
LA-UR-24-29475
Approved for public release; distribution is unlimited.

Title: A Python Script to Read MCNP6.3 Surface-Source Files

Author(s): Kulesza, Joel A.

Intended for: Report

Issued: 2024-09-03

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

A Python Script to Read MCNP6.3 Surface-Source Files

Joel A. Kulesza

Monte Carlo Codes Group (XCP-3), Los Alamos National Laboratory

1 Introduction

This report provides a Python script to read an MCNP R© [1] surface source file created with the
SSW card with SYM = 0 (i.e., the default symmetry treatment). For background: the general format
of an MCNP surface-source file is described in [2]; however, that document did not provide coding
and/or a tool to interrogate such files. The current format will not be given in this document other
than through the record-read statements necessary for the script to function.

The reader capability in this report is augmented with the ability to directly write a couple
demonstrative outputs:

1. A comma-separated value (CSV) file containing particle phase-space state information and

2. A Matplotlib histogram of the energy distribution of the particles.

This report also describes accompanying verification work that shows the script performing as
required with MCNP6.2, MCNP6.3, and (expected) MCNP6.4 surface-source files. However, users of
the enclosed script must still verify that the script is behaving correctly for their own work.

2 Script Usage

The enclosed script, named Convert_MCNP_ssa.py and given in Listing 5 in Appendix A and
electronically attached to this PDF, is executed from the command line followed by the filename of
the surface-source file as, for example:

1 python3 Convert_MCNP_ssa.py wssa

Output to the terminal is of the form:

1 Found 23829 source points in file.
2 Processing 23829 histories...

The reason the script gives both the number of source points found and the number processed is
that it processes the lesser of the total number of source points found and the user-defined value
with the -n flag, where python3 Convert_MCNP_ssa.py wssa -n 10000 would yield

1 Found 23829 source points in file.
2 Processing 10000 histories...

In addition, a -csv option writes a new CSV file containing particle phase-space state information
such that python3 Convert_MCNP_ssa.py wssa -n 10000 -csv produces a file named wssa.csv starting
in the manner shown in Listing 2. Finally, a -erg option writes a new PDF file containing an

1 of 26

10 3 10 2 10 1 100 101 102

Energy, E [MeV]

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

(a) Test case 1 energy distribution.

10 4 10 3 10 2 10 1 100 101

Energy, E [MeV]

0

25000

50000

75000

100000

125000

150000

175000

200000

Fr
eq

ue
nc

y

(b) Test case 2 energy distribution.

Figure 1: Example energy distributions.

energy histogram created with Matplotlib such that python3 Convert_MCNP_ssa.py wssa -n 10000 -erg

produces something like either image in Fig. 1.

3 Functional and Performance Requirements

The functional requirements for this script are:

1. The script shall be able to read MCNP6.3 binary surface-source files for “traditional” surface
sources. A “traditional” surface source is composed of particle phase-space states that are
recorded as the particles pass through an identified surface.

2. The script shall be able to read MCNP6.3 binary surface-source files for fission-site “surface”
sources. A fission-site “surface” source is composed of fission source-site phase-space information
from a k-eigenvalue (i.e., KCODE) calculation.

3. The script shall demonstrate how to use the information read from the surface-source file.

There are no firm performance requirements. However, this script should be able to process
surface-source files containing millions of elements without undue slowness.

Note that no requirement exists to write surface-source files. As noted previously, no requirement
exists to handle symmetric surface sources (i.e., SYM 6= 0 on the SSW card).

4 Design and Implementation

There is a current hope that MCNP surface-source files will be converted to an HDF5 format, which
would render this work obsolete. As a result, speed of development and flexibility were informal
design and implementation requirements. Accordingly, the Python language was selected. The script
does not significantly leverage object-oriented functionality; however, a Particle class to collect
particle phase-space state information is included that can be extended, as needed. Despite the
verification work in this report, it is incumbent on the user of the enclosed script to still verify that
results are correct on a case-by-case basis.

This script is Python 3 compliant (most recently executed with Python version 3.9.13 provided
by Anaconda1 on macOS version 14.5). The SciPy package is required to enable reading the

1https://https://www.anaconda.com

2 of 26

https://https://www.anaconda.com

Figure 2: FMESH14 neutron distribution.

surface-source file. Further, the NumPy and Matplotlib packages are needed to create an optional
energy-histogram plot.

5 Testing

Two test cases are used to demonstrate that functional requirements 1, 2, and 3 are met. Both test
cases for this work are taken from [3]. The input files necessary to reproduce these tests are given in
Appendix B.

5.1 Test Case 1: “Traditional” Surface Source

A “traditional” surface source test case is performed using the surface-source file created from
[Listing 4.7 of 3]. This test case uses a proton beam incident on a tungsten target to create spallation
neutrons. The neutrons are recorded crossing a surface to create a neutron surface source suitable
for a subsequent set of calculations that avoid the need to routinely simulate the spallation process.

For MCNP6.2, 6.3, and 6.4, all calculations yield an FMESH14 result comparable to [page 83 of 3]
as shown in Fig. 2 and write a surface-source file containing 23,829 tracks corresponding to 18,569 of
the original 100,000 histories.

A quantitative verification of Requirement 1 is performed by executing [Listing 4.9 of 3] modified
for spacing and to run 100,000 histories to directly correspond to the surface source written. The
first 50 source-particle conditions given in print table 110 are compared with the -csv output

3 of 26

Figure 3: Test case 1 visual verification.

from the script herein (Listings 1 and 2). The values match (expect for the expected −5 cm shift in
x that is intentionally demonstrated in [Listing 4.9 of 3]) suggesting that the surface-source file is
read correctly. Further, a visual verification of the resulting surface source can be performed using
the process given in Appendix C that results in Fig. 3, which matches behavior suggested by Fig. 2.

Listing 1: Test Case 1 MCNP6.3 Print Table 110 Excerpt
1 1starting mcrun. cp0 = 0.02 print table 110
2
3 Neutron spallation source read
4
5
6 nps x y z cell surf u v w energy weight time
7
8 1 5.000E+00 9.735E+00 -7.351E-01 20 11 5.026E-01 8.630E-01 -5.131E-02 9.256E+00 9.999E-01 3.039E-01
9 2 5.000E+00 5.153E-01 3.169E+00 20 11 9.117E-01 6.857E-02 4.051E-01 1.150E+00 1.000E+00 5.477E-01

10 3 5.000E+00 2.287E+00 -3.983E+00 20 11 8.989E-01 2.154E-01 -3.815E-01 8.105E-01 9.887E-01 6.796E-01
11 4 5.000E+00 -1.564E+00 -2.483E+00 20 11 8.908E-01 -2.406E-01 -3.856E-01 3.582E+01 9.948E-01 1.134E-01
12 5 5.000E+00 3.215E-01 5.822E+00 20 11 7.894E-01 3.385E-02 6.130E-01 2.567E+01 1.000E+00 1.548E-01

