collected in both the conduction and keyhole welding regimes of LPBF-processed Ti-6Al-4V alloy. A non-
dimensionalized Strouhal number analysis, used in whistle aeroacoustics, is applied to demonstrate that the acoustic signals recorded in the
keyhole regimes can be directly associated with the vapor depression morphology. This mechanistic understanding developed from whistle
aeroacoustics shows that acoustic monitoring during the LPBF process can provide a direct probe into the vapor depression dynamics and

defect occurrence, especially in the keyhole regimes relevant to printing and defect formation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0205663

Laser powder bed fusion (LPBF), previously called selective laser
melting (SLM), is an additive manufacturing (AM) approach for metal
components that has proven to be an exceptionally useful fabrication
technique in many commercial and industrial applications." LPBE AM
provides various advantages compared to conventional manufacturing
approaches, such as geometric flexibility, low production lead time,
and inexpensive tooling. Alongside the increasing adoption of this
additive manufacturing method, significant effort has also been made
to control, predict, and understand the phenomena governing the pro-
cess. While their overall behavior is predictable based on laser printing
parameters, " specific defect formation events are often stochastic and
unpredictable, especially when considering the varying thermal bound-
ary conditions driven by the high degree of geometric flexibility that
additive approaches permit and the tremendous number of competing
physical properties of the material, including laser absorptivity, melting
temperature, and thermal conductivity." ° As a result, part qualifica-
tion often requires extensive destructive testing in addition to inspec-
tion through computed tomography (CT). While reliable, this can be

time consuming, financially costly, and not always well suited for the
small defects and complex geometries associated with AM-printed
parts. As such, in situ characterization techniques are well suited as a
preliminary “failure” test criteria with remarkably low time and cost
requirements.

Many different modalities have been proposed for in situ process
monitoring during LPBF, including melt pool pyrometry,”” whole-
layer optical imaging,'*'" acoustic emission,* ' high-speed melt pool
imaging,'”'* and thermionic emission.'” A correlation between these
in situ monitoring signals with defect formation has been demon-
strated in various systems.”’** Furthermore, machine learning studies
have shown qualitative correlation between acoustic signals and feature
formation as it varies with print parameters.”” ' Recent work with
machine learning models has shown high probability for pore detec-
tion by combining photodiode with acoustic monitoring data in
single-track prints.”” Acoustic monitoring offers complementary infor-
mation to optical methods and permits greater flexibility by not requir-
ing optical line-of-sight to the build. However, broader adoption of

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Appl. Phys. Lett. 125, 000000 (2024); doi: 10.1063/5.0205663
Published under an exclusive license by AIP Publishing

ID: aipepub3b2server Time: 19:51 |

125, 000000-1

Path: D:/AIP/Support/XML_Signal Tmp/Al-APL#241610


https://doi.org/10.1063/5.0205663
https://doi.org/10.1063/5.0205663
https://doi.org/10.1063/5.0205663
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0205663
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0205663&domain=pdf&date_stamp=0000-00-00
https://orcid.org/0000-0001-5994-8961
https://orcid.org/0000-0002-4508-7256
https://orcid.org/0000-0003-2362-5524
https://orcid.org/0000-0002-9229-2455
https://orcid.org/0000-0003-3983-3109
https://orcid.org/0000-0003-3338-5106
https://orcid.org/0000-0003-3519-7221
https://orcid.org/0000-0002-6327-6640
mailto:sun38@llnl.gov
https://doi.org/10.1063/5.0205663
pubs.aip.org/aip/apl

.

J_ID: APPLAB DOI: 10.1063/5.0205663 Date: 6-July-24

PROOF COPY [APL24-AR-01934]

AQ2

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

Applied Physics Letters

acoustic methods has suffered from a lack of mechanistic understand-
ing compared to, for example, pyrometry where the physics of black-
body radiation is well understood. In pursuit of strengthening
confidence in acoustic monitoring, a more mechanistic understanding
of acoustic signal generation in LPBF is necessary. This work aims to
develop a mechanistic connection between the acoustic signal and
melt pool behavior during LPBF through analysis of single-track prints
using a whistle aeroacoustic model.

