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 1 2Abstract - Islanded microgrids may experience voltage and 

frequency instability due to uncontrolled state changes of voltage 

regulation devices and inaccurate demand forecasts. Uncontrolled 

state changes can occur if optimal microgrid restoration and 

dispatch algorithms, used for generating control commands for 

distributed energy resources, do not incorporate the behavior of 

automatic controllers of voltage regulation devices. Inaccurate 

demand forecasts may be encountered since post-outage demand of 

behind-the-meter net metered (NM) loads can vary significantly 

from their historical NM profiles. This paper proposes an 

optimization formulation which allows optimal control of voltage 

regulators and capacitor banks without remote control and 

communication capabilities. A generalized demand model for NM 

loads is proposed which incorporates the cold load pickup 

phenomenon and their time varying post-outage demand in 

accordance with the IEEE 1547 standard. The time dependent 

optimal control formulation and the NM demand model are 

integrated in a sequential microgrid restoration algorithm by 

linearization of the involved logic propositions. A detailed case 

study on the unbalanced IEEE 123-node test system in OpenDSS 

validates the effectiveness of the proposed approach. 

 

Index Terms - Demand Forecasting, Microgrids, Optimization, 

Power System Restoration. 

 

NOMENCLATURE 

𝒢(ℬ, ℰ) Directed graph of the 3-phase microgrid; set of 

all nodes ℬ and edges ℰ. 

𝜃 represents the phases 𝜃 ∈ {𝑎, 𝑏, 𝑐}. 

𝑃𝑖𝑗
𝜃(𝑄𝑖𝑗

𝜃 ) Per phase real (reactive) power flow of edge 

𝑖𝑗 ∈ ℰ. 

𝑉𝑖
𝜃 Per phase nodal voltage of node 𝑖 ∈ ℬ. 

𝑃𝑖𝑗
𝐿,𝜃(𝑄𝑖𝑗

𝐿,𝜃) Per phase real (reactive) demand at node 𝑖 ∈ ℬ 

at time step 𝑘. 

𝑃𝑖𝑗
𝐺,𝜃(𝑄𝑖𝑗

𝐺,𝜃) Per phase real (reactive) generation at node 𝑖 ∈
ℬ at time step 𝑘. 

𝒞, 𝒞c Set of 3-phase capacitor bank nodes, set of 

controllable capacitor bank nodes. 

𝑄̅𝑖
𝐶,𝜃

 Per phase kVA rating of capacitor bank 𝑖 ∈ 𝒞. 

Bar over symbols represents a parameter. 

𝑄𝑐,𝑖
𝜃  Per phase capacitive injection at node 𝑖 ∈ ℬ. 

ℰR Set of 3-phase edges with AVRs. 

𝒦 Set of restoration time steps 𝒦 : = {1, . . , 𝐾}. 

𝑟̅𝑖𝑗
𝜃(𝑥̅𝑖𝑗

𝜃 ) Per phase resistance (reactance) of edge 𝑖𝑗 ∈ ℰ. 
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INTRODUCTION 

Microgrids are essential building blocks for creating resilient 

distribution systems against extreme events such as weather 

events and cyberattacks [1]. Optimal dispatch and energy supply 

restoration after an outage using locally available distributed 

energy resources (DERs) are critical microgrid functions [2]. 

However, current microgrid restoration and dispatch algorithms 

do not accurately incorporate the impact of key microgrid 

components such as automatic voltage regulators (AVRs) and 

capacitor banks [3],[4]. Non dispatchable behind-the-meter 

(BTM) resources such as net metered (NM) loads which have a 

load and a photovoltaic (PV) system are also not adequately 

considered [5]. Uncontrolled operation of voltage regulation 

devices combined with a demand generation imbalance due to 

inaccurate demand forecasts of NM loads can lead to frequency 

instability in islanded microgrids [6]. 

Microgrids are typically integrated with radial distribution 

feeders [7] and can have AVRs and capacitor banks. However, 

the discrete behavior of these devices introduces non-linearities 

and is often not considered in microgrid service restoration and 

dispatch algorithms [4]. Lack of coordination between 

automatically controlled voltage regulation devices and 

centrally dispatched DERs can lead to voltage instability in 

islanded microgrids due to significant increases in state changes 

of AVRs [8],[9] and capacitor banks [10]. Even when these 

devices are included in microgrid restoration and dispatch 

algorithms, their taps are either assumed to be stationary during 

restoration [11] or are considered as decision variables [12]. 

This assumes remote control capabilities are present in these 

devices. This, however, is not true and most AVRs and capacitor 

banks deployed in rural and semi-urban feeders rely on 

automatic controllers [13],[14]. Upgrading their controllers with 

intelligent electronic devices can be costly [15]. The high cost 

can cause microgrid deployments to become infeasible, 

especially in rural and disadvantaged communities. It is thus 

essential to accurately incorporate the behavior of these 

automatic voltage controllers within microgrid dispatch and 

restoration optimization algorithms. 
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The presence of more than a million NM loads in California 

alone [16] suggests that high penetration of NM loads can be 

expected in distribution systems and microgrids. The BTM PV 

system of these NM loads is not dispatchable as this would 

require an extensive communication network and control 

capabilities [17]. For NM loads only the net demand (actual 

demand - generation) may be available through advanced 

metering infrastructure (AMI) [18]. However, even with AMI, 

the demand of NM loads during microgrid service restoration 

cannot be forecasted in accordance with the IEEE 1547-2018 

standard [19]. 

NM loads typically exhibit the Cold Load Pickup (CLPU) 

phenomenon during restoration. CLPU refers to the increase in 

load demand observed after an outage due to the loss of diversity 

of thermostatically controlled loads (TCLs) [20]. Since NM 

loads consist of a PV system and a typical residential or 

commercial load, most NM loads can be expected to have TCL 

loads which will exhibit CLPU phenomenon after an outage. 

The behavior of TCL loads is typically characterized using the 

delayed exponential model (DEM) [21]. More recently it has 

been shown that the DEM model is not accurate for shorter 

outage durations [22]. However, a generalized model 

incorporating both CLPU and NM load behavior during 

restoration has not been reported before. 

In this paper, it will be shown in section III, that modeling 

both CLPU and NM load behavior during restoration requires 

the disaggregation of NM time series of NM loads into actual 

demand and generation time series. Disaggregation has been 

studied recently for demand response applications but not for 

microgrid restoration [23]. It has been used to estimate the rating 

of PV systems, which however is known to utilities through 

interconnection applications [24]. In [25] solar generation and 

actual demand for each NM load are forecasted separately, by 

representing them as linear functions of representative feature 

vectors. The feature vector for solar generation is the average 

profile of several randomly located NM loads deployed with 

separate solar generation measurement meters. The actual 

demand feature vector is the average of the demand profiles of 

the loads without solar generation. However, no justifications 

are provided for using linear functions. Accuracy is not ensured, 

as randomly placed solar generation measurement meters are 

used. Also, since load demands can vary widely amongst NM 

loads, separate load forecasts introduce forecasting errors. The 

contributions of this paper which address these issues are: 

• A novel optimal DER dispatch method is proposed which 

creates such voltages and line flows at the point of common 

coupling (PCC) of voltage regulation devices, commanding 

their unmonitored automatic voltage controllers tomove to 

their respective optimal states. 

• A generalized time dependent demand model is proposed for 

NM loads which incorporates both CLPU and their behavior 

during microgrid restoration. The model uses the correlation 

in NM time series of NM loads to obtain the disaggregated 

actual demand and generation time series. 

• A mixed integer linear programming (MILP) based approach 

is proposed to accurately control the time dependent behavior 

of voltage regulation devices and NM loads during each 

restoration time interval by linearizing the logic propositions. 

The proposed approach can be integrated with existing MILP 

based microgrid restoration algorithms [26].  

The remaining of this paper is organized as follows: Section 

II describes the proposed optimal DER dispatch method for 

controlling unmonitored automatic voltage regulation devices. 

Section III presents the proposed generalized NM load demand 

model. The proposed MILP based sequential microgrid 

restoration approach incorporating automatic voltage regulation 

devices and NM loads is presented in section IV. A case study 

on an unbalanced model of the IEEE 123-node test feeder in 

OpenDSS [27] presented in section V demonstrates the 

effectiveness of the proposed approach.   

OPTIMAL CONTROL INCORPORATING UNMONITORED 

AUTOMATIC VOLTAGE CONTROLLERS 

Voltage regulation devices such as AVRs and capacitor banks 

may have automatic controllers. Based on the measured value of 

a local control parameter (typically voltage), the controller 

determines the control action. The control action for AVRs is a 

change in the tap position. The control action for capacitor banks 

is turning them ON or OFF based on the value of the control 

parameter. These devices are automatic and hence their states 

are not available to the centralized controller via AMI, nor can 

these be controlled remotely, as illustrated in Fig. 1. 

The main contribution here is the development of an 

integrated approach for optimal control of these devices. 

Linearized constraints are developed which relate the AVR’s 

local controller’s operation principle with the determined 

optimal tap positions and DER dispatches. Constraint selection 

is then automated based on the sign of the optimal tap position. 

Optimal control of capacitor banks is achieved using a similar 

approach. Additional constraints required for integrating the 

proposed optimal control approach with MILP based sequential 

microgrid restoration algorithms are presented in section IV. All 

these constraints are integrated and solved simultaneously. 