Listing 2: Test Case 1 MCNP6.3 CSV Output Excerpt
1 nps, x, y, z, u, v, w, erg, tme, wgt
2 4, 1.00000e+01, 9.73518e+00, -7.35106e-01, 5.02555e-01, 8.63021e-01, -5.13092e-02, 9.25630e+00, 3.03915e-01, 9.99860e-01
3 8, 1.00000e+01, 5.15268e-01, 3.16868e+00, 9.11695e-01, 6.85703e-02, 4.05105e-01, 1.15030e+00, 5.47689e-01, 1.00000e+00
4 14, 1.00000e+01, 2.28738e+00, -3.98265e+00, 8.98903e-01, 2.15419e-01, -3.81533e-01, 8.10455e-01, 6.79583e-01, 9.88736e-01
5 15, 1.00000e+01, -1.56429e+00, -2.48265e+00, 8.90754e-01, -2.40614e-01, -3.85569e-01, 3.58215e+01, 1.13408e-01, 9.94802e-01
6 16, 1.00000e+01, 3.21534e-01, 5.82221e+00, 7.89360e-01, 3.38530e-02, 6.12996e-01, 2.56723e+01, 1.54767e-01, 1.00000e+00

5.2 Test Case 2: Fission Source Sites

A fission-source-site “surface” source test case is performed using the surface-source file created from
[Listing 4.11 of 3]. This test case models a near-critical assembly within a concrete facility that might
be used to assess criticality accident alarm system (CAAS) behavior. The goal of such an analysis is
to use the k-eigenvalue (KCODE) calculation to calculate a physically reasonable set of neutron source
sites within fissile or fissionable material to enable a subsequent fixed-source calculation to transport
those neutrons to the (possibly distant) detector(s).

4 of 26

Figure 4: FMESH4 source distribution.

For MCNP6.2, 6.3, and 6.4, all calculations yield an FMESH4 result comparable to [page 89 of
3] as shown in Fig. 4 and write a surface-source file containing 1,000,451 tracks corresponding to
1,000,451 histories from 100 active cycles.

A quantitative verification of Requirement 2 is performed by executing [Listing 4.11 of 3] modified
for spacing and to run 1,000,451 histories to directly correspond to the surface source written. The
first 50 source-particle conditions given in print table 110 are compared with the -csv output from
the script herein (Listings 3 and 4). The values match suggesting that the surface-source file is read
correctly. Further, a visual verification of the resulting surface source and its energy distribution can
be performed using a process similar to the one given in Appendix C that results in Fig. 5, which
matches behavior suggested by Figs. 1b and 4.

Furthermore, processing the 1,000,451 histories in this test case takes 18 seconds on the LANL
Rocinante high-performance computer with a single processing core on a Intel R© Xeon R© Platinum
8480+ processor, which is deemed acceptable performance.

Listing 3: Test Case 2 MCNP6.3 Print Table 110 Excerpt
1 1starting mcrun. cp0 = 0.09 print table 110
2
3 Simplified CAAS -- surface soure read
4
5
6 nps x y z cell surf u v w energy weight time
7
8 1 -1.782E+00 2.552E+01 4.818E+00 100 0 -7.729E-01 4.665E-01 4.302E-01 7.069E-01 9.729E-01 0.000E+00
9 2 1.417E+01 1.784E+01 8.727E+00 100 0 6.667E-02 7.865E-01 6.140E-01 2.137E+00 9.729E-01 0.000E+00

10 3 1.424E+01 1.832E+01 8.833E+00 100 0 7.910E-01 5.716E-01 -2.182E-01 1.348E+00 9.729E-01 0.000E+00
11 4 4.218E+00 -1.877E-01 1.000E+01 100 0 7.245E-01 6.568E-01 -2.093E-01 1.505E+00 9.729E-01 0.000E+00
12 5 4.064E+00 -1.767E-01 1.009E+01 100 0 7.291E-01 -4.745E-01 4.932E-01 6.872E-01 9.729E-01 0.000E+00

5 of 26

Figure 5: Test case 2 visual verification.

Listing 4: Test Case 2 MCNP6.3 CSV Output Excerpt
1 nps, x, y, z, u, v, w, erg, tme, wgt
2 1, -1.78210e+00, 2.55236e+01, 4.81845e+00, -7.72853e-01, 4.66460e-01, 4.30248e-01, 7.06888e-01, 0.00000e+00, 9.72857e-01
3 2, 1.41654e+01, 1.78371e+01, 8.72733e+00, 6.66662e-02, 7.86516e-01, 6.13961e-01, 2.13682e+00, 0.00000e+00, 9.72857e-01
4 3, 1.42360e+01, 1.83206e+01, 8.83349e+00, 7.90967e-01, 5.71645e-01, -2.18159e-01, 1.34809e+00, 0.00000e+00, 9.72857e-01
5 4, 4.21775e+00, -1.87744e-01, 1.00026e+01, 7.24470e-01, 6.56752e-01, -2.09333e-01, 1.50487e+00, 0.00000e+00, 9.72857e-01
6 5, 4.06391e+00, -1.76659e-01, 1.00882e+01, 7.29132e-01, -4.74472e-01, 4.93196e-01, 6.87236e-01, 0.00000e+00, 9.72857e-01

6 Conclusions

The test case results given in Section 5 demonstrate that the script fulfills the requirements stipulated
in Section 3. While verification of the script is still incumbent on the user on a case-by-case basis,
this document suggests that it is implemented correctly and should properly read MCNP6.2, 6.3,
and (planned) 6.4 surface-source files.

References

[Citing pages are listed after each reference.]

1. J. A. Kulesza, T. R. Adams, J. C. Armstrong, S. R. Bolding, F. B. Brown, J. S. Bull, T. P.
Burke, A. R. Clark, R. A. Forster, III, J. F. Giron, T. S. Grieve, C. J. Josey, R. L. Martz, G. W.
McKinney, E. J. Pearson, M. E. Rising, C. J. Solomon, Jr., S. Swaminarayan, T. J. Trahan, S. C.
Wilson, and A. J. Zukaitis, “MCNP R© Code Version 6.3.0 Theory & User Manual,” Los Alamos
National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-22-30006, Rev. 1, Sep. 2022.
DOI: 10.2172/1889957 [Page 1]

6 of 26

https://doi.org/10.2172/1889957

2. T. J. Trahan, “MCNP Surface Source Write/Read File Format Primer,” Los Alamos National
Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-16-20109, Jan. 2016. [Page 1]

3. K. L. Currie and M. E. Rising, “MCNP6 Source Primer: Release 1.0,” Los Alamos
National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-18-21377, Rev. 1, Feb. 2020.
DOI: 10.2172/1599011 [Pages 3, 4, 5, 15, 16, and 19]

7 of 26

https://doi.org/10.2172/1599011

A Script Source Code

The source code for the script described herein is given in Listing 5. For convenience, it is also
provided as an attachment to this PDF, which can be accessed using Adobe Acrobat through the
menu path shown in Fig. 6.

Figure 6: Adobe Acrobat menu path to access PDF attachments.