Acoustic signals were recorded during laser irradiation of 3 mm
long single laser tracks on Ti-6Al-4V bare plate performed using a
1070 nm continuous wave Yb-fiber laser (YLR-500-AC-Y14, IPG
Photonics) focused to a D4r diameter of 73 Im, laser scan speeds of
250 and 500 mm/s, and laser powers between 100 and 400 W. The
experimental platform used in the present work has been described
previously.”” Laser direction and scan speed were controlled by a
SCANLAB intelliSCAN scan head, which consists of a two-axis galva-
nometer scanning mirror system. A 1/4" free-field, prepolarized
microphone and preamplifier package (frequency range: 4-100 000 Hz
( 2/ 3dB), dynamic range: 165dB, 378C01, PCB Piezotronics, Inc.)
was installed with direct line-of-sight to the laser-sample coincident
plane at 44 offset angle and a working distance of 140 mm. In situ
x-ray imaging was performed at SLAC National Accelerator
Laboratory’s Stanford Synchrotron Radiation Lightsource (SSRL)
beamline 2-2 using white-beam x-ray spectrum transmission x-ray
images of the LPBF process captured using a scintillator-based optical
system,” operating at 20 kfps with an effective pixel size of 2 Im per
pixel. The vacuum chamber containing the sample was evacuated to

5 10 *Torr prior to being filled with 730 Torr argon inert gas
environment for processing. Argon was constantly flowed through the
vacuum chamber during experiments using a high-efficiency air knife
(Super Air Knife, Aluminum, 3 in., EXAIR) located above the substrate
surface. During processing, the laser was scanned across a Ti-6Al-4V
substrate (TMS Titanium, Poway, CA, USA) as a 2.5 mm long single
line. Each substrate was approximately 500-Im thick in the x-ray
probe direction.

The acoustic data are presented in the frequency domain in time-
independent and time-dependent plots, generated by Fourier trans-
forms and wavelet transforms, respectively (Fig. 1). Plots are shown for
three prints performed with a scan speed of 500 mm/s and laser pow-
ers of 100, 200, and 400 W, corresponding to the conduction, stable
keyhole, and unstable keyhole regimes, respectively. The conduction
regime is comprised of scans throughout which the depth-to-width
ratio of the vapor depression remains below 1, while for the keyhole
regimes, the ratio is greater than 1. Prints where pores are identified
are further classified under the unstable regime.

The 100 W case shows a narrow band of tone frequencies cen-
tered around 70 kHz, which is consistent with stable melt pool geome-
try observed in x-ray videos. Despite the consistency in frequency,
fluctuations in the acoustic signal are observed with occasional short-
lived peaks arising and fading. The stochasticity in acoustic signals
notably increases with scan power, with tone frequency ranges of
40-60kHz at 200 W and 30-80 kHz at 400 W. Distinctly, at 400 W,
these ranges are not only constituted of narrowband peaks ( 10kHz
wide) scattered across the wider range but also a handful of broadband
peaks that span nearly the entire 30-80 kHz range. Interestingly, there
are also cases where peaks are long-lived enough in time (>200 Is) to
experience a shift in frequency between when they first appear and
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when they fade. Although this overall stochastic acoustic behavior is
easily correlated with high normalized enthalpy, unstable keyhole mor-
phology, and defect formation,”* *° a deeper interpretation of the spe-
cific features we observe requires mechanistic understanding of the
acoustic phenomena.

Interpretation of the acoustic signals first requires consideration
of the various acoustic sources present in the LPBF process, including
melt pool waves, solidification phenomena, and events deeper in the
material. Examination of the signal magnitude prior to the start of the
print shows that ambient experimental signals are negligible, including
the Ar gas recirculation system, vacuum pumps, galvo motion, and
other periphery systems. The low residual stress build-up in single-
track Ti-6Al-4V prints makes solidification cracking rare. The acoustic
impedance mismatch between solid Ti and gaseous Ar hinders subsur-
face acoustic signals reaching the airborne microphone; calculations
suggest that <1% of acoustic energy generated within solid or liquid
metal would be transmitted to a surrounding gas environment.”* As
such, the airborne microphone effectively couples to gas flow associ-
ated with the vapor depression and reduces signal from potential sub-
surface sources, like cracking and bubble collapse. We are confident
the acoustic signals recorded and analyzed are metal vapor aeroacous-
tics directly coupled to the vapor depression. To interpret these metal-
vapor aeroacoustics and extract some mechanistic insight into vapor
depression dynamics, we analyze through the perspective of whistle
aeroacoustics.

