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Why grow algae on CO2 from air?
CO2 point-source co-location limits algal resource potential to less than 5 BGY
Direct, in-pond air-CO2 capture can increase resource potential nearly 10-fold
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The CO2 mass-transfer rate, 𝐽!"!, is proportional to the mass transfer coefficient, 
𝑘#, and the ‘driving force’ for mass transfer. 𝐸 accounts for chemical reactions. 

𝐽!"![=] $	!
&!'()*

 = 𝑘# ∗ 𝑃!"+),- ∗ 𝐻 − 𝐶!"+./01 𝑥 = 𝛿 ∗ 𝐸

Driving force
Piston velocity Back pressure

When 𝐶!"+./01 𝑥 = 𝛿  > 𝑃!"+),- ∗ 𝐻:

• Driving force is negative

• CO2 lost from pond to atmosphere

• Net CO2 ‘outgassing’ rate

When 𝐶!"+./01 𝑥 = 𝛿  < 𝑃!"+),- ∗ 𝐻

• Driving force is positive

• Air-CO2 transfer from atmosphere to pond

• Net CO2 ‘ingassing’ rate

• Influence of reactions accounted with ‘E’

Outgassing rates must be minimized to achieve high carbon utilization efficiency
Ingassing rates of are interest for direct algae air-CO2 capture

Enhancement factor (if reactions present)



kL is between 0.05-0.1 m/hr for small ponds, unmeasured in large (1-acre +) ponds 
d

At elevated alkalinity, pH 7.5 – 8.0, CO2 outgassing rates approach the daily gain in 
biomass
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20 g AFDW/m2-day equiv.

Influence of kL, pond scale on the ingassing rate is uncertain, dependent on E



CO2 air

CO2 aq

Air-water 
interface

H2CO3

+ H2O

HCO3-

+ OH-

At elevated pH, the CO2,aq + OH- reaction pathway appreciably increases air-CO2 
flux, known as chemical enhancement

5

Without chemical enhancement, 𝐸 = 1, 
and air-CO2 flux is given by:
	 𝐽!"!= 𝑘" ∗ 𝐶#$%&'( − 𝐶#$%)*+, ∗ 𝐸 

Slow, E = 1

Hypothesis: E is sufficient to support high rates of carbon uptake, at a 
biologically compatible high pH

Where: 
𝐶!"#$%&  = CO2 aq at the air-water interface, in equilibrium 
with the gas phase, ~10 µM
𝐶#$%)*+, 	= CO2 aq in pond ‘bulk’, ~0 µM at pH > 10 
𝑘"= mass transfer coefficient, ~0.1 m/hr for ponds, a 
measure of turbulence as it relates to mass transfer

Under non-enhanced (𝐸 = 1) conditions:

𝐽"#! = 0.1
𝑚
ℎ𝑟

10 − 0	𝜇𝑀 = 0.3
𝑔	𝐶

𝑚$𝑑𝑎𝑦
≈ 0.6

𝑔	𝐴𝐹𝐷𝑊
𝑚$𝑑𝑎𝑦

𝐸 must be ~ 30 to support 20 g AFDW/m2-day!
Depending on the assumed mass-transfer regime, 
estimates for 𝐸 range from 2 to 40 at pH 10.5

Fast, E > 1



Approach – Identify conditions to meet the target air-CO2 flux
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• Measure air-CO2 exchange rates via abiotic (without 
algae) trials in 1-acre ponds. 
o 𝑘' is measured in ‘outgassing trials’, by 

supersaturating the pond with CO2, then measuring 
the rate of pH increase. 

o Air-CO2 flux, 𝐽!"!, at elevated pH is measured by 
displacing the pond from air-equilibrium with a strong 
base, then measuring the rate of return to equilibrium 
(pH decrease) 

• Compare ingassing rates over a wider current 
velocity range in more easily managed 3.4 m2 ponds

• Compare experimental results to model predictions 
to identify the appropriate mass-transfer model

Top: 1-acre ponds at QH, used to measure ingassing 
rates at a commercially relevant scale. Bottom: MBE 
3.4 m2 used to more fully parameterize air-CO2 flux.
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The mass transfer coefficient was measured at two 
paddle wheel speed settings over 13 cyles
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kL is calculated from pH vs. time curves