A. Determining Optimal States 

The optimal states of AVRs and capacitor banks can be 

obtained in the same manner irrespective of whether these 

devices have remote control capabilities. For an AVR connected 

between nodes 𝑘 and 𝑗, 𝑘 → 𝑗, the voltages on these nodes may 

be expressed as 𝑉𝑗
𝜃 = 𝑎𝑘𝑗

𝜃 𝑉𝑘
𝜃, where 𝑎𝑘𝑗

𝜃  is the tap position of the 

AVR on phase 𝜃 ∈ {𝑎, 𝑏, 𝑐}. Here the loss term (𝑟‾𝑘𝑗
𝜃 𝑃𝑘𝑗

𝜃 +

𝑥‾𝑘𝑗
𝜃 𝑄𝑘𝑗

𝜃 ) present in the linearized DistFlow power flow model 

[28] are ignored. 𝑎𝑘𝑗
𝜃  can only take discrete integer values in the 

 
Fig. 1. Typical microgrid topology with unmonitored automatic voltage 

controllers, NM loads and remotely controllable DERs and switches. 
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range ±16. These taps provide ±0.1 p.u. voltage regulation with 

a 0.00625 p.u. step. These 33 tap positions can be expressed 

using a 6-bit code [29], which significantly reduces the number 

of binary variables needed from 33 to 6 for every single phase 

AVR. For instance, the code 100000 represents tap +16, code 

000000 represents tap -16 and code 010000 represents tap 0 or 

the neutral position. Thus, the linearized voltage constraint for 

an AVR connected between nodes 𝑘 and 𝑗 is given by (1). 

𝑉𝑗
𝜃 = 𝑉𝑘

𝜃 (0.9 + 0.00625 ∑ 𝛿𝑘𝑗,𝑛
𝜃

5

𝑛=0

(2)𝑛) , 𝛿𝑘𝑗,𝑛
𝜃 ∈ {0,1}, 𝑘𝑗

∈ ℰ𝑅          (1) 

The products of binary variables 𝛿𝑘𝑗,𝑛
𝜃 , 𝑛 ∈ {0, . . ,5} and the 

continuous voltage variable 𝑉𝑘
𝜃 are linearized (2) using 

McCormick linearization [30]. The required upper and lower 

limits of the continuous variable are set as the voltage limits 

(𝑉‾ 𝑙, 𝑉‾ 𝑢). The same linearization approach is used henceforth to 

linearize products of binary and continuous variables. 

𝑉‾ 𝑙𝛿𝑘𝑗,𝑛
𝜃 ≤ 𝑥𝑘𝑗,𝑛

𝜃 ≤ 𝑉‾ 𝑢𝛿𝑘𝑗,𝑛
𝜃 ,  where 𝑥𝑘𝑗,𝑛

𝜃 = 𝛿𝑘𝑗,𝑛
𝜃 𝑉𝑘

𝜃

𝑉𝑘
𝜃   −   (1  −  𝛿𝑘𝑗,𝑛

𝜃 )𝑉‾ 𝑢 ≤ 𝑥𝑘𝑗,𝑛
𝜃 ≤ 𝑉𝑘

𝜃   −   (1  −  𝛿𝑘𝑗,𝑛
𝜃 )𝑉‾ 𝑙

   (2) 

Maximum allowable tap positions are restricted to 33 using 

(3). For gang operated AVRs, taps on all three phases are 

constrained to be equal by adding 𝛿𝑘𝑗,𝑛
𝑎 = 𝛿𝑘𝑗,𝑛

𝑏 = 𝛿𝑘𝑗,𝑛
𝑐 . 

∑ 𝛿𝑘𝑗,𝑛
𝜃

5

𝑛=0

(2)𝑛 ≤ 32,  𝑘𝑗 ∈ ℰ𝑅            (3)     

The state of a controllable capacitor bank 𝛿𝑐,𝑖
𝜃 , 𝑖 ∈ 𝒞𝑐 is 

included in the reactive power flow expression of the DistFlow 

model as shown in (4). 

∑ 𝑄ℎ𝑖
𝜃

ℎ:ℎ→𝑖

= ∑ 𝑄𝑖𝑗
𝜃

𝑗:𝑖→𝑗

+ 𝑄𝑖
𝐿,𝜃 + 𝑄𝑖

𝐺,𝜃  + 𝛿𝑐,𝑖
𝜃 𝑄‾𝑖

𝐶,𝜃 ,  ∀𝑖 ∈ 𝒞𝑐   (4) 

Upon solving the MILP dispatch or restoration algorithm after 

including constraints (1)-(4), the optimal AVR tap positions 

𝑎̂𝑘𝑗
𝜃 = 0.9 + 0.00625 ∑ 𝛿𝑘𝑗,𝑛

𝜃5
𝑛=0 (2)𝑛,  𝑘𝑗 ∈ ℰ𝑅 and optimal 

capacitor banks states 𝛿̂𝑐,𝑖
𝜃 , 𝑖 ∈ 𝒞𝑐 are obtained. If AVRs and 

capacitor banks have remote control capabilities, then these 

optimal states can be directly communicated to them. This, 

however, is not true for most rural and semi-urban distribution 

feeders and microgrids. The optimal control approach proposed 

in this paper generates optimal DER dispatches which indirectly 

influence the automatic controllers of the AVRs and capacitor 

banks to move to these optimal states.  

B. Linearizing AVR Load Center Voltage Estimation 

AVRs use a line drop compensator (LDC) circuit to estimate 

the voltage at their load center [13]. The primary (𝑐𝑘𝑗
𝑝

) and 

secondary (𝑐𝑘𝑗
𝑠 ) turns ratio of the current transformer, turns ratio 

of the potential transformer (𝑝𝑘𝑗) and the compensator 

impedance settings in volts (𝑟𝑘𝑗
𝜃,𝑣 , 𝑥𝑘𝑗

𝜃,𝑣
) of the LDC of any AVR 

connected between nodes 𝑘 and 𝑗, 𝑘𝑗 ∈ ℰ𝑅 are known. Using 

these pre-determined settings, the LDC estimates the voltage at 

its load center (𝑉𝑘𝑗
𝑟,𝜃

) using (5). 

𝑉𝑘𝑗
𝑟,𝜃 =

𝑉𝑗
𝜃

𝑝𝑘𝑗

−
𝐼𝑗ℎ

𝜃 𝑐𝑘𝑗
𝑠

𝑐𝑘𝑗
𝑝 × (𝑟𝑘𝑗

𝜃,𝑣 + 𝑖𝑥𝑘𝑗
𝜃,𝑣)      (5) 

To be able to indirectly influence the LDC, it is important to 

add (5) as a constraint. Upon conversion to per unit quantities, 

the LDC estimates the voltage drop to the load center as 

𝐼𝑗ℎ
𝜃 × (𝑟𝑘𝑗

𝜃,𝑣 + 𝑖𝑥𝑘𝑗
𝜃,𝑣). However, current is not a variable in 

linearized power flow models such as the DistFlow model. 

Including current by using 𝐼𝑗ℎ
𝜃 =

(𝑃𝑗ℎ
𝜃 +𝑖𝑄𝑗ℎ

𝜃 )
∗

(𝑉𝑗
𝜃)

∗  and using the 

complex impedance will introduce non-linearities. A closer 

examination of the voltage drop expression of the DistFlow 

model 𝑉𝑗
𝜃 = 𝑉ℎ

𝜃 + 𝑟‾𝑗ℎ
𝜃 𝑃𝑗ℎ

𝜃 + 𝑥‾𝑗ℎ
𝜃 𝑄𝑗ℎ

𝜃 , between any two nodes 𝑗 

and ℎ shows that it approximates the voltage drop across the line 

as 𝛥𝑉𝑗ℎ
𝜃 = 𝐼𝑗ℎ

𝜃 × (𝑟𝑗ℎ
𝜃 + 𝑖𝑥𝑗ℎ

𝜃 ) ≈ 𝑃𝑗ℎ
𝜃 𝑟𝑗ℎ

𝜃 + 𝑄𝑗ℎ
𝜃 𝑥𝑗ℎ

𝜃 . The same can 

be used to approximate the voltage drop till the AVR’s load 

center after converting to per unit quantities as 𝐼𝑗ℎ
𝜃 × (𝑟𝑘𝑗

𝜃,𝑣 +

𝑖𝑥𝑘𝑗
𝜃,𝑣) ≈ 𝑃𝑗ℎ

𝜃 𝑟𝑘𝑗
𝜃,𝑙 + 𝑄𝑗ℎ

𝜃 𝑥𝑘𝑗
𝜃,𝑙

. Here 𝑟𝑘𝑗
𝜃,𝑙 + 𝑖𝑥𝑘𝑗

𝜃,𝑙 = (𝑟𝑘𝑗
𝜃,𝑣 +

𝑖𝑥𝑘𝑗
𝜃,𝑣) × 𝑝𝑘𝑗/𝑐𝑘𝑗

𝑝
 represents the LDC’s estimated line 

impedance till the load center. Thus, the voltage at the load 

center can be estimated to be 𝑉𝑘𝑗
𝑟,𝜃 = 𝑉𝑗

𝜃 − 𝑃𝑗ℎ
𝜃 𝑟𝑘𝑗

𝜃,𝑙 − 𝑄𝑗ℎ
𝜃 𝑥𝑘𝑗

𝜃,𝑙 =

𝒯1. 