Listing 5: Script Source Code
1 #!/usr/bin/env python
2

3 """
4 This module provides a ‘read_ssa_file‘ method that can return a list of particle
5 objects with phase-space state information as read from an MCNP surface source
6 file created from either fixed-source or k-eigenvalue calculations.
7 """
8

9 import argparse
10 import math
11 import os
12 import sys
13 import textwrap
14

15 import __main__ as main
16 from scipy.io import FortranFile
17

18 INT_INF = int(1e20)
19

20

21 class Particle:
22 """

8 of 26

23 This simple class, effectively a ‘dataclass‘ holds particle phase-space
24 state information that can be extended to enable other capability.
25 """
26

27 def __init__(
28 self,
29 nps,
30 erg,
31 tme,
32 wgt,
33 x=None,
34 y=None,
35 z=None,
36 u=None,
37 v=None,
38 w=None,
39 cs=None,
40):
41 self.nps = nps
42 self.x = x
43 self.y = y
44 self.z = z
45 self.u = u
46 self.v = v
47 self.w = w
48 self.erg = erg
49 self.tme = tme
50 self.wgt = wgt
51 self.cs = cs
52

53 def __str__(self):
54 FMT = ".5e"
55 s = f"{self.nps}, "
56 s += ", ".join(
57 [
58 f"{i:{FMT}}"
59 for i in (
60 self.x,
61 self.y,
62 self.z,
63 self.u,
64 self.v,
65 self.w,
66 self.erg,
67 self.tme,
68 self.wgt,
69)
70]
71)
72 return s
73

74

75 def read_ssa_file(filename, max_histories=INT_INF):
76 """Reads a MCNP surface source file and returns a list of Particle objects.

9 of 26

77

78 Args:
79 filename (str): The path to the SSA file.
80 max_histories (int, optional): The maximum number of histories to read
81 from the file. Defaults to infinity.
82

83 Returns:
84 list[Particle]: A list of Particle objects.
85 """
86

87 # Open binary MCNP surface-source file for reading
88 f = FortranFile(filename)
89

90 # Read format identifier.
91 _ = f.read_record("a8")
92

93 # Read first record: code_name, ver, build_date_code, idtm, probid, aid, knod .
94 _ = f.read_record("a8", "a5", "a8", "a19", "a19", "a128", "i4")
95

96 # Read second record: np, nrsw, nd, njss, nqsw
97 _, nrsw, _, njss, _ = f.read_record("i8", "i8", "i4", "i4", "i8")
98 print(f"Found {nrsw[0]} source points in file.")
99

100 # Read third record.
101 nilw, mipt, kq, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _ = f.read_record(
102 "i4", # nilw
103 "i4", # mipt
104 "i4", # kq
105 "i4", # 0
106 "i4", # 0
107 "i4", # 0
108 "i4", # 0
109 "i4", # 0
110 "i4", # 0
111 "i4", # 0
112 "i4", # 0
113 "i4", # 0
114 "i4", # 0
115 "i4", # 0
116 "i4", # 0
117 "i4", # 0
118 "i4", # 0
119 "i4", # 0
120 "i4", # 0
121 "i4", # 0
122)
123

124 # Read surface, cell, and summary information.
125 if kq[0] == 0:
126 for _ in range(njss[0]):
127 # Read fourth record: jss, surface_type, n, coeffs.
128 _, _, _, _ = f.read_record("i4", "i4", "i4", "f8")
129 else:
130 for _ in range(njss[0]):

10 of 26

131 # Read fourth record: jss, jsq, surface_type, n, coeffs.
132 _, _, _, _, _ = f.read_record("i4", "i4", "i4", "i4", "f8")
133

134 # Read selected surface record: jss.
135 for _ in range(nilw[0]):
136 _, _, _, _ = f.read_record("i4", "i4", "i4", "f8")
137

138 # Read summary record: nsl.
139 FMT = f"({2+4*mipt[0]},{njss[0]+nilw[0]})i4"
140 _, _ = f.read_record("f8", FMT)
141

142 # Loop over the lesser of all histories or the user-defined number of
143 # histories.
144 max_histories = min(nrsw[0], max_histories)
145 print(f"Processing {max_histories} histories...")
146 particles = [None] * max_histories
147 for i in range(max_histories):
148 tmp = f.read_record("f8")
149

150 # Symmetric source on spherical surface.
151 if len(tmp) == 7:
152 a = abs(int(tmp[0])) # nps
153 b = tmp[1]
154 wgt = tmp[2]
155 erg = tmp[3]
156 tme = tmp[4]
157 cs = tmp[5]
158 _ = tmp[6] # c, unused
159

160 particles[i] = Particle(a, erg, tme, wgt, cs=cs)
161

162 # General surface source.
163 elif len(tmp) == 11:
164 a = abs(int(tmp[0])) # nps
165 b = tmp[1]
166 wgt = tmp[2]
167 erg = tmp[3]
168 tme = tmp[4]
169 x = tmp[5]
170 y = tmp[6]
171 z = tmp[7]
172 u = tmp[8]
173 v = tmp[9]
174 _ = tmp[10] # c, unused
175

176 w = math.copysign(math.sqrt(1.0 - u * u - v * v), b)
177 particles[i] = Particle(
178 nps=a,
179 erg=erg,
180 tme=tme,
181 wgt=wgt,
182 x=x,
183 y=y,
184 z=z,

11 of 26

185 u=u,
186 v=v,
187 w=w,
188)
189

190 else:
191 print("Error, unknown particle record length.")
192

193 return particles
194

195

196 def write_csv(particle_list, outfilename):
197 """
198 Writes the phase-space state information for each particle in a given list
199 of Particle objects to a CSV file.
200

201 Args:
202 particle_list: A list of ‘Particle‘ objects.
203 outfilename: The name of the CSV file to write to.
204 """
205

206 with open(outfilename, "w", encoding="utf-8") as f:
207 f.write("nps, x, y, z, u, v, w, erg, tme, wgt\n")
208 for particle in particle_list:
209 f.write(str(particle) + "\n")
210

211

212 def write_erg(particle_list, outfilename, nbins=30):
213 """
214 Generates a PDF plot of a histogram of the energy distribution for a list of
215 of particles.
216

217 Args:
218 particle_list: A list of ‘Particle‘ objects.
219 outfilename: The name of the PDF file to write to.
220 nbins: The number of bins to use for energy histogram. Defaults to 30.
221 """
222

223 import numpy as np
224 from matplotlib import pyplot as plt
225

226 erg = np.array([p.erg for p in particle_list])
227 bins = np.logspace(np.log10(min(erg)), np.log10(max(erg)), nbins)
228

229 plt.figure(figsize=(6.5, 6.5 / 1.62))
230 plt.hist(
231 erg,
232 bins=bins,
233)
234

235 plt.xscale("log")
236

237 plt.xlabel("Energy, E [MeV]")
238 plt.ylabel("Frequency")

12 of 26

239

240 plt.savefig(outfilename, bbox_inches="tight")
241

242

243 ##
244 # EXECUTE PROGRAM ##
245 ##
246

247

248 if __name__ == "__main__" and hasattr(main, "__file__"):
249

250 ##
251 # Command line parsing.
252 ##
253

254 description = textwrap.dedent(
255 """
256 This script is used to read an MCNP6.3-produced surface-source file and
257 create a CSV giving the phase-space information for each of the source
258 points found.
259 """
260)
261

262 epilog = textwrap.dedent(
263 """
264 Typical command line calls might look like:
265

266 > python """
267 + os.path.basename(__file__)
268 + """ -n 10000 <inputfilename>
269 """
270 + "\u2063"
271)
272

273 parser = argparse.ArgumentParser(
274 formatter_class=argparse.RawDescriptionHelpFormatter,
275 description=description,
276 epilog=epilog,
277)
278

