

Direct mechanistic connection between acoustic signals and melt pool morphology during laser powder bed fusion

Y. Sun, S. Gorgannejad, A. Martin, J. Nicolino, M. Strantza, J.-B. Forien, V. Thampy, S. Liu, P. Quan, C. J. Tassone, M. J. Matthews, N. P. Calta

Applied Physics Letters

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

AUTHOR QUERY FORM

	Journal: Appl. Phys. Lett. Article Number: APL24-AR-01934	Please provide your responses and any corrections by annotating this PDF and uploading it to AIP's eProof website as detailed in the Welcome email.
---	--	---

Dear Author,

Below are the queries associated with your article; please answer all of these queries before sending the proof back to AIP.

Article checklist: In order to ensure greater accuracy, please check the following and make all necessary corrections before returning your proof.

1. Is the title of your article accurate and spelled correctly?
2. Please check affiliations including spelling, completeness, and correct linking to authors.
3. Did you remember to include acknowledgment of funding, if required, and is it accurate?

Location in article	Query / Remark: click on the Q link to navigate to the appropriate spot in the proof. There, insert your comments as a PDF annotation.
AQ1	Please check that the author names are in the proper order and spelled correctly. Also, please ensure that each author's given and surnames have been correctly identified (given names are highlighted in red and surnames appear in blue).
AQ2	Please define PCB and TMS at first occurrence.
AQ3	Please provide publisher's name for Refs. 14 and 30.
AQ4	Please provide thesis type for Ref. 31.
	Please confirm ORCIDs are accurate. If you wish to add an ORCID for any author that does not have one, you may do so now. For more information on ORCID, see https://orcid.org/ . Yuchen Sun - 0000-0001-5994-8961 Sanam Gorgannejad - 0000-0002-4508-7256 Aiden Martin - 0000-0003-2362-5524 Jenny Nicolino - Maria Strantza - Jean-Baptiste Forien - 0000-0002-9229-2455 Vivek Thampy - 0000-0003-3983-3109 Sen Liu - Peiyu Quan - 0000-0003-3338-5106 Christopher J. Tassone - Manyalibo J. Matthews - 0000-0003-3519-7221 Nicholas P. Calta - 0000-0002-6327-6640

Please check and confirm the Funder(s) and Grant Reference Number(s) provided with your submission:

Basic Energy Sciences, Award/Contract Number DE-AC02-76SF00515

Lawrence Livermore National Laboratory, Award/Contract Number DE-AC52-07NA27344

Lawrence Livermore National Laboratory, Award/Contract Number 21-ERD-008

Please add any additional funding sources not stated above:

Thank you for your assistance.

1 Direct mechanistic connection between acoustic 2 signals and melt pool morphology during laser 3 powder bed fusion

5 Cite as: Appl. Phys. Lett. 125, 000000 (2024); doi: 10.1063/5.0205663

8 Submitted: 27 February 2024 · Accepted: 1 July 2024 ·

7 Published Online: 0 Month 0000

AQ1

9
 10 Yuchen Sun,^{1,a)} Sanam Gorgannejad,¹ Aiden Martin,¹ Jenny Nicolino,¹ Maria Strantza,¹
 11 Jean-Baptiste Forien,¹ Vivek Thampy,² Sen Liu,² Peiyu Quan,² Christopher J. Tassone,²
 12 Manyalibo J. Matthews,¹ and Nicholas P. Calta¹

13 AFFILIATIONS

14 ¹Lawrence Livermore National Laboratory, Livermore, California 94550, USA

15 ²SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

16 a)^aAuthor to whom correspondence should be addressed: sun38@llnl.gov

ABSTRACT

17 Various nondestructive diagnostic techniques have been proposed for *in situ* process monitoring of laser powder bed fusion (LPBF),
 18 including melt pool pyrometry, whole-layer optical imaging, acoustic emission, atomic emission spectroscopy, high speed melt pool imaging,
 19 and thermionic emission. Correlations between these *in situ* monitoring signals and defect formation have been demonstrated with acoustic
 20 signals having been shown to predict pore formation with especially high confidence in recent machine learning studies. In this work, time-
 21 resolved acoustic data are collected in both the conduction and keyhole welding regimes of LPBF-processed Ti-6Al-4V alloy. A non-
 22 dimensionalized Strouhal number analysis, used in whistle aeroacoustics, is applied to demonstrate that the acoustic signals recorded in the
 23 keyhole regimes can be directly associated with the vapor depression morphology. This mechanistic understanding developed from whistle
 24 aeroacoustics shows that acoustic monitoring during the LPBF process can provide a direct probe into the vapor depression dynamics and
 25 defect occurrence, especially in the keyhole regimes relevant to printing and defect formation.

Published under an exclusive license by AIP Publishing <https://doi.org/10.1063/5.0205663>

26 Laser powder bed fusion (LPBF), previously called selective laser
 27 melting (SLM), is an additive manufacturing (AM) approach for metal
 28 components that has proven to be an exceptionally useful fabrication
 29 technique in many commercial and industrial applications.¹ LPBF AM
 30 provides various advantages compared to conventional manufacturing
 31 approaches, such as geometric flexibility, low production lead time,
 32 and inexpensive tooling. Alongside the increasing adoption of this
 33 additive manufacturing method, significant effort has also been made
 34 to control, predict, and understand the phenomena governing the
 35 process. While their overall behavior is predictable based on laser printing
 36 parameters,^{2,3} specific defect formation events are often stochastic and
 37 unpredictable, especially when considering the varying thermal bound-
 38 ary conditions driven by the high degree of geometric flexibility that
 39 additive approaches permit and the tremendous number of competing
 40 physical properties of the material, including laser absorptivity, melting
 41 temperature, and thermal conductivity.⁴⁻⁶ As a result, part qualifica-
 42 tion often requires extensive destructive testing in addition to inspec-
 43 tion through computed tomography (CT). While reliable, this can be