C. Constraints to Influence AVRs to Move to Optimal Tap 

Positions 

LDC sends commands to change taps if 𝑉𝑘𝑗
𝑟.𝜃  falls outside 

𝑉𝑘𝑗
𝜃,𝑙 ± 𝐷𝑘𝑗

𝜃,𝑙/2, where 𝑉𝑘𝑗
𝜃,𝑙

 is the desired load center voltage 

setting and 𝐷𝑘𝑗
𝜃,𝑙

 is the allowable deadband. If 𝑉𝑘𝑗
𝑟,𝜃 <

(𝑉𝑘𝑗
𝜃,𝑙 − 𝐷𝑘𝑗

𝜃,𝑙/2), then taps are increased by rounding 𝑎𝑘𝑗
𝜃 =

(𝑉𝑘𝑗
𝜃,𝑙 − 𝐷𝑘𝑗

𝜃,𝑙/2 − 𝑉𝑘𝑗
𝑟,𝜃)/0.00625 to the nearest integer. Thus, if 

𝑎̂𝑘𝑗
𝜃  is evaluated to be higher than the neutral tap position by the 

MILP dispatch or restoration algorithm, then the voltage at the 

load center should be 𝑉𝑘𝑗
𝑟,𝜃 = 𝑉𝑘𝑗

𝜃,𝑙 − 𝐷𝑘𝑗
𝜃,𝑙/2 − 𝑎̂𝑘𝑗

𝜃 × 0.00625, 

in order to make the LDC to command the AVR to move to 𝑎̂𝑘𝑗
𝜃 . 

Here 𝑉𝑘𝑗
𝑟,𝜃

 is replaced with 𝒯1 = (𝑉𝑗
𝜃 − 𝑃𝑗ℎ

𝜃 𝑟𝑘𝑗
𝜃,𝑙 − 𝑄𝑗ℎ

𝜃 𝑥𝑘𝑗
𝜃,𝑙) and 

𝑎̂𝑘𝑗
𝜃 × 0.00625 is replaced with 𝒯2 = ((0.9 +

0.00625 ∑ 𝛿𝑘𝑗,𝑛
𝜃5

𝑛=0 (2)𝑛) − 1). Thus, the equality constraint to 

be added to move an AVR to higher tap positions is given by 

(6). That is, (6) constrains DER dispatches to create the PCC 

voltages and line flows for each AVR to make them move to 

𝑎̂𝑘𝑗
𝜃 . 

𝒯1 = 𝑉𝑘𝑗
𝜃,𝑙 − 𝐷𝑘𝑗

𝜃,𝑙/2 − 𝒯2       (6) 

Similarly, if 𝑉𝑘𝑗
𝑟,𝜃 > (𝑉𝑘𝑗

𝜃,𝑙 + 𝐷𝑘𝑗
𝜃,𝑙/2), then LDC commands 

the AVR taps to be decreased by rounding (𝑉𝑘𝑗
𝑟,𝜃 − 𝑉𝑘𝑗

𝜃,𝑙 −

𝐷𝑘𝑗
𝜃,𝑙/2)/0.00625 to the nearest integer. Thus, if 𝑎̂𝑘𝑗

𝜃  is evaluated 

to be lower than the neutral tap tap position, then the voltage at 

the load center should be 𝑉𝑘𝑗
𝑟,𝜃 = 𝑉𝑘𝑗

𝜃,𝑙 + 𝐷𝑘𝑗
𝜃,𝑙/2 + 𝑎̂𝑘𝑗

𝜃 ×

0.00625. Thus, the equality constraint to be added to move an 

AVR to lower tap positions is given by (7). 

𝒯1 = 𝑉𝑘𝑗
𝜃,𝑙 + 𝐷𝑘𝑗

𝜃,𝑙/2 − 𝒯2       (7) 

D. Automating Constraint Selection 

Based on whether AVR taps have to be increased (6) or 

decreased (7), a different constraint needs to be applied. Since 
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tap positions 𝑎̂𝑘𝑗
𝜃  are decision variables, an approach is needed 

to automatically select the correct constraint. It is achieved here 

by making use of the 6-bit binary code used for determining the 

optimal tap positions in (1). As mentioned, the code 010000 

represents the neutral tap position. Thus, the fifth binary variable 

𝛿𝑘𝑗,4
𝜃 , 𝑘𝑗 ∈ ℰ𝑅 must be 1 for all positive tap positions. The only 

exception is the +16th tap position for which 𝛿𝑘𝑗,4
𝜃 = 0 but 

𝛿𝑘𝑗,5
𝜃 = 1. It should be noted that it is only because of the 6-bit 

code that a single binary variable (𝛿𝑘𝑗,4
𝜃 , 𝑘𝑗 ∈ ℰ𝑅) allows 

automatic selection of the correct constraint. If 33 binary 

variables were used to represent each tap, all 33 binary variables 

would have to be considered, further increasing the 

computational complexity. Thus, to select the correct constraint 

automatically, (6) and (7) are replaced with (8)-(10), where 𝑀 is 

a large number. 

−𝑀(1 − 𝛿𝑘𝑗,4
𝜃 ) ≤ 𝒯1 − 𝑉𝑘𝑗

𝜃,𝑙 + 𝐷𝑘𝑗
𝜃,𝑙/2 + 𝒯2 ≤ 𝑀(1 − 𝛿𝑘𝑗,4

𝜃 ) (8) 

−𝑀(1 − 𝛿𝑘𝑗,5
𝜃 ) ≤ 𝒯1 − 𝑉𝑘𝑗

𝜃,𝑙 + 𝐷𝑘𝑗
𝜃,𝑙/2 + 𝒯2 ≤ 𝑀(1 − 𝛿𝑘𝑗,5

𝜃 ) (9) 

−𝑀 ∑ 𝛿𝑘𝑗,𝑛
𝜃5

𝑛=4 ≤ 𝒯1 − 𝑉𝑘𝑗
𝜃,𝑙 − 𝐷𝑘𝑗

𝜃,𝑙/2 + 𝒯2 ≤ 𝑀 ∑ 𝛿𝑘𝑗,𝑛
𝜃5

𝑛=4  (10) 

E. Optimal Control of Automatic Capacitor Banks 

Capacitor banks switch ON when their PCC voltage falls 

below a threshold (𝑉𝑖
𝜃 < 𝑉𝑖

𝜃,𝑜𝑛 , 𝑖 ∈ 𝒞𝑐) and turn OFF when their 

PCC voltage exceeds a threshold (𝑉𝑖
𝜃 > 𝑉𝑖

𝜃,𝑜𝑓
, 𝑖 ∈ 𝒞𝑐). Based on 

the optimally evaluated state of the capacitor bank 𝛿̂𝑐,𝑖
𝜃 , 𝑖 ∈ 𝒞𝑐, 

constraints (11) and (12) ensure turn ON or OFF the capacitor 

bank. 

−𝑀(1 − 𝛿𝑐,𝑖
𝜃 ) ≤ 𝑉𝑖

𝜃 − 𝑉𝑖
𝜃,𝑜𝑛 ≤ 𝑀(1 − 𝛿𝑐,𝑖

𝜃 )    (11) 

−𝑀𝛿𝑐,𝑖
𝜃 ≤ 𝑉𝑖

𝜃 − 𝑉𝑖
𝜃,𝑜𝑓

≤ 𝑀𝛿𝑐,𝑖
𝜃      (12) 

NET METERED LOAD MODEL 

Demand generation imbalance due to inaccurate demand 

forecasts can impact the stability of a microgrid during service 

restoration. It is shown here that net-metered (NM) load demand 

can vary significantly during restoration from their historical 

profiles. For any NM load the net demand (𝑝𝑖,𝑡
𝑛 ) at any time 𝑡 is 

available via AMI and is related to the actual demand (𝑝𝑖,𝑡
𝑑 ) and 

solar generation (𝑝𝑖,𝑡
𝑔

) by (13). 

𝑝𝑖,𝑡
𝑛 = 𝑝𝑖,𝑡

𝑑 − 𝑝𝑖,𝑡
𝑔

      (13) 

It will be shown here that the disaggregation of this NM time 

series into actual demand and generation time series is essential 

for including Cold Load Pickup (CLPU) phenomenon and 

demand stages during microgrid restoration. The main 

contribution is the development of a generalized time dependent 

NM load demand model, which completely describes the 

behavior of NM loads during microgrid restoration in 

accordance with the IEEE 1547 standard and incorporates the 

CLPU phenomenon. 

A. Cold Load Pickup Phenomenon (CLPU) and NM loads 

In the CLPU model here [22], as shown in Fig. 2 [b], the TCL 

demand is 𝐷𝑙
𝑝1  when it is restored at time point 𝑡𝑝1. The demand 

then increases linearly to peak demand 𝐷𝑙
𝑝2  at 𝑡𝑝2, as more TCLs 

turn ON. 𝐷𝑙
𝑝1 < 𝐷𝑙

𝑝2 as diversity is not completely lost due to 

the short outage duration. The demand then decreases gradually 

to the pre-outage demand level 𝐷𝑙
0 and stays there after 𝑡𝑝4 as 

TCL diversity is restored. The behavior between time points 𝑡𝑝2 

and 𝑡𝑝4 can be modeled using a polynomial function ℎ(𝑦). 