279 # Required positional argument(s).
280 parser.add_argument("inp", type=str, help="input surface-source file name")
281

282 # Optional named argument(s).
283 parser.add_argument(
284 "--number_of_histories",
285 "-n",
286 type=int,
287 default=INT_INF,
288 help=f"maximum number of points to process (default: {INT_INF})",
289)
290 parser.add_argument(
291 "--write_csv",
292 "-csv",

13 of 26

293 action="store_true",
294 help="write CSV file of particle phase-space state information (default: False)",
295)
296 parser.add_argument(
297 "--write_erg",
298 "-erg",
299 action="store_true",
300 help="write PDF histogram of particle energy distribution(default: False)",
301)
302

303 args = parser.parse_args()
304

305 # Basic error checking of command line options.
306 if not os.path.isfile(args.inp):
307 print(f"Error: input file ({args.inp}) not found.")
308 sys.exit(1)
309

310 ##
311 # Program execution.
312 ##
313

314 particles = read_ssa_file(args.inp, max_histories=args.number_of_histories)
315

316 # Create CSV of particle data.
317 if args.write_csv:
318 print("Writing CSV...")
319 write_csv(particles, f"{args.inp}.csv")
320

321 # Write histogram of particle energies.
322 if args.write_erg:
323 print("Writing energy histogram...")
324 write_erg(particles, f"{args.inp}.pdf")

14 of 26

B Test Case Files

B.1 “Traditional” Surface Source

The input file for the “traditional” surface source for neutrons is given in Listing 6 and is reproduced
from [Listing 4.7 of 3] with only minor spacing changes.

Listing 6: 01a_sswprot.mcnp.inp
1 Proton source on Tungsten target
2 c
3 c Cell Cards
4 c
5 10 0 +1 -9 IMP:H,N=1
6 20 0 -1 +2 -9 IMP:H,N=1
7 30 100 -19.25 -2 IMP:H,N=1
8 99 0 +9 IMP:H,N=0
9

10 c
11 c Surface Cards
12 c
13 1 PX 10
14 2 RPP 2.5 5 -2.5 2.5 -2.5 2.5
15 9 RPP -15 15 -15 15 -15 15
16

17 c
18 c Data Cards
19 c
20 MODE H N
21 NPS 1e5
22 SSW 1 PTY=N
23 c
24 PHYS:H 150
25 SDEF PAR=H ERG=150 VEC=1 0 0 DIR=1
26 c
27 c Materials
28 c
29 M100 74184 1.0
30 c
31 FMESH4:H GEOM=XYZ ORIGIN=-5 -5 -5
32 IMESH= 5 IINTS=150
33 JMESH= 5 JINTS=150
34 KMESH= 5 KINTS=150
35 OUT=NONE
36 c
37 FMESH14:N GEOM=XYZ ORIGIN=-15 -15 -15
38 IMESH=15 IINTS=150
39 JMESH=15 JINTS=150
40 KMESH=15 KINTS=150
41 OUT=NONE

To verify behavior of Listing 5, a subsequent calculation is made using the MCNP input file in
Listing 7, which is reproduced from [Listing 4.9 of 3] with minor spacing changes and changing the
NPS card to process 100,000 histories.

15 of 26

Listing 7: 01b_ssrneut.mcnp.inp
1 Neutron spallation source read
2 c
3 c Cell Cards
4 c
5 10 0 -11 -9 IMP:N=1
6 20 0 +11 -2 -9 IMP:N=1
7 30 100 -1.0 +2 +4 -5 -9 IMP:N=1
8 40 200 -7.874 +2 +3 -4 -5 IMP:N=1
9 50 0 +2 -3 -5 IMP:N=1

10 60 0 +5 -9 IMP:N=1
11 99 0 +9 IMP:N=0
12

13 c
14 c Surface Cards
15 c
16 11 PX 5
17 2 PX 10
18 3 CX 2.5
19 4 CX 7.5
20 5 PX 60
21 9 RPP 0 100 -25 25 -25 25
22

23 c
24 c Data Cards
25 c
26 MODE N
27 NPS 100000
28 SSR NEW 11 TR=1
29 TR1 -5 0 0
30 c
31 c Materials
32 c
33 M100 1001 2 8016 1 5010 2
34 MT100 lwtr
35 M200 26056 1.0
36 c
37 F4:N 60
38 E4 1E-6 99ilog 30
39 c
40 FMESH14:N GEOM=XYZ ORIGIN= 0 -25 -25
41 IMESH=100 IINTS=200
42 JMESH=25 JINTS=50
43 KMESH=25 KINTS=50
44 OUT=NONE
45 c
46 PRINT

B.2 Fission Source Sites

The input file for a fission-source-site “surface” source for neutrons is given in Listing 8 and is
reproduced from [Listing 4.11 of 3] with only minor spacing changes.

16 of 26

Listing 8: 02a_kcode.mcnp.inp
1 Simplified CAAS -- surface soure write
2 c ### cells
3 c
4 c >>>>> accident tank
5 c
6 100 1 9.9270e-2 -10 -12 imp:n=1
7 101 3 4.8333e-5 -10 +12 imp:n=1
8 102 2 8.6360e-2 +10 -11 imp:n=1
9 c

10 c >>>>> facility rooms: nw. -> ne., sw. -> se.
11 c
12 200 3 4.8333e-5 -20 imp:n=1
13 210 3 4.8333e-5 -21 +11 imp:n=1
14 220 3 4.8333e-5 -22 imp:n=1
15 c
16 c >>>>> doorways
17 c
18 260 3 4.8333e-5 -30 imp:n=1
19 261 3 4.8333e-5 -31 imp:n=1
20 262 3 4.8333e-5 -32 imp:n=1
21 c
22 c >>>>> facility and rest of world
23 c
24 900 4 0.0764 -99 +20 +21 +22 +30 +31 +32 imp:n=1
25 999 0 +99 imp:n=0
26

27 c ### surfaces
28 c
29 c >>>>> critical experiment tank
30 10 rcc 0 0 1 0 0 100 50
31 11 rcc 0 0 0 0 0 101 50.5
32 12 pz 13.6
33 c
34 c >>>>> rpp’s for the empty space in the rooms
35 20 rpp -1100 -500 -300 300 0 300
36 21 rpp -300 300 -300 300 0 300
37 22 rpp -450 -350 -300 300 0 300
38 c
39 c >>>>> doorways
40 30 rpp -350 -300 -300 -200 0 250
41 31 rpp 300 350 200 300 0 250
42 32 rpp -500 -450 200 300 0 250
43 c
44 c >>>>> building structure
45 99 rpp -1150 350 -350 350 -50 310
46