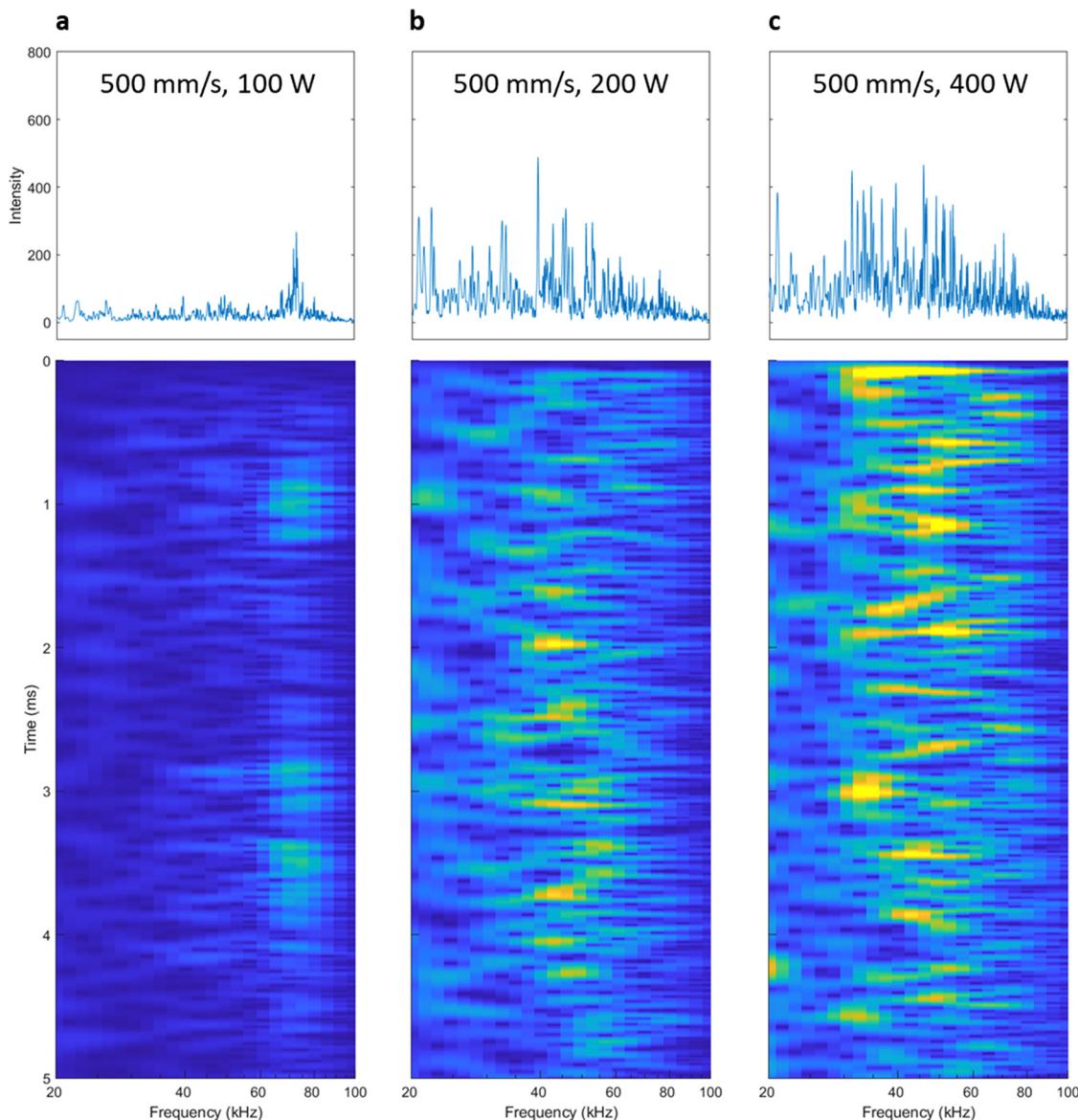
44 time consuming, financially costly, and not always well suited for the
 45 small defects and complex geometries associated with AM-printed
 46 parts. As such, *in situ* characterization techniques are well suited as a
 47 preliminary “failure” test criteria with remarkably low time and cost
 48 requirements.

49 Many different modalities have been proposed for *in situ* process
 50 monitoring during LPBF, including melt pool pyrometry,⁷⁻⁹ whole-
 51 layer optical imaging,^{10,11} acoustic emission,¹²⁻¹⁶ high-speed melt pool
 52 imaging,^{17,18} and thermionic emission.¹⁹ A correlation between these
 53 *in situ* monitoring signals with defect formation has been demon-
 54 strated in various systems.²⁰⁻²⁴ Furthermore, machine learning studies
 55 have shown qualitative correlation between acoustic signals and feature
 56 formation as it varies with print parameters.²⁵⁻³¹ Recent work with
 57 machine learning models has shown high probability for pore detec-
 58 tion by combining photodiode with acoustic monitoring data in
 59 single-track prints.³² Acoustic monitoring offers complementary infor-
 60 mation to optical methods and permits greater flexibility by not requir-
 61 ing optical line-of-sight to the build. However, broader adoption of

62 acoustic methods has suffered from a lack of mechanistic understanding 63 compared to, for example, pyrometry where the physics of black- 64 body radiation is well understood. In pursuit of strengthening 65 confidence in acoustic monitoring, a more mechanistic understanding 66 of acoustic signal generation in LPBF is necessary. This work aims to 67 develop a mechanistic connection between the acoustic signal and 68 melt pool behavior during LPBF through analysis of single-track prints 69 using a whistle aeroacoustic model.

