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Microgrid Service Restoration Incorporating
Unmonitored Automatic Voltage Controllers and Net
Metered Loads
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Abstract - Islanded microgrids may experience voltage and
frequency instability due to uncontrolled state changes of voltage
regulation devices and inaccurate demand forecasts. Uncontrolled
state changes can occur if optimal microgrid restoration and
dispatch algorithms, used for generating control commands for
distributed energy resources, do not incorporate the behavior of
automatic controllers of voltage regulation devices. Inaccurate
demand forecasts may be encountered since post-outage demand of
behind-the-meter net metered (NM) loads can vary significantly
from their historical NM profiles. This paper proposes an
optimization formulation which allows optimal control of voltage
regulators and capacitor banks without remote control and
communication capabilities. A generalized demand model for NM
loads is proposed which incorporates the cold load pickup
phenomenon and their time varying post-outage demand in
accordance with the IEEE 1547 standard. The time dependent
optimal control formulation and the NM demand model are
integrated in a sequential microgrid restoration algorithm by
linearization of the involved logic propositions. A detailed case
study on the unbalanced IEEE 123-node test system in OpenDSS
validates the effectiveness of the proposed approach.

Index Terms - Demand Forecasting, Microgrids, Optimization,
Power System Restoration.

NOMENCLATURE
G(B,&E)  Directed graph of the 3-phase microgrid; set of
all nodes B and edges .
0 represents the phases 6 € {a, b, c}.
pg. (ij) Per phase real (reactive) power flow of edge
ij € E.
Ve Per phase nodal voltage of node i € B.
Piﬁ‘g (QiL]:B) Per phase real (reactive) demand at node i € B
at time step k.
pl.?ﬂ (Qf]_"’) Per phase real (reactive) generation at node i €
B at time step k.
C,C. Set of 3-phase capacitor bank nodes, set of
controllable capacitor bank nodes.
Qfﬂ Per phase kVA rating of capacitor bank i € C.
Bar over symbols represents a parameter.
ch,z Per phase capacitive injection at node i € B.
Er Set of 3-phase edges with AVRs.

K Set of restoration time steps K : = {1,..,K}.
1"5 (ffj) Per phase resistance (reactance) of edge ij € .
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INTRODUCTION

Microgrids are essential building blocks for creating resilient
distribution systems against extreme events such as weather
events and cyberattacks [1]. Optimal dispatch and energy supply
restoration after an outage using locally available distributed
energy resources (DERs) are critical microgrid functions [2].
However, current microgrid restoration and dispatch algorithms
do not accurately incorporate the impact of key microgrid
components such as automatic voltage regulators (AVRs) and
capacitor banks [3],[4]. Non dispatchable behind-the-meter
(BTM) resources such as net metered (NM) loads which have a
load and a photovoltaic (PV) system are also not adequately
considered [5]. Uncontrolled operation of voltage regulation
devices combined with a demand generation imbalance due to
inaccurate demand forecasts of NM loads can lead to frequency
instability in islanded microgrids [6].

Microgrids are typically integrated with radial distribution
feeders [7] and can have AVRs and capacitor banks. However,
the discrete behavior of these devices introduces non-linearities
and is often not considered in microgrid service restoration and
dispatch algorithms [4]. Lack of coordination between
automatically controlled voltage regulation devices and
centrally dispatched DERs can lead to voltage instability in
islanded microgrids due to significant increases in state changes
of AVRs [8],[9] and capacitor banks [10]. Even when these
devices are included in microgrid restoration and dispatch
algorithms, their taps are either assumed to be stationary during
restoration [11] or are considered as decision variables [12].
This assumes remote control capabilities are present in these
devices. This, however, is not true and most AVRs and capacitor
banks deployed in rural and semi-urban feeders rely on
automatic controllers [13],[14]. Upgrading their controllers with
intelligent electronic devices can be costly [15]. The high cost
can cause microgrid deployments to become infeasible,
especially in rural and disadvantaged communities. It is thus
essential to accurately incorporate the behavior of these
automatic voltage controllers within microgrid dispatch and
restoration optimization algorithms.
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The presence of more than a million NM loads in California
alone [16] suggests that high penetration of NM loads can be
expected in distribution systems and microgrids. The BTM PV
system of these NM loads is not dispatchable as this would
require an extensive communication network and control
capabilities [17]. For NM loads only the net demand (actual
demand - generation) may be available through advanced
metering infrastructure (AMI) [18]. However, even with AMI,
the demand of NM loads during microgrid service restoration
cannot be forecasted in accordance with the IEEE 1547-2018
standard [19].

NM loads typically exhibit the Cold Load Pickup (CLPU)
phenomenon during restoration. CLPU refers to the increase in
load demand observed after an outage due to the loss of diversity
of thermostatically controlled loads (TCLs) [20]. Since NM
loads consist of a PV system and a typical residential or
commercial load, most NM loads can be expected to have TCL
loads which will exhibit CLPU phenomenon after an outage.
The behavior of TCL loads is typically characterized using the
delayed exponential model (DEM) [21]. More recently it has
been shown that the DEM model is not accurate for shorter
outage durations [22]. However, a generalized model
incorporating both CLPU and NM load behavior during
restoration has not been reported before.