Using the DEM model as the basis, the complete CLPU curve is 

modeled using (14)-(16), for any time 𝑘 ∈ 𝒦 with a 𝛥𝑡 time step 

between restoration intervals [22]. 

𝐺𝑙(𝑘) = [𝐷𝑙
𝑝1 +

𝐷𝑙
𝑝2 − 𝐷𝑙

𝑝1

𝑡𝑝2 − 𝑡𝑝1
(𝑘 − 1)𝛥𝑡] (1 − 𝑥(𝑅𝑙,𝑘

1 ))

+ℎ(𝑅𝑙,𝑘
1 )𝑥(𝑅𝑙,𝑘

1 ) (1 − 𝑥(𝑅𝑙,𝑘
2 )) + 𝑥(𝑅𝑙,𝑘

2 )𝐷𝑙
0

    (14) 

where 𝑥(𝑗), 𝑅𝑙,𝑘
1  and 𝑅𝑙,𝑘

2  are defined as, 

𝑥(𝑗) = {
1 ,if 𝑗 > 0
0 ,if 𝑗 ≤ 0

      (15) 

𝑅𝑙,𝑘
1 = (𝑘 − 1)𝛥𝑡 − (𝑡𝑝2 − 𝑡𝑝1), 𝑅𝑙,𝑘

2

= (𝑘 − 1)𝛥𝑡 − (𝑡𝑝4 − 𝑡𝑝1)      (16) 

Equation (17) shows that this CLPU model is a function of the 

pre-outage demand 𝐷𝑙
0. The challenge however with NM loads 

is that only the net demand is available, whereas 𝐷𝑙
0 is a function 

of the actual demand. This requires disaggregation of net-

metered demand time series into actual demand and solar 

generation time series. 

B. Microgrid Restoration Stages with NM Loads 

The demand observed for an NM load during the restoration 

process, as shown in Fig. 2[a], can be divided into four stages. 

Prior to the outage, in stage 𝑆1, the net demand is available. In 

stage 𝑆2, the load is de-energized. 𝑆2 continues until the NM 

load is energized by the restoration algorithm. In stage 𝑆3, when 

the NM load is restored, the actual demand is observed instead 

of net demand. This is because the PV systems stay offline due 

to their default ‘enter service delay’ as per IEEE 1547-2018 

[19]. Finally, in stage 𝑆4, PV systems come back online after 

their ‘enter service delay’ and the net metered demand is 

 
Fig. 2. [a] NM demand stages during restoration; [b] demand increase due to CLPU; [c] proposed NM load demand model (CLPU + NM demand stages) 
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observed. Stage 𝑆3 is critical, as sudden energization of loads 

create transients. Inaccurate dispatch of DERs based on net 

demand forecasts can lead to frequency instability [6] and 

restoration failure. This further necessitates disaggregation of 

NM time series. 

C. Disaggregation of Net Metered Time Series 

Loads in a microgrid cannot be restored individually as all 

loads are not connected via remotely operable switches. As 

shown in Fig. 3, all the NM loads downstream of a switch, 

referred to as a load section (LS), are energized together 

[21],[31]. Given NM time series of all the loads in a LS, and the 

forecast for either their solar generation or actual demand, the 

other can be obtained by taking the difference. The problem then 

is to estimate both solar generation and actual demand of each 

NM load in a LS given only their NM time series. 

In this paper, a systematic approach is proposed for placing a 

solar generation measurement meter based on correlation in 

historical NM time series data, for disaggregating the solar 

generation and actual demand of each NM load. The correlation 

coefficient 𝜂𝑖,𝑗 between any 𝑖𝑡ℎ and 𝑗𝑡ℎ NM loads can be found 

by taking the ratio of the covariance 𝑐𝑖,𝑗 with the standard 

deviations 𝑠𝑖 and 𝑠𝑗 of their historical net metered time series of 

length 𝑁. 𝑝𝑖
𝑛, 𝑝𝑗

𝑛 are the arithmetic means of the historical NM 

time series of loads 𝑖 and 𝑗 respectively. 

𝜂𝑖,𝑗 =
𝑐𝑖,𝑗

𝑠𝑖𝑠𝑗

,  where 𝑐𝑖,𝑗 =
∑ (𝑝𝑖,𝑘

𝑛 − 𝑝𝑖
𝑛)𝑁

𝑘=1 (𝑝𝑗,𝑘
𝑛 − 𝑝𝑗

𝑛)

𝑁 − 1
  (17) 

Assuming perfect correlation between the NM time series of 

these customers, i.e., 𝜂𝑖,𝑗 = 1, these two random variables can 

be shown to be linearly related with each other 𝑝𝑖
𝑛 = 𝑎𝑖𝑝𝑗

𝑛 , 𝑎𝑖 ∈

ℝ as proved in Appendix A. Then using (13), 

𝑝𝑖
𝑛 = 𝑎𝑖𝑝𝑗

𝑛 ⟹ 𝑝𝑖
𝑑 − 𝑝𝑖

𝑔
= 𝑎𝑖𝑝𝑗

𝑑 − 𝑎𝑖𝑝𝑗
𝑔

    (18) 

However, 𝜂𝑖,𝑗 < 1, primarily due to the different demand 

patterns of NM loads in a LS. As described in Appendix A, the 

solar generation profiles are more correlated in geographically 

small load sections due to similar cloud patterns. Thus, most of 

the correlation observed in NM time series would be due to the 

correlation in solar generation profiles. A solar generation meter 

can be placed at the NM load showing the highest average 

correlation in historical NM time series data with all other loads 

in the LS. The solar profile of this 𝑗𝑡ℎ NM load 𝑝𝑗
𝑔

 can serve as 

the representative solar profile for all the NM loads in the LS. A 

scaling factor 𝑎𝑖 is obtained for each NM load in the LS to 

account for different kVA ratings and seasonal factors such as 

soiling of PV panels. 𝑎𝑖 is obtained using the historical NM time 

series of length 𝑁, by taking the partial derivative of the sum of 

squared errors with respect to 𝑎𝑖 (19). 

∂ ∑ (𝑝𝑖,𝑘
𝑛 − 𝑎𝑖𝑝𝑗,𝑘

𝑛 )
2𝑁

𝑘=1

∂𝑎𝑖

= 0 ⇒ 𝑎𝑖 =
∑ 𝑝𝑗,𝑘

𝑛𝑁
𝑘=1 𝑝𝑖,𝑘

𝑛

∑ (𝑝𝑗,𝑘
𝑛 )

2𝑁
𝑘=1

    (19) 

Using the scaling factor 𝑎𝑖, the disaggregated solar generation 

of each NM load is 𝑝𝑖
𝑔

= 𝑎𝑖𝑝𝑗
𝑔

 and the disaggregated actual 

demand is 𝑝𝑖
𝑑 = 𝑝𝑖

𝑛 + 𝑎𝑖𝑝𝑗
𝑔

. The disaggregated solar generation 

and actual demand profiles of the previous week can be used to 

obtain the order and parameters of the auto regressive moving 

average (ARMA) model [32] for generating demand forecasts. 

During an outage, the obtained ARMA model and 𝑎𝑖 can be 

used to obtain the demand during all four restoration stages 

𝑃̂𝑖(𝑘), 𝑘 ∈ 𝒦 for any 𝑖𝑡ℎ NM load in the LS. In the pre-outage 

stage 𝑆1 as shown in Fig. 2[a], the NM time series 𝑃𝑖
𝑛,𝑆1  and the 

representative solar generation time series 𝑃𝑗
𝑔,𝑆1  of length 𝐾𝑆1  

are available. These are used to obtain the disaggregated solar 

generation profile 𝑃𝑖
𝑔,𝑆1 = 𝑎𝑖𝑃𝑗

𝑔,𝑆1 and the actual demand profile 

𝑃𝑖
𝑑,𝑆1 = 𝑃𝑖

𝑛,𝑆1 + 𝑎𝑖𝑃𝑗
𝑔,𝑆1 . The ARMA model can then be used to 

obtain solar generation 𝑃̂𝑖
𝑔,𝐾

 and actual demand forecasts 𝑃̂𝑖
𝑑,𝐾

 

for 𝐾 future restoration time steps. 

Using these forecasts, the forecasted demand in stage 𝑆2 is 

𝑃̂𝑖
𝑆2(𝑘) = 0, 𝑘 ∈ {1, . . , 𝐾𝑆2} where 𝐾𝑆2  is the time interval when 

the LS is energized by the restoration algorithm. The forecasted 

demand in stage 𝑆3 is the actual demand forecast as PVs are 

offline 𝑃̂𝑖
𝑆3(𝑘) = 𝑃̂𝑖

𝑑,𝐾(𝑘), 𝑘 ∈ {𝐾𝑆2 + 1, . . , 𝐾𝑆3}. The duration 

of stage 𝑆3, 𝐾𝑆3 − 𝐾𝑆2  is equal to the ‘enter service delay’ as per 

IEEE 1547-2018. Finally, the forecasted demand in stage 𝑆4 will 

be the net demand as PV systems are back online 𝑃̂𝑖
𝑆4(𝑘) =

𝑃̂𝑖
𝑑,𝐾(𝑘) − 𝑃̂𝑖

𝑔,𝐾(𝑘), 𝑘 ∈ {𝐾𝑆3 + 1, . . , 𝐾}. The forecasted 

demand during the 𝐾 restoration steps is 𝑃̂𝑖(𝑘) =

{𝑃̂𝑖
𝑆3(𝑘), 𝑃̂𝑖

𝑆4(𝑘)}, 𝑘 ∈ 𝒦. 