70 Acoustic signals were recorded during laser irradiation of 3 mm 71 long single laser tracks on Ti-6Al-4V bare plate performed using a 72 1070 nm continuous wave Yb-fiber laser (YLR-500-AC-Y14, IPG 73 Photonics) focused to a D4r diameter of 73 μm , laser scan speeds of 74 250 and 500 mm/s, and laser powers between 100 and 400 W. The 75 experimental platform used in the present work has been described 76 previously.³³ Laser direction and scan speed were controlled by a 77 SCANLAB intelliSCAN scan head, which consists of a two-axis galva- 78 nometer scanning mirror system. A 1/4th free-field, prepolarized 79 microphone and preamplifier package (frequency range: 4–100 000 Hz 80 ($\rho_2/3$ dB), dynamic range: 165 dB, 378C01, PCB Piezotronics, Inc.) 81 was installed with direct line-of-sight to the laser-sample coincident 82 plane at 44° offset angle and a working distance of 140 mm. **In situ** 83 x-ray imaging was performed at SLAC National Accelerator 84 Laboratory's Stanford Synchrotron Radiation Lightsource (SSRL) 85 beamline 2-2 using white-beam x-ray spectrum transmission x-ray 86 images of the LPBF process captured using a scintillator-based optical 87 system,³² operating at 20 kfps with an effective pixel size of 2 μm per 88 pixel. The vacuum chamber containing the sample was evacuated to 89 5–10^{−2} Torr prior to being filled with 730 Torr argon inert gas 90 environment for processing. Argon was constantly flowed through the 91 vacuum chamber during experiments using a high-efficiency air knife 92 (Super Air Knife, Aluminum, 3 in., EXAIR) located above the substrate 93 surface. During processing, the laser was scanned across a Ti-6Al-4V 94 substrate (TMS Titanium, Poway, CA, USA) as a 2.5 mm long single 95 line. Each substrate was approximately 500- μm thick in the x-ray 96 probe direction.

97 The acoustic data are presented in the frequency domain in time- 98 independent and time-dependent plots, generated by Fourier trans- 99 forms and wavelet transforms, respectively (Fig. 1). Plots are shown for 100 three prints performed with a scan speed of 500 mm/s and laser pow- 101 ers of 100, 200, and 400 W, corresponding to the conduction, stable 102 keyhole, and unstable keyhole regimes, respectively. The conduction 103 regime is comprised of scans throughout which the depth-to-width 104 ratio of the vapor depression remains below 1, while for the keyhole 105 regimes, the ratio is greater than 1. Prints where pores are identified 106 are further classified under the unstable regime.


107 The 100 W case shows a narrow band of tone frequencies cen- 108 tered around 70 kHz, which is consistent with stable melt pool geo- 109 metry observed in x-ray videos. Despite the consistency in frequency, 110 fluctuations in the acoustic signal are observed with occasional short- 111 lived peaks arising and fading. The stochasticity in acoustic signals 112 notably increases with scan power, with tone frequency ranges of 113 40–60 kHz at 200 W and 30–80 kHz at 400 W. Distinctly, at 400 W, 114 these ranges are not only constituted of narrowband peaks (~10 kHz 115 wide) scattered across the wider range but also a handful of broadband 116 peaks that span nearly the entire 30–80 kHz range. Interestingly, there 117 are also cases where peaks are long-lived enough in time (>200 μs) to 118 experience a shift in frequency between when they first appear and

when they fade. Although this overall stochastic acoustic behavior is 119 easily correlated with high normalized enthalpy, unstable keyhole mor- 120 phology, and defect formation,^{34–36} a deeper interpretation of the spe- 121 cific features we observe requires mechanistic understanding of the 122 acoustic phenomena.¹²³

124 Interpretation of the acoustic signals first requires consideration 125 of the various acoustic sources present in the LPBF process, including 126 melt pool waves, solidification phenomena, and events deeper in the 127 material. Examination of the signal magnitude prior to the start of the 128 print shows that ambient experimental signals are negligible, including 129 the Ar gas recirculation system, vacuum pumps, galvo motion, and 130 other periphery systems. The low residual stress build-up in single- 131 track Ti-6Al-4V prints makes solidification cracking rare. The acoustic 132 impedance mismatch between solid Ti and gaseous Ar hinders subsur- 133 face acoustic signals reaching the airborne microphone; calculations 134 suggest that <1% of acoustic energy generated within solid or liquid 135 metal would be transmitted to a surrounding gas environment.^{37,38} As 136 such, the airborne microphone effectively couples to gas flow associ- 137 ated with the vapor depression and reduces signal from potential sub- 138 surface sources, like cracking and bubble collapse. We are confident 139 the acoustic signals recorded and analyzed are metal vapor aeroacous- 140 tics directly coupled to the vapor depression. To interpret these metal- 141 vapor aeroacoustics and extract some mechanistic insight into vapor 142 depression dynamics, we analyze through the perspective of whistle 143 aeroacoustics.

144 A classic and elegant example of the whistle model is the steam 145 kettle whistle, which can be defined as a cylinder with two similarly 146 sized holes axially aligned on opposing chamber faces [Fig. 2(a)]. The 147 upstream hole connects the whistle body to a large chamber of higher 148 pressure relative to ambient where the gas flow originates, and the 149 downstream hole connects the whistle body with an ambient atmos- 150 phere; as gas flows through the whistle, a tone is generated. The spe- 151 cific mechanisms by which tones are generated can be classified into 152 three classes³⁹ and—for a given system—may vary based on the 153 Reynolds number $Re = \frac{U}{4} \frac{D}{v}$, where U is the gas velocity, D is the open- 154 ing diameter, and v is kinematic viscosity.^{40,41} Analysis of steam kettle 155 whistles has shown that as the Reynolds number changes, there are 156 two regimes of whistle behavior; these regimes can be identified by the 157 Strouhal number $St = \frac{f}{U} \frac{D}{U}$, where f is the tone frequency, D is the 158 opening diameter, and U is the gas velocity.⁴² At low Reynolds number 159 (i.e., low air velocity, large hole diameter), the emitted acoustic fre- 160 quency is constant, corresponding to a Helmholtz resonator condition 161 where the Helmholtz cavity is defined as the whistle cylinder and the 162 effective neck length is the sum of the plate thicknesses. At high 163 Reynolds number (i.e., high air velocity, small hole diameter), the 164 Strouhal number is constant, corresponding to a class III whistle, 165 which entails vortex shedding at the end of a resonating duct, similar 166 to a flute or organ pipe.⁴¹