In this paper, it will be shown in section Ill, that modeling
both CLPU and NM load behavior during restoration requires
the disaggregation of NM time series of NM loads into actual
demand and generation time series. Disaggregation has been
studied recently for demand response applications but not for
microgrid restoration [23]. It has been used to estimate the rating
of PV systems, which however is known to utilities through
interconnection applications [24]. In [25] solar generation and
actual demand for each NM load are forecasted separately, by
representing them as linear functions of representative feature
vectors. The feature vector for solar generation is the average
profile of several randomly located NM loads deployed with
separate solar generation measurement meters. The actual
demand feature vector is the average of the demand profiles of
the loads without solar generation. However, no justifications
are provided for using linear functions. Accuracy is not ensured,
as randomly placed solar generation measurement meters are
used. Also, since load demands can vary widely amongst NM
loads, separate load forecasts introduce forecasting errors. The
contributions of this paper which address these issues are:
¢ A novel optimal DER dispatch method is proposed which

creates such voltages and line flows at the point of common

coupling (PCC) of voltage regulation devices, commanding
their unmonitored automatic voltage controllers tomove to
their respective optimal states.

o A generalized time dependent demand model is proposed for
NM loads which incorporates both CLPU and their behavior
during microgrid restoration. The model uses the correlation
in NM time series of NM loads to obtain the disaggregated
actual demand and generation time series.

¢ A mixed integer linear programming (MILP) based approach
is proposed to accurately control the time dependent behavior
of voltage regulation devices and NM loads during each
restoration time interval by linearizing the logic propositions.
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Fig. 1. Typical microgrid topology with unmonitored automatic voltage
controllers. NM loads and remotelv controllable DERs and switches.

The proposed approach can be integrated with existing MILP

based microgrid restoration algorithms [26].

The remaining of this paper is organized as follows: Section
Il describes the proposed optimal DER dispatch method for
controlling unmonitored automatic voltage regulation devices.
Section 111 presents the proposed generalized NM load demand
model. The proposed MILP based sequential microgrid
restoration approach incorporating automatic voltage regulation
devices and NM loads is presented in section IV. A case study
on an unbalanced model of the IEEE 123-node test feeder in
OpenDSS [27] presented in section V demonstrates the
effectiveness of the proposed approach.

OPTIMAL CONTROL INCORPORATING UNMONITORED
AUTOMATIC VOLTAGE CONTROLLERS

Voltage regulation devices such as AVRs and capacitor banks
may have automatic controllers. Based on the measured value of
a local control parameter (typically voltage), the controller
determines the control action. The control action for AVRs is a
change in the tap position. The control action for capacitor banks
is turning them ON or OFF based on the value of the control
parameter. These devices are automatic and hence their states
are not available to the centralized controller via AMI, nor can
these be controlled remotely, as illustrated in Fig. 1.

The main contribution here is the development of an
integrated approach for optimal control of these devices.
Linearized constraints are developed which relate the AVR’s
local controller’s operation principle with the determined
optimal tap positions and DER dispatches. Constraint selection
is then automated based on the sign of the optimal tap position.
Optimal control of capacitor banks is achieved using a similar
approach. Additional constraints required for integrating the
proposed optimal control approach with MILP based sequential
microgrid restoration algorithms are presented in section IV. All
these constraints are integrated and solved simultaneously.

A. Determining Optimal States

The optimal states of AVRs and capacitor banks can be
obtained in the same manner irrespective of whether these
devices have remote control capabilities. For an AVR connected
between nodes k and j, k — j, the voltages on these nodes may
be expressed as V¥ = af; V¢, where a; is the tap position of the

AVR on phase 6 € {a,b,c}. Here the loss term (7P +

x2QR) present in the linearized DistFlow power flow model
[28] are ignored. a,‘ij can only take discrete integer values in the
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range +16. These taps provide +0.1 p.u. voltage regulation with
a 0.00625 p.u. step. These 33 tap positions can be expressed
using a 6-bit code [29], which significantly reduces the number
of binary variables needed from 33 to 6 for every single phase
AVR. For instance, the code 100000 represents tap +16, code
000000 represents tap -16 and code 010000 represents tap O or
the neutral position. Thus, the linearized voltage constraint for
an AVR connected between nodes k and j is given by (1).

vl =v¢ (0.9 +0.00625 Z 88in (2)"> 00 €{0,1}, k)
n=0
€ & €Y
The products of binary variables 6,fj‘n,n € {0,..,5} and the
continuous voltage variable V¢ are linearized (2) using
McCormick linearization [30]. The required upper and lower
limits of the continuous variable are set as the voltage limits
(V4, V%). The same linearization approach is used henceforth to
linearize products of binary and continuous variables.
de]nSxk]nSV Sk]n, where xkln—é'kJnd @
-1 =85V sx <V - (1 = &)V
Maximum allowable tap positions are restricted to 33 using
(3). For gang operated AVRs, taps on all three phases are
constrained to be equal by adding &y;,, = 6,fj_n = Okjn-

Z 58, (" <32, kj € &
n=0
The state of a controllable capacitor bank 6&,1’ EC, is
included in the reactive power flow expression of the DistFlow
model as shown in (4).

Dh= ) 05+ 0 + 0 +65,05°, viee. (4)

h:h—i jii—=j

Upon solving the MILP dispatch or restoration algorithm after
including constraints (1)-(4), the optimal AVR tap positions
ak] =0.9 + 0.00625Y3>_ Odkm (2)", kj e &, and optimal
capacitor banks states 8¢;,i € €, are obtained. If AVRs and
capacitor banks have remote control capabilities, then these
optimal states can be directly communicated to them. This,
however, is not true for most rural and semi-urban distribution
feeders and microgrids. The optimal control approach proposed
in this paper generates optimal DER dispatches which indirectly
influence the automatic controllers of the AVRs and capacitor
banks to move to these optimal states.