D. Generalized Time Dependent Net Metered Load Demand 

Model 

Using the disaggregated pre-outage actual demand time series 

𝑃𝑙
𝑑,𝑆1 , the pre-outage demand 𝐷𝑙

0 required for determining the 

CLPU curve 𝐺𝑙(𝑘), 𝑘 ∈ 𝒦 for any 𝑙𝑡ℎ NM load can be obtained 

as 𝐷𝑙
0 = 𝑃𝑙

𝑑,𝑆1(𝐾𝑆1). The generalized time dependent NM load 

demand model for the 𝑙𝑡ℎ NM load can now be obtained by 

summing the forecasted demand during the 𝐾 restoration steps 

𝑃̂𝑙(𝑘) and the CLPU curve 𝐺𝑙(𝑘) scaled by TCL percentage 𝑔𝑙, 

𝑀‾
𝑙
𝐿(𝑘) = 𝑔𝑙𝐺𝑙(𝑘) + 𝑃̂𝑙(𝑘) as shown in (20),(21). 

𝑀‾
𝑙
𝐿(𝑘) = 𝑔𝑙 × [𝐷𝑙

𝑝1 +
𝐷𝑙

𝑝2 − 𝐷𝑙
𝑝1

𝑡𝑝2 − 𝑡𝑝1
(𝑘 − 1)𝛥𝑡] (1 − 𝑥(𝑅𝑙,𝑘

1 ))

+𝑔𝑙 × ℎ(𝑅𝑙,𝑘
1 )𝑥(𝑅𝑙,𝑘

1 ) (1 − 𝑥(𝑅𝑙,𝑘
2 )) + 𝑔𝑙 × 𝑥(𝑅𝑙,𝑘

2 )𝑃𝑙
𝑑,𝑆1(𝐾𝑆1) +

(𝑃̂𝑙
𝑑,𝐾(𝑘) (1 − 𝑥(𝑅𝑙,𝑘

3 )) + (𝑃̂𝑙
𝑑,𝐾(𝑘) − 𝑃̂𝑙

𝑔,𝐾(𝑘)) 𝑥(𝑅𝑙,𝑘
3 ))  (20)

 

where 𝑥(𝑗), 𝑅𝑙,𝑘
1  and 𝑅𝑙,𝑘

2  are given by (18) and (19) and 𝑅𝑙,𝑘
3  is 

given by (24). 

𝑅𝑙,𝑘
3 = 𝑘𝛥𝑡 − (𝑡𝑝3 − 𝑡𝑝1)       (21) 

It should be noted that this model is valid irrespective of whether 

𝑡𝑝3 is larger or smaller than 𝑡𝑝2. These demand curves 𝑀‾
𝑙
𝐿(𝑘) as 

shown in Fig. 3[c], are obtained for all NM loads before running 

the microgrid restoration algorithm. Constraints to 

automatically select the correct demand from the curve based on 

when a NM load gets energized are presented in section IV. 

SEQUENTIAL MICROGRID RESTORATION 

ALGORITHM 

The algorithm presented here incorporates the proposed 

voltage regulating device constraints and NM load demand 

curves within sequential MILP based optimal microgrid 

restoration algorithms [33] and [21]. By adding constraints (1)-

(4) and (8)-(12) to a MILP based dispatch or restoration 
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algorithm, the optimal taps 𝑎̂𝑘𝑗
𝜃  and capacitor bank states 𝛿̂𝑐,𝑖

𝜃 , 𝑖 ∈

𝒞𝑐, required to optimize the objective function are determined. 

Simultaneously, optimal DER dispatches are obtained which 

cause such voltages and power flows at the PCC of each AVR, 

such that its LDC estimates a load center voltage which will 

necessitate moving taps to 𝑎̂𝑘𝑗
𝜃 . Optimal DER dispatches will 

also create desired PCC voltages for capacitor banks to make 

them switch to the optimal state. While this proposed approach 

is sufficient for optimally controlling automatic AVRs and 

capacitor banks for optimal dispatch applications, additional 

points need to be considered while integrating it with MILP 

based optimal sequential microgrid restoration algorithms. 

A. Estimating pre-outage states of voltage regulation devices: 

   The time step when a voltage regulation device will be 

restored is determined by the algorithm. At this first energization 

interval their pre-outage states need to be considered while 

dispatching the DERs. This is because their taps are operated 

using a motor and will thus stay locked in their pre-outage state 

during an outage. Moreover, due to the default time delays of 

their automatic controllers, these devices cannot be optimally 

controlled from the first energization interval itself. A MILP 

based approach is proposed here to utilize the limited line flow 

and voltage measurements from residential AMI meters to 

estimate pre-outage states of these devices. 

Objective function: The objective function minimizes the 

differences between the limited pre-outage measurements and 

their corresponding variables (22). The least absolute value 

estimator which is accurate for state estimation has been used 

[31]. 

𝑚𝑖𝑛 ∑ (

𝜃∈{𝑎,𝑏,𝑐}

∑ |𝑃‾𝑖𝑗
𝜃 − 𝑃𝑖𝑗

𝜃|

𝑖𝑗∈ℰ𝑀

+ ∑ |𝑄‾𝑖𝑗
𝜃 − 𝑄𝑖𝑗

𝜃 |

𝑖𝑗∈ℰ𝑀

+

∑ |𝑉‾𝑖
𝜃 − 𝑉𝑖

𝜃|

𝑖∈ℬ𝑀

), ℰ𝑀 ⊆ ℰ, ℬ𝑀 ⊆ ℬ     (22)
 

The non-linear absolute value function needs to be linearized. 

The voltage term in (22) for instance is linearized by adding 

(23), where 𝑣𝑖 = |𝑉‾𝑖
𝜃 − 𝑉𝑖

𝜃|. 

𝑉‾𝑖
𝜃 − 𝑉𝑖

𝜃 ≤ 𝑣𝑖 ,  and  − (𝑉‾𝑖
𝜃 − 𝑉𝑖

𝜃) ≤ 𝑣𝑖    (23) 

Power flow constraints: The real and reactive line flows for the 

edges and nodal voltages for the nodes without voltage 

regulation devices are incorporated in the DistFlow model [28]. 

These constraints (24) also help in defining the microgrid 

topology. 

∑ 𝑃ℎ𝑖
𝜃

ℎ:ℎ→𝑖

= ∑ 𝑃𝑖𝑗
𝜃

𝑗:𝑖→𝑗

+ 𝑃‾𝑖
𝐿,𝜃 + 𝑃‾𝑖

𝐺,𝜃 , ∀𝑖 ∈ ℬ

∑ 𝑄ℎ𝑖
𝜃

ℎ:ℎ→𝑖

= ∑ 𝑄𝑖𝑗
𝜃

𝑗:𝑖→𝑗

+ 𝑄‾𝑖
𝐿,𝜃 + 𝑄‾𝑖

𝐺,𝜃 ,  ∀𝑖 ∈ ℬ ∖ 𝒞

∑ 𝑄ℎ𝑖
𝜃

ℎ:ℎ→𝑖

= ∑ 𝑄𝑖𝑗
𝜃

𝑗:𝑖→𝑗

+ 𝑄‾𝑖
𝐿,𝜃 + 𝑄‾𝑖

𝐺,𝜃 + 𝑄‾𝑖
𝐶,𝜃 ,  ∀𝑖 ∈ 𝒞 ∖ 𝒞𝑐

𝑉𝑖
𝜃 = 𝑉𝑗

𝜃 + 𝑟‾𝑖𝑗
𝜃𝑃𝑖𝑗

𝜃 + 𝑥‾𝑖𝑗
𝜃 𝑄𝑖𝑗

𝜃 ,  ∀𝑖𝑗 ∈ ℰ ∖ ℰ𝑅

   (24) 

Constraints on voltage regulation devices: Capacitor banks and 

AVRs are included using (1)-(4). However, both the capacitor 

bank’s state 𝛿𝑐,𝑖  and capacity 𝑞𝑐,𝑖
𝜃 , in case the capacitor bank has 

steps, are included as variables in (4). 

Upon solving the MILP formulation, the estimated pre-outage 

tap positions of each AVR 𝑎‾𝑖𝑗
𝜃 = 0.9 +

0.00625 ∑ 𝛿𝑖𝑗,𝑛
𝜃5

𝑛=0 (2)𝑛,  𝑖𝑗 ∈ ℰ𝑅, and the estimated pre-outage 

states and kVAR values of each controllable capacitor bank 

𝛿‾𝑐,𝑖
𝜃 , 𝑞‾𝑐,𝑖

𝜃 , 𝑖 ∈ 𝒞𝑐 are obtained. This step is completed prior to 

running the restoration algorithm and the bars on these estimates 

indicate that these will be used as parameters in the sequential 

microgrid restoration algorithm. Once the pre-outage state 

estimates and demand curves (20) are available for all NM loads, 

the restoration algorithm can be solved. 

B. Objective function for restoration algorithm:  

The objective function (25) aims to maximize the total 

energy restored over the 𝐾 restoration time steps. Critical loads 

can be assigned a weight (𝑐‾𝑖
𝐿,𝜃

) to ensure these are restored 

earlier. 