167 Figure 2(b) is a radiograph of a vapor depression resulting from a 168 single-track print at 500 mm/s and 300 W. Contrast enhancement, 169 binarization, and median filtering are performed on the radiograph to 170 generate Fig. 2(c). We analogize the keyhole-regime vapor depression 171 as a whistle such that the whistle body is the larger chamber of height 172 h and diameter D , as shown in Fig. 2(d). The gas flow source associated 173 with the upstream hole is the vapor jet with velocity U generated by 174 evaporation near the incident point of the laser beam at the bottom of 175 the vapor depression,⁴³ and the downstream hole would be the

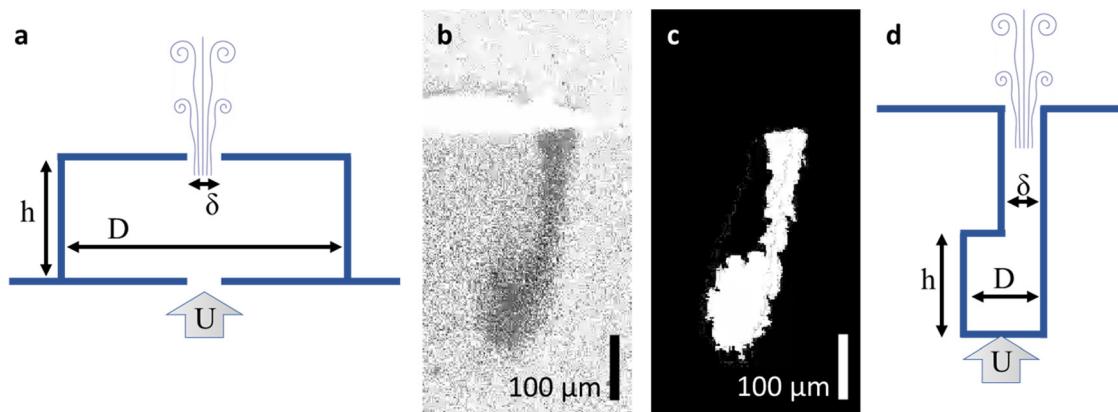


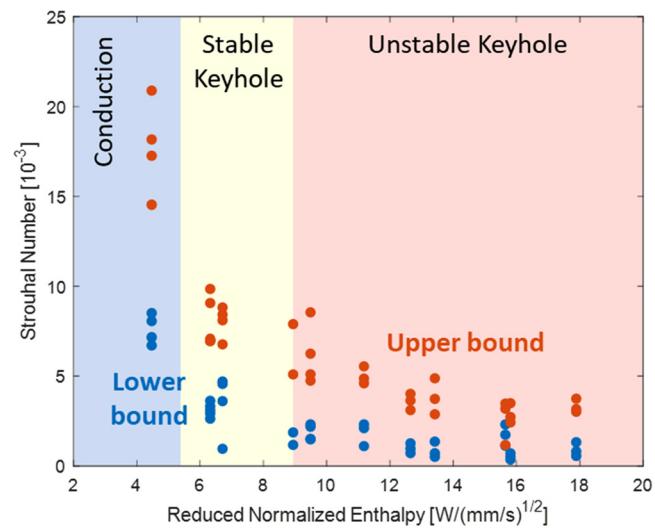
FIG. 1. Time-independent Fourier transforms (top) and time-dependent wavelet transforms (bottom) of acoustic data recorded during single-track irradiations on Ti-6Al-4V bare plate with laser scan speed 500 mm/s and laser powers of (a) 100, (b) 200, and (c) 400 W. These powers correspond to the conduction, stable keyhole, and unstable keyhole regimes of print behavior, respectively.

176 narrower neck of the vapor depression defined by diameter d . While
 177 not all depressions will fit this model, we hypothesize that the system
 178 will generate acoustic signal via a whistle mechanism when the vapor
 179 depression dynamics align with the whistle model—i.e., tones occur
 180 when gas flows through a larger chamber followed by a narrower
 181 opening.

182 We proceed to demonstrate that vapor depressions can exhibit
 183 whistle behavior through a non-dimensionalized analysis of the melt
 184 pool aeroacoustic behavior. Precise calculation of the Reynolds num-
 185 ber requires kinematic viscosity of the flowing gas. This is difficult to
 186 estimate from literature values due to the mixing of gaseous metal with

187 argon at the extreme temperatures present. However, the Reynolds 188 number has been calculated using the density of the background gas 189 and surface temperature at the location of the laser spot.⁴⁴ With con- 190 stant background gas pressure and surface temperature in the laser 191 spot increasing monotonically with laser power, the Reynolds number 192 is expected to also increase monotonically with laser power. To permit 193 incorporation of data from a wide range of experimental and material 194 parameters, normalized enthalpy can be used in place of laser 195 power.^{45,46} Since our current scope focuses on changes in laser power 196 at two scan speeds, we use a reduced form of normalized enthalpy 197 $P/u^{1/2}$, with laser power P and scan speed u . From these relations,
 198

FIG. 2. (a) Schematic representation of a steam kettle whistle recreated from Ref. 25 with the parameters for air velocity U , whistle diameter D , whistle height h , and opening diameter δ . (b) X-ray radiograph of a vapor depression from a laser powder bed fusion scan at 500 mm/s and 300 W. (c) X-ray radiograph of the vapor depression after binarization. (d) Schematic representation of the vapor depression with the same parameters as defined for the steam kettle whistle.