3)

B. Linearizing AVR Load Center Voltage Estimation

AVRs use a line drop compensator (LDC) circuit to estimate
the voltage at their load center [13]. The primary (c,fj) and
secondary (c;) turns ratio of the current transformer, turns ratio
of the potential transformer (pk]) and the compensator
impedance settings in volts (Tk, ,xk] ¥) of the LDC of any AVR

connected between nodes k and j, kj € £ are known. Using
these pre-determined settings, the LDC estimates the voltage at

its load center (V,f}te) using (5).

vl I8¢
Vel = L - s (08 + i) (5)
Pkj Ck}

To be able to indirectly influence the LDC, it is important to
add (5) as a constraint. Upon conversion to per unit quantities,
the LDC estimates the voltage drop to the load center as

b x (rg + ix, 7). However, current is not a variable in
Iinearized power flow models such as the DistFlow model.
I (Vﬁ)*
complex impedance will introduce non-linearities. A closer
examination of the voltage drop expression of the DistFlow
model V? =V} + 75 P}, + x/,Q%,, between any two nodes j
and h shows that it approximates the voltage drop across the line
as AV = If, x (rf, + ix,) = Porf + Q%xf. The same can
be used to approximate the voltage drop till the AVR’s load
center after converting to per unit quantities as Iﬂl X (r,f]"
P%rkejl + thx,f}l. Here r,g-'l + ix,fj'-l = (r,fj"
lxkj ) X Dij /ij represents the LDC’s estimated line
impedance till the load center. Thus, the voltage at the load

.0 6 _ 9 0, 6 .0, _
center can be estimated to be V,, ;" = V" — Py — Qjpxyj =
7.

C. Constraints to Influence AVRs to Move to Optimal Tap
Positions

LDC sends commands to change taps if Vkrj:g falls outside
Vot £ D2, where ! is the desired load center voltage
setting and D is the allowable deadband. If Vkrj'g <
(Ve = Dgi/2), then taps are increased by rounding af; =
(V,gl Dyt /2 = V¥)/0.00625 to the nearest integer. Thus, if
ak] is evaluated to be higher than the neutral tap position by the

MILP dispatch or restoration algorithm, then the voltage at the
load center should be V;® = V' — DPt /2 — af; x 0.00625,

in order to make the LDC to command the AVR to move to ak]
Here Vi is replaced with 7; = (V¥ — Pird' — Qfx) and
ag; x 0.00625 s with 7, = ((0.9+

0.00625 Y5 _, S,fj‘n @n) - 1). Thus, the equality constraint to

be added to move an AVR to higher tap positions is given by
(6). That is, (6) constrains DER dispatches to create the PCC

voltages and line flows for each AVR to make them move to

9

Including current by using and using the

ka]

replaced

T, =Vij = D,?;l/z 7 (6)
similarly, if V;* > (V' + Dg#/2), then LDC commands
6 6.l
the AVR taps to be decreased by rounding (V,\fj Vi —
D,f]l/z)/o 00625 to the nearest integer. Thus, if @ ak] is evaluated
to be lower than the neutral tap tap posmon then the voltage at
the load center should be Vk’}i V,f]l +Df: /2 + akj
0.00625. Thus, the equality constraint to be added to move an
AVR to lower tap positions is given by (7).

L=V + D /2=T (D)

D. Automating Constraint Selection

Based on whether AVR taps have to be increased (6) or
decreased (7), a different constraint needs to be applied. Since
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Fig. 2. [a] NM demand stages during restoration; [b] demand increase due to CLPU; [c] proposed NM load demand model (CLPU + NM demand stages)

tap positions az,. are decision variables, an approach is needed
to automatically select the correct constraint. It is achieved here
by making use of the 6-bit binary code used for determining the
optimal tap positions in (1). As mentioned, the code 010000
represents the neutral tap position. Thus, the fifth binary variable
6,’3]-,4, kj € E; must be 1 for all positive tap positions. The only
exception is the +16™ tap position for which 6,?1-‘4 =0 but
8¢;5 = 1. It should be noted that it is only because of the 6-bit
code that a single binary variable (6,‘3]-_4, kj € Eg) allows
automatic selection of the correct constraint. If 33 binary
variables were used to represent each tap, all 33 binary variables
would have to be considered, further increasing the
computational complexity. Thus, to select the correct constraint
automatically, (6) and (7) are replaced with (8)-(10), where M is
a large number.

—M(1=60,) <T -V +D/2+ T, <M(1-6,) (8)
—M(1—6F5) < T — VI + Do /2+ T, < M(1-685) (9)

—M Y5 88, ST =V =D 2+ T, < ME5_, 66, (10)

E. Optimal Control of Automatic Capacitor Banks

Capacitor banks switch ON when their PCC voltage falls
below a threshold (V¢ < V>°",i € C.) and turn OFF when their
PCC voltage exceeds a threshold (V2 > Vl.g"’f,i € C.). Based on
the optimally evaluated state of the capacitor bank Sgl-,i € C,,
constraints (11) and (12) ensure turn ON or OFF the capacitor
bank.

~M(1-68) < VE — VP < M(1-58) (11)

-M&8 <V -vPT <MsY,  (12)

NET METERED LOAD MODEL

Demand generation imbalance due to inaccurate demand
forecasts can impact the stability of a microgrid during service
restoration. It is shown here that net-metered (NM) load demand
can vary significantly during restoration from their historical
profiles. For any NM load the net demand (p’;) at any time t is
available via AMI and is related to the actual demand ('pft) and

solar generation (pf,) by (13).
pl =p& —pl (13)

It will be shown here that the disaggregation of this NM time
series into actual demand and generation time series is essential
for including Cold Load Pickup (CLPU) phenomenon and
demand stages during microgrid restoration. The main

contribution is the development of a generalized time dependent
NM load demand model, which completely describes the
behavior of NM loads during microgrid restoration in
accordance with the IEEE 1547 standard and incorporates the
CLPU phenomenon.