𝑚𝑎𝑥 (∑ ∑ ∑ 𝑐‾𝑖
𝐿,𝜃

𝜃∈{𝑎,𝑏,𝑐}

𝑁

𝑖=1

𝐾

𝑘=1

× 𝑃𝑖,𝑘
𝐿,𝜃 × 𝛥𝑡‾)   (25) 

C. AVR and capacitor bank constraints: 

After a voltage regulation device has been restored at 𝑡 =
𝑡𝑟 ∈ 𝒦, while considering its estimated pre-outage state for 

dispatching DERs, it must then be optimally controlled from 𝑡 =
𝑡𝑟 + 1 onwards using the approach presented in subsections 

II.A-II.E. An approach is needed to ensure that estimated pre-

outage states are used only in the first energization interval and 

states are controlled at their optimal positions from the second 

interval onwards. Finally, from the third interval onwards 

undesirable changes from the optimal tap positions and states of 

capacitor banks should be prevented. These logic propositions 

need to be integrated within the sequential microgrid restoration 

algorithm because the restoration time interval itself is a 

decision variable. This is achieved here by building upon the 

big-M method. The pre-outage state for AVRs (𝑎‾𝑖𝑗
𝜃 , 𝑖𝑗 ∈ ℰ𝑅) is 

inlcuded using constraint (26) for all 𝑘 ∈ 𝒦. The term 

(∑ 𝛿𝑖𝑗,𝑝
𝐸𝑘

𝑝=1 − 1) is zero only at the first energization interval. 

−𝑀 (∑ 𝛿𝑖𝑗,𝑝
𝐸

𝑘

𝑝=1

− 1) ≤ 𝑉𝑗,𝑘
𝜃 − 𝑎‾𝑖𝑗

𝜃 𝑉𝑖,𝑘
𝜃 ≤ 𝑀 (∑ 𝛿𝑖𝑗,𝑝

𝐸

𝑘

𝑝=1

− 1) (26) 

Pre-outage states of capacitor banks (𝛿‾𝑐,𝑖
𝜃 , 𝑞‾𝑐,𝑖

𝜃 , 𝑖 ∈ 𝒞𝑐) are 

included using (27), where 𝒯3 = (∑ 𝛿𝑖,𝑝
𝑁𝑘

𝑝=1 − 1), ∀𝑘 ∈ 𝒦. 

∑ 𝑄ℎ𝑖,𝑘
𝜃

ℎ:ℎ→𝑖

− ( ∑ 𝑄𝑖𝑗,𝑘
𝜃

𝑗:𝑖→𝑗

+ 𝑄𝑖,𝑘
𝐿,𝜃 + 𝑄𝑖,𝑘

𝐺,𝜃 + 𝛿‾𝑐,𝑖
𝜃 𝑞‾𝑐,𝑖

𝜃 ) ≤ 𝑀𝒯3 

∑ 𝑄ℎ𝑖,𝑘
𝜃

ℎ:ℎ→𝑖

− ( ∑ 𝑄𝑖𝑗,𝑘
𝜃

𝑗:𝑖→𝑗

+ 𝑄𝑖,𝑘
𝐿,𝜃 + 𝑄𝑖,𝑘

𝐺,𝜃 + 𝛿‾𝑐,𝑖
𝜃 𝑞‾𝑐,𝑖

𝜃 ) ≥ −𝑀𝒯3 (27)

 

The nodes connected to the AVRs and capacitor banks are not 

disconnected after being energized. This is ensured by using 

(28) and (29). In fact, these constraints ensure that all edges and 

nodes stay energized after being restored. 

𝛿𝑖𝑗,𝑘
𝐸 − 𝛿𝑖𝑗,𝑘−1

𝐸 ≥ 0,  𝑘 > 1, ∀(𝑖𝑗) ∈ ℰ      (28) 

𝛿𝑖,𝑘
𝑁 − 𝛿𝑖,𝑘−1

𝑁 ≥ 0,  𝑘 > 1, ∀𝑖 ∈ ℬ     (29) 

From the second interval onwards, the optimal tap positions 

of AVRs (∀𝑖𝑗 ∈ ℰ𝑅, 𝑘 > 1) are evaluated using (30)-(31). For 3-

phase AVRs, taps on all three phases are constrained to be equal 

by adding 𝛿𝑖𝑗,𝑛,𝑘
𝑎 = 𝛿𝑖𝑗,𝑛,𝑘

𝑏 = 𝛿𝑖𝑗,𝑛,𝑘
𝑐 . The AVR PCC voltages and 

line flows are controlled using constraints (32)-(34) to move taps 
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to their optimal positions. The term 𝒯4 = (2𝛿𝑖𝑗,𝑘−1
𝐸 − 1 −

∑ 𝛿𝑖𝑗,𝑝
𝐸𝑘

𝑝=1 + ∑ 𝛿𝑖𝑗,𝑝
𝐸𝑘−1

𝑝=1 ) ensures that constraints (30)-(34) are 

satisfied at equality only from the second AVR energization 

interval onwards. Here 𝒯1 = (𝑉𝑗,𝑘
𝜃 − 𝑃𝑗ℎ,𝑘

𝜃 𝑟𝑖𝑗
𝜃,𝑙 − 𝑄𝑗ℎ,𝑘

𝜃 𝑥𝑖𝑗
𝜃,𝑙 , ℎ: 𝑗 →

ℎ), 𝒯2 = ((0.9 + 0.00625 ∑ 𝛿𝑖𝑗,𝑛,𝑘
𝜃5

𝑛=0 (2)𝑛) − 1), 𝒯5 = (1 −

𝛿𝑖𝑗,4,𝑘
𝜃 ), 𝒯6 = (1 − 𝛿𝑖𝑗,5,𝑘

𝜃 ) and 𝒯7 = (∑ 𝛿𝑖𝑗,𝑛,𝑘
𝜃5

𝑛=4 ) as described 

in section II. 

−𝑀𝒯4 ≤ 𝑉𝑗,𝑘
𝜃 − 𝑉𝑖,𝑘

𝜃 (0.9 + 0.00625 ∑ 𝛿𝑖𝑗,𝑛,𝑘
𝜃

5

𝑛=0

(2)𝑛) ≤ 𝑀𝒯4(30) 

−𝑀𝒯4 ≤ ∑ 𝛿𝑖𝑗,𝑛,𝑘
𝜃

5

𝑛=0

(2)𝑛 ≤ 32 + 𝑀𝒯4   (31) 

−𝑀(𝒯4 + 𝒯5) ≤ 𝒯1 − 𝑉𝑖𝑗
𝜃,𝑙 +

𝐷𝑖𝑗
𝜃,𝑙

2
+ 𝒯2 ≤ 𝑀(𝒯4 + 𝒯5) (32) 

−𝑀(𝒯4 + 𝒯6) ≤ 𝒯1 − 𝑉𝑖𝑗
𝜃,𝑙 + 𝐷𝑖𝑗

𝜃,𝑙/2 + 𝒯2 ≤ 𝑀(𝒯4 + 𝒯6) (33) 

−𝑀(𝒯4 + 𝒯7) ≤ 𝒯1 − 𝑉𝑖𝑗
𝜃,𝑙 − 𝐷𝑖𝑗

𝜃,𝑙/2 + 𝒯2 ≤ 𝑀(𝒯4 + 𝒯7) (34) 

Once the AVRs have been moved to their optimal tap 

positions, these are maintained in those positions for the 

remaining restoration intervals (∀𝑖𝑗 ∈ ℰ𝑅 , 𝑘 > 2) to prevent 

undesirable tap changes using constraint (35), where 𝒯8 =

(3𝛿𝑖𝑗,𝑘−2
𝐸 − 1 − ∑ 𝛿𝑖𝑗,𝑝

𝐸𝑘
𝑝=1 + ∑ 𝛿𝑖𝑗,𝑝

𝐸𝑘−2
𝑝=1 ). 

−𝑀𝒯8 ≤ 𝛿𝑖𝑗,𝑛,𝑘 − 𝛿𝑖𝑗,𝑛,𝑘−1 ≤ 𝑀𝒯8,  ∀𝑛 ∈ {0, . . ,5}  (35) 

For all capacitor banks the optimal state (ON or OFF) is 

determined using (36), where 𝒯9 = (∑ 𝛿𝑖,𝑝
𝑁𝑘

𝑝=1 − 2). As 

described in section II, the capacitor bank is controlled to reach 

the optimal state using (37), (38). 