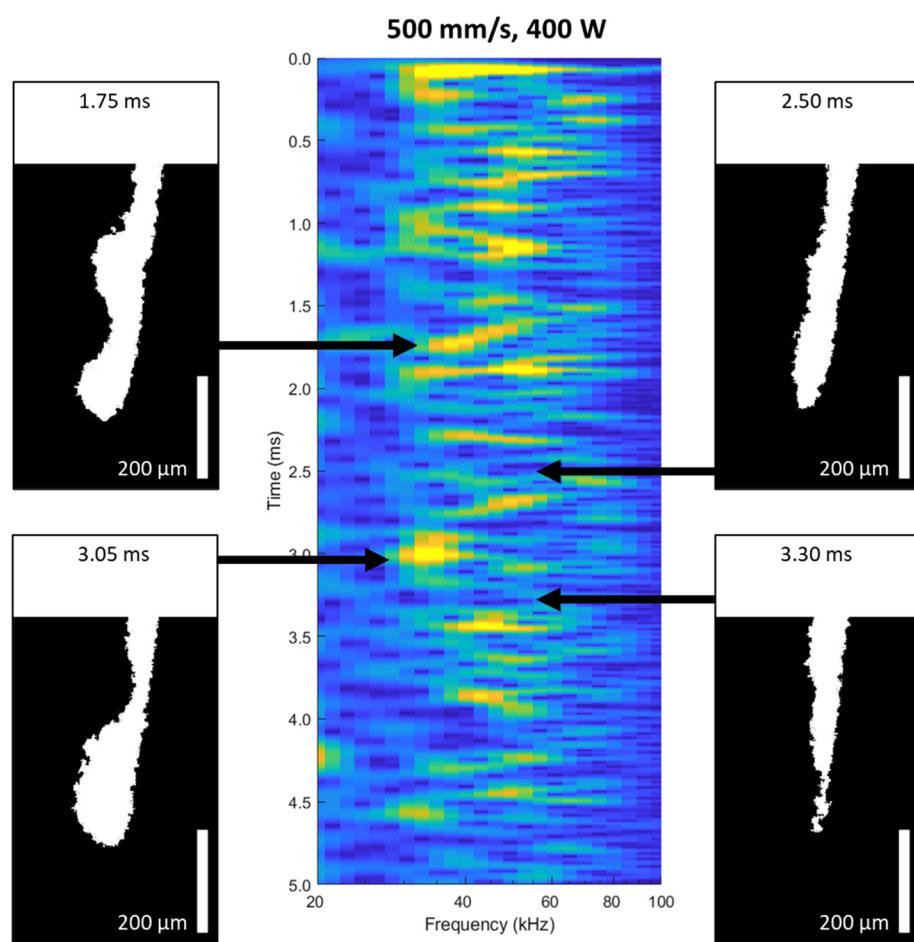

198 constant Strouhal number behavior across increasing Reynolds
199 number—which indicates class III whistle behavior—will appear as
200 constant Strouhal number behavior across increasing reduced normalized
201 enthalpy.

202 The Strouhal calculation for our vapor depression system requires
203 evaluation of the opening diameter, gas velocity, and tone frequency.
204 The stochasticity of the melt pool and the associated vapor depression
205 dynamics, especially at higher energy densities, requires approximations
206 to complete these calculations. Our Strouhal number analysis is
207 not sensitive to absolute values, rather the relation between gas velocity,
208 frequency, and opening diameter, and how each scales with normalized
209 enthalpy. For gas velocity U , we point to a study that used a
210 Knudsen layer approach to show that gas velocity normal to the powder
211 bed surface scales linearly with normalized enthalpy for stainless
212 steel over ranges of 300–1200 m/s and 50–200 W for scan speed and
213 laser power, respectively.⁴⁷ The present work operates within the same
214 regime of normalized enthalpy when accounting for material and thermal
215 properties as well as processing conditions. As such, we proceed in
216 our Strouhal number analysis with gas velocity scaling linearly with
217 reduced normalized enthalpy from 0.3 to 1.5 km/s over the range
218 explored.

219 The tone frequency and opening diameter are observed to fluctuate
220 within a single track at higher normalized enthalpies, specifically in
221 the unstable keyhole regimes where the vapor depression itself is
222 known to dramatically fluctuate. Assigning a single value to tone frequency
223 or opening diameter for a given track would be misleading
224 given the fluctuations. To address this, we look at the time dependence
225 of tone frequency and vapor depression geometry to assign an upper
226 and lower bound for both frequency and opening diameter for each
227 given track, with smaller opening diameter corresponding to higher frequency
228 and larger with lower. As such, two Strouhal numbers will be
229 calculated for each given track. Opening diameter, d , is measured from
230 binarized *in situ* x-ray imaging data. For each image frame captured
231 during the print, the minimum width of the vapor depression is identified,
232 and, for each track, these minimum widths are used to determine
233 an upper and lower bound for opening diameter for the track.

234 Figure 3 shows the plot of Strouhal number vs reduced normalized
235 enthalpy with delineations made to illustrate the conduction,

stable keyhole, and unstable keyhole regimes. The conduction and keyhole regimes are differentiated by the geometric aspect ratio of the vapor depression while the stable and unstable keyhole regimes are differentiated by *ex situ* pore identification. The acoustic data presented in Fig. 1(a) nominally correspond to the conduction regime and exhibit constant frequency behavior—similar to steam kettle whistles at low Reynolds number.⁴² While the stable keyhole regime may act as a transitional regime, the unstable keyhole regime, where substantial frequency fluctuations occur in the acoustic data, exhibits constant Strouhal number behavior. Based on the whistle model, constant Strouhal number behavior observed here at higher laser powers reflects class III whistle acoustics, which corresponds to vortex shedding at the end of a resonating duct. These findings are consistent with recent


FIG. 3. Plot of the non-dimensionalized Strouhal number as a function of normalized enthalpy for single-track irradiations on Ti-6Al-4V bare plate. Conduction and keyhole regimes are differentiated by the geometric aspect ratio of the vapor depression. Stable and unstable keyhole regimes are differentiated by *ex situ* pore identification.

249 plume imaging works showing plume structure indicative of vortex
 250 shedding at higher laser powers¹⁸ and can be used to better understand
 251 and further interpret melt pool morphology.

252 The present work demonstrates that the aeroacoustic principles
 253 present in steam kettles also apply to LPBF melt pools so long as the
 254 vapor depression morphology matches the whistle model—i.e., a nar-
 255 rower opening downstream of a larger chamber. This understanding
 256 allows a more detailed interpretation of the information-rich acoustic
 257 data associated with melt pool behavior in the unstable keyhole regime.
 258 For example, Fig. 4 shows the time-dependent acoustic data corre-
 259 sponding to a print at 500 mm/s and 400 W [previously presented in
 260 Fig. 1(c)] with binarized images of the vapor depression geometries
 261 corresponding to four times during the print. The vapor depression at
 262 1.75 ms exhibits two sequences of a narrow opening downstream of a
 263 larger chamber while the vapor depression at 3.05 ms exhibits one
 264 such sequence—meeting the geometric requirements of the whistle
 265 model. The vapor depressions at 2.50 and 3.30 ms do not meet the
 266 requirements because they exhibit constant width and monotonically
 267 increasing width, respectively.