A. Cold Load Pickup Phenomenon (CLPU) and NM loads

In the CLPU model here [22], as shown in Fig. 2 [b], the TCL
demand is D}’* when it is restored at time point tP*. The demand
then increases linearly to peak demand Dl”2 at tP2, as more TCLs
turn ON. D/* < Df’* as diversity is not completely lost due to
the short outage duration. The demand then decreases gradually
to the pre-outage demand level D and stays there after tP+ as
TCL diversity is restored. The behavior between time points P2
and tP+ can be modeled using a polynomial function h(y).
Using the DEM model as the basis, the complete CLPU curve is
modeled using (14)-(16), for any time k € K with a At time step
between restoration intervals [22].

Dpz _ b1
G, (k) = [Dfl + ﬂjl (k — DAt

= [ECH)
+h(Rli)x(Rix) (1 - x(Rlz.k)) +x(Rf,) DY
where x(j), R, and R, are defined as,
. 1 ,ifj>0
() = {0 ifj<o (I
R} = (k — 1At — (tP2 — tP1), RE,
= (k — DAt — (tP+ —tP1)  (16)

Equation (17) shows that this CLPU model is a function of the
pre-outage demand D?. The challenge however with NM loads
is that only the net demand is available, whereas D is a function
of the actual demand. This requires disaggregation of net-
metered demand time series into actual demand and solar
generation time series.

(14)

B. Microgrid Restoration Stages with NM Loads

The demand observed for an NM load during the restoration
process, as shown in Fig. 2[a], can be divided into four stages.
Prior to the outage, in stage S;, the net demand is available. In
stage S,, the load is de-energized. S, continues until the NM
load is energized by the restoration algorithm. In stage S5, when
the NM load is restored, the actual demand is observed instead
of net demand. This is because the PV systems stay offline due
to their default ‘enter service delay’ as per IEEE 1547-2018
[19]. Finally, in stage S,, PV systems come back online after
their ‘enter service delay’ and the net metered demand is
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observed. Stage S5 is critical, as sudden energization of loads
create transients. Inaccurate dispatch of DERs based on net
demand forecasts can lead to frequency instability [6] and
restoration failure. This further necessitates disaggregation of
NM time series.

C. Disaggregation of Net Metered Time Series

Loads in a microgrid cannot be restored individually as all
loads are not connected via remotely operable switches. As
shown in Fig. 3, all the NM loads downstream of a switch,
referred to as a load section (LS), are energized together
[21],[31]. Given NM time series of all the loads in a LS, and the
forecast for either their solar generation or actual demand, the
other can be obtained by taking the difference. The problem then
is to estimate both solar generation and actual demand of each
NM load in a LS given only their NM time series.

In this paper, a systematic approach is proposed for placing a
solar generation measurement meter based on correlation in
historical NM time series data, for disaggregating the solar
generation and actual demand of each NM load. The correlation
coefficient n; ; between any i*" and j** NM loads can be found
by taking the ratio of the covariance c;; with the standard
deviations s; and s; of their historical net metered time series of
length N. pi", p' are the arithmetic means of the historical NM

time series of loads i and j respectively.

25:1 Pz,lk - pr P"l,k - P

77i,j = Sisj’ where Ci,j = ( N _)1( / ]) (17)

Assuming perfect correlation between the NM time series of
these customers, i.e., n;; = 1, these two random variables can
be shown to be linearly related with each other p;" = a;p}', a; €
R as proved in Appendix A. Then using (13),

p = app} = pf —p] = apf —ap] (18)

However, n;; <1, primarily due to the different demand
patterns of NM loads in a LS. As described in Appendix A, the
solar generation profiles are more correlated in geographically
small load sections due to similar cloud patterns. Thus, most of
the correlation observed in NM time series would be due to the
correlation in solar generation profiles. A solar generation meter
can be placed at the NM load showing the highest average
correlation in historical NM time series data with all other loads
in the LS. The solar profile of this j** NM load pf’ can serve as
the representative solar profile for all the NM loads in the LS. A
scaling factor a; is obtained for each NM load in the LS to
account for different kVA ratings and seasonal factors such as
soiling of PV panels. a; is obtained using the historical NM time
series of length N, by taking the partial derivative of the sum of
squared errors with respect to a; (19).

2
0 2112’:1(}71??1( - aip]r'fk) _ _ ZIIX=1 p]r'fk pir,lk

da; N (p7 )2

k=1 p],k
Using the scaling factor a;, the disaggregated solar generation
of each NM load is p{ = a;p] and the disaggregated actual
demand is p¢ = p!* + aip]‘.’. The disaggregated solar generation

and actual demand profiles of the previous week can be used to
obtain the order and parameters of the auto regressive moving
average (ARMA) model [32] for generating demand forecasts.

Ci,j

0= a; (19)

During an outage, the obtained ARMA model and a; can be
used to obtain the demand during all four restoration stages
P,(k), k € K for any i*" NM load in the LS. In the pre-outage
stage S; as shown in Fig. 2[a], the NM time series Pl."'51 and the
representative solar generation time series F}g'sl of length K51
are available. These are used to obtain the disaggregated solar
generation profile B = a;P"** and the actual demand profile

POt = P 4 ;P9 The ARMA model can then be used to

L
obtain solar generation 2" and actual demand forecasts P**
for K future restoration time steps.