−𝑀𝒯9 ≤ ∑ 𝑄ℎ𝑖,𝑘
𝜃

ℎ:ℎ→𝑖

− ( ∑ 𝑄𝑖𝑗,𝑘
𝜃

𝑗:𝑖→𝑗

+ 𝑄𝑖,𝑘
𝐿,𝜃 + 𝑄𝑖,𝑘

𝐺,𝜃 

+𝛿𝑖,𝑘
𝑐,𝜃𝑄‾𝑖

𝐶,𝜃) ≤ 𝑀𝒯9,  ∀𝑖 ∈ 𝒞𝑐 , 𝑘 > 1

(36) 

−𝑀(𝒯9 + 1 − 𝛿𝑖,𝑘
𝑐,𝜃) ≤ 𝑉𝑖,𝑘

𝜃 − 𝑉𝑖
𝜃,𝑜𝑛 ≤ 𝑀(𝒯9 + 1 − 𝛿𝑖,𝑘

𝑐,𝜃) (37) 

−𝑀(𝒯9 + 𝛿𝑖,𝑘
𝑐,𝜃) ≤ 𝑉𝑖,𝑘

𝜃 − 𝑉𝑖
𝜃,𝑜𝑓

≤ 𝑀(𝒯9 + 𝛿𝑖,𝑘
𝑐,𝜃) (38) 

It should be noted that unlike AVRs where constraints (30)-

(34) have to be applied continuously to maintain taps in their 

optimal positions, for capacitor banks constraints (36)-(38) only 

have to be applied at their second restoration interval. Thereafter 

capacitor banks’ nodal voltages are maintained within their dead 

bands using (39), where 𝒯10 = (3𝛿𝑖,𝑘−2
𝑁 − 1 − ∑ 𝛿𝑖,𝑝

𝑁𝑘
𝑝=1 +

∑ 𝛿𝑖,𝑝
𝑁𝑘−2

𝑝=1 ). This is because capacitor banks tend to have larger 

deadbands and maintaining their PCC voltage continuously 

beyond their ON or OFF thresholds can lead to infeasibility. 

−𝑀𝒯10 + 𝑉‾𝑖
𝜃,𝑜𝑛 ≤ 𝑉𝑖,𝑘

𝜃 ≤ 𝑉‾𝑖
𝜃,𝑜𝑓

+ 𝑀𝒯10,  ∀𝑖 ∈ 𝒞𝑐 , 𝑘 > 2  (39) 

D. NM load constraints:  

The combined NM and CLPU curves (𝑀‾
𝑖
𝐿,𝜃

) are generated 

for each 𝑖𝑡ℎ NM load using (23) as described in section III, 

before running the microgrid restoration algorithm. These 

curves thus act as parameters for the restoration algorithm. 

However, the point on the demand curve to be selected at each 

restoration step is determined by the restoration algorithm based 

on when the NM load is energized. This is achieved using (40) 

which has been adapted from [21] to work with non-

monotonically decreasing demand curves as well. Here 

𝑃‾𝑖
𝐿,𝜃 , 𝑄‾𝑖

𝐿,𝜃
 are the rated real and reactive power demands of the 

NM load. 

𝑃𝑖,𝑘
𝐿,𝜃 = 𝑃‾𝑖

𝐿,𝜃 (𝛿𝑖,𝑘
𝑁 𝑀‾

𝑖,1
𝐿,𝜃 − ∑ 𝛥

𝑘

𝑝=1

𝑀𝑖
𝐿,𝜃(𝑝)𝛿𝑖,𝑘−𝑝+1

𝑁 )

𝑄𝑖,𝑘
𝐿,𝜃 = 𝑄‾𝑖

𝐿,𝜃 (𝛿𝑖,𝑘
𝑁 𝑀‾

𝑖,1
𝐿,𝜃 − ∑ 𝛥

𝑘

𝑝=1

𝑀𝑖
𝐿,𝜃(𝑝)𝛿𝑖,𝑘−𝑝+1

𝑁 )

where,  𝛥𝑀𝑖
𝐿,𝜃(𝑝) = {

0 ,if 𝑝 = 1

𝑀‾
𝑖,𝑝−1
𝐿,𝜃 − 𝑀‾

𝑖,𝑝
𝐿,𝜃 ,if 𝑝 > 1

 (40) 

Linearized power flow constraints such as (24) are added for 

non-voltage regulation device nodes. Additionally, demand 

generation balance, maximum and minimum generation limits, 

voltage, and line loading limits are added as constraints. 

Connectivity and sequencing constraints [33] to ensure the 

creation of a feasible radial microgrid topology while utilizing 

the normally open tie-switches are also included. 

CASE STUDY 

 
Fig. 3. Extended IEEE 123-node test feeder in OpenDSS used as a microgrid 

The proposed methodology has been validated using the IEEE 

123-node distribution system model as a microgrid in OpenDSS. 

This 3-phase unbalanced non-linear power flow model has 

detailed models for loads, generators, AVRs with LDCs, 

capacitor banks and their localized controllers, and other power 

delivery and conversion equipment. The 𝑟‾𝑖𝑗
𝜃 + 𝑗𝑥‾𝑖𝑗

𝜃  parameters 

are determined once at the peak loading condition using 𝑟‾𝑖𝑗
𝜃 =

𝑟𝑒𝑎𝑙 (
𝑉𝑖

𝜃−𝑉𝑗
𝜃

𝐼𝑖𝑗
𝜃 ) and 𝑥‾𝑖𝑗

𝜃 = 𝑖𝑚𝑎𝑔 (
𝑉𝑖

𝜃−𝑉𝑗
𝜃

𝐼𝑖𝑗
𝜃 ). The linearized power 

flow algorithm requires traversing the nodes of the directed 

graph in order which is done using breadth first search. The 

feeder has a 3-phase AVR on bus 150, a 1-phase AVR on bus 9, 

two 1-phase AVRs on bus 25 and three 1-phase AVRs on bus 

160 as shown in Fig. 3. The AVRs have unmonitored automatic 

LDCs with no remote-control capabilities and have unique 

𝑟‾𝑘𝑗
𝜃,𝑣 , 𝑥‾𝑘𝑗

𝜃,𝑣 , 𝑉‾𝑘𝑗
𝜃,𝑙

 and 𝐷‾𝑘𝑗
𝜃,𝑙

 settings. A voltage-based controller is 

added to one of the four capacitor banks for testing the 

methodology. The presence of 2 normally open tie switches and 

7 normally closed switches creates 7 load sections in the 

microgrid. All the 91 loads have a small rooftop PV system 

making them NM loads and 5 large dispatchable DERs have 

been added randomly in the load sections. 
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A. Impact of Voltage Regulation Devices’ States on Voltages 

 
Fig. 4. Histogram of nodal voltages in IEEE 123-node system when AVR taps 

(a) are considered, (b) not considered, while optimally dispatching DERs 

To demonstrate the importance of considering device states 

during microgrid restoration, an outage is created in the 123-

node OpenDSS model during high loading conditions. The 

AVRs are locked in higher tap positions and the capacitor banks 

are ON. Two optimal power flow (OPF) problems are solved. In 

the first OPF, states are estimated using the MILP formulation 

proposed in section II and are used while dispatching DERs. In 

the second OPF, DERs are dispatched assuming all devices are 

in the neutral position as is typically done. Both OPFs converge, 

however, on applying their optimal DER dispatch in the 

OpenDSS model, only the first OPF is able to maintain voltages 

within the desired ANSI A Range as shown in Fig. 4(a). Much 

higher voltages are observed when device states are not 

considered as can be seen in Fig. 4(b). Such high voltages can 

trip inverters leading to microgrid restoration failure.  

 
Fig. 5. Tap estimation results with limited measurements using MILP 

formulation proposed in section II

 

Fig. 6. Taps controlled at neutral position (tap=0) throughout the QSTS 

simulation using the methodology proposed in section II 

B. Quasi Static Time Series Validations using OpenDSS 

Quasi Static Time Series (QSTS) simulations [34] are 

performed at 1-minute resolution for several hours in the 

OpenDSS model with unique load and PV irradiance profiles. 

Intermittency in solar generation results in bidirectional power 

flows and voltage changes causing the AVRs to change tap 

positions. The controllable capacitor bank stays in the OFF 

position. These QSTS simulations are used to validate the 

effectiveness of the methodology proposed in section II. 

In the first QSTS simulation, limited line flow and voltage 

measurements are used to estimate device states using the MILP 

formulation proposed in section II.F. The randomly chosen lines 

and buses shown in red in Fig. 3 do not have AMI meters. Fig. 

5 shows a comparison of the actual tap positions observed in 

OpenDSS and the estimated tap positions. The proposed MILP 

formulation can accurately estimate tap positions throughout the 

QSTS simulation, with a maximum deviation of only 1 tap 

position out of the 33 possible tap positions.  

The QSTS simulations are performed again, and in this second 

run, DERs are dispatched optimally while controlling the AVRs 

to be at the neutral position (tap=0) using the optimal control 

approach proposed in section II. Fig. 6 shows a comparison of 

the uncontrolled tap positions, the controlled tap positions, and 

the desired tap position. The proposed methodology is able to 

control the tap positions of all the unmonitored AVRs with 

automatic LDC’s at the desired neutral tap position. Minor 

deviations observed are due to the use of linearized power flow 

versus the non-linear power flow used in OpenDSS. The 

controllable capacitor bank also stays in the OFF position 

throughout the QSTS simulation. Solving each OPF to estimate 

device states takes 0.7 seconds on average and it takes 0.33 

seconds to solve each OPF for controlling device states. OPF is 

formulated in the Python package PYOMO and the GLPK 

solver is used. 

C. Sequential Microgrid Restoration Results 

 
Fig. 7. [a] Restoration sequence of load sections and their demand during each 

microgrid restoration interval; [b] Switches energized to restore all load sections 

of the microgrid 

Sequential microgrid restoration is completed in 𝐾 = 6 time 

intervals using the proposed methodology. AVRs are locked at 

their respective pre-outage tap positions of time interval 1 as 

shown in Fig. 5. All loads are NM loads with a 40% TCL 

percentage [22]. Pecan street database [35] is used to obtain 

solar generation and demand profiles for the NM loads. Using 

the methodology proposed in section III, demand forecasts 

𝑀‾
𝑖
𝐿(𝑘) which include the CLPU demand, are obtained for each 

NM load for the 6 restoration intervals. 