268 Correlation of these geometries and times with the acoustic data
 269 shows acoustic signals recorded in the two cases where the whistle
 270 model requirements are satisfied and shows an absence of acoustic sig-
 271 nals where the requirements are unmet. Additionally, the acoustic
 272 peak at 1.75 ms apparently spans >15 kHz in frequency space and
 273 0.2 ms in time. This may be linked to the complex geometry of the
 274 vapor depression, which shows two openings with differing diameters.
 275 Since this print occurs in the constant Strohal regime, the opening
 276 diameter is inversely related to the frequency of the resulting tone. As
 277 such, multiple effective whistles within a single vapor depression would
 278 conceivably result in acoustic signals spanning greater frequency
 279 ranges and even multi-tone signals. The whistle model provides the
 280 foundational framework to mechanistically understand the complex
 281 acoustic data commonly found in the stable keyhole regime where
 282 many LPBF processes operate.

283 The present work mechanistically links acoustic generation with
 284 melt pool dynamics. While snapshots of vapor depression geometries
 285 support the whistle model, capturing vapor depression evolution over
 286 time would yield a more complete understanding of the complex

FIG. 4. Time-dependent acoustic data corresponding to a print at 500 mm/s and 400 W previously presented in Fig. 1(c) with binarized images of the vapor depression chosen at four times during the print. The vapor depressions at 1.75 and 3.05 ms (left) fit the geometric requirements of the whistle model whereas the images taken at 2.50 and 3.30 ms (right) do not. Correlation of these times with the time-dependent acoustic data shows acoustic signals at 1.75 and 3.05 ms and shows a lack of signal at 2.50 and 3.30 ms.

287 acoustic signatures. This is especially true for cases where the acoustic
 288 signal appears to persist and shift in frequency over some time—as
 289 identified in Fig. 4 and as is characteristic of unstable keyhole behavior.
 290 Additionally, extension of this work to better reflect industry-relevant
 291 conditions is vital for wider applicability of the present model. This
 292 includes powder experiments to investigate the wider validity of the
 293 whistle model and full-scale, multi-layer prints to determine the scal-
 294 ability. Further development of the whistle model for vapor depres-
 295 sions will increase the melt pool information extracted from acoustic
 296 monitoring and strengthen the overall effectiveness of *in situ* monitor-
 297 ing techniques.

298 The whistle model presented offers a direct connection between
 299 the acoustic signals captured during the LPBF process and the physi-
 300 cal attributes of the melt pool, especially in the keyhole regimes relevant
 301 to printing. This model enables interpretation of complex
 302 acoustic data to a greater extent than previously available by provid-
 303 ing an empirical connection between acoustic frequency and vapor
 304 depression geometry via the Strouhal number. The mechanistic
 305 understanding of vapor depression aeroacoustics detailed in this work
 306 suggests that process monitoring techniques based on acoustic meth-
 307 ods will be broadly transferrable to different materials and machine
 308 architectures. These findings hope to bridge the gap in physical
 309 understanding between acoustic and optical techniques to promote
 310 more widespread adoption of acoustic monitoring approaches. By
 311 offering insight into the sub-surface morphology of the vapor depres-
 312 sion, this model hopes to present acoustic monitoring as a comple-
 313 mentary technique to existing optical approaches. With further
 314 development of this model, *in situ* acoustic monitoring can be an
 315 accessible and reliable method of probing melt pool dynamics, melt
 316 pool depth, and the onset of pore detection in many materials and
 317 industrial-scale builds.

318 Use of the Stanford Synchrotron Radiation Lightsource, SLAC
 319 National Accelerator Laboratory, is supported by the U.S.
 320 Department of Energy, Office of Science, Office of Basic Energy
 321 Sciences (Contract No. DE-AC02-76SF00515). Lawrence Livermore
 322 National Laboratory is operated by Lawrence Livermore National
 323 Security, LLC, for the U.S. Department of Energy, National Nuclear
 324 Security Administration (Contract No. DE-AC52-07NA27344).
 325 Some data collection was supported by the LLNL LDRD Program
 326 project (No. 21-ERD-008). The LLNL document release number is
 327 LLNL-JRNL-857714-DRAFT.

330 AUTHOR DECLARATIONS

331 Conflict of Interest

332 The authors have no conflicts to disclose.

333 Author Contributions

334 **Yuchen Sun:** Conceptualization (lead); Data curation (lead); Formal
 335 analysis (lead); Investigation (lead); Validation (lead); Visualization
 336 (lead); Writing – original draft (lead); Writing – review & editing
 337 (lead). **Sanam Gorgannejad:** Investigation (equal); Methodology
 338 (equal); Writing – review & editing (equal). **Aiden Martin:**
 339 Investigation (equal); Methodology (equal); Writing – review & editing
 340 (equal). **Jenny Nicolino:** Investigation (equal); Methodology (equal).
 341 **Maria Strantza:** Investigation (equal); Methodology (equal).

Jean-Baptiste Forien: Investigation (equal); Methodology (equal). 342
Vivek Thampy: Investigation (equal); Methodology (equal). **Sen Liu:** 343
 Investigation (equal); Methodology (equal). **Peiyu Quan:** Investigation 344
 (equal); Methodology (equal). **Christopher J. Tassone:** Investigation 345
 (equal); Methodology (equal). **Manyalibo J. Matthews:** Funding 346
 acquisition (equal); Supervision (equal); Writing – review & editing 347
 (equal). **Nicholas P. Calta:** Conceptualization (equal); Funding 348
 acquisition (lead); Investigation (lead); Methodology (lead); Project 349
 administration (lead); Supervision (lead); Writing – review & editing 350
 (equal). 351
 352

353 DATA AVAILABILITY

The data that support the findings of this study are available from 354
 the corresponding author upon reasonable request. 355