Using these forecasts, the forecasted demand in stage S, is
P% (k) = 0,k € {1,.., K52} where K2 is the time interval when
the LS is energized by the restoration algorithm. The forecasted
demand in stage S5 is the actual demand forecast as PVs are
offline B> (k) = B k), k € {K*2 + 1,..,K"3}. The duration
of stage S5, K3 — K52 is equal to the ‘enter service delay’ as per
IEEE 1547-2018. Finally, the forecasted demand in stage S, will
be the net demand as PV systems are back online ﬁis“(k) =
B (k) — B9"(k),k € {KS3 +1,..,K}.  The forecasted
demand during the K restoration steps is P;(k) =
B (), B ()}, k € K.

D. Generalized Time Dependent Net Metered Load Demand
Model

Using the disaggregated pre-outage actual demand time series
Pld‘sl, the pre-outage demand D} required for determining the
CLPU curve G, (k), k € K for any I NM load can be obtained
as DY = Pl‘“1 (K51). The generalized time dependent NM load
demand model for the I** NM load can now be obtained by
summing the forecasted demand during the K restoration steps
P,(k) and the CLPU curve G, (k) scaled by TCL percentage g,
ME(k) = g,G,(k) + P,(k) as shown in (20),(21).
D2 P1

ME (k) = g, % [D{’l + tlpz

D
——— tzjl (k — 1)At] (1 - x(Rl{k))
+gl X h(Rll'k)X(Rll‘k) (1 — X(Rlz‘k)) + g1 X x(Rlz,k)Pld,&(KSl) +

(B2 ) (1 x(RE)) + (B (k) — BE* (k) ) x(R},)) (20)
where x(j), R}, and R7, are given by (18) and (19) and R}, is
given by (24).

R} = kAt — (tP3 —¢P1)  (21)

It should be noted that this model is valid irrespective of whether
tP3 is larger or smaller than tP2. These demand curves M} (k) as
shown in Fig. 3[c], are obtained for all NM loads before running
the microgrid restoration algorithm. Constraints to
automatically select the correct demand from the curve based on
when a NM load gets energized are presented in section V.

SEQUENTIAL MICROGRID RESTORATION
ALGORITHM

The algorithm presented here incorporates the proposed
voltage regulating device constraints and NM load demand
curves within sequential MILP based optimal microgrid
restoration algorithms [33] and [21]. By adding constraints (1)-
(4) and (8)-(12) to a MILP based dispatch or restoration
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algorithm, the optimal taps @ ; and capacitor bank states §¢;, i €

C., required to optimize the objective function are determined.
Simultaneously, optimal DER dispatches are obtained which
cause such voltages and power flows at the PCC of each AVR,
such that its LDC estimates a load center voltage which will
necessitate moving taps to d,i’]-. Optimal DER dispatches will
also create desired PCC voltages for capacitor banks to make
them switch to the optimal state. While this proposed approach
is sufficient for optimally controlling automatic AVRs and
capacitor banks for optimal dispatch applications, additional
points need to be considered while integrating it with MILP
based optimal sequential microgrid restoration algorithms.
A. Estimating pre-outage states of voltage regulation devices:

The time step when a voltage regulation device will be
restored is determined by the algorithm. At this first energization
interval their pre-outage states need to be considered while
dispatching the DERs. This is because their taps are operated
using a motor and will thus stay locked in their pre-outage state
during an outage. Moreover, due to the default time delays of
their automatic controllers, these devices cannot be optimally
controlled from the first energization interval itself. A MILP
based approach is proposed here to utilize the limited line flow
and voltage measurements from residential AMI meters to
estimate pre-outage states of these devices.
Objective function: The objective function minimizes the
differences between the limited pre-outage measurements and
their corresponding variables (22). The least absolute value
estimator which is accurate for state estimation has been used
[31].

min Y (Y |Bg- Y+ Y |08 - Q5|+

Oe{ab,c) ijeEEy ij€Em

Z V6 —VE]), EwCE BySB (22)

i€By
The non-linear absolute value function needs to be linearized.
The voltage term in (22) for instance is linearized by adding
(23), where v; = |V — V7|

Ve —Vf <v;, and — (V2 —VP) <v; (23)

Power flow constraints: The real and reactive line flows for the
edges and nodal voltages for the nodes without voltage
regulation devices are incorporated in the DistFlow model [28].
These constraints (24) also help in defining the microgrid
topology.

0
thi=

h:h—i

Z P%+P"° + P vieB
Ji=j
> Q=) af+art+af vies\c
h:h—i Jii—=j
Z Qn: = Z Q% +0r° + 07 +Q7°, viee\ ¢,
h:h—i Jii—=j
Ve =VP + iP5 + %500, Vij € £\ &
Constraints on voltage regulation devices: Capacitor banks and
AVRs are included using (1)-(4). However, both the capacitor
bank’s state &, ; and capacity qg ;» In case the capacitor bank has
steps, are included as variables in (4).
Upon solving the MILP formulation, the estimated pre-outage
tap positions of each AVR aj =09+

(24)

0.00625%5_, 65_,1 (2)™, ij € &g, and the estimated pre-outage
states and kVAR values of each controllable capacitor bank
82,48, i € c. are obtained. This step is completed prior to
running the restoration algorithm and the bars on these estimates
indicate that these will be used as parameters in the sequential
microgrid restoration algorithm. Once the pre-outage state
estimates and demand curves (20) are available for all NM loads,
the restoration algorithm can be solved.
B. Objective function for restoration algorithm:

The objective function (25) aims to maximize the total
energy restored over the K restoration time steps. Critical loads

can be assigned a weight (c‘f‘e) to ensure these are restored

earlier.
K N

max e x Pi,L,;B x At
k=1 i=1 0€{a,b,c}

C. AVR and capacitor bank constraints:

After a voltage regulation device has been restored at t =
t, € I, while considering its estimated pre-outage state for
dispatching DERsS, it must then be optimally controlled from t =
t, + 1 onwards using the approach presented in subsections
II.LA-1L.LE. An approach is needed to ensure that estimated pre-
outage states are used only in the first energization interval and
states are controlled at their optimal positions from the second
interval onwards. Finally, from the third interval onwards
undesirable changes from the optimal tap positions and states of
capacitor banks should be prevented. These logic propositions
need to be integrated within the sequential microgrid restoration
algorithm because the restoration time interval itself is a
decision variable. This is achieved here by building upon the
big-M method. The pre-outage state for AVRs (d{’j, ij € Eg) s
inlcuded using constraint (26) for all k € K. The term
(Xk-18F, — 1) is zero only at the first energization interval.

k
M| Yo, -1 )< Vi -avi M| D s, -1
p=1

Pre-outage states of capacitor banks (52,42, i € ¢.) are
included using (27), where 73 = (X5_, 6}, — 1),Vk € K.

(25)

(26)

) 0 LO | NGO , 76 =6
z Qrix — Z Qi + Qi Q% +8::4c: | < MT3
Hihsi fioj

D Q= D Q8+ Qi + QB + 82,8 | = —M7, @7)
h:h—i Jii—j

The nodes connected to the AVRs and capacitor banks are not
disconnected after being energized. This is ensured by using
(28) and (29). In fact, these constraints ensure that all edges and
nodes stay energized after being restored.

8Ek— 60120, k>1, V(i) eE (28)
8% —6x.1=0,k>1 VieB (29)

From the second interval onwards, the optimal tap positions
of AVRs (Vij € &g, k > 1) are evaluated using (30)-(31). For 3-
phase AVRs, taps on all three phases are constrained to be equal
by adding 6 , x = 6}’1-'”_,( = 0{jnk- The AVR PCC voltages and
line flows are controlled using constraints (32)-(34) to move taps
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to their optimal positions. The term T, = (2511,( ,—1-
Zp 161”, + Zf, L]p) ensures that constraints (30)-(34) are
satisfied at equality only from the second AVR energlzatlon
interval onwards. Here 7; = (V% — P&, 0" — Qfxxi' hij -

h), 7= ((0.9 +0.00625 %5465, ") = 1), Ts = (1 -

85 ax) Ts = (1= 68f5,) and Ty = (X524 67 1) as described
in section 1.

-MT, <V -V (o 9+ 0. 006252 88 nk (2)n> < M7,(30)

n=0

_MT, < Z 88 e (" < 32+ MT, (31)

n=0
6,1

Dlz’ + T, < M(T, + T5) (32)
“M(T,+T) < T, =V + D2+ T, < M(T, + T3) (33)
~M(T+T;) < T; — V“ —D‘“/2+Tz < M(T, + ) (34)
Once the AVRs have been moved to their optimal tap

positions, these are maintained in those positions for the

remaining restoration intervals (Vij € €z, k > 2) to prevent
undesirable tap changes using constraint (35), where T3 =

(3611k 2 Zp Ial]p Z L]p

—MT; < 51,,n,k Oijmk—1 = Mﬂg, vn € {0,..,5} (35)

For all capacitor banks the optimal state (ON or OFF) is
determined using (36), where T, =(Xk_, 8% —2). As
described in section Il, the capacitor bank is controlled to reach
the optimal state using (37), (38).

“MT < Y Q= ()
h:h—i Jii—j
+65007%) < MTy, Vi€ C k> 1
—M(Ty+1-852) < VG —vP" < M(Ty +1-657) (37)
—M(Ty + 85 )< -2 < M(Ty + 857) (38)

It should be noted that unllke AVRs where constraints (30)-
(34) have to be applied continuously to maintain taps in their
optimal positions, for capacitor banks constraints (36)-(38) only
have to be applied at their second restoration interval. Thereafter
capacitor banks’ nodal voltages are maintained within their dead
bands using (39), where Ti, = (38/%_, —1—Xk_, 6% +
Yei 6{}’,9). This is because capacitor banks tend to have larger
deadbands and maintaining their PCC voltage continuously
beyond their ON or OFF thresholds can lead to infeasibility.

—MTyo + V" < V8 < V2T + MTy,, Vie k> 2 (39)
D. NM load constraints:

The combined NM and CLPU curves (MiL'e) are generated
for each i*" NM load using (23) as described in section I,
before running the microgrid restoration algorithm. These
curves thus act as parameters for the restoration algorithm.
However, the point on the demand curve to be selected at each
restoration step is determined by the restoration algorithm based
on when the NM load is energized. This is achieved using (40)
which has been adapted from [21] to work with non-
monotonically decreasing demand curves as well. Here
pLe Qw are the rated real and reactive power demands of the

L

NM load.