47 mode n
48 kcode 10000 1.0 25 125
49 ksrc 0 0 7
50 c
51 ssw cel = 100
52 c

17 of 26

53 fmesh4:n geom=xyz origin=-1150 -350 -50
54 imesh=350 iints=150
55 jmesh=350 jints=70
56 kmesh=310 kints=36
57 type=source
58 c
59 fmesh14:n geom=xyz origin=-1150 -350 -50
60 imesh=350 iints=150
61 jmesh=350 jints=70
62 kmesh=310 kints=36
63 c
64 c ### materials
65 c plutonium nitrate solution
66 m1 1001 6.0070e-2
67 8016 3.6540e-2
68 7014 2.3699e-3
69 94239 2.7682e-4
70 94240 1.2214e-5
71 94241 8.3390e-7
72 94242 4.5800e-8
73 mt1 lwtr
74 c stainless steel
75 m2 24050 7.1866e-4 $ Cr-50 4.345%
76 24052 1.3859e-2 $ Cr-52 83.789%
77 24053 1.5715e-3 $ Cr-53 9.501%
78 24054 3.9117e-4 $ Cr-54 2.365%
79 26054 3.7005e-3 $ Fe-54 5.845%
80 26056 5.8090e-2 $ Fe-56 91.754%
81 26057 1.3415e-3 $ Fe-57 2.119%
82 26058 1.7853e-4 $ Fe-58 0.282%
83 28058 4.4318e-3 $ Ni-58 68.0769%
84 28060 1.7071e-3 $ Ni-60 26.2231%
85 28061 7.4207e-5 $ Ni-61 1.1399%
86 28062 2.3661e-4 $ Ni-62 3.6345%
87 28064 6.0256e-5 $ Ni-64 0.9256%
88 c dry air (typical of American Southwest)
89 m3 1001 1.7404E-10
90 1002 1.3065E-14
91 2003 8.3540E-16
92 2004 4.5549E-10
93 6000 1.11008E-08
94 7014 3.8981E-05
95 7015 1.3515E-07
96 8016 9.1205E-06
97 8017 3.4348E-09
98 18036 3.0439E-10
99 18038 5.3915E-11

100 18040 8.0974E-08
101 36078 1.7811E-14
102 36080 1.1164E-13
103 36082 5.6154E-13
104 36083 5.49985E-13
105 36084 2.69359E-12
106 36086 7.98498E-13

18 of 26

107 54124 2.30549E-13
108 mt3 lwtr
109 c los alamos concrete
110 m4 1001 0.00842
111 8016 0.04423
112 13027 0.00252
113 14028 0.014690958
114 14029 0.000718176
115 14030 0.000460866
116 11023 0.00105
117 20040 2.84037E-03
118 20042 1.89571E-05
119 20043 3.95550E-06
120 20044 6.11198E-05
121 20046 1.17200E-07
122 20048 5.47910E-06
123 26054 0.000041788
124 26056 0.000632003
125 26057 0.000014347
126 26058 0.000001862
127 19039 6.43481E-04
128 19040 8.07300E-08
129 19041 4.64384E-05
130 mt4 lwtr

To verify behavior of Listing 5, a subsequent calculation is made using the MCNP input file in
Listing 9, which is reproduced from [Listing 4.13 of 3] with minor spacing changes and changing the
NPS card to process 1,000,451 histories.

Listing 9: 02b_fixed_src.mcnp.inp
1 Simplified CAAS -- surface soure read
2 c ### cells
3 c
4 c >>>>> accident tank
5 c
6 100 1 9.9270e-2 -10 -12 imp:n=1
7 101 3 4.8333e-5 -10 +12 imp:n=1
8 102 2 8.6360e-2 +10 -11 imp:n=1
9 c

10 c >>>>> facility rooms: nw. -> ne., sw. -> se.
11 c
12 200 3 4.8333e-5 -20 imp:n=1
13 210 3 4.8333e-5 -21 +11 imp:n=1
14 220 3 4.8333e-5 -22 imp:n=1
15 c
16 c >>>>> doorways
17 c
18 260 3 4.8333e-5 -30 imp:n=1
19 261 3 4.8333e-5 -31 imp:n=1
20 262 3 4.8333e-5 -32 imp:n=1
21 c
22 c >>>>> facility and rest of world
23 c
24 900 4 0.0764 -99 +20 +21 +22 +30 +31 +32 imp:n=1

19 of 26

25 999 0 +99 imp:n=0
26

27 c ### surfaces
28 c
29 c >>>>> critical experiment tank
30 10 rcc 0 0 1 0 0 100 50
31 11 rcc 0 0 0 0 0 101 50.5
32 12 pz 13.6
33 c
34 c >>>>> rpp’s for the empty space in the rooms
35 20 rpp -1100 -500 -300 300 0 300
36 21 rpp -300 300 -300 300 0 300
37 22 rpp -450 -350 -300 300 0 300
38 c
39 c >>>>> doorways
40 30 rpp -350 -300 -300 -200 0 250
41 31 rpp 300 350 200 300 0 250
42 32 rpp -500 -450 200 300 0 250
43 c
44 c >>>>> building structure
45 99 rpp -1150 350 -350 350 -50 310
46

47 nps 1000451
48 mode n p
49 nonu 0 10r
50 c
51 ssr cel = 100 psc = 0.5
52 c
53 fmesh4:n geom=xyz origin=-1150 -350 -50
54 imesh=350 iints=150
55 jmesh=350 jints=70
56 kmesh=310 kints=36
57 type=source
58 out=none
59 c
60 fmesh14:n geom=xyz origin=-1150 -350 -50
61 imesh=350 iints=150
62 jmesh=350 jints=70
63 kmesh=310 kints=36
64 out=none
65 c
66 fmesh24:p geom=xyz origin=-1150 -350 -50
67 imesh=350 iints=150
68 jmesh=350 jints=70
69 kmesh=310 kints=36
70 out=none
71 c
72 print
73 c ### materials
74 c plutonium nitrate solution
75 m1 1001 6.0070e-2
76 8016 3.6540e-2
77 7014 2.3699e-3
78 94239 2.7682e-4

20 of 26

79 94240 1.2214e-5
80 94241 8.3390e-7
81 94242 4.5800e-8
82 mt1 lwtr
83 c stainless steel
84 m2 24050 7.1866e-4 $ Cr-50 4.345%
85 24052 1.3859e-2 $ Cr-52 83.789%
86 24053 1.5715e-3 $ Cr-53 9.501%
87 24054 3.9117e-4 $ Cr-54 2.365%
88 26054 3.7005e-3 $ Fe-54 5.845%
89 26056 5.8090e-2 $ Fe-56 91.754%
90 26057 1.3415e-3 $ Fe-57 2.119%
91 26058 1.7853e-4 $ Fe-58 0.282%
92 28058 4.4318e-3 $ Ni-58 68.0769%
93 28060 1.7071e-3 $ Ni-60 26.2231%
94 28061 7.4207e-5 $ Ni-61 1.1399%
95 28062 2.3661e-4 $ Ni-62 3.6345%
96 28064 6.0256e-5 $ Ni-64 0.9256%
97 c dry air (typical of American Southwest)
98 m3 1001 1.7404E-10
99 1002 1.3065E-14

100 2003 8.3540E-16
101 2004 4.5549E-10
102 6000 1.11008E-08
103 7014 3.8981E-05
104 7015 1.3515E-07
105 8016 9.1205E-06
106 8017 3.4348E-09
107 18036 3.0439E-10
108 18038 5.3915E-11
109 18040 8.0974E-08
110 36078 1.7811E-14
111 36080 1.1164E-13
112 36082 5.6154E-13
113 36083 5.49985E-13
114 36084 2.69359E-12
115 36086 7.98498E-13
116 54124 2.30549E-13
117 mt3 lwtr
118 c los alamos concrete
119 m4 1001 0.00842
120 8016 0.04423
121 13027 0.00252
122 14028 0.014690958
123 14029 0.000718176
124 14030 0.000460866
125 11023 0.00105
126 20040 2.84037E-03
127 20042 1.89571E-05
128 20043 3.95550E-06
129 20044 6.11198E-05
130 20046 1.17200E-07
131 20048 5.47910E-06
132 26054 0.000041788