356 REFERENCES

- 1 Wohlers Associates, **Wohlers Report** (Wohlers Associates, Fort Collins, CO, 2022). 357
 358
- 2 G. Kasperovich, J. Haubrich, J. Gussone **et al.**, “Correlation between porosity 359
 and processing parameters in TiAl₆V₄ produced by selective laser melting,” 360
Mater. Des. **105**, 160–170 (2016). 361
- 3 S. K. Everton, M. Hirsch, P. Stravroulakis **et al.**, “Review of in-situ process 362
 monitoring and in-situ metrology for metal additive manufacturing,” *Mater. Des.* **95**, 431–445 (2016). 363
 364
- 4 A. Ashby, G. Guss, R. K. Ganeriwala **et al.**, “Thermal history and high-speed 365
 optical imaging of overhang structures during laser powder bed fusion: A 366
 computational and experimental analysis,” *Addit. Manuf.* **53**, 102669 367
 (2022). 368
- 5 C. L. Druzgalski, A. Ashby, G. Guss **et al.**, “Process optimization of complex 369
 geometries using feed forward control for laser powder bed fusion additive 370
 manufacturing,” *Addit. Manuf.* **34**, 101169 (2020). 371
- 6 S. C. Jensen, J. D. Carroll, P. R. Pathare **et al.**, “Long-term process stability in 372
 additive manufacturing,” *Addit. Manuf.* **61**, 103284 (2023). 373
- 7 Z. Y. Chua, I. H. Ahn, and S. K. Moon, “Process monitoring and inspection 374
 systems in metal additive manufacturing: Status and applications,” *Int. J. Precis. Eng. Manuf.-Green. Technol.* **4**(2), 235–245 (2017). 375
 376
- 8 T. G. Spears and S. A. Gold, “In-process sensing in selective laser melting 377
 (SLM) additive manufacturing,” *Integr. Mater. Manuf. Innovation* **5**(1), 16–40 378
 (2016). 379
- 9 K. Gutknecht, M. Cloots, R. Sommerhuber **et al.**, “Mutual comparison of 380
 acoustic, pyrometric and thermographic laser powder bed fusion monitoring,” 381
Mater. Des. **210**, 110036 (2021). 382
- 10 F. Imani, A. Gaikwad, M. Montazeri **et al.**, “Process mapping and in-process 383
 monitoring of porosity in laser powder bed fusion using layerwise optical imag- 384
 ing,” *J. Manuf. Sci. Eng.* **140**(10), 101009 (2018). 385
- 11 B. Zhang, J. Ziegert, F. Farahi **et al.**, “In situ surface topography of laser powder 386
 bed fusion using fringe projection,” *Addit. Manuf.* **12**, 100–107 (2016). 387
- 12 D. Ye, G. S. Hong, Y. Zhang **et al.**, “Defect detection in selective laser melting 388
 technology by acoustic signals with deep belief networks,” *Int. J. Adv. Manuf. Technol.* **96**(5–8), 2791–2801 (2018). 389
 390
- 13 S. A. Shevchik, C. Kenel, C. Leinenbach **et al.**, “Acoustic emission for in situ 391
 quality monitoring in additive manufacturing using spectral convolutional neu- 392
 ral networks,” *Addit. Manuf.* **21**, 598–604 (2018). 393
- 14 Y. Ren, C. Adams, P. Gross **et al.**, “Acoustic data acquisition for quality moni- 394
 toring during powder bed fusion with laser beam (PBF-LB),” in *Daga* (■, 395
 Hamburg, Germany, 2023). 396
- 15 J. Petrich, R. W. Smith, and E. W. Reutzel, “Acoustic laser triangulation and 397
 tagging for additive manufacturing process monitoring,” *Int. J. Adv. Manuf. 398
 Technol.* **129**(7–8), 3233–3245 (2023). 399
- 16 M. Hamidi Nasab, G. Masinelli, C. de Formanoir **et al.**, “Harmonizing sound 400
 and light: X-ray imaging unveils acoustic signatures of stochastic inter-regime 401
 instabilities during laser melting,” *Nat. Commun.* **14**(1), 8008 (2023). 402

AQ3

403 ¹⁷A. A. Martin, N. P. Calta, S. A. Khairallah **et al.**, "Dynamics of pore formation 404 during laser powder bed fusion additive manufacturing," *Nat. Commun.* **10**(1), 405 1987 (2019).

406 ¹⁸B. Gould, S. Wolff, N. Parab **et al.**, "In situ analysis of laser powder bed fusion 407 using simultaneous high-speed infrared and X-ray imaging," *JOM* **73**(1), 408 201–211 (2020).

409 ¹⁹P. J. DePond, J. C. Fuller, S. A. Khairallah **et al.**, "Laser-metal interaction 410 dynamics during additive manufacturing resolved by detection of thermally- 411 induced electron emission," *Commun. Mater.* **1**(1), 92 (2020).

412 ²⁰M. Seleznev, T. Gustmann, J. M. Friebel **et al.**, "In situ detection of cracks during 413 laser powder bed fusion using acoustic emission monitoring," *Addit. 414 Manuf. Lett.* **3**, 100099 (2022).

415 ²¹H. Liu, C. Gobert, K. Ferguson **et al.**, "Inference of highly time-resolved melt 416 pool visual characteristics and spatially-dependent lack-of-fusion defects in 417 laser powder bed fusion using acoustic and thermal emission data," *Addit. 418 Manuf.* **83**, 104057 (2023).

419 ²²J. R. Tempelman, A. J. Wachtor, E. B. Flynn **et al.**, "Detection of keyhole pore 420 formations in laser powder-bed fusion using acoustic process monitoring 421 measurements," *Addit. Manuf.* **55**, 102735 (2022).

422 ²³D. Kouprianoff, I. Yadroitseva, A. du Plessis **et al.**, "Monitoring of laser powder 423 bed fusion by acoustic emission: Investigation of single tracks and layers," 424 *Front. Mech. Eng.* **7**, 678076 (2021).

425 ²⁴D. R. Kouprianoff, "Investigation of acoustic emission signal during laser powder 426 bed fusion at different operating modes," *S. Afr. J. Ind. Eng.* **32**(3), 279–283 427 (2021).