The switches energized to restore all 7 load sections and the 

sequence in which they are energized can be seen in Fig. 7. This 

figure shows that the demand of each load section follows the 

expected pattern shown in Fig. 2[c]. For instance, LS3 is 
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energized at interval 3 and shows high demand due to the 

combined effect of PVs being offline and CLPU. The demand 

then increases to peak demand in interval 4 as TCL diversity is 

lost. Then from interval 5 onwards the PV systems are back 

online after their ‘enter service delay’ and demand reduces. Fig. 

7[b] shows that normally open tie switches are used to meet all 

the constraints while maintaining a radial topology. 

 
Fig. 8. Comparison of actual demand with demand forecasts obtained using the 
approach proposed in section III, disaggregation approach in [25], and only net 

metered time series data. 

Figure 8 presents a comparison of the forecasted versus actual 

demands observed during the 6 restoration intervals. The actual 

demand is obtained by summing the demand, solar generation 

and the CLPU demand. The forecasted demand using the 

proposed disaggregation methodology (Proposed Disagg) in 

section III required only one solar generation meter per load 

section. This meter is deployed at the NM load exhibiting the 

highest average correlation in historical NM time series data 

with all other NM loads in the load section. The Proposed 

Disagg demand is compared with the disaggregation approach 

(Ref. Disagg) proposed in [25]. 3 randomly deployed solar 

generation meters per load section are used for the Ref. Disagg 

approach. The demand forecasts using only the historical NM 

time series (Net Metered Only), while ignoring the ‘enter service 

delay’ and CLPU phenomenon are also presented. The Proposed 

Disagg approach generates the most accurate NM demand 

forecasts in all 6 restoration time intervals.  The accuracy of 

forecasts obtained using the Ref. Disagg approach decreases 

significantly as time horizon increases. Using only the NM time 

series-based forecasts causes large demand generation 

imbalance, leading to frequency instability and restoration 

failure. 

 
Fig. 9. AVR tap positions during microgrid restoration with and without the 

proposed optimal control approach. 

 
Fig. 10. All nodal voltages during microgrid restoration [a] with, and [b] without 

the proposed optimal control approach 

Figures 9 and 10 show the AVR tap positions and all nodal 

voltages during the 6 restoration intervals, with and without the 

application of the optimal control approach proposed in this 

paper. These figures show that when AVR operation is not 

coordinated with DER dispatch, frequent large tap changes are 

seen leading to both over and under voltages and possibly 

restoration failure. Using the proposed optimal control 

approach, AVRs are energized while considering their estimated 

pre-outage states. At their second energization interval, the 

optimal tap position is evaluated and such AVR PCC voltage 

and line flows are created which makes their automatic LDC to 

command the taps to move to their optimal tap position. From 

the third energization interval onwards, the taps are maintained 

at these optimal tap positions, while maintaining all nodal 

voltages within the ANSI limits throughout the successful 

sequential microgrid restoration. 

CONCLUSIONS 

An approach to reduced time and cost of deployment of 

microgrids is to not depend on communications and remote-

control capabilities. The integrated approach proposed in this 

paper mitigates the need for adding such capabilities in 

unmonitored automatic voltage regulation devices and net 

metered loads by incorporating their time dependent behavior in 

a sequential optimal microgrid restoration algorithm. This 

approach allows coordinated optimal control of dispatchable 

distributed energy resources with non-remote control capable 

voltage regulation devices. Through a case study on the 

unbalanced IEEE 123-node test system, the effectiveness of the 

proposed approach in optimally controlling voltage regulation 

devices’ states has been demonstrated. The proposed 

disaggregation based net metered load demand model is also 

shown to accurately forecast net metered load demand during all 

time steps of the microgrid restoration process. To reduce 

computation time, voltage drops across voltage regulators are 

ignored and simplified power flow expressions are used. This 

however can reduce accuracy which can be further improved by 

using power flow expressions that consider coupling among 

phases. Future work would also include integration of 

optimization and control algorithms for managing dynamics that 

arise due to sudden load energization during restoration. 

APPENDIX A 

UNITY CORRELATION COEFFICIENT AND LINEARITY 

Proof: Assuming that any two net metered random variables 

𝑝𝑖
𝑛 , 𝑝𝑗

𝑛 are linearly related 𝑝𝑖
𝑛 = 𝑎𝑖𝑝𝑗

𝑛 ,  𝑎𝑖 ∈ ℝ1, the covariance 

𝑐𝑖,𝑗 between them is defined as the expected value of the outer 

product of (𝑝𝑖
𝑛 − 𝔼[𝑝𝑖

𝑛]) and (𝑝𝑗
𝑛 − 𝔼[𝑝𝑗

𝑛]). Given the net 
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metered time series of these two variables, their expected values 

will be their arithmetic means, 𝔼[𝑝𝑖
𝑛] = 𝑝𝑖

𝑛 and 𝔼[𝑝𝑗
𝑛] = 𝑝𝑗

𝑛. 

Hence, 

𝑐𝑖,𝑗 = 𝔼[(𝑝𝑖
𝑛 − 𝑝𝑖

𝑛)(𝑝𝑗
𝑛 − 𝑝𝑗

𝑛)]     (41) 

= 𝔼[𝑝𝑖
𝑛𝑝𝑗

𝑛] − 𝑝𝑗
𝑛𝔼[𝑝𝑖

𝑛] − 𝑝𝑖
𝑛𝔼[𝑝𝑗

𝑛] + 𝑝𝑖
𝑛𝑝̃𝑗

𝑛    (42) 

= 𝔼[𝑝𝑖
𝑛𝑝𝑗

𝑛] − 𝑝𝑖
𝑛𝑝𝑗

𝑛 = 𝔼[𝑝𝑖
𝑛𝑝𝑗

𝑛] − 𝔼[𝑝𝑖
𝑛]𝔼[𝑝𝑗

𝑛]   (43) 

Squaring the correlation coefficient defined in (20), 

(𝜂𝑖,𝑗)
2

=
(𝑐𝑖,𝑗)

2

(𝑠𝑖)2(𝑠𝑗)
2 =

(𝔼[𝑝𝑖
𝑛𝑝𝑗

𝑛] − 𝔼[𝑝𝑖
𝑛]𝔼[𝑝𝑗

𝑛])
2

(𝑠𝑖)2(𝑠𝑗)
2   (44) 

Substituting, 𝑝𝑖
𝑛 = 𝑎𝑖𝑝𝑗

𝑛 in the numerator, 

(𝜂𝑖,𝑗)
2

=
(𝑎𝑖𝔼 [(𝑝𝑗

𝑛)
2

] − 𝑎𝑖(𝔼[𝑝𝑗
𝑛])

2
)

2

(𝑠𝑖)2(𝑠𝑗)
2       (45) 

The variance (𝑠𝑗)
2
 is defined as, 

(𝑠𝑗)
2

= 𝔼[𝑝𝑗
𝑛 − 𝑝𝑗

𝑛]
2

=  𝔼 [(𝑝𝑗
𝑛)

2
] − 2𝑝̃𝑗

𝑛𝔼[(𝑝𝑗
𝑛)]  + 𝔼 [(𝑝̃𝑗

𝑛)
2

]  (46) 

= 𝔼 [(𝑝𝑗
𝑛)

2
] − 2(𝑝̃𝑗

𝑛)
2

+ (𝑝𝑗
𝑛)

2
= 𝔼 [(𝑝𝑗

𝑛)
2

] − (𝑝𝑗
𝑛)

2
 (47) 

= 𝔼 [(𝑝𝑗
𝑛)

2
] − (𝔼[𝑝𝑗

𝑛])
2

 (48) 

Substituting (48) in the numerator of (45), 

(𝜂𝑖,𝑗)
2

=
𝑎𝑖

2 ((𝑠𝑗)
2

)
2

(𝑠𝑖)2(𝑠𝑗)
2     (49) 

Also, the variance (𝑠𝑖)2 = 𝑎𝑖
2(𝑠𝑗)

2
 since 𝑝𝑖

𝑛 = 𝑎𝑖𝑝𝑗
𝑛, hence, 

(𝜂𝑖,𝑗)
2

=
𝑎𝑖

2 ((𝑠𝑗)
2

)
2

𝑎𝑖
2(𝑠𝑗)

2
(𝑠𝑗)

2 = 1    (50) 

Thus, if 𝜂𝑖,𝑗 = 1, one can express 𝑝𝑖
𝑛 = 𝑎𝑖𝑝𝑗

𝑛 ,  𝑎𝑖 ∈ ℝ1. In 

practice however, 𝜂𝑖,𝑗 will be less than 1 primarily due to the low 

correlation in the actual demand time series of NM loads. The 

solar generation profiles of NM loads in a geographically small 

load section with similar cloud patterns will be more correlated. 

This was validated by evaluating the correlation in actual 

demand time series of 18 residential customers from the Pecan 

Street database which is found to be 0.306 whereas the 

correlation in their solar generation time series is 0.921 [32]. 

This is why solar generation is expressed as a linear function of 

the representative profile in section III. 
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