21 of 26

133 26056 0.000632003
134 26057 0.000014347
135 26058 0.000001862
136 19039 6.43481E-04
137 19040 8.07300E-08
138 19041 4.64384E-05
139 mt4 lwtr

22 of 26

C CSV to ParaView Energy-Colored Vector Plot

This appendix describes a sequence of steps to read a CSV file produced using the script in Listing 5
with the -csv option to visualize the particle locations and initial trajectories using ParaView arrow
glyphs. The steps taken follow with representative screenshots of the process given in Figs. 7–12.
The steps are:

1. Launch ParaView (this work uses ParaView 5.13).

2. Select File _ Open _ choose the desired .csv file.

3. If prompted, select the “CSV Reader” (see Fig. 7).

4. Ensure “Detect Numeric Columns,” “Use String Delimiter,” and “Have Headers” are checked
and click “Apply” to load the file. A “SpreadSheetView” of the data should appear as in Fig. 8.

5. Click in the left RenderView and then the Filters menu _ Miscellaneous _ Table to Points, and
assign the X Column, Y Column, and Z Column drop-down menus to x, y, and z, respectively
as in Fig. 9. Click Apply.

6. Click in the left RenderView and then the Filters menu _ Miscellaneous _ Merge Vector
Components, and assign the X Array, Y Array, and Z Array drop-down menus to u, v, and w,
respectively as in Fig. 10. Click Apply.

7. Ensure the “Toggle advanced properties” () button is clicked to provide the ability to control
all properties.

8. Update the Properties as follows:

(a) Change the Representation to “3D Glyphs” and change the Coloring to erg (Fig. 11).

(b) Check “Orient” under Glyph Parameters and change Orientation Vectors from None to
Vector (Fig. 12).

23 of 26

Figure 7: Select CSV reader.

Figure 8: SpreadSheet View.

24 of 26

Figure 9: TableToPoints Filter Variable Assignment.

Figure 10: MergeVectorComponents filter variable assignment.

25 of 26

Figure 11: Change representation to “3D Glyphs” and coloring to erg.

Figure 12: Enable orientation and assign orientation vectors.

26 of 26

	1 Introduction
	2 Script Usage
	3 Functional and Performance Requirements
	4 Design and Implementation
	5 Testing
	5.1 Test Case 1: ``Traditional'' Surface Source
	5.2 Test Case 2: Fission Source Sites

	6 Conclusions
	References
	A Script Source Code
	B Test Case Files
	B.1 ``Traditional'' Surface Source
	B.2 Fission Source Sites

	C CSV to ParaView Energy-Colored Vector Plot

#!/usr/bin/env python

"""
This module provides a `read_ssa_file` method that can return a list of particle
objects with phase-space state information as read from an MCNP surface source
file created from either fixed-source or k-eigenvalue calculations.
"""

import argparse
import math
import os
import sys
import textwrap

import __main__ as main
from scipy.io import FortranFile

INT_INF = int(1e20)

class Particle:
 """
 This simple class, effectively a `dataclass` holds particle phase-space
 state information that can be extended to enable other capability.
 """

 def __init__(
 self,
 nps,
 erg,
 tme,
 wgt,
 x=None,
 y=None,
 z=None,
 u=None,
 v=None,
 w=None,
 cs=None,
):
 self.nps = nps
 self.x = x
 self.y = y
 self.z = z
 self.u = u
 self.v = v
 self.w = w
 self.erg = erg
 self.tme = tme
 self.wgt = wgt
 self.cs = cs

 def __str__(self):
 FMT = ".5e"
 s = f"{self.nps}, "
 s += ", ".join(
 [
 f"{i:{FMT}}"
 for i in (
 self.x,
 self.y,
 self.z,
 self.u,
 self.v,
 self.w,
 self.erg,
 self.tme,
 self.wgt,
)
]
)
 return s

def read_ssa_file(filename, max_histories=INT_INF):
 """Reads a MCNP surface source file and returns a list of Particle objects.

 Args:
 filename (str): The path to the SSA file.
 max_histories (int, optional): The maximum number of histories to read
 from the file. Defaults to infinity.

 Returns:
 list[Particle]: A list of Particle objects.
 """

 # Open binary MCNP surface-source file for reading
 f = FortranFile(filename)

 # Read format identifier.
 _ = f.read_record("a8")

 # Read first record: code_name, ver, build_date_code, idtm, probid, aid, knod .
 _ = f.read_record("a8", "a5", "a8", "a19", "a19", "a128", "i4")

 # Read second record: np, nrsw, nd, njss, nqsw
 _, nrsw, _, njss, _ = f.read_record("i8", "i8", "i4", "i4", "i8")
 print(f"Found {nrsw[0]} source points in file.")

 # Read third record.
 nilw, mipt, kq, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _ = f.read_record(
 "i4", # nilw
 "i4", # mipt
 "i4", # kq
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
 "i4", # 0
)

 # Read surface, cell, and summary information.
 if kq[0] == 0:
 for _ in range(njss[0]):
 # Read fourth record: jss, surface_type, n, coeffs.
 _, _, _, _ = f.read_record("i4", "i4", "i4", "f8")
 else:
 for _ in range(njss[0]):
 # Read fourth record: jss, jsq, surface_type, n, coeffs.
 _, _, _, _, _ = f.read_record("i4", "i4", "i4", "i4", "f8")

 # Read selected surface record: jss.
 for _ in range(nilw[0]):
 _, _, _, _ = f.read_record("i4", "i4", "i4", "f8")

 # Read summary record: nsl.
 FMT = f"({2+4*mipt[0]},{njss[0]+nilw[0]})i4"
 _, _ = f.read_record("f8", FMT)

 # Loop over the lesser of all histories or the user-defined number of
 # histories.
 max_histories = min(nrsw[0], max_histories)
 print(f"Processing {max_histories} histories...")
 particles = [None] * max_histories
 for i in range(max_histories):
 tmp = f.read_record("f8")

 # Symmetric source on spherical surface.
 if len(tmp) == 7:
 a = abs(int(tmp[0])) # nps
 b = tmp[1]
 wgt = tmp[2]
 erg = tmp[3]
 tme = tmp[4]
 cs = tmp[5]
 _ = tmp[6] # c, unused

 particles[i] = Particle(a, erg, tme, wgt, cs=cs)

 # General surface source.
 elif len(tmp) == 11:
 a = abs(int(tmp[0])) # nps
 b = tmp[1]
 wgt = tmp[2]
 erg = tmp[3]
 tme = tmp[4]
 x = tmp[5]
 y = tmp[6]
 z = tmp[7]
 u = tmp[8]
 v = tmp[9]
 _ = tmp[10] # c, unused

 w = math.copysign(math.sqrt(1.0 - u * u - v * v), b)
 particles[i] = Particle(
 nps=a,
 erg=erg,
 tme=tme,
 wgt=wgt,
 x=x,
 y=y,
 z=z,
 u=u,
 v=v,
 w=w,
)

 else:
 print("Error, unknown particle record length.")

 return particles

def write_csv(particle_list, outfilename):
 """
 Writes the phase-space state information for each particle in a given list
 of Particle objects to a CSV file.