A classic and elegant example of the whistle model is the steam
kettle whistle, which can be defined as a cylinder with two similarly
sized holes axially aligned on opposing chamber faces [Fig. 2(a)]. The
upstream hole connects the whistle body to a large chamber of higher
pressure relative to ambient where the gas flow originates, and the
downstream hole connects the whistle body with an ambient atmo-
sphere; as gas flows through the whistle, a tone is generated. The spe-
cific mechanisms by which tones are generated can be classified into
three classes” and—for a given system—may vary based on the
Reynolds number Re... Ud/v, where U is the gas velocity, d is the open-
ing diameter, and v is kinematic viscosity."”"" Analysis of steam kettle
whistles has shown that as the Reynolds number changes, there are
two regimes of whistle behavior; these regimes can be identified by the
Strouhal number St...fd/U, where f is the tone frequency, d is the
opening diameter, and U is the gas velocity."” At low Reynolds number
(i.e., low air velocity, large hole diameter), the emitted acoustic fre-
quency is constant, corresponding to a Helmholtz resonator condition
where the Helmholtz cavity is defined as the whistle cylinder and the
effective neck length is the sum of the plate thicknesses. At high
Reynolds number (ie., high air velocity, small hole diameter), the
Strouhal number is constant, corresponding to a class III whistle,
which entails vortex shedding at the end of a resonating duct, similar
to a flute or organ pipe.”’

Figure 2(b) is a radiograph of a vapor depression resulting from a
single-track print at 500 mm/s and 300 W. Contrast enhancement,
binarization, and median filtering are performed on the radiograph to
generate Fig. 2(c). We analogize the keyhole-regime vapor depression
as a whistle such that the whistle body is the larger chamber of height
h and diameter D, as shown in Fig. 2(d). The gas flow source associated
with the upstream hole is the vapor jet with velocity U generated by
evaporation near the incident point of the laser beam at the bottom of
the vapor depression,” and the downstream hole would be the
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FIG. 1. Time-independent Fourier transforms (top) and time-dependent wavelet transforms (bottom) of acoustic data recorded during single-track irradiations on Ti-6Al-4V bare
plate with laser scan speed 500 mm/s and laser powers of (a) 100, (b) 200, and (c) 400 W. These powers correspond to the conduction, stable keyhole, and unstable keyhole

regimes of print behavior, respectively.

narrower neck of the vapor depression defined by diameter d. While
not all depressions will fit this model, we hypothesize that the system
will generate acoustic signal via a whistle mechanism when the vapor
depression dynamics align with the whistle model—i.e., tones occur
when gas flows through a larger chamber followed by a narrower
opening.

We proceed to demonstrate that vapor depressions can exhibit
whistle behavior through a non-dimensionalized analysis of the melt
pool aeroacoustic behavior. Precise calculation of the Reynolds num-
ber requires kinematic viscosity of the flowing gas. This is difficult to
estimate from literature values due to the mixing of gaseous metal with

argon at the extreme temperatures present. However, the Reynolds
number has been calculated using the density of the background gas
and surface temperature at the location of the laser spot.”* With con-
stant background gas pressure and surface temperature in the laser
spot increasing monotonically with laser power, the Reynolds number
is expected to also increase monotonically with laser power. To permit
incorporation of data from a wide range of experimental and material
parameters, normalized enthalpy can be used in place of laser
power."”"® Since our current scope focuses on changes in laser power
at two scan speeds, we use a reduced form of normalized enthalpy
P/u'?, with laser power P and scan speed u. From these relations,
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FIG. 2. (a) Schematic representation of a steam kettle whistle recreated from Ref. 25 with the parameters for air velocity U, whistle diameter D, whistle height h, and opening
diameter d. (b) X-ray radiograph of a vapor depression from a laser powder bed fusion scan at 500 mm/s and 300 W. (c) X-ray radiograph of the vapor depression after binar-
ization. (d) Schematic representation of the vapor depression with the same parameters as defined for the steam kettle whistle.

constant Strouhal number behavior across increasing Reynolds
number—which indicates class III whistle behavior—will appear as
constant Strouhal number behavior across increasing reduced normal-
ized enthalpy.