Calculated from pH, alkalinity, 
equilibrium relationships

Outgassing rate = ∆.#
∆(/01
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𝑘" =
𝑂𝑢𝑡𝑔𝑎𝑠𝑠𝑖𝑛𝑔	𝑟𝑎𝑡𝑒
𝑑𝑟𝑖𝑣𝑖𝑛𝑔	𝑓𝑜𝑟𝑐𝑒

[=]
𝑚
ℎ𝑟
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Cycle # High Low

1 0.11
2 0.08
3 0.09
4 0.11
5 0.09
6 0.08
7 0.11
8 0.19*
9 0.07

10 0.07
11 0.09
12 0.08
13 0.07

AVG: 0.10 0.08
STDEV: 0.01 0.01

RSD: 13.6% 16.3%
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*Current velocity during 1-acre pond measurements TBD

kL measured 0.08 – 0.10, higher than hypothesized
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Cycle 1 Start

Cycle 1 End Cycle 2 
Start

Paddle wheels 
off 10 hrs

Cycle 2 End Cycle 3 
Start

Cycle 3 
End
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Abiotic air-CO2 ingassing rates were measured over 
three cycles, beginning above pH 12



1-acre pond ingassing rates rates increase with pH due to chemical 
enhancement; pH > 11.7 required to support 15 g AFDW/m2-day
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Mass-transfer model predictions of E, for two limiting cases:
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𝐽!"!=𝑘' ∗ 𝑃!"#%() ∗ 𝐻 − 𝐶!"#∗ 𝑥 = 𝛿 ∗ 1 +
+2345+36274,-,["/

4]

+62! -,!"! 89
∗ ,+362741+234

𝐽!"! = 𝑃!"#%() ∗ 𝐻 − 𝐶!"#∗ 𝑥 = 𝛿 ∗ 𝒟!"# ∗ 𝑘&2& ∗ 𝑂𝐻3 ∗ coth
𝒟!"# ∗ 𝑘&2&

𝑘' # 	

Second order instantaneous reversible reaction, ‘Diffusion Limited’

First-order, finite reaction rate, ‘Reaction Rate Limited’

(Olander 1960)

(Hatta 1932)

Flux increases proportionally to turbulence pH dependent, but not influenced 
by CO2+OH- reaction rate

𝐾 =
	[𝐻𝐶𝑂!"]

[𝑂𝐻"] 𝐶𝑂#

Square root reaction rate dependance

Turbulence independent when 𝒟-.!∗1/0/
11 !  < ~2
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Transfer coefficient measurements repeated in 3.4 m2 ponds, aiming to 
find paddle wheel setting, depth yielding ‘fast’ and ‘slow’ kL in follow-on 
ingassing trial
Paddlewheel VFD 

setting (Hz)
Pond

Depth 
(cm)

kL (m/hr) kl Error n

45 A 30 0.22 0.01 84
45 A 25 0.29 0.01 76
45 B 30 0.36 0.02 209
35 A 25 0.20 0.01 485
30 A 30 0.12 0.01 83
30 B 30 0.22 0.01 83
20 A 30 0.06 0.01 26
20 B 30 0.07 0.01 26
15 A 30 0.04 0.01 7
15 B 30 0.05 0.01 7
10 A 30 0.03 0.01 13
10 B 30 0.03 0.01 13

𝑘" =
𝑂𝑢𝑡𝑔𝑎𝑠𝑠𝑖𝑛𝑔	𝑟𝑎𝑡𝑒
𝑑𝑟𝑖𝑣𝑖𝑛𝑔	𝑓𝑜𝑟𝑐𝑒

[=]
𝑚
ℎ𝑟
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Experimental data validates the reaction-rate limited model; air-CO2 flux 
is independent of the mass-transfer coefficient, 𝒌𝑳
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Conclusion: Decreases in turbulence levels in 10-acre ponds are not expected 
to influence chemically enhanced air-CO2 flux. 

20 g AFDW/m2-day equivalent

Model predictions for ‘diffusion’ (dotted lines) and ‘reaction rate’ limited (solid lines) 
transfer, at low (kL = 0.06 m/hr) and high (kL = 0.36 m/hr) turbulence levels
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Conclusions

• Chemically enhanced air-CO2 absorption requires high pH, 12 
or above, to support economically viable biomass productivity

• Finding strains that thrive at such a high pH will be a challenge

• Experimentally measured ingassing rates align well with the 
‘reaction-rate limited’ mass-transfer regime; ingassing rates 
appear minimally influenced by pond scale 
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Thank you!
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Disclaimer
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