 Args:
 particle_list: A list of `Particle` objects.
 outfilename: The name of the CSV file to write to.
 """

 with open(outfilename, "w", encoding="utf-8") as f:
 f.write("nps, x, y, z, u, v, w, erg, tme, wgt\n")
 for particle in particle_list:
 f.write(str(particle) + "\n")

def write_erg(particle_list, outfilename, nbins=30):
 """
 Generates a PDF plot of a histogram of the energy distribution for a list of
 of particles.

 Args:
 particle_list: A list of `Particle` objects.
 outfilename: The name of the PDF file to write to.
 nbins: The number of bins to use for energy histogram. Defaults to 30.
 """

 import numpy as np
 from matplotlib import pyplot as plt

 erg = np.array([p.erg for p in particle_list])
 bins = np.logspace(np.log10(min(erg)), np.log10(max(erg)), nbins)

 plt.figure(figsize=(6.5, 6.5 / 1.62))
 plt.hist(
 erg,
 bins=bins,
)

 plt.xscale("log")

 plt.xlabel("Energy, E [MeV]")
 plt.ylabel("Frequency")

 plt.savefig(outfilename, bbox_inches="tight")

##
EXECUTE PROGRAM
##

if __name__ == "__main__" and hasattr(main, "__file__"):

 ##
 # Command line parsing.
 ##

 description = textwrap.dedent(
 """
 This script is used to read an MCNP6.3-produced surface-source file and
 create a CSV giving the phase-space information for each of the source
 points found.
 """
)

 epilog = textwrap.dedent(
 """
 Typical command line calls might look like:

 > python """
 + os.path.basename(__file__)
 + """ -n 10000 <inputfilename>
 """
 + "\u2063"
)

 parser = argparse.ArgumentParser(
 formatter_class=argparse.RawDescriptionHelpFormatter,
 description=description,
 epilog=epilog,
)

 # Required positional argument(s).
 parser.add_argument("inp", type=str, help="input surface-source file name")

 # Optional named argument(s).
 parser.add_argument(
 "--number_of_histories",
 "-n",
 type=int,
 default=INT_INF,
 help=f"maximum number of points to process (default: {INT_INF})",
)
 parser.add_argument(
 "--write_csv",
 "-csv",
 action="store_true",
 help="write CSV file of particle phase-space state information (default: False)",
)
 parser.add_argument(
 "--write_erg",
 "-erg",
 action="store_true",
 help="write PDF histogram of particle energy distribution(default: False)",
)

 args = parser.parse_args()

 # Basic error checking of command line options.
 if not os.path.isfile(args.inp):
 print(f"Error: input file ({args.inp}) not found.")
 sys.exit(1)

 ##
 # Program execution.
 ##

 particles = read_ssa_file(args.inp, max_histories=args.number_of_histories)

 # Create CSV of particle data.
 if args.write_csv:
 print("Writing CSV...")
 write_csv(particles, f"{args.inp}.csv")

 # Write histogram of particle energies.
 if args.write_erg:
 print("Writing energy histogram...")
 write_erg(particles, f"{args.inp}.pdf")

Proton source on Tungsten target
c
c Cell Cards
c
10 0 +1 -9 IMP:H,N=1
20 0 -1 +2 -9 IMP:H,N=1
30 100 -19.25 -2 IMP:H,N=1
99 0 +9 IMP:H,N=0

c
c Surface Cards
c
1 PX 10
2 RPP 2.5 5 -2.5 2.5 -2.5 2.5
9 RPP -15 15 -15 15 -15 15

c
c Data Cards
c
MODE H N
NPS 1e5
SSW 1 PTY=N
c
PHYS:H 150
SDEF PAR=H ERG=150 VEC=1 0 0 DIR=1
c
c Materials
c
M100 74184 1.0
c
FMESH4:H GEOM=XYZ ORIGIN=-5 -5 -5
 IMESH= 5 IINTS=150
 JMESH= 5 JINTS=150
 KMESH= 5 KINTS=150
 OUT=NONE
c
FMESH14:N GEOM=XYZ ORIGIN=-15 -15 -15
 IMESH=15 IINTS=150
 JMESH=15 JINTS=150
 KMESH=15 KINTS=150
 OUT=NONE

Neutron spallation source read
c
c Cell Cards
c
10 0 -11 -9 IMP:N=1
20 0 +11 -2 -9 IMP:N=1
30 100 -1.0 +2 +4 -5 -9 IMP:N=1
40 200 -7.874 +2 +3 -4 -5 IMP:N=1
50 0 +2 -3 -5 IMP:N=1
60 0 +5 -9 IMP:N=1
99 0 +9 IMP:N=0

c
c Surface Cards
c
11 PX 5
2 PX 10
3 CX 2.5
4 CX 7.5
5 PX 60
9 RPP 0 100 -25 25 -25 25

c
c Data Cards
c
MODE N
NPS 100000
SSR NEW 11 TR=1
TR1 -5 0 0
c
c Materials
c
M100 1001 2 8016 1 5010 2
MT100 lwtr
M200 26056 1.0
c
F4:N 60
E4 1E-6 99ilog 30
c
FMESH14:N GEOM=XYZ ORIGIN= 0 -25 -25
 IMESH=100 IINTS=200
 JMESH=25 JINTS=50
 KMESH=25 KINTS=50
 OUT=NONE
c
PRINT

Simplified CAAS -- surface soure write
c ### cells
c
c >>>>> accident tank
c
100 1 9.9270e-2 -10 -12 imp:n=1
101 3 4.8333e-5 -10 +12 imp:n=1
102 2 8.6360e-2 +10 -11 imp:n=1
c
c >>>>> facility rooms: nw. -> ne., sw. -> se.
c
200 3 4.8333e-5 -20 imp:n=1
210 3 4.8333e-5 -21 +11 imp:n=1
220 3 4.8333e-5 -22 imp:n=1
c
c >>>>> doorways
c
260 3 4.8333e-5 -30 imp:n=1
261 3 4.8333e-5 -31 imp:n=1
262 3 4.8333e-5 -32 imp:n=1
c
c >>>>> facility and rest of world
c
900 4 0.0764 -99 +20 +21 +22 +30 +31 +32 imp:n=1
999 0 +99 imp:n=0

c ### surfaces
c
c >>>>> critical experiment tank
10 rcc 0 0 1 0 0 100 50
11 rcc 0 0 0 0 0 101 50.5
12 pz 13.6
c
c >>>>> rpp's for the empty space in the rooms
20 rpp -1100 -500 -300 300 0 300
21 rpp -300 300 -300 300 0 300
22 rpp -450 -350 -300 300 0 300
c
c >>>>> doorways
30 rpp -350 -300 -300 -200 0 250
31 rpp 300 350 200 300 0 250
32 rpp -500 -450 200 300 0 250
c
c >>>>> building structure
99 rpp -1150 350 -350 350 -50 310