~MT, +T) < T, - VI +

Q% + Qi +QF?
(36)

R ZAM”(M,W

40
Qe =qre | shmlf - ZAMLB(P)5LI< —p+1 0
0 ifp=1
L0 —
where, AM;"” (p) = {MLLPB L 1\7[1.%9 ifp>1

Linearized power flow constraints such as (24) are added for
non-voltage regulation device nodes. Additionally, demand
generation balance, maximum and minimum generation limits,
voltage, and line loading limits are added as constraints.
Connectivity and sequencing constraints [33] to ensure the
creation of a feasible radial microgrid topology while utilizing
the normally open tie-switches are also included.
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Fig. 3. Extended IEEE 123-node test feeder in OpenDSS used as a microgrid

The proposed methodology has been validated using the IEEE
123-node distribution system model as a microgrid in OpenDSS.
This 3-phase unbalanced non-linear power flow model has
detailed models for loads, generators, AVRs with LDCs,
capacitor banks and their localized controllers and other power
delivery and conversion equipment. The 7 +]x parameters

are determined once at the peak loading condltlon using 74

e_Va vO_y8
real( ) and x imag( ’19 / ) The linearized power

L] )
flow algorithm requires traversing the nodes of the directed
graph in order which is done using breadth first search. The
feeder has a 3-phase AVR on bus 150, a 1-phase AVR on bus 9,
two 1-phase AVRs on bus 25 and three 1-phase AVRS on bus
160 as shown in Fig. 3. The AVRs have unmonitored automatic
LDCs with no remote-control capabilities and have unique
e, 20, Vet and Dyit settings. A voltage-based controller is
added to one of the four capacitor banks for testing the
methodology. The presence of 2 normally open tie switches and
7 normally closed switches creates 7 load sections in the
microgrid. All the 91 loads have a small rooftop PV system
making them NM loads and 5 large dispatchable DERs have
been added randomly in the load sections.




> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

A. Impact of Voltage Regulation Devices’ States on Voltages
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Fig. 4. Histogram of nodal voltages in IEEE 123-node system when AVR taps
(a) are considered, (b) not considered, while optimally dispatching DERs

To demonstrate the importance of considering device states
during microgrid restoration, an outage is created in the 123-
node OpenDSS model during high loading conditions. The
AVRs are locked in higher tap positions and the capacitor banks
are ON. Two optimal power flow (OPF) problems are solved. In
the first OPF, states are estimated using the MILP formulation
proposed in section 11 and are used while dispatching DERs. In
the second OPF, DERs are dispatched assuming all devices are
in the neutral position as is typically done. Both OPFs converge,
however, on applying their optimal DER dispatch in the
OpenDSS model, only the first OPF is able to maintain voltages
within the desired ANSI A Range as shown in Fig. 4(a). Much
higher voltages are observed when device states are not
considered as can be seen in Fig. 4(b). Such high voltages can
trip inverters leading to microgrid restoration failure.
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Fig. 5. Tap estimation results with limited measurements using MILP
formulation proposed in section Il
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Fig. 6. Taps controlled at neutral position (tap=0) throughout the QSTS
simulation using the methodology proposed in section Il

B. Quasi Static Time Series Validations using OpenDSS

Quasi Static Time Series (QSTS) simulations [34] are
performed at 1-minute resolution for several hours in the
OpenDSS model with unique load and PV irradiance profiles.
Intermittency in solar generation results in bidirectional power
flows and voltage changes causing the AVRs to change tap
positions. The controllable capacitor bank stays in the OFF
position. These QSTS simulations are used to validate the
effectiveness of the methodology proposed in section II.

In the first QSTS simulation, limited line flow and voltage
measurements are used to estimate device states using the MILP
formulation proposed in section I1.F. The randomly chosen lines
and buses shown in red in Fig. 3 do not have AMI meters. Fig.
5 shows a comparison of the actual tap positions observed in
OpenDSS and the estimated tap positions. The proposed MILP
formulation can accurately estimate tap positions throughout the
QSTS simulation, with a maximum deviation of only 1 tap
position out of the 33 possible tap positions.

The QSTS simulations are performed again, and in this second
run, DERSs are dispatched optimally while controlling the AVRs
to be at the neutral position (tap=0) using the optimal control
approach proposed in section Il. Fig. 6 shows a comparison of
the uncontrolled tap positions, the controlled tap positions, and
the desired tap position. The proposed methodology is able to
control the tap positions of all the unmonitored AVRs with
automatic LDC’s at the desired neutral tap position. Minor
deviations observed are due to the use of linearized power flow
versus the non-linear power flow used in OpenDSS. The
controllable capacitor bank also stays in the OFF position
throughout the QSTS simulation. Solving each OPF to estimate
device states takes 0.7 seconds on average and it takes 0.33
seconds to solve each OPF for controlling device states. OPF is
formulated in the Python package PYOMO and the GLPK
solver is used.

C. Sequential Microgrid Restoration Results
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MslwumeEmtEWS Energized switches
Fig. 7. [a] Restoration sequence of load sections and their demand during each
microgrid restoration interval; [b] Switches energized to restore all load sections
of the microgrid

Sequential microgrid restoration is completed in K = 6 time
intervals using the proposed methodology. AVRs are locked at
their respective pre-outage tap positions of time interval 1 as
shown in Fig. 5. All loads are NM loads with a 40% TCL
percentage [22]. Pecan street database [35] is used to obtain
solar generation and demand profiles for the NM loads. Using
the methodology proposed in section Ill, demand forecasts
M (k) which include the CLPU demand, are obtained for each
NM load for the 6 restoration intervals.

The switches energized to restore all 7 load sections and the
sequence in which they are energized can be seen in Fig. 7. This
figure shows that the demand of each load section follows the
expected pattern shown in Fig. 2[c]. For instance, LS3 is
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energized at interval 3 and shows high demand due to the
combined effect of PVs being offline and CLPU. The demand
then increases to peak demand in interval 4 as TCL diversity is
lost. Then from interval 5 onwards the PV systems are back
online after their ‘enter service delay’ and demand reduces. Fig.
7[b] shows that normally open tie switches are used to meet all
the constraints while maintaining a radial topology.
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Fig. 8. Comparison of actual demand with demand forecasts obtained using the
approach proposed in section 111, disaggregation approach in [25], and only net
metered time series data.