The Strouhal calculation for our vapor depression system requires
evaluation of the opening diameter, gas velocity, and tone frequency.
The stochasticity of the melt pool and the associated vapor depression
dynamics, especially at higher energy densities, requires approxima-
tions to complete these calculations. Our Strouhal number analysis is
not sensitive to absolute values, rather the relation between gas veloc-
ity, frequency, and opening diameter, and how each scales with nor-
malized enthalpy. For gas velocity U, we point to a study that used a
Knudsen layer approach to show that gas velocity normal to the pow-
der bed surface scales linearly with normalized enthalpy for stainless
steel over ranges of 300-1200 m/s and 50-200 W for scan speed and
laser power, respectively.”” The present work operates within the same
regime of normalized enthalpy when accounting for material and ther-
mal properties as well as processing conditions. As such, we proceed in
our Strouhal number analysis with gas velocity scaling linearly with
reduced normalized enthalpy from 0.3 to 1.5km/s over the range
explored.

The tone frequency and opening diameter are observed to fluctu-
ate within a single track at higher normalized enthalpies, specifically in
the unstable keyhole regimes where the vapor depression itself is
known to dramatically fluctuate. Assigning a single value to tone fre-
quency or opening diameter for a given track would be misleading
given the fluctuations. To address this, we look at the time dependence
of tone frequency and vapor depression geometry to assign an upper
and lower bound for both frequency and opening diameter for each
given track, with smaller opening diameter corresponding to higher fre-
quency and larger with lower. As such, two Strouhal numbers will be
calculated for each given track. Opening diameter, d, is measured from
binarized in situ x-ray imaging data. For each image frame captured
during the print, the minimum width of the vapor depression is identi-
fied, and, for each track, these minimum widths are used to determine
an upper and lower bound for opening diameter for the track.

Figure 3 shows the plot of Strouhal number vs reduced normal-
ized enthalpy with delineations made to illustrate the conduction,

stable keyhole, and unstable keyhole regimes. The conduction and key-
hole regimes are differentiated by the geometric aspect ratio of the
vapor depression while the stable and unstable keyhole regimes are dif-
ferentiated by ex situ pore identification. The acoustic data presented
in Fig. 1(a) nominally correspond to the conduction regime and
exhibit constant frequency behavior—similar to steam kettle whistles
at low Reynolds number."” While the stable keyhole regime may act as
a transitional regime, the unstable keyhole regime, where substantial
frequency fluctuations occur in the acoustic data, exhibits constant
Strouhal number behavior. Based on the whistle model, constant
Strouhal number behavior observed here at higher laser powers reflects
class IIT whistle acoustics, which corresponds to vortex shedding at the
end of a resonating duct. These findings are consistent with recent

25 . . . y . . y
s Stable Unstable Keyhole
'§ . Keyhole
20 3
— o) °
5 15 o 1
Qo
£
=
=z
£10f . -
2 TS
$ o . . Upper bound
5" Lower o °s !: i
(]
bound § o0 8 o { :
° °
° ° ° .
o . .8, g
2 4 6 8 10 12 14 16 18 20

Reduced Normalized Enthalpy [W/(mm/s)”z]

FIG. 3. Plot of the non-dimensionalized Strouhal number as a function of normal-
ized enthalpy for single-track irradiations on Ti-6Al-4V bare plate. Conduction and
keyhole regimes are differentiated by the geometric aspect ratio of the vapor
depression. Stable and unstable keyhole regimes are differentiated by ex situ pore
identification.
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plume imaging works showing plume structure indicative of vortex
shedding at higher laser powers"* and can be used to better understand
and further interpret melt pool morphology.

The present work demonstrates that the aeroacoustic principles
present in steam kettles also apply to LPBF melt pools so long as the
vapor depression morphology matches the whistle model—i.e., a nar-
rower opening downstream of a larger chamber. This understanding
allows a more detailed interpretation of the information-rich acoustic
data associated with melt pool behavior in the unstable keyhole regime.
For example, Fig. 4 shows the time-dependent acoustic data corre-
sponding to a print at 500 mm/s and 400 W [previously presented in
Fig. 1(c)] with binarized images of the vapor depression geometries
corresponding to four times during the print. The vapor depression at
1.75 ms exhibits two sequences of a narrow opening downstream of a
larger chamber while the vapor depression at 3.05ms exhibits one
such sequence—meeting the geometric requirements of the whistle
model. The vapor depressions at 2.50 and 3.30ms do not meet the
requirements because they exhibit constant width and monotonically
increasing width, respectively.