mode n
kcode 10000 1.0 25 125
ksrc 0 0 7
c
ssw cel = 100
c
fmesh4:n geom=xyz origin=-1150 -350 -50
 imesh=350 iints=150
 jmesh=350 jints=70
 kmesh=310 kints=36
 type=source
c
fmesh14:n geom=xyz origin=-1150 -350 -50
 imesh=350 iints=150
 jmesh=350 jints=70
 kmesh=310 kints=36
c
c ### materials
c plutonium nitrate solution
m1 1001 6.0070e-2
 8016 3.6540e-2
 7014 2.3699e-3
 94239 2.7682e-4
 94240 1.2214e-5
 94241 8.3390e-7
 94242 4.5800e-8
mt1 lwtr
c stainless steel
m2 24050 7.1866e-4 $ Cr-50 4.345%
 24052 1.3859e-2 $ Cr-52 83.789%
 24053 1.5715e-3 $ Cr-53 9.501%
 24054 3.9117e-4 $ Cr-54 2.365%
 26054 3.7005e-3 $ Fe-54 5.845%
 26056 5.8090e-2 $ Fe-56 91.754%
 26057 1.3415e-3 $ Fe-57 2.119%
 26058 1.7853e-4 $ Fe-58 0.282%
 28058 4.4318e-3 $ Ni-58 68.0769%
 28060 1.7071e-3 $ Ni-60 26.2231%
 28061 7.4207e-5 $ Ni-61 1.1399%
 28062 2.3661e-4 $ Ni-62 3.6345%
 28064 6.0256e-5 $ Ni-64 0.9256%
c dry air (typical of American Southwest)
m3 1001 1.7404E-10
 1002 1.3065E-14
 2003 8.3540E-16
 2004 4.5549E-10
 6000 1.11008E-08
 7014 3.8981E-05
 7015 1.3515E-07
 8016 9.1205E-06
 8017 3.4348E-09
 18036 3.0439E-10
 18038 5.3915E-11
 18040 8.0974E-08
 36078 1.7811E-14
 36080 1.1164E-13
 36082 5.6154E-13
 36083 5.49985E-13
 36084 2.69359E-12
 36086 7.98498E-13
 54124 2.30549E-13
mt3 lwtr
c los alamos concrete
m4 1001 0.00842
 8016 0.04423
 13027 0.00252
 14028 0.014690958
 14029 0.000718176
 14030 0.000460866
 11023 0.00105
 20040 2.84037E-03
 20042 1.89571E-05
 20043 3.95550E-06
 20044 6.11198E-05
 20046 1.17200E-07
 20048 5.47910E-06
 26054 0.000041788
 26056 0.000632003
 26057 0.000014347
 26058 0.000001862
 19039 6.43481E-04
 19040 8.07300E-08
 19041 4.64384E-05
mt4 lwtr

Simplified CAAS -- surface soure read
c ### cells
c
c >>>>> accident tank
c
100 1 9.9270e-2 -10 -12 imp:n=1
101 3 4.8333e-5 -10 +12 imp:n=1
102 2 8.6360e-2 +10 -11 imp:n=1
c
c >>>>> facility rooms: nw. -> ne., sw. -> se.
c
200 3 4.8333e-5 -20 imp:n=1
210 3 4.8333e-5 -21 +11 imp:n=1
220 3 4.8333e-5 -22 imp:n=1
c
c >>>>> doorways
c
260 3 4.8333e-5 -30 imp:n=1
261 3 4.8333e-5 -31 imp:n=1
262 3 4.8333e-5 -32 imp:n=1
c
c >>>>> facility and rest of world
c
900 4 0.0764 -99 +20 +21 +22 +30 +31 +32 imp:n=1
999 0 +99 imp:n=0

c ### surfaces
c
c >>>>> critical experiment tank
10 rcc 0 0 1 0 0 100 50
11 rcc 0 0 0 0 0 101 50.5
12 pz 13.6
c
c >>>>> rpp's for the empty space in the rooms
20 rpp -1100 -500 -300 300 0 300
21 rpp -300 300 -300 300 0 300
22 rpp -450 -350 -300 300 0 300
c
c >>>>> doorways
30 rpp -350 -300 -300 -200 0 250
31 rpp 300 350 200 300 0 250
32 rpp -500 -450 200 300 0 250
c
c >>>>> building structure
99 rpp -1150 350 -350 350 -50 310

nps 1000451
mode n p
nonu 0 10r
c
ssr cel = 100 psc = 0.5
c
fmesh4:n geom=xyz origin=-1150 -350 -50
 imesh=350 iints=150
 jmesh=350 jints=70
 kmesh=310 kints=36
 type=source
 out=none
c
fmesh14:n geom=xyz origin=-1150 -350 -50
 imesh=350 iints=150
 jmesh=350 jints=70
 kmesh=310 kints=36
 out=none
c
fmesh24:p geom=xyz origin=-1150 -350 -50
 imesh=350 iints=150
 jmesh=350 jints=70
 kmesh=310 kints=36
 out=none
c
print
c ### materials
c plutonium nitrate solution
m1 1001 6.0070e-2
 8016 3.6540e-2
 7014 2.3699e-3
 94239 2.7682e-4
 94240 1.2214e-5
 94241 8.3390e-7
 94242 4.5800e-8
mt1 lwtr
c stainless steel
m2 24050 7.1866e-4 $ Cr-50 4.345%
 24052 1.3859e-2 $ Cr-52 83.789%
 24053 1.5715e-3 $ Cr-53 9.501%
 24054 3.9117e-4 $ Cr-54 2.365%
 26054 3.7005e-3 $ Fe-54 5.845%
 26056 5.8090e-2 $ Fe-56 91.754%
 26057 1.3415e-3 $ Fe-57 2.119%
 26058 1.7853e-4 $ Fe-58 0.282%
 28058 4.4318e-3 $ Ni-58 68.0769%
 28060 1.7071e-3 $ Ni-60 26.2231%
 28061 7.4207e-5 $ Ni-61 1.1399%
 28062 2.3661e-4 $ Ni-62 3.6345%
 28064 6.0256e-5 $ Ni-64 0.9256%
c dry air (typical of American Southwest)
m3 1001 1.7404E-10
 1002 1.3065E-14
 2003 8.3540E-16
 2004 4.5549E-10
 6000 1.11008E-08
 7014 3.8981E-05
 7015 1.3515E-07
 8016 9.1205E-06
 8017 3.4348E-09
 18036 3.0439E-10
 18038 5.3915E-11
 18040 8.0974E-08
 36078 1.7811E-14
 36080 1.1164E-13
 36082 5.6154E-13
 36083 5.49985E-13
 36084 2.69359E-12
 36086 7.98498E-13
 54124 2.30549E-13
mt3 lwtr
c los alamos concrete
m4 1001 0.00842
 8016 0.04423
 13027 0.00252
 14028 0.014690958
 14029 0.000718176
 14030 0.000460866
 11023 0.00105
 20040 2.84037E-03
 20042 1.89571E-05
 20043 3.95550E-06
 20044 6.11198E-05
 20046 1.17200E-07
 20048 5.47910E-06
 26054 0.000041788
 26056 0.000632003
 26057 0.000014347
 26058 0.000001862
 19039 6.43481E-04
 19040 8.07300E-08
 19041 4.64384E-05
mt4 lwtr