Demand (kW)

Figure 8 presents a comparison of the forecasted versus actual
demands observed during the 6 restoration intervals. The actual
demand is obtained by summing the demand, solar generation
and the CLPU demand. The forecasted demand using the
proposed disaggregation methodology (Proposed Disagg) in
section 111 required only one solar generation meter per load
section. This meter is deployed at the NM load exhibiting the
highest average correlation in historical NM time series data
with all other NM loads in the load section. The Proposed
Disagg demand is compared with the disaggregation approach
(Ref. Disagg) proposed in [25]. 3 randomly deployed solar
generation meters per load section are used for the Ref. Disagg
approach. The demand forecasts using only the historical NM
time series (Net Metered Only), while ignoring the ‘enter service
delay’ and CLPU phenomenon are also presented. The Proposed
Disagg approach generates the most accurate NM demand
forecasts in all 6 restoration time intervals. The accuracy of
forecasts obtained using the Ref. Disagg approach decreases
significantly as time horizon increases. Using only the NM time
series-based forecasts causes large demand generation
imbalance, leading to frequency instability and restoration
failure.
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Fig. 9. AVR tap positions during microgrid restoration with and without the
proposed optimal control approach.
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Fig. 10. All nodal voltages during microgrid restoration [a] with, and [b] without
the proposed optimal control approach

Figures 9 and 10 show the AVR tap positions and all nodal
voltages during the 6 restoration intervals, with and without the
application of the optimal control approach proposed in this
paper. These figures show that when AVR operation is not
coordinated with DER dispatch, frequent large tap changes are
seen leading to both over and under voltages and possibly
restoration failure. Using the proposed optimal control
approach, AVRs are energized while considering their estimated
pre-outage states. At their second energization interval, the
optimal tap position is evaluated and such AVR PCC voltage
and line flows are created which makes their automatic LDC to
command the taps to move to their optimal tap position. From
the third energization interval onwards, the taps are maintained
at these optimal tap positions, while maintaining all nodal
voltages within the ANSI limits throughout the successful
sequential microgrid restoration.

CONCLUSIONS

An approach to reduced time and cost of deployment of
microgrids is to not depend on communications and remote-
control capabilities. The integrated approach proposed in this
paper mitigates the need for adding such capabilities in
unmonitored automatic voltage regulation devices and net
metered loads by incorporating their time dependent behavior in
a sequential optimal microgrid restoration algorithm. This
approach allows coordinated optimal control of dispatchable
distributed energy resources with non-remote control capable
voltage regulation devices. Through a case study on the
unbalanced IEEE 123-node test system, the effectiveness of the
proposed approach in optimally controlling voltage regulation
devices’ states has been demonstrated. The proposed
disaggregation based net metered load demand model is also
shown to accurately forecast net metered load demand during all
time steps of the microgrid restoration process. To reduce
computation time, voltage drops across voltage regulators are
ignored and simplified power flow expressions are used. This
however can reduce accuracy which can be further improved by
using power flow expressions that consider coupling among
phases. Future work would also include integration of
optimization and control algorithms for managing dynamics that
arise due to sudden load energization during restoration.

APPENDIX A

UNITY CORRELATION COEFFICIENT AND LINEARITY
Proof: Assuming that any two net metered random variables
pi,p} are linearly related pi* = a;p}, a; € R*, the covariance
c; ; between them is defined as the expected value of the outer
product of (pf* — E[p]']) and (p}' —E[p}']). Given the net
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metered time series of these two variables, their expected values
will be their arithmetic means, E[p]'] = ] and E[p}] = p}.
Hence,
cj = E[@F =10} —B7)]  (41)
= E[p}'p}| - B} Elp!] — BT E[p}] + 57D} (42)
= E[p!'p}] - 81'F} = E[p!'p}] — EIPFIE[p}] (43)

Squaring the correlation coefficient defined in (20),

)Y (E[prp?] - EpME[ n])z
(Cl.]) — bi p] Di p]

2
Nij) = (44)
() (s0%(s57)" (s0%(s57)”
Substituting, p* = a;p}" in the numerator,
2
I G (@] )
L]

(s02(s)”
The variance (s;)” is defined as,
(5)° = Ep} - 571" = B[(e})’] - 207 [(])] +E[(])"] ¢46)
2 2 2 2 2
=E[()’] - 201" + (1) = E[(})’] - (5)" (47)
2 2
=E[())’] - (E[p}])” (4®)
Substituting (48) in the numerator of (45),
2
. a((s))
Nij) =————% (“49)
(i) B

. 2 .
Also, the variance (s;)? = a?(s;)" since p* = a;p}}, hence,

a2 ((s))’ ’
(m:))" = M =1 (50)
af(s;)"(sy)

Thus, if n;; = 1, one can express p/' = a;p}, a; € R*. In
practice however, n; ; will be less than 1 primarily due to the low
correlation in the actual demand time series of NM loads. The
solar generation profiles of NM loads in a geographically small
load section with similar cloud patterns will be more correlated.
This was validated by evaluating the correlation in actual
demand time series of 18 residential customers from the Pecan
Street database which is found to be 0.306 whereas the
correlation in their solar generation time series is 0.921 [32].
This is why solar generation is expressed as a linear function of
the representative profile in section Il1.
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