500 mm/s, 400 W

Time (ms)
N
w0

40
Frequency (kHz)

60 80 100
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Correlation of these geometries and times with the acoustic data
shows acoustic signals recorded in the two cases where the whistle
model requirements are satisfied and shows an absence of acoustic sig-
nals where the requirements are unmet. Additionally, the acoustic
peak at 1.75ms apparently spans >15kHz in frequency space and

0.2 ms in time. This may be linked to the complex geometry of the
vapor depression, which shows two openings with differing diameters.
Since this print occurs in the constant Strouhal regime, the opening
diameter is inversely related to the frequency of the resulting tone. As
such, multiple effective whistles within a single vapor depression would
conceivably result in acoustic signals spanning greater frequency
ranges and even multi-tone signals. The whistle model provides the
foundational framework to mechanistically understand the complex
acoustic data commonly found in the stable keyhole regime where
many LPBF processes operate.

The present work mechanistically links acoustic generation with
melt pool dynamics. While snapshots of vapor depression geometries
support the whistle model, capturing vapor depression evolution over
time would yield a more complete understanding of the complex

FIG. 4. Time-dependent acoustic data
corresponding to a print at 500 mm/s and
400 W previously presented in Fig. 1(c)
with binarized images of the vapor depres-
sion chosen at four times during the print.
The vapor depressions at 1.75 and
3.05ms (left) fit the geometric require-
ments of the whistle model whereas the
images taken at 2.50 and 3.30ms (right)
do not. Correlation of these times with the
time-dependent acoustic data shows
acoustic signals at 1.75 and 3.05ms and
shows a lack of signal at 2.50 and
3.30ms.

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

Appl. Phys. Lett. 125, 000000 (2024); doi: 10.1063/5.0205663
Published under an exclusive license by AIP Publishing

ID: aipepub3b2server Time: 19:51 |

125, 000000-5

Path: D:/AIP/Support/XML_Signal Tmp/Al-APL#241610


pubs.aip.org/aip/apl

.

J_ID: APPLAB DOI: 10.1063/5.0205663 Date: 6-July-24

PROOF COPY [APL24-AR-01934]

318

329
330
331
332

333

334
335
336
337
338
339
340
341

Applied Physics Letters

acoustic signatures. This is especially true for cases where the acoustic
signal appears to persist and shift in frequency over some time—as
identified in Fig. 4 and as is characteristic of unstable keyhole behavior.
Additionally, extension of this work to better reflect industry-relevant
conditions is vital for wider applicability of the present model. This
includes powder experiments to investigate the wider validity of the
whistle model and full-scale, multi-layer prints to determine the scal-
ability. Further development of the whistle model for vapor depres-
sions will increase the melt pool information extracted from acoustic
monitoring and strengthen the overall effectiveness of in situ monitor-
ing techniques.

The whistle model presented offers a direct connection between
the acoustic signals captured during the LPBF process and the physi-
cal attributes of the melt pool, especially in the keyhole regimes rele-
vant to printing. This model enables interpretation of complex
acoustic data to a greater extent than previously available by provid-
ing an empirical connection between acoustic frequency and vapor
depression geometry via the Strouhal number. The mechanistic
understanding of vapor depression aeroacoustics detailed in this work
suggests that process monitoring techniques based on acoustic meth-
ods will be broadly transferrable to different materials and machine
architectures. These findings hope to bridge the gap in physical
understanding between acoustic and optical techniques to promote
more widespread adoption of acoustic monitoring approaches. By
offering insight into the sub-surface morphology of the vapor depres-
sion, this model hopes to present acoustic monitoring as a comple-
mentary technique to existing optical approaches. With further
development of this model, in situ acoustic monitoring can be an
accessible and reliable method of probing melt pool dynamics, melt
pool depth, and the onset of pore detection in many materials and
industrial-scale builds.
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