428 ²⁵K. Xu, J. Lyu, and S. Manoochehri, "In situ process monitoring using acoustic 429 emission and laser scanning techniques based on machine learning models," 430 *J. Manuf. Processes* **84**, 357–374 (2022).

431 ²⁶V. Pandiyan, R. Wrobel, C. Leinenbach **et al.**, "Optimizing in-situ monitoring 432 for laser powder bed fusion process: Deciphering acoustic emission and sensor 433 sensitivity with explainable machine learning," *J. Mater. Process. Technol.* **321**, 434 118144 (2023).

435 ²⁷H. Wang, B. Li, and F.-Z. Xuan, "Acoustic emission for in situ process monitoring 436 of selective laser melting additive manufacturing based on machine learning 437 and improved variational modal decomposition," *Int. J. Adv. Manuf. Technol.* 438 **122**(5–6), 2277–2292 (2022).

439 ²⁸Z. Li, Z. Zhang, S. Zhang **et al.**, "A novel approach of online monitoring for 440 laser powder bed fusion defects: Air-borne acoustic emission and deep transfer 441 learning," *J. Manuf. Processes* **102**, 579–592 (2023).

442 ²⁹R. Drissi-Daoudi, G. Masinelli, C. de Formanoir **et al.**, "Acoustic emission for 443 the prediction of processing regimes in Laser Powder Bed Fusion, and the 444 generation of processing maps," *Addit. Manuf.* **67**, 103484 (2023).

445 ³⁰Y. Dongsen and Z. Yingjie, "In-situ monitoring of selective laser melting based 446 on heterogeneous integration of acoustic signals and images," in *6th 447 International Conference on Communication, Image and Signal Processing* 448 (CCISP) (■, 2021), pp. 420–424.

449 ³¹R. D. Daoudi, "Towards robust monitoring of the laser powder bed fusion pro- 450 cess based on acoustic emission combined with machine learning solutions," ■ 451 (Ecole polytechnique federale de Lausanne, 2023).

452 ³²S. Gorgannejad, A. A. Martin, J. W. Nicolino **et al.**, "Localized keyhole pore 453 prediction during laser powder bed fusion via multimodal process monitoring 454 and X-ray radiography," *Addit. Manuf.* **78**, 103810 (2023).

455 ³³A. A. Martin, J. Wang, P. J. DePond **et al.**, "A laser powder bed fusion system 456 for operando synchrotron x-ray imaging and correlative diagnostic experiments 457 at the Stanford synchrotron radiation lightsource," *Rev. Sci. Instrum.* **93**(4), 458 043702 (2022).

459 ³⁴C. Zhao, N. D. Parab, X. Li **et al.**, "Critical instability at moving keyhole tip gen- 460 erates porosity in laser melting," *Science* **370**, 1080–1086 (2020).

461 ³⁵L. Guo, H. Wang, H. Liu **et al.**, "Understanding keyhole induced-porosities in 462 laser powder bed fusion of aluminum and elimination strategy," *Int. J. Mach. 463 Tools Manuf.* **184**, 103977 (2023).

464 ³⁶Y. Huang, T. G. Fleming, S. J. Clark **et al.**, "Keyhole fluctuation and pore for- 465 mation mechanisms during laser powder bed fusion additive manufacturing," 466 *Nat. Commun.* **13**(1), 1170 (2022).

467 ³⁷V. T. Rathod, "A review of acoustic impedance matching techniques for piezo- 468 electric sensors and transducers," *Sensors* **20**(14), 4051 (2020).

469 ³⁸M. Bakhtiari-Nejad, M. R. Hajj, and S. Shahab, "Dynamics of acoustic imped- 470 ance matching layers in contactless ultrasonic power transfer systems," *Smart 471 Mater. Struct.* **29**(3), 035037 (2020).

472 ³⁹R. C. Chanaud, "Aerodynamic whistles," *Sci. Am.* **222**(1), 40–48 (1970).

473 ⁴⁰A. Billon, V. Valeau, and A. Sakout, "Two feedback paths for a jet-slot oscilla- 474 tor," *J. Fluids Struct.* **21**(2), 121–132 (2005).

475 ⁴¹M.-P. Verge, B. Fabre, A. Hirschberg **et al.**, "Sound production in recorderlike 476 instruments. I. Dimensionless amplitude of the internal acoustic field," *J. Acoust. Soc. Am.* **101**(5), 2914–2924 (1997).

477 ⁴²R. H. Henrywood and A. Agarwal, "The aeroacoustics of a steam kettle," *Phys. 478 Fluids* **25**(10), 107101 (2013).

479 ⁴³S. Ly, A. M. Rubenchik, S. A. Khairallah **et al.**, "Metal vapor micro-jet controls 480 material redistribution in laser powder bed fusion additive manufacturing," *Sci. 481 Rep.* **7**(1), 4085 (2017).

482 ⁴⁴M. A. Stokes, S. A. Khairallah, A. N. Volkov **et al.**, "Fundamental physics effects 483 of background gas species and pressure on vapor plume structure and spatter 484 entrainment in laser melting," *Addit. Manuf.* **55**, 102819 (2022).

485 ⁴⁵A. M. Rubenchik, W. E. King, and S. S. Wu, "Scaling laws for the additive 486 manufacturing," *J. Mater. Process. Technol.* **257**, 234–243 (2018).

487 ⁴⁶M. Naderi, J. Weaver, D. Deisenroth **et al.**, "On the fidelity of the scaling laws 488 for melt pool depth analysis during laser powder bed fusion," *Integr. Mater. 489 Manuf. Innovation* **12**(1), 11–26 (2022).

490 ⁴⁷P. Bidare, I. Bitharas, R. M. Ward **et al.**, "Fluid and particle dynamics in laser 491 powder bed fusion," *Acta Mater.* **142**, 107–120 (2018).

492 ⁴⁸I. Bitharas, N. Parab, C. Zhao **et al.**, "The interplay between vapour, liquid, and 493 solid phases in laser powder bed fusion," *Nat. Commun.* **13**(1), 2959 (2022). 494

AQ4